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Correction for Partial Volume Effects
in Emission Tomography

O.G. Rousset* and H. Zaidiy

1. Introduction

Despite 25 years of continual improvement of the physical characteristics of

positron emission tomography (PET) and single-photon emission computed

tomography (SPECT) instruments, including crystal technology, improved

electronics, and faster computers, PET and SPECT are still plagued with

relatively low spatial resolution compared to anatomy-oriented imaging

devices such as magnetic resonance (MR) imaging or x-ray computed tom-

ography (CT). Further, in order to accurately explore cell metabolism,

reproducibility and sensitivity of the data analysis procedures must at least

match the subtle changes occurring in metabolism that one tries to investi-

gate. While it is of primary importance to compensate for physical effects

such as interaction of photons with matter resulting in their attenuation (see

Chapter 6) and scattering (see Chapter 7), geometry-dependent interactions

between the imaging system and the distribution of radioactivity in the field-

of-view must also be accounted for. This includes correction methods used

to account for collimator response in SPECT (see Chapter 5). Despite all the

efforts aimed at improving the quality and meaningfulness of emission

tomography (ET), there remains the need to correct for limited resolution

(or partial volume) effects if one wants to obtain absolute image

quantification.1,2

Partial volume effects (PVE’s) have been shown to result in large bias in

the estimate of regional radioactivity concentration, both in experimental

phantom and simulation studies. Partial volume is usually addressed in the

context of ‘‘small’’ regions, i.e., with dimensions smaller than around 2-4

times the full-width at half-maximum (FWHM) of the scanner’s point-

spread function (PSF ). It is rather hard indeed to find for example a single
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brain structure that can elude partial volume given the spatial resolution of

current emission tomography systems.3

In the presence of tissue atrophy, such as in the case of Dementia of

Alzheimer Type (DAT), the signal is diluted even further since the scanner’s

resolution cell contains even less cortical grey matter. What is important to

the clinician and research investigator is the ability to distinguish the loss of

radioactivity due to increase in partial volume effects from the true loss

of tissue function. In the case of dynamic studies of the heart and brain,

time-varying contrasts between the target region and its surrounding lead to

distortion of true tissue time-activity curves and subsequent underestimation

of physiological parameters.

The purpose of this chapter is to introduce basic notions and describe

correction methods for partial volume effects in emission tomography as

well as their evaluation strategies.

2. The Problem of Partial Volume Effect

The general problem of partial volume effect was first introduced in the

context of the early generation of X-ray CT and PET scanners.4 With crystal

size soaring at over 2 cm thick, substantial part of the anatomical region

under study would only partially occupy the imaging volume resolution cell.

In emission tomography, this phenomenon of partial volume came to include

both the loss of detection sensitivity in the axial direction (slice thickness), as

well as in-plane resolution effect resulting from in-plane detector response

and filtering of the projection prior to backprojection.

The limited spatial resolution of emission tomography depends on a

number of factors from various sources: i) physical, such as positron range

and non-colinearity of emitted annihilation photons (in PET), scattered

radiation (in SPECT and PET), ii) instrumental, such as scintillation crystal

size, their detection efficiency and geometrical arrangement, or collimator

geometry (in SPECT) and iii) methodological, such as the choice of param-

eters for image acquisition and reconstruction processes. Finally, even if this

will not influence the resolution of the system per se, the choice of the

regions-of-interest (RoI) for extracting regional activity concentrations will

further modulate the degree of recovery of actual tracer distribution.

Due to the imperfections of the imaging system, the response of the

scanner to a point source of activity, or point-spread function (PSF ) , will

show a bell shape. The full width of the PSF taken at half the maximum of

the profile (or full-width at half-maximum—FWHM) is generally taken as

the measure of spatial resolution (Figure 1).

Ifweconsider the simpleone-dimensional casewhereanobjectpossessesone

of its dimensions smaller that 2-3 times the spatial resolution along that

particular direction, a profile through the produced imagewill show an under-

estimation of true tracer concentration (Figure 2). The signal profile of this
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Figure 1. Mono-dimensional Gaussian function representing typical spatial response

function, or point-spread function (PSF ), of modern emission tomographs. Spatial

resolution is usually given in terms of full-width-at-half-maximum (FWHM) of the

PSF, which has been chosen equal to 6 mm in this illustration.
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D = 6 mm D = 12 mm

Figure 2. Schematic illustration of the partial volume effect. The observed signal

(dashed line) is underestimated compared to true profiles (solid lines) depending on

object size D with respect to the scanner’s spatial resolution (chosen as equal to 6 mm

(FWHM)in this example).Weseeclearly that inorder for theobjectD toexhibit100%of

true original activity, its dimension needs to be greater than 2�FWHM (D > 12mm).
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isolated object is further distorted by the presence of neighbouring activity

(Figure 3). The goal of partial volume correction (PVC) is to be able to account

for both the loss of signal due to the limited size of the object with respect to

resolution, and the signal contamination coming from the rest of the image.

