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Abstract The idea of ensemble methodology is to build a predictive model by integrat- 
ing multiple models. It is well-known that ensemble methods can be used for 
improving prediction performance. In this chapter we provide an overview of 
ensemble methods in classification tasks. We present all important types of 
ensemble methods including boosting and bagging. Combining methods and 
modeling issues such as ensemble diversity and ensemble size are discussed. 
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1. Introduction 
The main idea of ensemble methodology is to combine a set of models, 

each of which solves the same original task, in order to obtain a better com- 
posite global model, with more accurate and reliable estimates or decisions 
than can be obtained from using a single model. The idea of building a pre- 
dictive model by integrating multiple models has been under investigation for 
a long time. Biihlmann and Yu (2003) pointed out that the history of ensem- 
ble methods starts as early as 1977 with Tukeys Twicing, an ensemble of two 
linear regression models. Ensemble methods can be also used for improving 
the quality and robustness of clustering algorithms (Dimitriadou et al., 2003). 
Nevertheless, in this chapter we focus on classifier ensembles. 

In the past few years, experimental studies conducted by the machine- 
learning community show that combining the outputs of multiple classifiers 
reduces the generalization error (Domingos, 1996; Quinlan, 1996; Bauer and 
Kohavi, 1999; Opitz and Maclin, 1999). Ensemble methods are very effective, 
mainly due to the phenomenon that various types of classifiers have differ- 
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ent "inductive biases" (Geman et al., 1995; Mitchell, 1997). Indeed, ensemble 
methods can effectively make use of such diversity to reduce the variance-error 
(Tumer and Ghosh, 1999; Ali and Pazzani, 1996) without increasing the bias- 
error. In certain situations, an ensemble can also reduce bias-error, as shown 
by the theory of large margin classifiers (Bartlett and Shawe-Taylor, 1998). 

The ensemble methodology is applicable in many fields such as: finance 
(Leigh et al., 2002), bioinformatics (Tan et al., 2003), healthcare (Mangiameli 
et al., 2004), manufacturing (Maimon and Rokach, 2004), geography (Bruz- 
zone et al., 2004) etc. 

Given the potential usefulness of ensemble methods, it is not surprising that 
a vast number of methods is now available to researchers and practitioners. 
This chapter aims to organize all significant methods developed in this field 
into a coherent and unified catalog. There are several factors that differentiate 
between the various ensembles methods. The main factors are: 

1. Inter-classifiers relationship - How does each classifier affect the other 
classifiers? The ensemble methods can be divided into two main types: 
sequential and concurrent. 

2. Combining method - The strategy of combining the classifiers gen- 
erated by an induction algorithm. The simplest combiner determines 
the output solely from the outputs of the individual inducers. Ali and 
Pazzani (1996) have compared several combination methods: uniform 
voting, Bayesian combination, distribution summation and likelihood 
combination. Moreover, theoretical analysis has been developed for esti- 
mating the classification improvement (Tumer and Ghosh, 1999). Along 
with simple combiners there are other more sophisticated methods, such 
as stacking (Wolpert, 1992) and arbitration (Chan and Stolfo, 1995). 

3. Diversity generator - In order to make the ensemble efficient, there 
should be some sort of diversity between the classifiers. Diversity may 
be obtained through different presentations of the input data, as in bag- 
ging, variations in learner design, or by adding a penalty to the outputs 
to encourage diversity. 

4. Ensemble size -The number of classifiers in the ensemble. 

The following sections discuss and describe each one of these factors. 

2. Sequential Methodology 
In sequential approaches for learning ensembles, there is an interaction be- 

tween the learning runs. Thus it is possible to take advantage of knowledge 
generated in previous iterations to guide the learning in the next iterations. We 
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distinguish between two main approaches for sequential learning, as described 
in the following sections (Provost and Kolluri, 1997). 

2.1 Model-guided Instance Selection 
In this sequential approach, the classifiers that were constructed in previous 

iterations are used for manipulating the training set for the following iteration. 
One can embed this process within the basic learning algorithm. These meth- 
ods, which are also known as constructive or conservative methods, usually 
ignore all data instances on which their initial classifier is correct and only 
learn from misclassified instances. 

The following sections describe several methods which embed the sample 
selection at each run of the learning algorithm. 

2.1.1 Uncertainty Sampling. This method is useful in scenarios where 
unlabeled data is plentiful and the labeling process is expensive. We can define 
uncertainty sampling as an iterative process of manual labeling of examples, 
classifier fitting from those examples, and the use of the classifier to select 
new examples whose class membership is unclear (Lewis and Gale, 1994). A 
teacher or an expert is asked to label unlabeled instances whose class member- 
ship is uncertain. The pseudo-code is described in Figure 45.1. 

