
Chapter 62 

WEKA 

A Machine Learning Workbench for Data Mining 

Eibe Frank, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer 
and Ian H. Witten 
Department of Computer Science, University of Waikato, Hamilton, New Zealand 
{eibe, mhall, geoff rkirkby, bernhard, ihw) @cs.waikato.ac.nz 

Len Trigg 
Reel Two, P 0 Box 1538, Hamilton, New Zealand 
lenO reeltwo.com 

Abstract The Weka workbench is an organized collection of state-of-the-art machine lear- 
ning algorithms and data preprocessing tools. The basic way of interacting with 
these methods is by invoking them from the command line. However, convenient 
interactive graphical user interfaces are provided for data exploration, for setting 
up large-scale experiments on distributed computing platforms, and for design- 
ing configurations for streamed data processing. These interfaces constitute an 
advanced environment for experimental data mining. The system is written in 
Java and distributed under the terms of the GNU General Public License. 

Keywords: machine learning software, Data Mining, data preprocessing, data visualization, 
extensible workbench 

1. Introduction 
Experience shows that no single machine learning method is appropriate 

for all possible learning problems. The universal learner is an idealistic fan- 
tasy. Real datasets vary, and to obtain accurate models the bias of the learning 
algorithm must match the structure of the domain. 

The Weka workbench is a collection of state-of-the-art machine learning al- 
gorithms and data preprocessing tools. It is designed so that users can quickly 
try out existing machine learning methods on new datasets in very flexible 



1306 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK 

Figure 62.1. The Explorer Interface. 

ways. It provides extensive support for the whole process of experimental 
Data Mining, including preparing the input data, evaluating learning schemes 
statistically, and visualizing both the input data and the result of learning. This 
has been accomplished by including a wide variety of algorithms for learning 
different types of concepts, as well as a wide range of preprocessing methods. 
This diverse and comprehensive set of tools can be invoked through a com- 
mon interface, making it possible for users to compare different methods and 
identify those that are most appropriate for the problem at hand. 

The workbench includes methods for all the standard Data Mining prob- 
lems: re,oression, classification, clustering, association rule mining, and at- 
tribute selection. Getting to know the data is is a very important part of Data 
Mining, and many data visualization facilities and data preprocessing tools are 
provided. All algorithms and methods take their input in the form of a single 
relational table, which can be read from a file or generated by a database query. 

Exploring the Data 
The main graphical user interface, the "Explorer," is shown in Figure 62.1. 

It has six different panels, accessed by the tabs at the top, that correspond to 
the various Data Mining tasks supported. In the "Preprocess" panel shown in 
Figure 62.1, data can be loaded from a file or extracted from a database using 
an SQL query. The file can be in CSV format, or in the system's native ARFF 



Weka 1307 

file format. Database access is provided through Java Database Connectivity, 
which allows SQL queries to be posed to any database for which a suitable 
driver exists. Once a dataset has been read, various data preprocessing tools, 
called "filters," can be applied-for example, numeric data can be discretized. 
In Figure 62.1 the user has loaded a data file and is focusing on a particular 
attribute, normalized-losses, examining its statistics and a histogram. 

Through the Explorer's second panel, called "Classify," classification and 
regression algorithms can be applied to the preprocessed data. This panel also 
enables users to evaluate the resulting models, both numerically through sta- 
tistical estimation and graphically through visualization of the data and exami- 
nation of the model (if the model structure is amenable to visualization). Users 
can also load and save models. 

The third panel, "Cluster," enables users to apply clustering algorithms to 
the dataset. Again the outcome can be visualized, and, if the clusters repre- 
sent density estimates, evaluated based on the statistical likelihood of the data. 
Clustering is one of two methodologies for analyzing data without an explicit 
target attribute that must be predicted. The other one comprises association 
rules, which enable users to perform a market-basket type analysis of the data. 
The fourth panel, "Associate," provides access to algorithms for learning asso- 
ciation rules. 

