
Chapter 45

ENSEMBLE METHODS FOR CLASSIFIERS

Lior Rokach
Department of Industrial Engineering
Tel-Aviv UniversiQ

Abstract The idea of ensemble methodology is to build a predictive model by integrat-
ing multiple models. It is well-known that ensemble methods can be used for
improving prediction performance. In this chapter we provide an overview of
ensemble methods in classification tasks. We present all important types of
ensemble methods including boosting and bagging. Combining methods and
modeling issues such as ensemble diversity and ensemble size are discussed.

Keywords: Ensemble, Boosting, AdaBoost, Windowing, Bagging, Grading, Arbiter Tree,
Combiner Tree

1. Introduction
The main idea of ensemble methodology is to combine a set of models,

each of which solves the same original task, in order to obtain a better com-
posite global model, with more accurate and reliable estimates or decisions
than can be obtained from using a single model. The idea of building a pre-
dictive model by integrating multiple models has been under investigation for
a long time. Biihlmann and Yu (2003) pointed out that the history of ensem-
ble methods starts as early as 1977 with Tukeys Twicing, an ensemble of two
linear regression models. Ensemble methods can be also used for improving
the quality and robustness of clustering algorithms (Dimitriadou et al., 2003).
Nevertheless, in this chapter we focus on classifier ensembles.

In the past few years, experimental studies conducted by the machine-
learning community show that combining the outputs of multiple classifiers
reduces the generalization error (Domingos, 1996; Quinlan, 1996; Bauer and
Kohavi, 1999; Opitz and Maclin, 1999). Ensemble methods are very effective,
mainly due to the phenomenon that various types of classifiers have differ-

958 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

ent "inductive biases" (Geman et al., 1995; Mitchell, 1997). Indeed, ensemble
methods can effectively make use of such diversity to reduce the variance-error
(Tumer and Ghosh, 1999; Ali and Pazzani, 1996) without increasing the bias-
error. In certain situations, an ensemble can also reduce bias-error, as shown
by the theory of large margin classifiers (Bartlett and Shawe-Taylor, 1998).

The ensemble methodology is applicable in many fields such as: finance
(Leigh et al., 2002), bioinformatics (Tan et al., 2003), healthcare (Mangiameli
et al., 2004), manufacturing (Maimon and Rokach, 2004), geography (Bruz-
zone et al., 2004) etc.

Given the potential usefulness of ensemble methods, it is not surprising that
a vast number of methods is now available to researchers and practitioners.
This chapter aims to organize all significant methods developed in this field
into a coherent and unified catalog. There are several factors that differentiate
between the various ensembles methods. The main factors are:

1. Inter-classifiers relationship - How does each classifier affect the other
classifiers? The ensemble methods can be divided into two main types:
sequential and concurrent.

2. Combining method - The strategy of combining the classifiers gen-
erated by an induction algorithm. The simplest combiner determines
the output solely from the outputs of the individual inducers. Ali and
Pazzani (1996) have compared several combination methods: uniform
voting, Bayesian combination, distribution summation and likelihood
combination. Moreover, theoretical analysis has been developed for esti-
mating the classification improvement (Tumer and Ghosh, 1999). Along
with simple combiners there are other more sophisticated methods, such
as stacking (Wolpert, 1992) and arbitration (Chan and Stolfo, 1995).

3. Diversity generator - In order to make the ensemble efficient, there
should be some sort of diversity between the classifiers. Diversity may
be obtained through different presentations of the input data, as in bag-
ging, variations in learner design, or by adding a penalty to the outputs
to encourage diversity.

4. Ensemble size -The number of classifiers in the ensemble.

The following sections discuss and describe each one of these factors.

2. Sequential Methodology
In sequential approaches for learning ensembles, there is an interaction be-

tween the learning runs. Thus it is possible to take advantage of knowledge
generated in previous iterations to guide the learning in the next iterations. We

Ensemble Methods For Classijiers 959

distinguish between two main approaches for sequential learning, as described
in the following sections (Provost and Kolluri, 1997).

2.1 Model-guided Instance Selection
In this sequential approach, the classifiers that were constructed in previous

iterations are used for manipulating the training set for the following iteration.
One can embed this process within the basic learning algorithm. These meth-
ods, which are also known as constructive or conservative methods, usually
ignore all data instances on which their initial classifier is correct and only
learn from misclassified instances.

The following sections describe several methods which embed the sample
selection at each run of the learning algorithm.

2.1.1 Uncertainty Sampling. This method is useful in scenarios where
unlabeled data is plentiful and the labeling process is expensive. We can define
uncertainty sampling as an iterative process of manual labeling of examples,
classifier fitting from those examples, and the use of the classifier to select
new examples whose class membership is unclear (Lewis and Gale, 1994). A
teacher or an expert is asked to label unlabeled instances whose class member-
ship is uncertain. The pseudo-code is described in Figure 45.1.

Input: I (a method for building the classifier), b (the selected bulk size), U (a
set on unlabled instances), E (an Expert capable to label instances)

Output: C
I: Xnew t Random set of size bselected from U
2: Ynew + E(Xnew)
3: S + (Xnew Ynew)
4: C t I (S)
5: U + U - Xnew
6: while E is willing to label instances do
7: Xnew t Select a subset of U of size b such that C is least certain of its

classification.
8: %ew + E(Xnew)
9: S + S U (Xnew, Ynew)

lo: C + I (S)
11: U t U - X n e w
12: end while

Figure 45.1. Pseudo-Code for Uncertainty Sampling.

960 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

It has been shown that using uncertainty sampling method in text catego-
rization tasks can reduce by a factor of up to 500 the amount of data that had
to be labeled to obtain a given accuracy level (Lewis and Gale, 1994).

Simple uncertainty sampling requires the construction of many classifiers.
The necessity of a cheap classifier now emerges. The cheap classifier selects
instances "in the loop" and then uses those instances for training another, more
expensive inducer. The Heterogeneous Uncertainty Sampling method achieves
a given error rate by using a cheaper kind of classifier (both to build and run)
which leads to reducted computational cost and run time (Lewis and Catlett,
1 994).