Input: I (a method for building the classifier), b (the selected bulk size), U (a 
set on unlabled instances), E (an Expert capable to label instances) 

Output: C 
I: Xnew t Random set of size bselected from U 
2: Ynew + E(Xnew) 
3: S + (Xnew Ynew) 
4: C t I ( S )  
5: U + U - Xnew 
6: while E is willing to label instances do 
7: Xnew t Select a subset of U of size b such that C is least certain of its 

classification. 
8: %ew + E(Xnew) 
9: S + S U (Xnew, Ynew) 

lo: C + I ( S )  
11: U t U - X n e w  
12: end while 

Figure 45.1. Pseudo-Code for Uncertainty Sampling. 
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It has been shown that using uncertainty sampling method in text catego- 
rization tasks can reduce by a factor of up to 500 the amount of data that had 
to be labeled to obtain a given accuracy level (Lewis and Gale, 1994). 

Simple uncertainty sampling requires the construction of many classifiers. 
The necessity of a cheap classifier now emerges. The cheap classifier selects 
instances "in the loop" and then uses those instances for training another, more 
expensive inducer. The Heterogeneous Uncertainty Sampling method achieves 
a given error rate by using a cheaper kind of classifier (both to build and run) 
which leads to reducted computational cost and run time (Lewis and Catlett, 
1 994). 

Unfortunately, an uncertainty sampling tends to create a training set that 
contains a disproportionately large number of instances from rare classes. In 
order to balance this effect, a modified version of a C4.5 decision tree was de- 
veloped (Lewis and Catlett, 1994). This algorithm accepts a parameter called 
loss ratio (LR). The parameter specifies the relative cost of two types of er- 
rors: false positives (where negative instance is classified positive) and false 
negatives (where positive instance is classified negative). Choosing a loss ra- 
tio greater than 1 indicates that false positives errors are more costly than the 
false negative. Therefore, setting the LR above 1 will counterbalance the over- 
representation of positive instances. Choosing the exact value of LR requires 
sensitivity analysis of the effect of the specific value on the accuracy of the 
classifier produced. 

The original C4.5 determines the class value in the leaves by checking 
whether the split decreases the error rate. The final class value is determined 
by majority vote. In a modified C4.5, the leaf's class is determined by compar- 
ison with a probability threshold of LR/(LR+l) (or its appropriate reciprocal). 
Lewis and Catlett (1994) show that their method leads to significantly higher 
accuracy than in the case of using random samples ten times larger. 

2.1.2 Boosting. Boosting (also known as arcing - Adaptive Resam- 
pling and Combining) is a general method for improving the performance of 
any learning algorithm. The method works by repeatedly running a weak 
learner (such as classification rules or decision trees), on various distributed 
training data. The classifiers produced by the weak learners are then combined 
into a single composite strong classifier in order to achieve a higher accuracy 
than the weak learner's classifiers would have had. 

Schapire introduced the first boosting algorithm in 1990. In 1995 Freund 
and Schapire introduced the AdaBoost algorithm. The main idea of this algo- 
rithm is to assign a weight in each example in the training set. In the beginning, 
all weights are equal, but in every round, the weights of all misclassified in- 
stances are increased while the weights of correctly classified instances are 
decreased. As a consequence, the weak learner is forced to focus on the diffi- 
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cult instances of the training set. This procedure provides a series of classifiers 
that complement one another. 

The pseudo-code of the AdaBoost algorithm is described in Figure 45.2. 
The algorithm assumes that the training set consists of m instances, labeled 
as -1 or +l. The classification of a new instance is made by voting on all 
classifiers {Ct) ,  each having a weight of at. Mathematically, it can be written 
as: 

T 

H ( x )  = s i g n ( x  at . C t ( z ) )  
t=l 

Input: I (a weak inducer), T (the number of iterations), S (training set) 
Output: Ct ,a t ; t  = 1 , .  . . ,T 

1: t +l 
2: Dl( i )  c l /m;i = 1, ..., m 
3: repeat 
4: Build Classifier Ct using I and distribution Dt 
5: at c C Dt(i) 

i:Ct (xi)#yi 
a: if at > 0.5 then 
7: T c t - 1  
8: exit Loop. 
9: end if 

10: at c + ln ( it 1 
11: Dt+l(i) = Dt(i)  . e-atytCt(xi) 
12: Normalize Dt+1 to be a proper distribution. 
13: t + +  
14: until t > T 

Figure 45.2. The AdaBoost Algorithm. 