Attribute selection, another important Data Mining task, is supported by the 
next panel. This provides access to various methods for measuring the utility 
of attributes, and for finding attribute subsets that are predictive of the data. 
Users who like to analyze the data visually are supported by the final panel, 
"Visualize." This presents a color-coded scatter plot matrix, and users can then 
select and enlarge individual plots. It is also possible to zoom in on portions of 
the data, to retrieve the exact record underlying a particular data point, and so 
on. 

The Explorer interface does not allow for incremental learning, because the 
Preprocess panel loads the dataset into main memory in its entirety. That means 
that it can only be used for small to medium sized problems. However, some 
incremental algorithms are implemented that can be used to process very large 
datasets. One way to apply these is through the command-line interface, which 
gives access to all features of the system. An alternative, more convenient, ap- 
proach is to use the second major graphical user interface, called "Knowledge 
Flow." Illustrated in Figure 62.2, this enables users to specify a data stream by 
graphically connecting components representing data sources, preprocessing 
tools, learning algorithms, evaluation methods, and visualization tools. Using 
it, data can be processed in batches as in the Explorer, or loaded and processed 
incrementally by those filters and learning algorithms that are capable of incre- 
mental learning. 



DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK 

Figure 62.2. The Knowledge Flow Interface. 

Wl 

Figure 62.3. The Experimenter Interface. 

An important practical question when applying classification and regres- 
sion techniques is to determine which methods work best for a given problem. 



Weka 1309 

There is usually no way to answer this question a priori, and one of the main 
motivations for the development of the workbench was to provide an environ- 
ment that enables users to try a variety of learning techniques on a particular 
problem. This can be done interactively in the Explorer. However, to automate 
the process Weka includes a third interface, the "Experimenter," shown in Fig- 
ure 62.3. This makes it easy to run the classification and regression algorithms 
with different parameter settings on a corpus of datasets, collect performance 
statistics, and perform significance tests on the results. Advanced users can 
also use the Experimenter to distribute the computing load across multiple ma- 
chines using Java Remote Method Invocation. 

Methods and Algorithms 
Weka contains a comprehensive set of useful algorithms for a panoply of 

Data Mining tasks. These include tools for data engineering (called "filters"), 
algorithms for attribute selection, clustering, association rule learning, classifi- 
cation and regression. In the following subsections we list the most important 
algorithms in each category. Most well-known algorithms are included, along 
with a few less common ones that naturally reflect the interests of our research 
group. 

An important aspect of the architecture is its modularity. This allows algo- 
rithms to be combined in many different ways. For example, one can combine 
bagging, boosting, decision tree learning and arbitrary filters directly from the 
graphical user interface, without having to write a single line of code. Most al- 
gorithms have one or more options that can be specified. Explanations of these 
options and their legal values are available as built-in help in the graphical user 
interfaces. They can also be listed from the command line. Additional infor- 
mation and pointers to research publications describing particular algorithms 
may be found in the internal Javadoc documentation. 

Classification. Implementations of almost all main-stream classification 
algorithms are included. Bayesian methods include naive Bayes, complement 
naive Bayes, multinomial naive Bayes, Bayesian networks, and AODE. There 
are many decision tree learners: decision stumps, ID3, a C4.5 clone called 
"548," trees generated by reduced error pruning, alternating decision trees, and 
random trees and forests thereof. Rule learners include OneR, an implemen- 
tation of Ripper called "JRip," PART, decision tables, single conjunctive rules, 
and Prism. There are several separating hyperplane approaches like support 
vector machines with a variety of kernels, logistic regression, voted percep- 
trons, Winnow and a multi-layer perceptron. There are many lazy learning 
methods like IB1, IBk, lazy Bayesian rules, KStar, and locally-weighted learn- 
ing. 