3. Theoretical Considerations: Object-Image Relationship

For a non-linear system, with a spatially variant point-spread function h(r),

the resulting image g(r) of a distribution of activity f(r) can be written as:

g(r) ¼
ð
<

h r, r0, f (r0)ð Þ dr0 (1)
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Figure 3. More general definition of partial volume effect(s). When a small object of

width D (D¼6 mm in this illustration) is surrounded by background activity, the

observed signal will result from the addition of the target object signal (dashed line)

plus a contamination component referred to as ‘‘spill-over’’ or ‘‘spill-in’’. When the

activity in the target object is smaller than in the surrounding, we observe an over-

estimationof its activity (A). In the absenceof image contrast, i.e., if the target activity is

the same as in the surrounding (B), the observed signal will be equal to the true signal as

activity spilled-out is exactly compensated by activity spill-in. When the activity in the

target object is above that of the background, the observed signal is underestimated

(C andD).
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where r and r0 are the vectors in image and object space respectively. For a

linear system we have:

g(r) ¼
ð
<

h r, r0ð Þ f (r0)dr0 (2)

where h(r, r0) represents the system’s PSF. Those two last equations repre-

sent the most general description of the image formation process, where the

PSF is a function of the spatial coordinates in both spaces (object and

image), and is referred to as spatially variant. In the case where the response

to a point source of activity is the same for all the points in the object space,

the PSF is said to be spatially invariant. In this case, h only depends on the

difference in coordinates r-r0 since the response to a point source depends

only on the relative distance between these 2 points in the image plane. For

a spatially invariant, non-linear system, Eq. (2) becomes:

g(r) ¼
ð
<

h r� r0, f (r0)ð Þdr0 (3)

Whereas for a spatially invariant, linear system:

g(r) ¼
ð
<

h r� r0ð Þ f (r0) dr0 (4)

We recognize here the convolution integral: the image is equal to the

convolution of the object distribution with the PSF of the imaging system.

The PSF transfers the information from the object space to the image space

and incorporate all the geometrical infidelities of the imaging system. It is

therefore not surprising that the attempt to compensate for those degrad-

ations be referred to as a ‘‘deconvolution’’ process. It is worth emphasizing

here that this term should in theory only be applicable in situation where the

PSF is a spatially-invariant function.

4. The General Problem of Image Restoration

If we concentrate on the case where the imaging system is linear and spatially

invariant, we have seen (Eq. 4) that the object f(r) and the image g(r) are

linked by the convolution integral that can be simply written as:

g(r) ¼ h(r)� f (r) (5)

where � represents the convolution operator. In Fourier space, the convo-

lution becomes a simple multiplication of the Fourier transforms H(u) and

F(u) of the functions h(r) and f(r), respectively, (convolution theorem).We

can then write:

G(u) ¼ H(u)� F (u) (6)
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where u represents the spatial frequency corresponding to the spatial coord-

inate r. The relationship between a function and its Fourier transform being

given by:

F (u) ¼
ð
<

f (r)� e�2piurdr (7)

and

f (r) ¼
ð
<

F (u)� e2piurdu (8)

Equation (8) indicates that the object f can be separated into its spatial

frequency components u and how these elements can be recombined to

recover the original object f. This representation in Fourier space contains

the same information than in real space, only in a different form. It is then

clear that the Fourier transform H of the PSF h corresponds to the fraction

of the object distribution component of spatial frequency u that is trans-

ferred to the image distribution at the same spatial frequency. H regulates

the transfer of information for each spatial frequency, and is often termed

the modulation transfer function (MTF) . If the imaging system was perfect

(i.e., H ¼ 1), the image would be a perfect representation of the object, and

h would be a Dirac function (PSF infinitely narrow). Unfortunately, for

every imaging system, and in particular for PET and SPECT, we observe a

dispersion of the system PSF which corresponds to a decrease of the MTF

magnitude with increasing spatial frequency. It is therefore clear that there is

a loss of spatial information for the high spatial frequencies. If one thinks of

recovering this information by performing a direct deconvolution, it be-

comes clear that we need to invert Eq. (6):

F (u) ¼ G(u)=H(u) (9)

thus

f (r) ¼
ð
<

G(u)

H(u)
e2piudu (10)

The practical use of this simple procedure is not very reasonable if we

consider that H decreases in magnitude with increasing spatial frequency. It

is at those high frequencies that the image becomes dominated by noise, that

the deconvolution suggested in Eq. (10) would amplify to unacceptable

levels.