The basic AdaBoost algorithm, described in Figure 45.2, deals with binary 
classification. Freund and Schapire (1996) describe two versions of the Ad- 
aBoost algorithm (AdaBoost.Ml, AdaBoost.M2), which are equivalent for bi- 
nary classification and differ in their handling of multiclass classification prob- 
lems. Figure 45.3 describes the pseudo-code of AdaBoost.Ml. The classifica- 
tion of a new instance is performed according to the following equation: 

1 
H ( x )  = argmax ( log -) 

yEdom(y)  t:Ct(z)=y Pt 

All boosting algorithms presented here assume that the weak inducers which 
are provided can cope with weighted instances. If this is not the case, an 
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Input: I (a weak inducer), T (the number of iterations), S (the training set) 
Output: Ct,  ,&; t  = 1 , .  . . , T  

1: t c l  
2: Dl( i )  e l / m ; i  = 1 , .  . . ,m  
3: repeat 
4: Build Classifier Ct using I and distribution Dt 
5: ~t t C Dt(i) 

i:Ct(zi)#yi 
6: i f  et > 0.5 then 
7 :  T c t - 1  
8: exit Loop. 
9: end if 

10: p t c  & 
Pt ct (xi) = ~i 

11: D t + l ( i ) = D t ( i ) . {  Otherwise 
\ 

12: Normalize Dt+l to be a proper distribution. 
13: t + +  
14: until t  > T  

Figure 45.3. The AdaBoost.M.1 Algorithm. 

unweighted dataset is generated from the weighted data by a resampling 
technique. Namely, instances are chosen with probability according to their 
weights (until the dataset becomes as large as the original training set). 

Boosting seems to improve performances for two main reasons: 

1. It generates a final classifier whose error on the training set is small by 
combining many hypotheses whose error may be large. 

2. It produces a combined classifier whose variance is significantly lower 
than those produced by the weak learner. 

On the other hand, boosting sometimes leads to deterioration in generalization 
performance. According to Quinlan (1996) the main reason for boosting's 
failure is overfitting. The objective of boosting is to construct a composite 
classifier that performs well on the data, but a large number of iterations may 
create a very complex composite classifier, that is significantly less accurate 
than a single classifier. A possible way to avoid overfitting is by keeping the 
number of iterations as small as possible. 

Another important drawback of boosting is that it is difficult to understand. 
The resulted ensemble is considered to be less comprehensible since the user 
is required to capture several classifiers instead of a single classifier. Despite 
the above drawbacks, Breiman (1996) refers to the boosting idea as the most 
significant development in classifier design of the nineties. 
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2.1.3 Windowing. Windowing is a general method aiming to improve 
the efficiency of inducers by reducing the complexity of the problem. It was 
initially proposed as a supplement to the ID3 decision tree in order to address 
complex classification tasks that might have exceeded the memory capacity 
of computers. Windowing is performed by using a sub-sampling procedure. 
The method may be summarized as follows: a random subset of the training 
instances is selected (a window). The subset is used for training a classifier, 
which is tested on the remaining training data. If the accuracy of the induced 
classifier is insufficient, the misclassified test instances are removed from the 
test set and added to the training set of the next iteration. Quinlan (1993) 
mentions two different ways of forming a window: in the first, the current 
window is extended up to some specified limit. In the second, several "key" 
instances in the current window are identified and the rest are replaced. Thus 
the size of the window stays constant. The process continues until sufficient 
accuracy is obtained, and the classifier constructed at the last iteration is chosen 
as the final classifier. Figure 45.4 presents the pseudo-code of the windowing 
procedure. 

Input: I (an inducer), S (the training set), r (the initial window size), t (the 
maximum allowed windows size increase for sequential iterations). 

Output: C 
1: Window t Select randomly r instances from S. 
2: Test t S-Window 
3: repeat 
4: C t I(Window) 
5: Inc t 0 
6: for all (xi, yi) E Test do 
7: if C(xi)  # yi then 
8: Test +- Test - (xi, yi) 
9: Window = Window U (xi ,  yi) 

10: Inc + + 
11: endif 
12: if Inc = t then 
13: exit Loop 
14: end if 
15: end for 
16: until Inc = 0 

Figure 45.4. The Windowing Procedure. 

The windowing method has been examined also for separate-and-conquer 
rule induction algorithms (Furnkranz, 1997). This research has shown that 
for this type of algorithm, significant improvement in efficiency is possible 
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in noise-free domains. Contrary to the basic windowing algorithm, this one 
removes all instances that have been classified by consistent rules from this 
window, in addition to adding all instances that have been misclassified. Re- 
moval of instances from the window keeps its size small and thus decreases 
induction time. 

In conclusion, both windowing and uncertainty sampling build a sequence 
of classifiers only for obtaining an ultimate sample. The difference between 
them lies in the fact that in windowing the instances are labeled in advance, 
while in uncertainty, this is not so. Therefore, new training instances are cho- 
sen differently. Boosting also builds a sequence of classifiers, but combines 
them in order to gain knowledge from them all. Windowing and uncertainty 
sampling do not combine the classifiers, but use the best classifier. 

2.2 Incrementai Batch Learning 
In this method the classifier produced in one iteration is given as "prior 

knowledge" to the learning algorithm in the following iteration (along with the 
subsample of that iteration). The learning algorithm uses the current subsample 
to evaluate the former classifier, and uses the former one for building the next 
classifier. The classifier constructed at the last iteration is chosen as the final 
classifier. 