Unfortunately, an uncertainty sampling tends to create a training set that
contains a disproportionately large number of instances from rare classes. In
order to balance this effect, a modified version of a C4.5 decision tree was de-
veloped (Lewis and Catlett, 1994). This algorithm accepts a parameter called
loss ratio (LR). The parameter specifies the relative cost of two types of er-
rors: false positives (where negative instance is classified positive) and false
negatives (where positive instance is classified negative). Choosing a loss ra-
tio greater than 1 indicates that false positives errors are more costly than the
false negative. Therefore, setting the LR above 1 will counterbalance the over-
representation of positive instances. Choosing the exact value of LR requires
sensitivity analysis of the effect of the specific value on the accuracy of the
classifier produced.

The original C4.5 determines the class value in the leaves by checking
whether the split decreases the error rate. The final class value is determined
by majority vote. In a modified C4.5, the leaf's class is determined by compar-
ison with a probability threshold of LR/(LR+l) (or its appropriate reciprocal).
Lewis and Catlett (1994) show that their method leads to significantly higher
accuracy than in the case of using random samples ten times larger.

2.1.2 Boosting. Boosting (also known as arcing - Adaptive Resam-
pling and Combining) is a general method for improving the performance of
any learning algorithm. The method works by repeatedly running a weak
learner (such as classification rules or decision trees), on various distributed
training data. The classifiers produced by the weak learners are then combined
into a single composite strong classifier in order to achieve a higher accuracy
than the weak learner's classifiers would have had.

Schapire introduced the first boosting algorithm in 1990. In 1995 Freund
and Schapire introduced the AdaBoost algorithm. The main idea of this algo-
rithm is to assign a weight in each example in the training set. In the beginning,
all weights are equal, but in every round, the weights of all misclassified in-
stances are increased while the weights of correctly classified instances are
decreased. As a consequence, the weak learner is forced to focus on the diffi-

Ensemble Methods For Classij?ers 96 1

cult instances of the training set. This procedure provides a series of classifiers
that complement one another.

The pseudo-code of the AdaBoost algorithm is described in Figure 45.2.
The algorithm assumes that the training set consists of m instances, labeled
as -1 or +l. The classification of a new instance is made by voting on all
classifiers {Ct) , each having a weight of at. Mathematically, it can be written
as:

T

H (x) = s i g n (x at . C t (z))
t=l

Input: I (a weak inducer), T (the number of iterations), S (training set)
Output: Ct ,a t ; t = 1 , . . . ,T

1: t +l
2: Dl(i) c l /m;i = 1, ..., m
3: repeat
4: Build Classifier Ct using I and distribution Dt
5: at c C Dt(i)

i:Ct (xi)#yi
a: if at > 0.5 then
7: T c t - 1
8: exit Loop.
9: end if

10: at c + ln (it 1
11: Dt+l(i) = Dt(i) . e-atytCt(xi)
12: Normalize Dt+1 to be a proper distribution.
13: t + +
14: until t > T

Figure 45.2. The AdaBoost Algorithm.

The basic AdaBoost algorithm, described in Figure 45.2, deals with binary
classification. Freund and Schapire (1996) describe two versions of the Ad-
aBoost algorithm (AdaBoost.Ml, AdaBoost.M2), which are equivalent for bi-
nary classification and differ in their handling of multiclass classification prob-
lems. Figure 45.3 describes the pseudo-code of AdaBoost.Ml. The classifica-
tion of a new instance is performed according to the following equation:

1
H (x) = argmax (log -)

yEdom(y) t:Ct(z)=y Pt

All boosting algorithms presented here assume that the weak inducers which
are provided can cope with weighted instances. If this is not the case, an

962 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

Input: I (a weak inducer), T (the number of iterations), S (the training set)
Output: Ct, ,&; t = 1 , . . . , T

1: t c l
2: Dl(i) e l / m ; i = 1 , . . . ,m
3: repeat
4: Build Classifier Ct using I and distribution Dt
5: ~t t C Dt(i)

i:Ct(zi)#yi
6: i f et > 0.5 then
7 : T c t - 1
8: exit Loop.
9: end if

10: p t c &
Pt ct (xi) = ~i

11: D t + l (i) = D t (i) . { Otherwise
\

12: Normalize Dt+l to be a proper distribution.
13: t + +
14: until t > T

Figure 45.3. The AdaBoost.M.1 Algorithm.

unweighted dataset is generated from the weighted data by a resampling
technique. Namely, instances are chosen with probability according to their
weights (until the dataset becomes as large as the original training set).

Boosting seems to improve performances for two main reasons:

1. It generates a final classifier whose error on the training set is small by
combining many hypotheses whose error may be large.

2. It produces a combined classifier whose variance is significantly lower
than those produced by the weak learner.

On the other hand, boosting sometimes leads to deterioration in generalization
performance. According to Quinlan (1996) the main reason for boosting's
failure is overfitting. The objective of boosting is to construct a composite
classifier that performs well on the data, but a large number of iterations may
create a very complex composite classifier, that is significantly less accurate
than a single classifier. A possible way to avoid overfitting is by keeping the
number of iterations as small as possible.

Another important drawback of boosting is that it is difficult to understand.
The resulted ensemble is considered to be less comprehensible since the user
is required to capture several classifiers instead of a single classifier. Despite
the above drawbacks, Breiman (1996) refers to the boosting idea as the most
significant development in classifier design of the nineties.

Ensemble Methods For Classijiers 963

2.1.3 Windowing. Windowing is a general method aiming to improve
the efficiency of inducers by reducing the complexity of the problem. It was
initially proposed as a supplement to the ID3 decision tree in order to address
complex classification tasks that might have exceeded the memory capacity
of computers. Windowing is performed by using a sub-sampling procedure.
The method may be summarized as follows: a random subset of the training
instances is selected (a window). The subset is used for training a classifier,
which is tested on the remaining training data. If the accuracy of the induced
classifier is insufficient, the misclassified test instances are removed from the
test set and added to the training set of the next iteration. Quinlan (1993)
mentions two different ways of forming a window: in the first, the current
window is extended up to some specified limit. In the second, several "key"
instances in the current window are identified and the rest are replaced. Thus
the size of the window stays constant. The process continues until sufficient
accuracy is obtained, and the classifier constructed at the last iteration is chosen
as the final classifier. Figure 45.4 presents the pseudo-code of the windowing
procedure.