In fact, the image formation process given in Eq. (2) could present the

false impression that object and image spaces are only connected by geo-

metrical transformations. In practice, the images are contaminated by a

whole variety of noise of various origins. A more accurate description of

the image formation process is hence the following for a linear system:
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g(r) ¼
ð
<

h r, r0ð Þ f (r0)dr0 þ �(r) (11)

where h represents the noise distribution in the image (assumed to be additive

here).There is nounique solution to this equation, and theproblem is said tobe

‘‘ill-posed’’, meaning that a small perturbation in the image can lead to large

errors in the solution. Image restoration consists in finding the best solution

to Eq. (11) while limiting noise amplification resulting from the correction

process. Ifwe consider that the image canbewritten as the effect of anoperator

on the object, plus a noise component, we can then write Eq. (11) in the form:

g ¼ Hf þ h (12)

If we apply the inverse operator, we obtain:

H�1g ¼ H�1Hf þH�1h (13)

If we define a measurement of the object as being the inverse of H applied

to g, then:

f̂f ¼ f þH�1h (14)

This equation indicates that the ‘‘processed’’ image f̂f is equal to the real

object plus a term representing the noise amplification. If the operator H is

singular, this image can not even be obtained, and even if H is only slightly

ill-conditioned, the second term of Eq. (14) becomes predominant and will

invalidate the correction method.

5. Theoretical Activity Recovery of Known Size Objects

Typical PSF of emission tomography systems can be approximated by a

Gaussian function of a few millimetres FWHM. The partial volume effect

on spherical objects of inner radii varying from 4 to 15.5 mm, for emission

tomography systems with spatial resolution varying between 2 and 10 mm

FWHM, are illustrated in Figure 4. It is worth noticing that the smallest

sphere (4 mm) is hardly visible when using a system with similar spatial

resolution and not detectable at all for systems with lower spatial resolution

(> 4 mm).

By definition, a normalized Gaussian aperture function of the spatial

function r(x,y,z) can be expressed as:

h(r) ¼ (2p)�3=2

sSx
sSy

sSz

� exp � 1

2

x2

s2
Sx

þ y2

s2
Sy

þ z2

s2
Sz

" # !
(15)

where sSx, sSy, and sSz represent the standard deviation in the x, y, and z

directions. This symmetric function has a maximum value of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2psSx

p
in

1-D, 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2psSx

sSy

p
in 2-D, and 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2psSx

sSysSz

p
in 3-D.
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If we consider the Gaussian function definition given in Eq. (15) and the

definition of the spatial resolution in terms of the FWHM of the scanner’s

PSF, we can relate the FWHM to the standard deviation s as follows:

exp � 1

2

FWHM

2s

� �2
 !

¼ 1=2, FWHM

2s
¼

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p


 1:18 (16)

If the Gaussian aperture function presented in Eq. (15) is convolved with a

Gaussian object of standard deviations sOx, sOy, and sOz along x, y, and z,

the result can be directly assessed after Fourier transform and multiplication

in the frequency domain, and can be expressed as:

g(r) ¼ sOx
sOy

sOzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Ox
þ s2

Sx

	 

s2
Oy þ s2

Sy

	 

s2
Oz
þ s2

Sz

	 
r

� exp � 1

2

x2

s2
Ox
þ s2

Sx

þ y2

s2
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þ s2
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þ z2

s2
Oz þ s2

Sz

" # !
(17)

The results for 1-D and 2-D objects can be readily derived from the

previous equation by dropping the z and y variables respectively. For

FWHM=6mm FWHM=8mm FWHM=10mm

Ideal FWHM=2mm FWHM=4mm

Figure 4. Illustration of the partial volume effect using simulated spheres of 4.0, 7.5,

8.5, 11.0, 13.0, and 15.5 mm inner radii for imaging systems with spatial resolution

FWHM varying between 2 and 10 mm.
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instance, the maximum recovery coefficient (RC) for a 2-D Gaussian object

of identical standard deviation along x and y (i.e., sOx ¼ sOy ¼ sO),

becomes:

RC ¼ (sO=sS)
2

1þ (sO=sS)
2

(18)

We can predict analytically the maximum RC values in the case of objects

of simple geometrical shape. In the case of a bar of width D that is the only

dimension to suffer from partial volume effects, the recovery coefficient can

be expressed by the convolution integral:

RC(x=s) ¼
ðD=2

�D=2

1ffiffiffiffiffiffiffiffiffi
2ps
p exp � 1

2

x2

s2

� �
dx

¼ erf
D=2ffiffiffi
2
p

s

� � (19)

where

erf
uffiffiffi
2
p

s

� �
¼
ðu
�1

1ffiffiffiffiffiffi
2p
p

s
exp � v2

2s2

� �
dv (20)

and represents the error function.5 The calculation is also possible in 2-D

in the case of a cylinder of elliptical section whose length is large with

respect to the resolution along the z dimension.6 For an elliptical section

given by:

x2=b2 þ y2=c2 ¼ R2 (21)

then

RC(R=s) ¼ 1� exp (� R2=2s2)

RC(D=FWHM) ¼ 1� exp (� ln 2�D2=FWHM2) ,D ¼ 2R
(22)

In the case where a sphere of radius R is centred on an isotropic Gaussian

function of standard deviation s, the maximum value for the 3-D recovery

coefficient that one can obtain in the image is given by:

RC3D ¼ 1

2pð Þ3=2s3

ðR
�R

dz

ðR
�R

dy

ðR
�R

dx exp � x2 þ y2 þ z2

2s2

� �� �
(23)

The result of this integral is proposed in the work published by Kessler

et al.7 and is illustrated in figure 5 along with the results obtained in 1-D and

2-D. This calculation was expended to the more general case where the

sphere’s centre is shifted by an amount Zp with respect to the centre of the

Gaussian aperture function:
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RC(R=s,Zp=s)¼ erf
R�Zpffiffiffi

2
p

s

� �
� erf

�R�Zpffiffiffi
2
p

s

� �
� 1ffiffiffi

2
p

p

s

Zp

exp �R
2þZ2

p

2s2

 !
� exp

R�Zp

s2

� �
� exp �R�Zp

s2

� �� �
(24)

For every combination of object and impulse function (PSF ) , a whole

range of RC values are possible, with RC reaching a maximum when the

object and the PSF have maximum overlap.8

It should be noted here that the RC defined by Hoffman et al.9 charac-

terizes only one of the two aspects of the partial volume effect. It represents

in fact the fraction of TRUE activity contained in the measurement in

the absence of activity other than that present in the object (‘‘cold’’ back-

ground). This concept does not take into account the presence of a

‘‘warm’’ surrounding medium that contaminates the measurements of

the ‘‘hot’’ spots. We can nevertheless mention the introduction of the

concept of contrast recovery coefficient (CRC)7 that reflects the rate of

recovery that lies above the surrounding medium (BKG), i.e., CRC¼(obs-
BKG)/(TRUE-BKG). This parameter is only justified in the case where the

BKG is not itself subject to PVE’s, and is of known and uniform activity

concentration.
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Figure 5. Maximum theoretical recovery coefficients (RC) resulting from the com-

putation of the convolution integrals for various geometries: bar (1-D), cylinder

(2-D), and sphere (3-D), plotted as a function of their spatial characteristic D

normalized to the image resolution in terms of its FWHM.
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6. Partial Volume Correction Strategies

Attempts to compensate for partial volume effects date back to the time

where they were first pointed out as a serious limitation in quantitative

analysis. The reference paper is probably that of Hoffman et al.9 where he

proposed the computation of recovery coefficients from the known geom-

etry of the objects being imaged and their position relative to the centre of a

given PET slice. From the same group, Mazziotta then predicted the recov-

ery coefficients for numerous brain structures based on their approximation

by a series of non-overlapping spheres.10 Although the partial volume phe-

nomenon was first addressed in the context of ‘‘hot’’ objects in a ‘‘cold’’

background, emphasizing on the apparent loss of radioactivity due to the

small object size with respect to the spatial resolution of the system,9

it became obvious that it was necessary not only to account for activity

‘‘spilling-out’’ of the ‘‘hot’’ region, but that ‘‘spill-in’’ from the surrounding

usually ‘‘warm’’ area should also be accounted for in the regional measure-

ments.7 Several authors attempted some sort of partial volume correction by

applying the recovery coefficients described by Hoffman as well as those

derived from Kessler’s formulation.11,12

Some correction methods require only the original emission data.