3. Concurrent Methodology 
In the concurrent ensemble methodology, the original dataset is partitioned 

into several subsets from which multiple classifiers are induced concurrently. 
The subsets created from the original training set may be disjoint (mutually 
exclusive) or overlapping. A combining procedure is then applied in order to 
produce a single classification for a given instance. Since the method for com- 
bining the results of induced classifiers is usually independent of the induction 
algorithms, it can be used with different inducers at each subset. These con- 
current methods aim either at improving the predictive power of classifiers or 
decreasing the total execution time. The following sections describe several 
algorithms that implement this methodology. 

3.0.1 Bagging. The most well-known method that processes samples 
concurrently is bagging (bootstrap aggregating). The method aims to improve 
the accuracy by creating an improved composite classifier, I*, by amalgamat- 
ing the various outputs of learned classifiers into a single prediction. 

Figure 45.5 presents the pseudo-code of the bagging algorithm (Breiman, 
1996). Each classifier is trained on a sample of instances taken with replace- 
ment from the training set. Usually each sample size is equal to the size of the 
original training set. 
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Input: I (an inducer), T (the number of iterations), S (the training set), N 
(the subsample size). 

Output: Ct; t = 1,. . . , T 
1: t t l  
2: repeat 
3: St t Sample N instances from S with replacment. 
4: Build classifier Ct using I on St 
5: t + +  
6: until t > T 

Figure 45.5. The Bagging Algorithm. 

Note that since sampling with replacement is used, some of the original in- 
stances of S may appear more than once in St and some may not be included 
at all. So the training sets St are different from each other, but are certainly not 
independent. To classify a new instance, each classifier returns the class pre- 
diction for the unknown instance. The composite bagged classifier, I*,  returns 
the class that has been predicted most often (voting method). The result is that 
bagging produces a combined model that often performs better than the single 
model built from the original single data. Breiman (1996) notes that this is true 
especially for unstable inducers because bagging can eliminate their instabil- 
ity. In this context, an inducer is considered unstable if perturbing the learning 
set can cause significant changes in the constructed classifier. However, the 
bagging method is rather hard to analyze and it is not easy to understand by 
intuition what are the factors and reasons for the improved decisions. 

Bagging, like boosting, is a technique for improving the accuracy of a clas- 
sifier by producing different classifiers and combining multiple models. They 
both use a kind of voting for classification in order to combine the outputs of 
the different classifiers of the same type. In boosting, unlike bagging, each 
classifier is influenced by the performance of those built before, so the new 
classifier tries to pay more attention to errors that were made in the previous 
ones and to their performances. In bagging, each instance is chosen with equal 
probability, while in boosting, instances are chosen with probability propor- 
tional to their weight. Furthermore, according to Quinlan (1996), as mentioned 
above, bagging requires that the learning system should not be stable, where 
boosting does not preclude the use of unstable learning systems, provided that 
their error rate can be kept below 0.5. 

3.0.2 Cross-validated Committees. This procedure creates k classi- 
fiers by partitioning the training set into k-equal-sized sets and in turn, training 
on all but the i-th set. This method, first used by Gams (1989), employed 10- 
fold partitioning. Parmanto et al. (1996) have also used this idea for creating an 
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ensemble of neural networks. Domingos (1996) has used cross-validated com- 
mittees to speed up his own rule induction algorithm RISE, whose complexity 
is 0(n2) ,  making it unsuitable for processing large databases. In this case, 
partitioning is applied by predetermining a maximum number of examples to 
which the algorithm can be applied at once. The full training set is randomly 
divided into approximately equal-sized partitions. RISE is then run on each 
partition separately. Each set of rules grown from the examples in partition p 
is tested on the examples in partition p + 1, in order to reduce overfitting and 
improve accuracy. 

4. Combining Classifiers 
The way of combining the classifiers may be divided into two main groups: 

simple multiple classifier combinations and meta-combiners. The simple com- 
bining methods are best suited for problems where the individual classifiers 
perform the same task and have comparable success. However, such com- 
biners are more vulnerable to outliers and to unevenly performing classifiers. 
On the other hand, the meta-combiners are theoretically more powerful but 
are susceptible to all the problems associated with the added learning (such as 
over-fitting, long training time). 

4.1 Simple Combining Methods 
4.1.1 Uniform Voting. In this combining schema, each classifier has 
the same weight. A classification of an unlabeled instance is performed ac- 
cording to the class that obtains the highest number of votes. Mathematically 
it can be written as: 

where Mk denotes classifier Ic and pMk ( y  = c Ix) denotes the probability of y  
obtaining the value c given an instance x. 

4.1.2 Distribution Summation. This combining method was pre- 
sented by Clark and Boswell (1991). The idea is to sum up the conditional 
probability vector obtained from each classifier. The selected class is chosen 
according to the highest value in the total vector. Mathematically, it can be 
written as: 

4.1.3 Bayesian Combination. This combining method was investi- 
gated by Buntine (1990). The idea is that the weight associated with each 
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classifier is the posterior probability of the classifier given the training set. 