1310 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK 

As well as the basic classification learning methods, so-called 
"meta-learning" schemes enable users to combine instances of one or more of 
the basic algorithms in various ways: bagging, boosting (including the variants 
AdaboostMl and LogitBoost), and stacking. A method called "FilteredClas- 
sifier" allows a filter to be paired up with a classifier. Classification can be 
made cost-sensitive, or multi-class, or ordinal-class. Parameter values can be 
selected using cross-validation. 

Regression. There are implementations of many regression schemes. 
They include simple and multiple linear regression, pace regression, a multi- 
layer perceptron, support vector regression, locally-weighted learning, deci- 
sion stumps, regression and model trees (M5) and rules (MSrules). The stan- 
dard instance-based learning schemes IB 1 and IBk can be applied to regression 
problems (as well as classification problems). Moreover, there are additional 
meta-learning schemes that apply to regression problems, such as additive re- 
gression and regression by discretization. 

Clustering. At present, only a few standard clustering algorithms are 
included: KMeans, EM for naive Bayes models, farthest-first clustering, and 
Cobweb. This list is likely to grow in the near future. 

Association rule learning. The standard algorithm for association rule 
induction is Apriori, which is implemented in the workbench. Two other al- 
gorithms implemented in Weka are Tertius, which can extract first-order rules, 
and Predictive Apriori, which combines the standard confidence and support 
statistics into a single measure. 

Attribute selection. Both wrapper and filter approaches to attribute se- 
lection are supported. A wide range of filtering criteria are implemented, in- 
cluding correlation-based feature selection, the chi-square statistic, gain ratio, 
information gain, symmetric uncertainty, and a support vector machine-based 
criterion. There are also a variety of search methods: forward and backward 
selection, best-first search, genetic search, and random search. Additionally, 
principal components analysis can be used to reduce the dimensionality of a 
problem. 

Filters. Processes that transform instances and sets of instances are called 
"filters," and they are classified according to whether they make sense only in 
a prediction context (called "supervised") or in any context (called "unsuper- 
vised"). We further split them into "attribute filters," which work on one or 
more attributes of an instance, and "instance filters," which manipulate sets of 
instances. 



Weka 131 1 

Unsupervised attribute filters include adding a new attribute, adding a clus- 
ter indicator, adding noise, copying an attribute, discretizing a numeric at- 
tribute, normalizing or standardizing a numeric attribute, making indicators, 
merging attribute values, transforming nominal to binary values, obfuscating 
values, swapping values, removing attributes, replacing missing values, turning 
string attributes into nominal ones or word vectors, computing random projec- 
tions, and processing time series data. Unsupervised instance filters transform 
sparse instances into non-sparse instances and vice versa, randomize and re- 
sample sets of instances, and remove instances according to certain criteria. 

Supervised attribute filters include support for attribute selection, discretiza- 
tion, nominal to binary transformation, and re-ordering the class values. Fi- 
nally, supervised instance filters resample and subsample sets of instances to 
generate different class distributions-stratified, uniform, and arbitrary user- 
specified spreads. 

System Architecture 
In order to make its operation as flexible as possible, the workbench was de- 

signed with a modular, object-oriented architecture that allows new classifiers, 
filters, clustering algorithms and so on to be added easily. A set of abstract 
Java classes, one for each major type of component, were designed and placed 
in a corresponding top-level package. 

All classifiers reside in subpackages of the top level "classifiers" package 
and extend a common base class called "Classifier." The Classifier class pre- 
scribes a public interface for classifiers and a set of convention~ by which they 
should abide. Subpackages group components according to functionality or 
purpose. For example, filters are separated into those that are supervised or 
unsupervised, and then further by whether they operate on an attribute or in- 
stance basis. Classifiers are organized according to the general type of learning 
algorithm, so there are subpackages for Bayesian methods, tree inducers, rule 
learners, etc. 