Input: I (an inducer), S (the training set), r (the initial window size), t (the
maximum allowed windows size increase for sequential iterations).

Output: C
1: Window t Select randomly r instances from S.
2: Test t S-Window
3: repeat
4: C t I(Window)
5: Inc t 0
6: for all (xi, yi) E Test do
7: if C(xi) # yi then
8: Test +- Test - (xi, yi)
9: Window = Window U (xi , yi)

10: Inc + +
11: endif
12: if Inc = t then
13: exit Loop
14: end if
15: end for
16: until Inc = 0

Figure 45.4. The Windowing Procedure.

The windowing method has been examined also for separate-and-conquer
rule induction algorithms (Furnkranz, 1997). This research has shown that
for this type of algorithm, significant improvement in efficiency is possible

964 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

in noise-free domains. Contrary to the basic windowing algorithm, this one
removes all instances that have been classified by consistent rules from this
window, in addition to adding all instances that have been misclassified. Re-
moval of instances from the window keeps its size small and thus decreases
induction time.

In conclusion, both windowing and uncertainty sampling build a sequence
of classifiers only for obtaining an ultimate sample. The difference between
them lies in the fact that in windowing the instances are labeled in advance,
while in uncertainty, this is not so. Therefore, new training instances are cho-
sen differently. Boosting also builds a sequence of classifiers, but combines
them in order to gain knowledge from them all. Windowing and uncertainty
sampling do not combine the classifiers, but use the best classifier.

2.2 Incrementai Batch Learning
In this method the classifier produced in one iteration is given as "prior

knowledge" to the learning algorithm in the following iteration (along with the
subsample of that iteration). The learning algorithm uses the current subsample
to evaluate the former classifier, and uses the former one for building the next
classifier. The classifier constructed at the last iteration is chosen as the final
classifier.

3. Concurrent Methodology
In the concurrent ensemble methodology, the original dataset is partitioned

into several subsets from which multiple classifiers are induced concurrently.
The subsets created from the original training set may be disjoint (mutually
exclusive) or overlapping. A combining procedure is then applied in order to
produce a single classification for a given instance. Since the method for com-
bining the results of induced classifiers is usually independent of the induction
algorithms, it can be used with different inducers at each subset. These con-
current methods aim either at improving the predictive power of classifiers or
decreasing the total execution time. The following sections describe several
algorithms that implement this methodology.

3.0.1 Bagging. The most well-known method that processes samples
concurrently is bagging (bootstrap aggregating). The method aims to improve
the accuracy by creating an improved composite classifier, I*, by amalgamat-
ing the various outputs of learned classifiers into a single prediction.

Figure 45.5 presents the pseudo-code of the bagging algorithm (Breiman,
1996). Each classifier is trained on a sample of instances taken with replace-
ment from the training set. Usually each sample size is equal to the size of the
original training set.

Ensemble Methods For Classijiers 965

Input: I (an inducer), T (the number of iterations), S (the training set), N
(the subsample size).

Output: Ct; t = 1,. . . , T
1: t t l
2: repeat
3: St t Sample N instances from S with replacment.
4: Build classifier Ct using I on St
5: t + +
6: until t > T

Figure 45.5. The Bagging Algorithm.

Note that since sampling with replacement is used, some of the original in-
stances of S may appear more than once in St and some may not be included
at all. So the training sets St are different from each other, but are certainly not
independent. To classify a new instance, each classifier returns the class pre-
diction for the unknown instance. The composite bagged classifier, I*, returns
the class that has been predicted most often (voting method). The result is that
bagging produces a combined model that often performs better than the single
model built from the original single data. Breiman (1996) notes that this is true
especially for unstable inducers because bagging can eliminate their instabil-
ity. In this context, an inducer is considered unstable if perturbing the learning
set can cause significant changes in the constructed classifier. However, the
bagging method is rather hard to analyze and it is not easy to understand by
intuition what are the factors and reasons for the improved decisions.

Bagging, like boosting, is a technique for improving the accuracy of a clas-
sifier by producing different classifiers and combining multiple models. They
both use a kind of voting for classification in order to combine the outputs of
the different classifiers of the same type. In boosting, unlike bagging, each
classifier is influenced by the performance of those built before, so the new
classifier tries to pay more attention to errors that were made in the previous
ones and to their performances. In bagging, each instance is chosen with equal
probability, while in boosting, instances are chosen with probability propor-
tional to their weight. Furthermore, according to Quinlan (1996), as mentioned
above, bagging requires that the learning system should not be stable, where
boosting does not preclude the use of unstable learning systems, provided that
their error rate can be kept below 0.5.

3.0.2 Cross-validated Committees. This procedure creates k classi-
fiers by partitioning the training set into k-equal-sized sets and in turn, training
on all but the i-th set. This method, first used by Gams (1989), employed 10-
fold partitioning. Parmanto et al. (1996) have also used this idea for creating an

966 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

ensemble of neural networks. Domingos (1996) has used cross-validated com-
mittees to speed up his own rule induction algorithm RISE, whose complexity
is 0(n2) , making it unsuitable for processing large databases. In this case,
partitioning is applied by predetermining a maximum number of examples to
which the algorithm can be applied at once. The full training set is randomly
divided into approximately equal-sized partitions. RISE is then run on each
partition separately. Each set of rules grown from the examples in partition p
is tested on the examples in partition p + 1, in order to reduce overfitting and
improve accuracy.

4. Combining Classifiers
The way of combining the classifiers may be divided into two main groups:

simple multiple classifier combinations and meta-combiners. The simple com-
bining methods are best suited for problems where the individual classifiers
perform the same task and have comparable success. However, such com-
biners are more vulnerable to outliers and to unevenly performing classifiers.
On the other hand, the meta-combiners are theoretically more powerful but
are susceptible to all the problems associated with the added learning (such as
over-fitting, long training time).