Class(x)  = argmax C P ( M ~  I S )  p M k ( ~  = Q 1x1 
c i E d r n ( 9 )  k 

where P(Mk IS) denotes the probability that the classifier Mk is correct given 
the training set S.  The estimation of P(Mk IS) depends on the classifier's 
representation. Buntine (1990) demonstrates how to estimate this value for 
decision trees. 

4.1.4 Dempster-Shafer. The idea of using the Dempster-Shafer the- 
ory of evidence (Buchanan and Shortliffe, 1984) for combining models has 
been suggested by Shilen (1990; 1992). This method uses the notion of basic 
probability assignment defined for a certain class cj given the instance x: 

Consequently, the selected class is the one that maximizes the value of the 

where A is a normalization factor defined as: 

4.1.5 Naive Bayes. Using Bayes' rule, one can extend the Na'ive Bayes 
idea for combining various classifiers: 

class(x) = argmax ~ ( y  = c j )  . n ~ M ~ ( Y  = cj lx )  

C j  E d m ( y )  k=1 p ( y = c j )  

4.1.6 Entropy Weighting. The idea in this combining method is to 
give each classifier a weight that is inversely proportional to the entropy of its 
classification vector. 

where: 
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4.1.7 Density-based Weighting. If the various classifiers were trained 
using datasets obtained from different regions of the instance space, it might 
be useful to weight the classifiers according to the probability of sampling x 
by classifier Mk, namely: 

The estimation of PMk (x) depend on the classifier representation and can not 
always be estimated. 

4.1.8 DEA Weighting Method. Recently there has been attempt to use 
the DEA (Data Envelop Analysis) methodology (Charnes et al., 1978) in order 
to assign weight to different classifiers (Sohn and Choi, 2001). They argue that 
the weights should not be specified based on a single performance measure, 
but on several performance measures. Because there is a trade-off among the 
various performance measures, the DEA is employed in order to figure out the 
set of efficient classifiers. In addition, DEA provides inefficient classifiers with 
the benchmarking point. 

4.1.9 Logarithmic Opinion Pool. According to the logarithmic opin- 
ion pool (Hansen, 2000) the selection of the preferred class is performed ac- 
cording to: 

C ak ' log( f iMk ( y = c j I x  1) 
Class(x) = argmax e k 

where ak denotes the weight of the k-th classifier, such that: 

4.1.10 Order Statistics. Order statistics can be used to combine clas- 
sifiers (Tumer and Ghosh, 2000). These combiners have the simplicity of a 
simple weighted combining method with the generality of meta-combining 
methods (see the following section). The robustness of this method is help- 
ful when there are significant variations among classifiers in some part of the 
instance space. 

4.2 Meta-combining Methods 
Meta-learning means learning from the classifiers produced by the inducers 

and from the classifications of these classifiers on training data. The following 
sections describe the most well-known meta-combining methods. 
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4.2.1 Stacking. Stacking is a technique whose purpose is to achieve 
the highest generalization accuracy. By using a meta-learner, this method tries 
to induce which classifiers are reliable and which are not. Stacking is usually 
employed to combine models built by different inducers. The idea is to create a 
meta-dataset containing a tuple for each tuple in the original dataset. However, 
instead of using the original input attributes, it uses the predicted classification 
of the classifiers as the input attributes. The target attribute remains as in the 
original training set. 

Test instance is first classified by each of the base classifiers. These classi- 
fications are fed into a meta-level training set from which a meta-classifier is 
produced. This classifier combines the different predictions into a final one. It 
is recommended that the original dataset will be partitioned into two subsets. 
The first subset is reserved to form the meta-dataset and the second subset is 
used to build the base-level classifiers. Consequently the meta-classifier predi- 
cations reflect the true performance of base-level learning algorithms. Stacking 
performances could be improved by using output probabilities for every class 
label from the base-level classifiers. In such cases, the number of input at- 
tributes in the meta-dataset is multiplied by the number of classes. 

Dieroski and h n k o  (2004) have evaluated several algorithms for construct- 
ing ensembles of classifiers with stacking and show that the ensemble performs 
(at best) comparably to selecting the best classifier from the ensemble by cross 
validation. In order to improve the existing stacking approach, they propose 
to employ a new multi-response model tree to learn at the meta-level and em- 
pirically showed that it performs better than existing stacking approaches and 
better than selecting the best classifier by cross-validation. 

4.2.2 Arbiter Trees. This approach builds an arbiter tree in a bottom- 
up fashion (Chan and Stolfo, 1993). Initially the training set is randomly par- 
titioned into k disjoint subsets. The arbiter is induced from a pair of classifiers 
and recursively a new arbiter is induced from the output of two arbiters. Con- 
sequently for k classifiers, there are log2(k) levels in the generated arbiter tree. 