These include methods making all the necessary corrections for physical

effects at the projection level, such as in the method proposed originally

by Huesman et al.13 for scatter correction. Iterative reconstruction tech-

niques that incorporate a blurring model in their iterative scheme have

been proposed to compensate for the inherent blurring of SPECT.14,15

This aspect is covered in detail in Chapter 5. There has also been a

great deal of search for image processing tools that would restore, or

at least visually enhance, the noisy images obtained in emission tomo-

graphy. Those can be regrouped into the general class of filters used during

image reconstruction (low-pass filtering), and those used post-reconstruction

for the purpose of restoration filtering. The latter include methods such as

Wiener’s filtering widely used in evoked potential, and investigated as a way

of suppressing noise while maintaining the signal content of time-activity

curves.16,17 In SPECT, depth-dependent blurring can be corrected by first

back-projecting each projection and then applying a depth-dependent Wie-

ner filter row by row.18 Finally, another approach that does not require

additional data is based on the computation of correction factors during

mathematical modelling of kinetic data, such as regional cerebral blood flow

(CBF) measurement with PET, both in the heart19 and brain.20

A distinct class of correction methods require the definition of the various

objects being imaged in addition to the characterization of the scanner’s

PSF. These include anatomy-based post-reconstruction correction methods

that make use of concomitant high-resolution structural information from
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MR imaging or CT.21-27 Being the most popular methods, those will be

described in details later in this section.

Finally, empirical methods based on the derivation of correction factors

from experiments with physical test objects remain an active way of charac-

terizing partial volume effects.28,29

6.1 Correction Methods based on Physical

Phantom Experiments

Such empirical methods mimic the object (radioactivity distribution) by a

series of simple geometrical shapes (cylinders, spheres) to derive correction

factors for actual anatomical structure that can be approximated by a simple

shape or a linear combination of simple geometrical shapes. Some re-

searchers have proposed to describe the effect of scatter counts and partial

volume on the PSF by a series of functions with parameters derived from

physical phantoms experiments.28 This method requires the availability of a

realistic physical phantom of the organ or tissue of interest, although em-

pirical rules allow to deriving the PSF of an arbitrary object from the PSF of

a known object.

Also, the estimation of the arterial input function required for the absolute

quantification of fast dynamic studies of tracer pharmacokinetics, has been

proposed based on its estimation from a large artery after correction for

PVE’s. Such correction factors can be derived from imaging cylindrical

distribution of activity of various diameters and for various levels of back-

ground activity.29 This method is based on Kessler’s formulation of the hot

spot recovery coefficient (HSRC) or ratio of image activity concentration to

the true activity concentration in a ‘‘hot’’ isolated region, and cold spot

recovery coefficient (CSRC) or ratio of image activity in ‘‘cold’’ spot to true

background concentration.7,30 In this case, in the presence of the 2-

component system (targetþbackground), according to the formulation of

Kessler, the observed estimate of activity within the target region (e.g.,

arterial vessel) can be expressed as:

tt arg et ¼ HSRC � Tt arg et þ CSRC � Tbackground (25)

with Tbackground representing the true radioactivity concentration of the back-

ground region, and ttarget is the target radioactivity concentration observed

with the imaging system. Under the condition that the target region is totally

surrounded by the background region, we have the relationship:

HSRC þ CSRC ¼ 1 (26)

By substituting CSRC from Eq. 26 in Eq. 25, we can estimate the corrected

activity within the target region:

Tt arg et ¼ 1

HSRC
(tt arg et � Tbackground)þ Tbackground (27)
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We can note that the HSRC is generally simply referred to as the recovery

coefficient. In the present case, the application of this approach assumes that

the background activity can be accurately assessed directly from the emis-

sion image. In other words, the background is assumed not to be affected by

partial volume. This method also assumes that the size of e.g., the vessel, can

be accurately estimated. This is a crude approach in its assumption on large

surrounding homogeneous background, but has the advantage of only

requiring the estimation of the RC of the target region. Similarly, recovery

coefficients derived from phantom studies have been proposed to correct for

partial volume effects in SPECT myocardial perfusion studies.31 A similar

approach was adopted to demonstrate the feasibility of such correction in a

clinical setting where the anatomical structures can be approximated by

simple geometrical objects.30 The study concluded that a recovery correction

is feasible only for PET data down to lesions of size ~1.5 � FWHM.

However, this kind of approach represents a real technical challenge for

more complex organs where anatomical variability or the presence of ana-

tomical abnormalities cannot be addressed by a single physical model. While

physical models of the heart in various sizes are available (Data Spectrum,

Hillsborough, NC), there is no existing brain phantom that can reproduce

the brain circumvolutions or structures smaller than about 10 ml in volume.

However, even in the absence of gross abnormalities such as tissue atrophy,

normal anatomical variability especially that found in the human brain

would not favour the use of a single physical model for correction purposes.