4.1 Simple Combining Methods
4.1.1 Uniform Voting. In this combining schema, each classifier has
the same weight. A classification of an unlabeled instance is performed ac-
cording to the class that obtains the highest number of votes. Mathematically
it can be written as:

where Mk denotes classifier Ic and pMk (y = c Ix) denotes the probability of y
obtaining the value c given an instance x.

4.1.2 Distribution Summation. This combining method was pre-
sented by Clark and Boswell (1991). The idea is to sum up the conditional
probability vector obtained from each classifier. The selected class is chosen
according to the highest value in the total vector. Mathematically, it can be
written as:

4.1.3 Bayesian Combination. This combining method was investi-
gated by Buntine (1990). The idea is that the weight associated with each

Ensemble Methods For Classifers 967

classifier is the posterior probability of the classifier given the training set.

Class(x) = argmax C P (M ~ I S) p M k (~ = Q 1x1
c i E d r n (9) k

where P(Mk IS) denotes the probability that the classifier Mk is correct given
the training set S. The estimation of P(Mk IS) depends on the classifier's
representation. Buntine (1990) demonstrates how to estimate this value for
decision trees.

4.1.4 Dempster-Shafer. The idea of using the Dempster-Shafer the-
ory of evidence (Buchanan and Shortliffe, 1984) for combining models has
been suggested by Shilen (1990; 1992). This method uses the notion of basic
probability assignment defined for a certain class cj given the instance x:

Consequently, the selected class is the one that maximizes the value of the

where A is a normalization factor defined as:

4.1.5 Naive Bayes. Using Bayes' rule, one can extend the Na'ive Bayes
idea for combining various classifiers:

class(x) = argmax ~ (y = c j) . n ~ M ~ (Y = cj lx)

C j E d m (y) k=1 p (y = c j)

4.1.6 Entropy Weighting. The idea in this combining method is to
give each classifier a weight that is inversely proportional to the entropy of its
classification vector.

where:

968 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

4.1.7 Density-based Weighting. If the various classifiers were trained
using datasets obtained from different regions of the instance space, it might
be useful to weight the classifiers according to the probability of sampling x
by classifier Mk, namely:

The estimation of PMk (x) depend on the classifier representation and can not
always be estimated.

4.1.8 DEA Weighting Method. Recently there has been attempt to use
the DEA (Data Envelop Analysis) methodology (Charnes et al., 1978) in order
to assign weight to different classifiers (Sohn and Choi, 2001). They argue that
the weights should not be specified based on a single performance measure,
but on several performance measures. Because there is a trade-off among the
various performance measures, the DEA is employed in order to figure out the
set of efficient classifiers. In addition, DEA provides inefficient classifiers with
the benchmarking point.

4.1.9 Logarithmic Opinion Pool. According to the logarithmic opin-
ion pool (Hansen, 2000) the selection of the preferred class is performed ac-
cording to:

C ak ' log(f iMk (y = c j I x 1)
Class(x) = argmax e k

where ak denotes the weight of the k-th classifier, such that:

4.1.10 Order Statistics. Order statistics can be used to combine clas-
sifiers (Tumer and Ghosh, 2000). These combiners have the simplicity of a
simple weighted combining method with the generality of meta-combining
methods (see the following section). The robustness of this method is help-
ful when there are significant variations among classifiers in some part of the
instance space.

4.2 Meta-combining Methods
Meta-learning means learning from the classifiers produced by the inducers

and from the classifications of these classifiers on training data. The following
sections describe the most well-known meta-combining methods.

Ensemble Methods For Classifiers 969

4.2.1 Stacking. Stacking is a technique whose purpose is to achieve
the highest generalization accuracy. By using a meta-learner, this method tries
to induce which classifiers are reliable and which are not. Stacking is usually
employed to combine models built by different inducers. The idea is to create a
meta-dataset containing a tuple for each tuple in the original dataset. However,
instead of using the original input attributes, it uses the predicted classification
of the classifiers as the input attributes. The target attribute remains as in the
original training set.

Test instance is first classified by each of the base classifiers. These classi-
fications are fed into a meta-level training set from which a meta-classifier is
produced. This classifier combines the different predictions into a final one. It
is recommended that the original dataset will be partitioned into two subsets.
The first subset is reserved to form the meta-dataset and the second subset is
used to build the base-level classifiers. Consequently the meta-classifier predi-
cations reflect the true performance of base-level learning algorithms. Stacking
performances could be improved by using output probabilities for every class
label from the base-level classifiers. In such cases, the number of input at-
tributes in the meta-dataset is multiplied by the number of classes.

Dieroski and h n k o (2004) have evaluated several algorithms for construct-
ing ensembles of classifiers with stacking and show that the ensemble performs
(at best) comparably to selecting the best classifier from the ensemble by cross
validation. In order to improve the existing stacking approach, they propose
to employ a new multi-response model tree to learn at the meta-level and em-
pirically showed that it performs better than existing stacking approaches and
better than selecting the best classifier by cross-validation.

4.2.2 Arbiter Trees. This approach builds an arbiter tree in a bottom-
up fashion (Chan and Stolfo, 1993). Initially the training set is randomly par-
titioned into k disjoint subsets. The arbiter is induced from a pair of classifiers
and recursively a new arbiter is induced from the output of two arbiters. Con-
sequently for k classifiers, there are log2(k) levels in the generated arbiter tree.

The creation of the arbiter is performed as follows. For each pair of classi-
fiers, the union of their training dataset is classified by the two classifiers. A
selection rule compares the classifications of the two classifiers and selects in-
stances from the union set to form the training set for the arbiter. The arbiter is
induced from this set with the same learning algorithm used in the base level.
The purpose of the arbiter is to provide an alternate classification when the
base classifiers present diverse classifications. This arbiter, together with an
arbitration rule, decides on a final classification outcome, based upon the base
predictions. Figure 45.6 shows how the final classification is selected based on
the classification of two base classifiers and a single arbiter.

DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

(Classifier j Classification

Figure 45.6. A Prediction from Two Base Classifiers and a Single Arbiter.