The creation of the arbiter is performed as follows. For each pair of classi- 
fiers, the union of their training dataset is classified by the two classifiers. A 
selection rule compares the classifications of the two classifiers and selects in- 
stances from the union set to form the training set for the arbiter. The arbiter is 
induced from this set with the same learning algorithm used in the base level. 
The purpose of the arbiter is to provide an alternate classification when the 
base classifiers present diverse classifications. This arbiter, together with an 
arbitration rule, decides on a final classification outcome, based upon the base 
predictions. Figure 45.6 shows how the final classification is selected based on 
the classification of two base classifiers and a single arbiter. 
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(Classifier j Classification 

Figure 45.6. A Prediction from Two Base Classifiers and a Single Arbiter. 

The process of forming the union of data subsets; classifying it using a pair 
of arbiter trees; comparing the classifications; forming a training set; training 
the arbiter; and picking one of the predictions, is recursively performed until 
the root arbiter is formed. Figure 45.7 illustrate an arbiter tree created for 
k = 4. TI - T4 are the initial four training datasets from which four classifiers 
Cl - C4 are generated concurrently. T12 and T34 are the training sets generated 
by the rule selection from which arbiters are produced. A12 and AM are the 
two arbiters. Similarly, T14 and A14 (root arbiter) are generated and the arbiter 
tree is completed. 

Arbiters 

Classifiers 

Data-subsets 

Figure 45.7. Sample Arbiter Tree. 

Several schemes for arbiter trees were examined and differentiated from 
each other by the selection rule used. Here are three versions of mle selection: 

rn Only instances with classifications that disagree are chosen (group 1). 

rn Like group 1 defined above, plus instances that their classifications agree 
but are incorrect (group 2). 

rn Like groups 1 and 2 defined above, plus instances that have the same 
correct classifications (group 3). 
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Two versions of arbitration rules have been implemented; each one corre- 
sponds to the selection rule used for generating the training data at that level: 

rn For selection rule 1 and 2, a final classification is made by a majority 
vote of the classifications of the two lower levels and the arbiter's own 
classification, with preference given to the latter. 

rn For selection rule 3, if the classifications of the two lower levels are 
not equal, the classification made by the sub-arbiter based on the first 
group is chosen. In case this is not true and the classification of the sub- 
arbiter constructed on the third group equals those of the lower levels 
- then this is the chosen classification. In any other case, the classi- 
fication of the sub-arbiter constructed on the second group is chosen. 
Chan and Stolfo (1993) achieved the same accuracy level as in the sin- 
gle mode applied to the entire dataset but with less time and memory re- 
quirements. It has been shown that this meta-learning strategy required 
only around 30% of the memory used by the single model case. This 
last fact, combined with the independent nature of the various learning 
processes, make this method robust and effective for massive amounts 
of data. Nevertheless, the accuracy level depends on several factors such 
as the distribution of the data among the subsets and the pairing scheme 
of learned classifiers and arbiters in each level. The decision in any of 
these issues may influence performance, but the optimal decisions are 
not necessarily known in advance, nor initially set by the algorithm. 

4.2.3 Combiner Trees. The way combiner trees are generated is very 
similar to arbiter trees. A combiner tree is trained bottom-up. However, a 
combiner, instead of an arbiter, is placed in each non-leaf node of a combiner 
tree (Chan and Stolfo, 1997). In the combiner strategy, the classifications of 
the learned base classifiers form the basis of the meta-learner's training set. 
A composition rule determines the content of training examples from which 
a combiner (meta-classifier) will be generated. In classifying an instance, the 
base classifiers first generate their classifications and based on the composition 
rule, a new instance is generated. The aim of this strategy is to combine the 
classifications from the base classifiers by learning the relationship between 
these classifications and the correct classification. Figure 45.8 illustrates the 
result obtained from two base classifiers and a single combiner. 

Two schemes of composition rule were proposed. The first one is the stack- 
ing schema. The second is like stacking with the addition of the instance input 
attributes. Chan and Stolfo (1995) showed that the stacking schema per se 
does not perform as well as the second schema. Although there is informa- 
tion loss due to data partitioning, combiner trees can sustain the accuracy level 
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Figure 45.8. A Prediction from 'Ikro Base Classifiers and a Single Combiner. 

achieved by a single classifier. In a few cases, the single classifier's accuracy 
was consistently exceeded. 

4.2.4 Grading. This technique uses "graded" classifications as meta- 
level classes (Seewald and Furnkranz, 2001). The term graded is used in the 
sense of classifications that have been marked as correct or incorrect. The 
method transforms the classification made by the k different classifiers into 
k training sets by using the instances k times and attaching them to a new 
binary class in each occurrence. This class indicates whether the k-th classifier 
yielded a correct or incorrect classification, compared to the real class of the 
instance. 