All components rely to a greater or lesser extent on supporting classes that 
reside in a top level package called "core." This package provides classes 
and data structures that read data sets, represent instances and attributes, and 
provide various common utility methods. The core package also contains addi- 
tional interfaces that components may implement in order to indicate that they 
support various extra functionality. For example, a classifier can implement the 
"WeightedInstancesHandler" interface to indicate that it can take advantage of 
instance weights. 

A major part of the appeal of the system for end users lies in its graphical 
user interfaces. In order to maintain flexibility it was necessary to engineer 
the interfaces to make it as painless as possible for developers to add new 



1312 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK 

components into the workbench. To this end, the user interfaces capitalize 
upon Java's introspection mechanisms to provide the ability to configure each 
component's options dynamically at runtime. This frees the developer from 
having to consider user interface issues when developing a new component. 
For example, to enable a new classifier to be used with the Explorer (or either 
of the other two graphical user interfaces), all a developer need do is follow 
the Java Bean convention of supplying "get" and "set" methods for each of the 
classifier's public options. 

Applications 
Weka was originally developed for the purpose of processing agricultural 

data, motivated by the importance of this application area in New Zealand. 
However, the machine learning methods and data engineering capability it em- 
bodies have grown so quickly, and so radically, that the workbench is now 
commonly used in all forms of Data Mining applications-from bioinformat- 
ics to competition datasets issued by major conferences such as Knowledge 
Discovery in Databases. 

New Zealand has several research centres dedicated to agriculture and hor- 
ticulture, which provided the original impetus for our work, and many of our 
early applications. For example, we worked on predicting the internal bruis- 
ing sustained by different varieties of apple as they make their way through 
a packing-house on a conveyor belt (Holmes et al., 1998); predicting, in real 
time, the quality of a mushroom from a photograph in order to provide auto- 
matic grading (Kusabs et al., 1998); and classifying kiwifruit vines into twelve 
classes, based on visible-NIR spectra, in order to determine which of twelve 
pre-harvest fruit management treatments has been applied to the vines (Holmes 
and Hall, 2002). The applicability of the workbench in agricultural domains 
was the subject of user studies (McQueen et al., 1998) that demonstrated a 
high level of satisfaction with the tool and gave some advice on improvements. 

There are countless other applications, actual and potential. As just one 
example, Weka has been used extensively in the field of bioinformatics. Pub- 
lished studies include automated protein annotation (Bazzan et al., 2002), pro- 
be selection for gene expression arrays (Tobler et al., 2002), plant genotype 
discrimination (Taylor et al., 2002), and classifying gene expression profiles 
and extracting rules from them (Li et al., 2003). Text mining is another major 
field of application, and the workbench has been used to automatically ex- 
tract key phrases from text (Frank et al., 1999), and for document categoriza- 
tion (Sauban and Pfahringer, 2003) and word sense disambiguation (Pedersen, 
2002). 

The workbench makes it very easy to perform interactive experiments, so 
it is not surprising that most work has been done with small to medium sized 



Weka 1313 

datasets. However, larger datasets have been successfully processed. Very 
large datasets are typically split into several training sets, and a voting- 
committee structure is used for prediction. The recent development of the 
knowledge flow interface should see larger scale application development, in- 
cluding online learning from streamed data. 

Many future applications will be developed in an online setting. Recent 
work on data streams (Holmes et al., 2003) has enabled machine learning al- 
gorithms to be used in situations where a potentially infinite source of data is 
available. These are common in manufacturing industries with 2417 process- 
ing. The challenge is to develop models that constantly monitor data in order 
to detect changes from the steady state. Such changes may indicate failure 
in the process, providing operators with warning signals that equipment needs 
re-calibrating or replacing. 

Summing up the Workbench 
Weka has three principal advantages over most other Data Mining software. 