The process of forming the union of data subsets; classifying it using a pair
of arbiter trees; comparing the classifications; forming a training set; training
the arbiter; and picking one of the predictions, is recursively performed until
the root arbiter is formed. Figure 45.7 illustrate an arbiter tree created for
k = 4. TI - T4 are the initial four training datasets from which four classifiers
Cl - C4 are generated concurrently. T12 and T34 are the training sets generated
by the rule selection from which arbiters are produced. A12 and AM are the
two arbiters. Similarly, T14 and A14 (root arbiter) are generated and the arbiter
tree is completed.

Arbiters

Classifiers

Data-subsets

Figure 45.7. Sample Arbiter Tree.

Several schemes for arbiter trees were examined and differentiated from
each other by the selection rule used. Here are three versions of mle selection:

rn Only instances with classifications that disagree are chosen (group 1).

rn Like group 1 defined above, plus instances that their classifications agree
but are incorrect (group 2).

rn Like groups 1 and 2 defined above, plus instances that have the same
correct classifications (group 3).

Ensemble Methods For Class$ers 97 1

Two versions of arbitration rules have been implemented; each one corre-
sponds to the selection rule used for generating the training data at that level:

rn For selection rule 1 and 2, a final classification is made by a majority
vote of the classifications of the two lower levels and the arbiter's own
classification, with preference given to the latter.

rn For selection rule 3, if the classifications of the two lower levels are
not equal, the classification made by the sub-arbiter based on the first
group is chosen. In case this is not true and the classification of the sub-
arbiter constructed on the third group equals those of the lower levels
- then this is the chosen classification. In any other case, the classi-
fication of the sub-arbiter constructed on the second group is chosen.
Chan and Stolfo (1993) achieved the same accuracy level as in the sin-
gle mode applied to the entire dataset but with less time and memory re-
quirements. It has been shown that this meta-learning strategy required
only around 30% of the memory used by the single model case. This
last fact, combined with the independent nature of the various learning
processes, make this method robust and effective for massive amounts
of data. Nevertheless, the accuracy level depends on several factors such
as the distribution of the data among the subsets and the pairing scheme
of learned classifiers and arbiters in each level. The decision in any of
these issues may influence performance, but the optimal decisions are
not necessarily known in advance, nor initially set by the algorithm.

4.2.3 Combiner Trees. The way combiner trees are generated is very
similar to arbiter trees. A combiner tree is trained bottom-up. However, a
combiner, instead of an arbiter, is placed in each non-leaf node of a combiner
tree (Chan and Stolfo, 1997). In the combiner strategy, the classifications of
the learned base classifiers form the basis of the meta-learner's training set.
A composition rule determines the content of training examples from which
a combiner (meta-classifier) will be generated. In classifying an instance, the
base classifiers first generate their classifications and based on the composition
rule, a new instance is generated. The aim of this strategy is to combine the
classifications from the base classifiers by learning the relationship between
these classifications and the correct classification. Figure 45.8 illustrates the
result obtained from two base classifiers and a single combiner.

Two schemes of composition rule were proposed. The first one is the stack-
ing schema. The second is like stacking with the addition of the instance input
attributes. Chan and Stolfo (1995) showed that the stacking schema per se
does not perform as well as the second schema. Although there is informa-
tion loss due to data partitioning, combiner trees can sustain the accuracy level

DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

Combiner -, Final lnShnce <
classification

Figure 45.8. A Prediction from 'Ikro Base Classifiers and a Single Combiner.

achieved by a single classifier. In a few cases, the single classifier's accuracy
was consistently exceeded.

4.2.4 Grading. This technique uses "graded" classifications as meta-
level classes (Seewald and Furnkranz, 2001). The term graded is used in the
sense of classifications that have been marked as correct or incorrect. The
method transforms the classification made by the k different classifiers into
k training sets by using the instances k times and attaching them to a new
binary class in each occurrence. This class indicates whether the k-th classifier
yielded a correct or incorrect classification, compared to the real class of the
instance.

For each base classifier, one meta-classifier is learned whose task is to clas-
sify when the base classifier will misclassify. At classification time, each base
classifier classifies the unlabeled instance. The final classification is derived
from the classifications of those base classifiers that are classified to be correct
by the meta-classification schemes. In case several base classifiers with differ-
ent classification results are classified as correct, voting, or a combination con-
sidering the confidence estimates of the base classifiers, is performed. Grading
may be considered as a generalization of cross-validation selection (Schaffer,
1993), which divides the training data into k subsets, builds k - 1 classifiers
by dropping one subset at a time and then using it to find a misclassification
rate. Finally, the procedure simply chooses the classifier corresponding to the
subset with the smallest misclassification. Grading tries to make this deci-
sion separately for each and every instance by using only those classifiers that
are predicted to classify that instance correctly. The main difference between
grading and combiners (or stacking) are that the former does not change the
instance attributes by replacing them with class predictions or class probabil-
ities (or adding them to it). Instead it modifies the class values. Furthermore,
in grading several sets of meta-data are created, one for each base classifier.
Several meta-level classifiers are learned from those sets.

Ensemble Methods For Classijiers 973

The main difference between grading and arbiters is that arbiters use infor-
mation about the disagreements of classifiers for selecting a training set, while
grading uses disagreement with the target function to produce a new training
set.

5. Ensemble Diversity
In an ensemble, the combination of the output of several classifiers is only

useful if they disagree about some inputs (Tumer and Ghosh, 1996). According
to Hu (2001) diversified classifiers lead to uncorrelated errors, which in turn
improve classification accuracy.

5.1 Manipulating the Inducer
A simple method for gaining diversity is to manipulate the inducer used

for creating the classifiers. Ali and Pazzani (1996) propose to change the rule
learning HYDRA algorithm in the following way: Instead of selecting the best
literal in each stage (using, for instance, information gain measure), the literal
is selected randomly such that its probability of being selected is proportional
to its measure value. Dietterich (2000a) has implemented a similar idea for
C4.5 decision trees. Instead of selecting the best attribute in each stage, it
selects randomly (with equal probability) an attribute from the set of the best
20 attributes. The simplest way to manipulate the back-propagation inducer
is to assign different initial weights to the network (Kolen and Pollack, 1991).
MCMC (Markov Chain Monte Carlo) methods can also be used for introducing
randomness in the induction process (Neal, 1993).