However, some authors have for instance proposed a method to overcome

the problem of axial under-sampling of emission tomographs based on

phantom experiments.32 Their method make use of a human basal ganglia

phantom to validate their assumption according to which the intensity

profile in the axial direction can be accurately assessed by Gaussian fitting

in order to derive correction factors that compensate for the non-uniform

axial response function of the scanner, making the signal independent from

axial positioning of the head.

6.2 Reconstruction-based Correction Methods

Such methods may or may not require the availability of supplementary

structural information from e.g., MR imaging. Because of the inherent

degradation of spatial resolution during filtered backprojection, there is a

great deal of research for statistical reconstruction approaches that would

overcome this problem of resolution loss while dealing with the intrinsic

Poissonian nature of the noise. For example, iterative reconstruction

methods such as those derived from the Maximum-Likelihood Expect-

ation-Maximization scheme33 can incorporate all kind of information such

as scatter or spatial variation of the system’s PSF to compensate for non-

stationary resolution (see Chapter 4). Those methods have been explored

both in SPECT14,34-36 and PET.37
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Some other iterative reconstruction methods not only incorporate some

model of the scanner’s PSF, but can also incorporate a priori anatomical

information from e.g., MRI, in an attempt to compensate for partial volume

effect, both in SPECT38 and PET.39,40 However those methods still fail to

account for resolution effects in the axial direction, which remains the

predominant source of partial volume effects.

Another class of correction schemes, based on quantification directly in

projection space, is derived from the early work of Huesman et al.13 and was

extended to include not only scatter but also spatial resolution effects, both

in the heart41 and tumour imaging.42 The major advantage of this approach

is its ability to derive accurate figure of regional variance. However this kind

of methods cannot account for partial volume effects of objects with cross-

section about the size of the intrinsic resolution of the scanner, and has yet to

be extended in 3-D.

6.3 Post-reconstruction Correction Methods

It becomes increasingly common, if not systematic, to have access to both

the functional information from emission tomography, together with its

underlying anatomy defined from high-resolution, structure-oriented, scan-

ning devices such as MR or CT. The combined use of anatomical and

functional data allows for a more accurate identification and definition of

regions used for the assessment of regional tracer concentration. This trend

is also reflected in the development of PET/CT and PET/MRI devices that

allow access to both types of information simultaneously, thus avoiding the

problem of inter-modality spatial realignment errors (see Chapter 9).

Such correction method consists in solving the imaging equation (Eq. 2).

Due to the stochastic and Poissonian form of the signal, it is not possible to

simply deconvolve the image with the inverse of the PSF without unbearable

noise magnification (see Chapter 4).

In order to reduce the number of unknowns in the imaging equation, i.e.,

minimizing the noise propagation issue, it is necessary to perform a data

reduction, i.e., a segmentation of the anatomical information provided by

CT or MR imaging. It is therefore assumed that each ‘‘segment’’ of the

‘‘activity distribution model’’ represents a distinct and homogeneous activity

distribution. If we consider that the activity distribution f(r) consists of N

tissue components of true activity Ti, the resulting image g(r) for a linear

system (spatially invariant or not) can be written as the imaging equation:

g(r) ¼
XN
i¼1

ð
Di

h(r, r0) fi(r) drþ �(r)

with
[N
i¼1

fi(r) ¼ f (r)

(28)
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There is no assumption here on the noise characteristics of the image.

Although Poissonian in essence, the final noise h(r) in the image includes

also components from attenuation, scatter, or other type of corrections

during data acquisition and reconstruction. Since the partial volume solu-

tions proposed here do not call for the explicit characterization of a noise

model, we will omit the noise component in the subsequent equations.

6.3.1 Pixel-guided Approach

If one seeks to recover the entire true activity distribution fi(r) within tissue

component Di, there are N unknowns, the true image distribution of activity

of each tissue component of the tracer distribution model, but only one

equation, the emission image g(r). Several authors proposed to solve this

equation, first with N¼1 to compensate for signal dilution in spaces void of

activity.43 Compensating for dilution of radioactivity in non-active tissues

such as cerebro-spinal fluid is more important in the case of tissue atrophy, as

the decrease of metabolism seen with increased tissue atrophy might be con-

founded by the loss of signal consequent to increased partial volume effect.