First, it is open source, which not only means that it can be obtained free, but- 
more importantly-it is maintainable, and modifiable, without depending on 
the commitment, health, or longevity of any particular institution or company. 
Second, it provides a wealth of state-of-the-art machine learning algorithms 
that can be deployed on any given problem. Third, it is fully implemented in 
Java and runs on almost any platform--even a Personal Digital Assistant. 

The main disadvantage is that most of the functionality is only applicable 
if all data is held in main memory. A few algorithms are included that are 
able to process data incrementally or in batches (Frank et al., 2002). However, 
for most of the methods the amount of available memory imposes a limit on 
the data size, which restricts application to small or medium-sized datasets. 
If larger datasets are to be processed, some form of subsampling is generally 
required. A second disadvantage is the flip side of portability: a Java imple- 
mentation may be somewhat slower than an equivalent in ClC++. 

Acknowledgments 
Many thanks to past and present members of the Waikato machine learning 

group and the many external contributors for all the work they have put into 
Weka. 

References 
Bazzan, A. L., Engel, P. M., Schroeder, L. E, and da Silva, S. C. (2002). Au- 

tomated annotation of keywords for proteins related to mycoplasmataceae 
using machine learning techniques. Bioinfomatics, 18:35S43S. 



1314 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK 

Frank, E., Holmes, G., Kirkby, R., and Hall, M. (2002). Racing committees for 
large datasets. In Proceedings of the International Conference on Discovery 
Science, pages 153-164. Springer-Verlag. 

Frank, E., Paynter, G. W., Witten, I. H., Gutwin, C., and Nevill-Manning, C. G. 
(1999). Domain-specific keyphrase extraction. In Proceedings of the 16th 
International Joint Conference on Art@cial Intelligence, pages 668673. 
Morgan Kaufmann. 

Holmes, G., Cunningham, S. J., Rue, B. D., and Bollen, F. (1998). Predicting 
apple bruising using machine learning. Acta Hort, 476:289-296. 

Holmes, G. and Hall, M. (2002). A development environment for predictive 
modelling in foods. International Journal of Food Microbiology, 73:351- 
362. 

Holmes, G., Kirkby, R., and Pfahringer, B. (2003). Mining data streams us- 
ing option trees. Technical Report 08/03, Department of Computer Science, 
University of Waikato. 

Kusabs, N., Bollen, F., Trigg, L., Holmes, G., and Inglis, S. (1998). Objec- 
tive measurement of mushroom quality. In Proc New Zealand Institute of 
Agricultural Science and the New Zealand Society for Horticultural Science 
Annual Convention, page 5 1. 

Li, J., Liu, H., Downing, J. R., Yeoh, A. E.-J., and Wong, L. (2003). Simple 
rules underlying gene expression profiles of more than six subtypes of acute 
lymphoblastic leukemia (all) patients. Bioinfonnatics, 19:71-78. 

McQueen, R., Holmes, G., and Hunt, L. (1998). User satisfaction with machine 
learning as a data analysis method in agricultural research. New Zealand 
Journal of Agricultural Research, 41(4):577-584. 

Pedersen, T. (2002). Evaluating the effectiveness of ensembles of decision trees 
in disambiguating Senseval lexical samples. In Proceedings of the ACL-02 
Workshop on Word Sense Disambiguation: Recent Successes and Future 
Directions. 

Sauban, M. and Pfahringer, B. (2003). Text categorisation using document pro- 
filing. In Proceedings of the 7th European Conference on Principles and 
Practice of Knowledge Discovery in Databases, pages 41 1-422. Springer. 

Taylor, J., King, R. D., Altmann, T., and Fiehn, 0. (2002). Application of 
metabolomics to plant genotype discrimination using statistics and machine 
learning. Bioinformutics, 18:241S-2488. 

Tobler, J. B., Molla, M., Nuwaysir, E., Green, R., and Shavlik, J. (2002). Eval- 
uating machine learning approaches for aiding probe selection for gene- 
expression arrays. Bioinfonnatics, 18: 164s-17 1 S. 