5.2 Manipulating the Training Set
Most ensemble methods construct the set of classifiers by manipulating the

training instances. Dietterich (2000b) distinguishes between three main meth-
ods for manipulating the dataset.

5.2.1 Manipulating the Tuples. In this method, each classifier is
trained on a different subset of the original dataset. This method is useful for
inducers whose variance-error factor is relatively large (such as decision trees
and neural networks), namely, small changes in the training set may cause a
major change in the obtained classifier. This category contains procedures such
as bagging, boosting and cross-validated committees.

The distribution of tuples among the different subsets could be random as
in the bagging algorithm or in the arbiter trees. Other methods distribute the
tuples based on the class distribution such that the class distribution in each
subset is approximately the same as that in the entire dataset. Proportional
distribution was used in combiner trees (Chan and Stolfo, 1993). It has been

974 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

shown that proportional distribution can achieve higher accuracy than random
distribution.

Recently Christensen et al. (2004) suggest a novel framework for construc-
tion of an ensemble in which each instance contributes to the committee forma-
tion with a fixed weight, while contributing with different individual weights
to the derivation of the different constituent models. This approach encourages
model diversity whilst not biasing the ensemble inadvertently towards any par-
ticular instance.

5.2.2 Manipulating the Input Feature Set. Another less common
strategy for manipulating the training set is to manipulate the input attribute
set. The idea is to simply give each classifier a different projection of the
training set.

5.3 Measuring the Diversity
For regression problems variance is usually used to measure diversity

(Krogh and Vedelsby, 1995). In such cases it can be easily shown that the
ensemble error can be reduced by increasing ensemble diversity while main-
taining the average error of a single model.

In classification problems, a more complicated measure is required to eval-
uate the diversity. Kuncheva and Whitaker (2003) compared several measures
of diversity and concluded that most of them are correlated. Furthermore, it is
usually assumed that increasing diversity may decrease ensemble error (Zenobi
and Cunningham, 200 1).

6. Ensemble Size
6.1 Selecting the Ensemble Size

An important aspect of ensemble methods is to define how many component
classifiers should be used. This number is usually defined according to the
following issues:

Desired accuracy - Hansen (1990) argues that ensembles containing ten
classifiers is sufficient for reducing the error rate. Nevertheless, there is
empirical evidence indicating that in the case of AdaBoost using deci-
sion trees, error reduction is observed in even relatively large ensembles
containing 25 classifiers (Opitz and Maclin, 1999). In the disjoint par-
titioning approaches, there may be a tradeoff between the number of
subsets and the final accuracy. The size of each subset cannot be too
small because sufficient data must be available for each learning pro-
cess to produce an effective classifier. Chan and Stolfo (1993) varied

Ensemble Methods For Classijiers 975

the number of subsets in the arbiter trees from 2 to 64 and examined the
effect of the predetermined number of subsets on the accuracy level.

User preferences -Increasing the number of classifiers usually increase
computational complexity and decreases the comprehensibility. For that
reason, users may set their preferences by predefining the ensemble size
limit.

Number of processors available - In concurrent approaches, the num-
ber of processors available for parallel learning could be put as an upper
bound on the number of classifiers that are treated in paralleled process.

Caruana et al. (2004) presented a method for constructing ensembles from
libraries of thousands of models. They suggest using forward stepwise selec-
tion in order to select the models that maximize the ensemble's performance.
Ensemble selection allows ensembles to be optimized to performance metrics
such as accuracy, cross entropy, mean precision, or ROC Area.

6.2 Pruning Ensembles
As in decision trees induction, it is sometime useful to let the ensemble

grow freely and then prune the ensemble in order to get more effective and
more compact ensembles. Empirical examinations indicate that pruned en-
sembles may obtain a similar accuracy performance as the original ensemble
(Margineantu and Dietterich, 1997).

The efficiency of pruning methods when meta-combining methods are used
have been examined in (Prodromidis et al., 2000). In such cases the prun-
ing methods can be divided into two groups: pre-training pruning methods
and post-training pruning methods. Pre-training pruning is performed before
combining the classifiers. Classifiers that seem to be attractive are included
in the meta-classifier. On the other hand, post-training pruning methods, re-
move classifiers based on their effect on the meta-classifier. Three methods
for pre-training pruning (based on an individual classification performance on
a separate validation set, diversity metrics, the ability of classifiers to classify
correctly specific classes) and two methods for post-training pruning (based
on decision tree pruning and the correlation of the base classifier to the un-
pruned meta-classifier) have been examined in (Prodromidis et al., 2000). As
in (Margineantu and Dietterich, 1997), it has been shown that by using prun-
ing, one can obtain similar or better accuracy performance, while compacting
the ensemble.

The GASEN algorithm was developed for selecting the most appropriate
classifiers in a given ensemble (Zhou et al., 2002). In the initialization phase,
GASEN assigns a random weight to each of the classifiers. Consequently, it

976 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

uses genetic algorithms to evolve those weights so that they can characterize
to some extent the fitness of the classifiers in joining the ensemble. Finally, it
removes from the ensemble those classifiers whose weight is less than a pre-
defined threshold value. Recently a revised version of the GASEN algorithm
called GASEN-b has been suggested (Zhou and Tang, 2003). In this algorithm,
instead of assigning a weight to each classifier, a bit is assigned to each clas-
sifier indicating whether it will be used in the final ensemble. They show that
the obtained ensemble is not only smaller in size, but in some cases has better
generalization performance.

Liu et al. (2004) conducted an empirical study of the relationship of ensem-
ble sizes with ensemble accuracy and diversity, respectively. They show that it
is feasible to keep a small ensemble while maintaining accuracy and diversity
similar to those of a full ensemble. They proposed an algorithm called LVFd
that selects diverse classifiers to form a compact ensemble.

7. Cluster Ensemble
This chapter focused mainly on ensembles of classifiers. However ensemble

methodology can be used for other Data Mining tasks such as regression and
clustering.

The cluster ensemble problem refers to the problem of combining multiple
partitionings of a set of instances into a single consolidated clustering. Usually
this problem is formalized as a combinatorial optimization problem in terms
of shared mutual information.