For each base classifier, one meta-classifier is learned whose task is to clas- 
sify when the base classifier will misclassify. At classification time, each base 
classifier classifies the unlabeled instance. The final classification is derived 
from the classifications of those base classifiers that are classified to be correct 
by the meta-classification schemes. In case several base classifiers with differ- 
ent classification results are classified as correct, voting, or a combination con- 
sidering the confidence estimates of the base classifiers, is performed. Grading 
may be considered as a generalization of cross-validation selection (Schaffer, 
1993), which divides the training data into k subsets, builds k - 1 classifiers 
by dropping one subset at a time and then using it to find a misclassification 
rate. Finally, the procedure simply chooses the classifier corresponding to the 
subset with the smallest misclassification. Grading tries to make this deci- 
sion separately for each and every instance by using only those classifiers that 
are predicted to classify that instance correctly. The main difference between 
grading and combiners (or stacking) are that the former does not change the 
instance attributes by replacing them with class predictions or class probabil- 
ities (or adding them to it). Instead it modifies the class values. Furthermore, 
in grading several sets of meta-data are created, one for each base classifier. 
Several meta-level classifiers are learned from those sets. 
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The main difference between grading and arbiters is that arbiters use infor- 
mation about the disagreements of classifiers for selecting a training set, while 
grading uses disagreement with the target function to produce a new training 
set. 

5. Ensemble Diversity 
In an ensemble, the combination of the output of several classifiers is only 

useful if they disagree about some inputs (Tumer and Ghosh, 1996). According 
to Hu (2001) diversified classifiers lead to uncorrelated errors, which in turn 
improve classification accuracy. 

5.1 Manipulating the Inducer 
A simple method for gaining diversity is to manipulate the inducer used 

for creating the classifiers. Ali and Pazzani (1996) propose to change the rule 
learning HYDRA algorithm in the following way: Instead of selecting the best 
literal in each stage (using, for instance, information gain measure), the literal 
is selected randomly such that its probability of being selected is proportional 
to its measure value. Dietterich (2000a) has implemented a similar idea for 
C4.5 decision trees. Instead of selecting the best attribute in each stage, it 
selects randomly (with equal probability) an attribute from the set of the best 
20 attributes. The simplest way to manipulate the back-propagation inducer 
is to assign different initial weights to the network (Kolen and Pollack, 1991). 
MCMC (Markov Chain Monte Carlo) methods can also be used for introducing 
randomness in the induction process (Neal, 1993). 

5.2 Manipulating the Training Set 
Most ensemble methods construct the set of classifiers by manipulating the 

training instances. Dietterich (2000b) distinguishes between three main meth- 
ods for manipulating the dataset. 

5.2.1 Manipulating the Tuples. In this method, each classifier is 
trained on a different subset of the original dataset. This method is useful for 
inducers whose variance-error factor is relatively large (such as decision trees 
and neural networks), namely, small changes in the training set may cause a 
major change in the obtained classifier. This category contains procedures such 
as bagging, boosting and cross-validated committees. 

The distribution of tuples among the different subsets could be random as 
in the bagging algorithm or in the arbiter trees. Other methods distribute the 
tuples based on the class distribution such that the class distribution in each 
subset is approximately the same as that in the entire dataset. Proportional 
distribution was used in combiner trees (Chan and Stolfo, 1993). It has been 
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shown that proportional distribution can achieve higher accuracy than random 
distribution. 

Recently Christensen et al. (2004) suggest a novel framework for construc- 
tion of an ensemble in which each instance contributes to the committee forma- 
tion with a fixed weight, while contributing with different individual weights 
to the derivation of the different constituent models. This approach encourages 
model diversity whilst not biasing the ensemble inadvertently towards any par- 
ticular instance. 

5.2.2 Manipulating the Input Feature Set. Another less common 
strategy for manipulating the training set is to manipulate the input attribute 
set. The idea is to simply give each classifier a different projection of the 
training set. 

5.3 Measuring the Diversity 
For regression problems variance is usually used to measure diversity 

(Krogh and Vedelsby, 1995). In such cases it can be easily shown that the 
ensemble error can be reduced by increasing ensemble diversity while main- 
taining the average error of a single model. 

In classification problems, a more complicated measure is required to eval- 
uate the diversity. Kuncheva and Whitaker (2003) compared several measures 
of diversity and concluded that most of them are correlated. Furthermore, it is 
usually assumed that increasing diversity may decrease ensemble error (Zenobi 
and Cunningham, 200 1). 

6. Ensemble Size 
6.1 Selecting the Ensemble Size 

An important aspect of ensemble methods is to define how many component 
classifiers should be used. This number is usually defined according to the 
following issues: 

Desired accuracy - Hansen (1990) argues that ensembles containing ten 
classifiers is sufficient for reducing the error rate. Nevertheless, there is 
empirical evidence indicating that in the case of AdaBoost using deci- 
sion trees, error reduction is observed in even relatively large ensembles 
containing 25 classifiers (Opitz and Maclin, 1999). In the disjoint par- 
titioning approaches, there may be a tradeoff between the number of 
subsets and the final accuracy. The size of each subset cannot be too 
small because sufficient data must be available for each learning pro- 
cess to produce an effective classifier. Chan and Stolfo (1993) varied 
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the number of subsets in the arbiter trees from 2 to 64 and examined the 
effect of the predetermined number of subsets on the accuracy level. 