For example, the decline in blood flow observed with PEThas been shown not

to decline with age after correcting for tissue atrophy using this method.44

These techniques make use of an anatomical mask defined fromMRI or CT,

and by assigning pixels corresponding to the cerebral tissue (i.e., grey and

whitematter) a value of 1, and the space occupied by non-cerebral tissue being

kept at 0. This is equivalent to defining an anatomical mask f1(r) as follows:

f1(r) ¼ 1 r ¼ cerebral tissue

0 r ¼ non� cerebral

n
(29)

As discussed earlier (Eq. 5), if we consider the point-spread function h of the

imaging system as being a spatially invariant function, the equation becomes a

simple convolution. The next step of this correction method hence consists in

convolving the binarized volume f1(r) at the scanner’s resolution. The PET

image in divided by this ‘‘low resolution’’ mask in order to obtain images

corrected for dilution of radioactivity in non-active spaces. Hence, the very

approximate of the true activity distribution is given by:

f (r) ¼ f1(r)g(r)

f1(r)� h(r)
(30)

This equation being derived from the approximation:

f (r)

f (r)� h(r)

 f1(r)

f1(r)� h(r)
(31)

It can be seen that the approximation proposed in Eq. (31) is only justified

when f(r) possesses the same spatial characteristics as those defined by the

anatomical mask fi(r). This approach ignores the difference in tracer uptake

between grey and white matter.
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An extension to a more heterogeneous distribution of the tracer was later

proposed, this time with a more realistic mask that makes the distinction

between grey and white matter to account for white matter activity contri-

bution to measurements of grey matter activity concentration.22 We have

this time the problem that the number of unknowns is now equal to N ¼ 2,

while the number of equations has not changed (only one). The way these

authors overcame this problem is by transforming one of the unknowns into

a known variable. They assume that the true white matter activity can be

accurately measured from a large remote white matter area in the emission

image (Figure 6). This new mask can be defined as follows:

f (r) ¼
f1(r) r ¼ Grey matter

f2(r) r ¼White matter

f3(r) r ¼ background & CSF

8<
: (32)

Where e.g., f1(r) ¼ 1 for pixels identified as Grey matter, and f1(r) ¼ 0

elsewhere. The tissue components Grey, White, and BKGþ CSF are

obtained by segmentation of the MR images realigned with the PET image

volume. Figure 6 illustrates the general principle of MR-guided PVC in

functional brain imaging.

By considering that the radioactivity concentrations in white matter and

CSF spaces are constant, and that those components do not suffer them-

selves from partial volume thanks to their important dimensions with respect

to the imaging system resolution, the PET image can be written as:

g(r) ¼ f (r)� h(r)

¼ T1 f1(r)þ T2 f2(r)þ T3 f3(r)½ 	 � h(r)

¼ T1 f1(r)� h(r)þ T2 f2(r)þ T3 f3(r)½ 	 � h(r)

(33)

where T2 and T3 are known constants representing the true activity of the

white matter and background plus CSF, respectively. After rearranging the

previous equation, one can write:

T1(r) ¼ g(r)� T2 f2(r)� h(r)� T3 f3 � h(r)

f1(r)� h(r)
(34)

White matter activity T2 is considered as being uniform throughout the

brain whose activity concentration is considered as being accurately esti-

mated from a measurement in the pons, assumed to elude partial volume due

to its large cross-sectional size. This value is assigned to the low-resolution

white matter image f2(r)� h(r), and then subtracted from the PET image

g(r). These authors proposed to do the same with background þ CSF

compartment, although one might wonder whether the measured value for

that compartment is not the result of spillover from adjacent tissue plus

noise. However, for increased realism, and to make a distinction in grey

matter tracer uptake, these authors extended this elimination-substitution
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scheme one step further by incorporating a distinct volume-of-interest (VoI)

such as the amygdale.46 Their method consists first in solving the problem of

white matter contribution by using Eq. (33). Subsequently, true cortical

activity concentration is measured from the corrected image given in

Eq. (34). The corrected image for the amygdala is then given by:

TVOI (r) ¼ g(r)� T1 f1(r)� h(r)� T2 f2(r)� h(r)� T3 f3 � h(r)

fVOI (r)� h(r)
(35)

The ‘‘true’’ cortical value T1 derived from the ‘‘white matter and CSF-

corrected image’’ given in Eq. (34), must satisfy the following criteria:

(i) it must be representative of the true cortical grey activity that actually

contaminates the VoI;

(ii) it must be sufficiently far from the VoI to avoid integrating some of its

signal.