Dimitriadou et al. (2003) have used ensemble methodology for improving
the quality and robustness of clustering algorithms. In fact they employ the
same ensemble idea that has been used for many years in classification and re-
gression tasks. More specifically they suggested various aggregation strategies
and studied a greedy forward aggregation.

Hu and Yoo (2004) have used ensemble for clustering gene expression data.
In this research the clustering results of individual clustering algorithms are
converted into a distance matrix. These distance matrices are combined and a
weighted graph is constructed according to the combined matrix. Then a graph
partitioning approach is used to cluster the graph to generate the final clusters.

Strehl and Ghosh (2003) propose three techniques for obtaining high-quality
cluster combiners. The first combiner induces a similarity measure from the
partitionings and then reclusters the objects. The second combiner is based
on hypergraph partitioning. The third one collapses groups of clusters into
meta-clusters, which then compete for each object to determine the combined
clustering. Moreover, it is possible to use supra-combiners that evaluate all
three approaches against the objective function and pick the best solution for a
given situation.

Ensemble Methods For Classifiers 977

References
Ali K. M., Pazzani M. J., Error Reduction through Learning Multiple Descrip-

tions, Machine Learning, 24: 3, 173-202, 1996.
Bartlett P. and Shawe-Taylor J., Generalization Performance of Support Vector

Machines and Other Pattern Classifiers, In "Advances in Kernel Methods,
Support Vector Learning", Bernhard Scholkopf, Christopher J. C. Burges,
and Alexander J. Smola (eds.), MIT Press, Cambridge, USA, 1998.

Bauer, E. and Kohavi, R., "An Empirical Comparison of Voting Classification
Algorithms: Bagging, Boosting, and Variants". Machine Learning, 35: 1-38,
1999.

Breiman L., Bagging predictors, Machine Learning, 24(2): 123- 140, 1996.
Bruzzone L., Cossu R., Vernazza G., Detection of land-cover transitions by

combining multidate classifiers, Pattern Recognition Letters, 25(13): 1491-
1500,2004.

Buchanan, B.G. and Shortliffe, E.H., Rule Based Expert Systems, 272-292,
Addison-Wesley, 1984.

Buhlmann, P. and Yu, B., Boosting with L2 loss: Regression and classification,
Journal of the American Statistical Association, 98,324338.2003.

Buntine, W., A Theory of Learning Classification Rules. Doctoral dissertation.
School of Computing Science, University of Technology. Sydney. Australia,
1990.

Caruana R., Niculescu-Mizil A. , Crew G. , Ksikes A., Ensemble selection
from libraries of models, Twenty-first international conference on Machine
learning, July 04-08,2004, Banff, Alberta, Canada.

Chan P. K. and Stolfo, S. J., Toward parallel and distributed learning by meta-
learning, In AAAI Workshop in Knowledge Discovery in Databases, pp.
227-240, 1993.

Chan P.K. and Stolfo, S.J., A Comparative Evaluation of Voting and Meta-
learning on Partitioned Data, Proc. 12th Intl. Conf. On Machine Learning
ICML-95, 1995.

Chan P.K. and Stolfo S.J, On the Accuracy of Meta-learning for Scalable Data
Mining, J. Intelligent Information Systems, 85-28, 1997.

Charnes, A., Cooper, W. W., and Rhodes, E., Measuring the efficiency of de-
cision making units, European Journal of Operational Research, 2(6):429-
444,1978.

Christensen S. W. , Sinclair I., Reed P. A. S., Designing committees of models
through deliberate weighting of data points, The Journal of Machine Learn-
ing Research, 4(1):39-66,2004.

Clark, P. and Boswell, R., "Rule induction with CN2: Some recent improve-
ments." In Proceedings of the European Working Session on Learning, pp.
151-163, Pitman, 1991.

978 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

Dieroski S., h n k o B., Is Combining Classifiers with Stacking Better than Se-
lecting the Best One?, Machine Learning, 54(3): 255-273,2004.

Dietterich, T. G., An Experimental Comparison of Three Methods for Con-
structing Ensembles of Decision Trees: Bagging, Boosting and Randomiza-
tion. 40(2): 139-157,2000.

Dietterich T., Ensemble methods in machine learning. In J. Kittler and F. Roll,
editors, First International Workshop on Multiple Classifier Systems, Lec-
ture Notes in Computer Science, pages 1- 15. Springer-Verlag, 2000

Dimitriadou E., Weingessel A., Hornik K., A cluster ensembles framework,
Design and application of hybrid intelligent systems, IOS Press, Amster-
dam, The Netherlands, 2003.

Domingos, P., Using Partitioning to Speed Up Specific-to-General Rule In-
duction. In Proceedings of the AAAI-96 Workshop on Integrating Multiple
Learned Models, pp. 29-34, AAAI Press, 1996.

Freund Y. and Schapire R. E., Experiments with a new boosting algorithm. In
Machine Learning: Proceedings of the Thirteenth International Conference,
pages 325-332,1996.

Fiirnkranz, J., More efficient windowing, In Proceeding of The 14th national
Conference on Artificial Intelegence (AAAI-97), pp. 509-5 14, Providence,
RI. AAAI Press, 1997.

Gams, M., New Measurements Highlight the Importance of Redundant Knowl-
edge. In European Working Session on Learning, Montpeiller, France, Pit-
man, 1989.

Geman S., Bienenstock, E., and Doursat, R., Neural networks and the bias
variance dilemma. Neural Computation, 4: 1-58, 1995.

Hansen J., Combining Predictors. Meta Machine Learning Methods and Bias
Variance & Ambiguity Decompositions. PhD dissertation. Aurhus Univer-
sity. 2000.

Hansen, L. K., and Salamon, P., Neural network ensembles. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(10), 993-1001, 1990.

Hu, X., Using Rough Sets Theory and Database Operations to Construct a
Good Ensemble of Classifiers for Data Mining Applications. ICDMOI. pp.
233-240,2001.

Hu X., Yoo I., Cluster ensemble and its applications in gene expression anal-
ysis, Proceedings of the second conference on Asia-Pacific bioinformatics,
pp. 297-302, Dunedin, New Zealand, 2004.