User preferences -Increasing the number of classifiers usually increase 
computational complexity and decreases the comprehensibility. For that 
reason, users may set their preferences by predefining the ensemble size 
limit. 

Number of processors available - In concurrent approaches, the num- 
ber of processors available for parallel learning could be put as an upper 
bound on the number of classifiers that are treated in paralleled process. 

Caruana et al. (2004) presented a method for constructing ensembles from 
libraries of thousands of models. They suggest using forward stepwise selec- 
tion in order to select the models that maximize the ensemble's performance. 
Ensemble selection allows ensembles to be optimized to performance metrics 
such as accuracy, cross entropy, mean precision, or ROC Area. 

6.2 Pruning Ensembles 
As in decision trees induction, it is sometime useful to let the ensemble 

grow freely and then prune the ensemble in order to get more effective and 
more compact ensembles. Empirical examinations indicate that pruned en- 
sembles may obtain a similar accuracy performance as the original ensemble 
(Margineantu and Dietterich, 1997). 

The efficiency of pruning methods when meta-combining methods are used 
have been examined in (Prodromidis et al., 2000). In such cases the prun- 
ing methods can be divided into two groups: pre-training pruning methods 
and post-training pruning methods. Pre-training pruning is performed before 
combining the classifiers. Classifiers that seem to be attractive are included 
in the meta-classifier. On the other hand, post-training pruning methods, re- 
move classifiers based on their effect on the meta-classifier. Three methods 
for pre-training pruning (based on an individual classification performance on 
a separate validation set, diversity metrics, the ability of classifiers to classify 
correctly specific classes) and two methods for post-training pruning (based 
on decision tree pruning and the correlation of the base classifier to the un- 
pruned meta-classifier) have been examined in (Prodromidis et al., 2000). As 
in (Margineantu and Dietterich, 1997), it has been shown that by using prun- 
ing, one can obtain similar or better accuracy performance, while compacting 
the ensemble. 

The GASEN algorithm was developed for selecting the most appropriate 
classifiers in a given ensemble (Zhou et al., 2002). In the initialization phase, 
GASEN assigns a random weight to each of the classifiers. Consequently, it 
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uses genetic algorithms to evolve those weights so that they can characterize 
to some extent the fitness of the classifiers in joining the ensemble. Finally, it 
removes from the ensemble those classifiers whose weight is less than a pre- 
defined threshold value. Recently a revised version of the GASEN algorithm 
called GASEN-b has been suggested (Zhou and Tang, 2003). In this algorithm, 
instead of assigning a weight to each classifier, a bit is assigned to each clas- 
sifier indicating whether it will be used in the final ensemble. They show that 
the obtained ensemble is not only smaller in size, but in some cases has better 
generalization performance. 

Liu et al. (2004) conducted an empirical study of the relationship of ensem- 
ble sizes with ensemble accuracy and diversity, respectively. They show that it 
is feasible to keep a small ensemble while maintaining accuracy and diversity 
similar to those of a full ensemble. They proposed an algorithm called LVFd 
that selects diverse classifiers to form a compact ensemble. 

7. Cluster Ensemble 
This chapter focused mainly on ensembles of classifiers. However ensemble 

methodology can be used for other Data Mining tasks such as regression and 
clustering. 

The cluster ensemble problem refers to the problem of combining multiple 
partitionings of a set of instances into a single consolidated clustering. Usually 
this problem is formalized as a combinatorial optimization problem in terms 
of shared mutual information. 

Dimitriadou et al. (2003) have used ensemble methodology for improving 
the quality and robustness of clustering algorithms. In fact they employ the 
same ensemble idea that has been used for many years in classification and re- 
gression tasks. More specifically they suggested various aggregation strategies 
and studied a greedy forward aggregation. 

Hu and Yoo (2004) have used ensemble for clustering gene expression data. 
In this research the clustering results of individual clustering algorithms are 
converted into a distance matrix. These distance matrices are combined and a 
weighted graph is constructed according to the combined matrix. Then a graph 
partitioning approach is used to cluster the graph to generate the final clusters. 

Strehl and Ghosh (2003) propose three techniques for obtaining high-quality 
cluster combiners. The first combiner induces a similarity measure from the 
partitionings and then reclusters the objects. The second combiner is based 
on hypergraph partitioning. The third one collapses groups of clusters into 
meta-clusters, which then compete for each object to determine the combined 
clustering. Moreover, it is possible to use supra-combiners that evaluate all 
three approaches against the objective function and pick the best solution for a 
given situation. 
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