Kolen, J. F., and Pollack, J. B., Back propagation is sesitive to initial conditions.
In Advances in Neural Information Processing Systems, Vol. 3, pp. 860-867
San Francisco, CA. Morgan Kaufmann, 199 1.

Krogh, A., and Vedelsby, J., Neural network ensembles, cross validation and
active learning. In Advances in Neural Information Processing Systems 7,
pp. 231-238 1995.

Ensemble Methods For Classijiers 979

Kuncheva, L., & Whitaker, C., Measures of diversity in classifier ensembles
and their relationship with ensemble accuracy. Machine Learning, pp. 181-
207,2003.

Leigh W., Purvis R., Ragusa J. M., Forecasting the NYSE composite index
with technical analysis, pattern recognizer, neural networks, and genetic al-
gorithm: a case study in romantic decision support, Decision Support Sys-
tems 32(4): 361-377,2002.

Lewis D., and Catlett J., Heterogeneous uncertainty sampling for supervised
learning. In Machine Learning: Proceedings of the Eleventh Annual Con-
ference, pp. 148-156 , New Brunswick, New Jersey, Morgan Kaufmann,
1994.

Lewis, D., and Gale, W., Training text classifiers by uncertainty sampling, In
seventeenth annual international ACM SIGIR conference on research and
development in information retrieval, pp. 3-12, 1994.

Liu H., Mandvikar A., Mody J., An Empirical Study of Building Compact
Ensembles. WAIM 2004: pp. 622-627.

Maimon 0. Rokach L., Ensemble of Decision Trees for Mining Manufacturing
Data Sets, Machine Engineering, vol. 4 Nol-2,2004.

Mangiarneli P., West D., Rampal R., Model selection for medical diagnosis
decision support systems, Decision Support Systems, 36(3): 247-259,2004.

Margineantu D. and Dietterich T., Pruning adaptive boosting. In Proc. Four-
teenth Intl. Conf. Machine Learning, pages 21 1-218, 1997.

Mitchell, T., Machine Learning, McGraw-Hill, 1997.
Neal R., Probabilistic inference using Markov Chain Monte Carlo methods.

Tech. Rep. CRG-TR-93-1, Department of Computer Science, University of
Toronto, Toronto, CA, 1993.

Opitz, D. and Maclin, R., Popular Ensemble Methods: An Empirical Study,
Journal of Artificial Research, 1 1: 169-198, 1999.

Parmanto, B., MUNO, P. W., and Doyle, H. R., Improving committee diagnosis
with resampling techinques. In Touretzky, D. S., Mozer, M. C., and Hes-
selmo, M. E. (Eds). Advances in Neural Information Processing Systems,
Vol. 8, pp. 882-888 Cambridge, MA. MIT Press, 1996.

Prodromidis, A. L., Stolfo, S. J. and Chan, P. K., Effective and efficient prun-
ing of metaclassifiers in a distributed Data Mining system. Technical report
CUCS-017-99, Columbia Univ., 1999.

Provost, F.J. and Kolluri, V., A Survey of Methods for Scaling Up Inductive
Learning Algorithms, Roc. 3rd International Conference on Knowledge
Discovery and Data Mining, 1997.

Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, Los
Altos, 1993.

Quinlan, J. R., Bagging, Boosting, and C4.5. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages 725-730, 1996.

980 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

Schaffer, C., Selecting a classification method by cross-validation. Machine
Learning l3(l): 135-143, 1993.

Seewald, A.K. and Fiirnkranz, J., Grading classifiers, Austrian research insti-
tute for Artificial intelligence, 2001.

Sharkey, A., On combining artificial neural nets, Connection Science, Vol. 8,
pp.299-3 13, 1996.

Shilen, S., Multiple binary tree classifiers. Pattern Recognition 23(7): 757-763,
1990.

Shilen, S., Nonpararnetric classification using matched binary decision trees.
Pattern Recognition Letters 13: 83-87, 1992.

Sohn S. Y., Choi, H., Ensemble based on Data Envelopment Analysis, ECML
Meta Learning workshop, Sep. 4,2001.

Strehl A., Ghosh J. (2003), Cluster ensembles - a knowledge reuse framework
for combining multiple partitions, The Journal of Machine Learning Re-
search, 3: 583-617,2003.

Tan A. C., Gilbert D., Deville Y., Multi-class Protein Fold Classification using a
New Ensemble Machine Learning Approach. Genome Informatics, 14:206-
217,2003.

Tukey J.W., Exploratory data analysis, Addison-Wesley, Reading, Mass, 1977.
Tumer, K. and Ghosh J., Error Correlation and Error Reduction in Ensemble

Classifiers, Connection Science, Special issue on combining artificial neural
networks: ensemble approaches, 8 (3-4): 385-404, 1996.

Tumer, K., and Ghosh J., Linear and Order Statistics Combiners for Pattern
Classification, in Combining Articial Neural Nets, A. Sharkey (Ed.), pp.
127- 162, Springer-Verlag, 1999.

Tumer, K., and Ghosh J., Robust Order Statistics based Ensembles for Dis-
tributed Data Mining. In Kargupta, H. and Chan P., eds, Advances in Dis-
tributed and Parallel Knowledge Discovery, pp. 185-210, AAAIMIT Press,
2000.

Wolpert, D.H., Stacked Generalization, Neural Networks, Vol. 5, pp. 241-259,
Pergamon Press, 1992.

Zenobi, G., and Cunningham, P. Using diversity in preparing ensembles of
classifiers based on different feature subsets to minimize generalization er-
ror. In Proceedings of the European Conference on Machine Learning, 200 1.

Zhou, Z. H., and Tang, W., Selective Ensemble of Decision Trees, in Guoyin
Wang, Qing Liu, Yiyu Yao, Andrzej Skowron (Eds.): Rough Sets, Fuzzy
Sets, Data Mining, and Granular Computing, 9th International Conference,
RSFDGrC, Chongqing, China, Proceedings. Lecture Notes in Computer
Science 2639, pp.476-483,2003.

Zhou, Z. H., Wu J., Tang W., Ensembling neural networks: many could be
better than all. Artificial Intelligence 137: 239-263,2002.