Figure 6. Schematic representation of the different steps required for MRI-guided

correction for partial volume effect illustrating the original MR (A) and SPECT

(B) images, binary mask for whole brain (C); MRI after scalp editing (D); original

SPECT image coregistered to MRI (E); MR image segmented into white matter (F)

and grey matter (G); White matter SPECT image (H) simulated from convolved

white matter MR image; convolved grey matter MR image (I); white matter MR

images (J); grey matter SPECT images (K) obtained by subtraction of simulated

white matter SPECT image from original SPECT image coregistered to MRI; binary

mask for grey matter (L) applied to finally obtain grey matter SPECT image cor-

rected for partial volume effect (M). (Reprinted from ref.45 with permission).
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We can see that those two criteria might rapidly introduce some conflict

with increasing tracer heterogeneity, and would be for example violated if

one seeks to account for cross-contamination between e.g., the caudate

nucleus and the Putamen since they are lying so close to each other.

6.3.2 Model-based Approach

Another type of post-reconstruction correction methods is the model-based

optimization method developed by Chen et al.42 to simultaneously recover

the size and the activity concentration of small spheroids thus improving

estimates of lesion activity in clinical oncology when object size is unknown

(Figure 7). The algorithm is based on a 3D spatially varying object size- and

contrast-dependent Gaussian model of the system PSF. A match index is

then used to estimate the best model parameters. The authors report a

reduction in the activity error by 11%-63% compared to the error obtained

without correction. Moreover, the accuracy of the simple RC method is

dependent on object-to-background ratio (OBR) and the data used for

estimating fitting parameters. Large errors were reported for small spher-

oids, which are obviously very sensitive to OBR variation and noise.

A modified version of the algorithm described above combined with an

extension to non-spherical objects was recently proposed.47 The method is

being improved currently allowing the quantification of lung tumours with

smallest radii with improved convergence properties towards the true model.
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Figure 7. Description of the model-based method for partial volume correction in

clinical oncology.42
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6.3.3 Geometric Transfer Matrix (GTM) Approach

If we directly compute the effect of signal degradation due to limited spatial

resolution on the mean regional concentration within a limited region of

space, or region-of-interest (RoI1), we can obtain as many equations as there

are unknowns. This is the basis for the method proposed by Rousset

et al.23,24,48 which allows for the calculation of corrected estimates without

a priori knowledge on any activity level. For instance, the observed activity tj
within tissue component Dj from a given RoIj is given by:

tj ¼
XN
i¼1

vijTi (36)

where Ti represents the true tracer concentration within tissue component i.

The weighting factors vij represent the fraction of true activity Ti from tissue

i that is integrated in the measurement tj from RoIj of volume vj. They can be

expressed as:

vij ¼ 1

vj

ð
ROIj

RSFi(r)dr (37)

where RSFi(r) represents the regional spread function of tissue i and

corresponds to the response of the scanner to the distribution of

activity Di:

RSFi ¼
ð
Di

h(r, r0)dr0 (38)

The weighting factors vij constitute the geometric transfer matrix (GTM)

and express the distortions introduced by the limited intrinsic spatial reso-

lution of the scanner, as well as smoothing introduced during image back-

projection, and further modulation during extraction of regional tracer

concentration (RoI analysis). Both the effect of type and size of filter used

during FBP49 as well as definition of RoI50,51 have been shown to introduce

bias in parameter estimates.

In practice, these partial volume factors are computed from simulation of

the noise-free RSF images and sampling with a user-defined set of RoIs. The

number of RoIs must be equal to the number of tissue components identified

in the tracer model in order to provide a full-rank GTM. In that case, the

diagonal terms of the GTM represent the tissue self-recovery RC (or ‘‘spill-

out’’) while off-diagonal terms (vij, j � i) represent the spill-over, or

‘‘spill-in’’, factors. If the number of RoIs is greater than N, the problem is

over-constrained and can be solved by ordinary linear least square regres-

sion. The same set of RoIs must be used to extract observed values from the

1sample of image pixels for average radioactivity concentration computation
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actual PET images in order to obtain the vectors tj (tissue time-activity

curves). The set of linear equations can then be solved for the true tracer

concentration in each region by inverting the GTMmatrices and multiplying

by the observed regional values.23,24,48

This method was initially developed based on the simulation of sinogram

data, in order to reproduce very accurately the effect of finite sampling and

backprojection. This further allows for the incorporation of Poisson noise at

the detector level for more realistic computer simulations of radioligand

uptake for validation purposes.23,48 It has since been shown that instead of

simulating the RSF images from sinogram data, one can achieve similar

levels of accuracy by creating the RSF images by direct convolution of the

individual Di maps with a kernel representative of the spatial resolution of

the PET image.52 This method can be seen as the image-based variant of the

GTMmethod, and is much faster to implement without apparent sacrifice in

data accuracy. Nonetheless, the sinogram approach has the advantage of

being independent of the filter used during image reconstruction since it uses

the same filter and FBP algorithm as the original PET data.

7. Performance Evaluation of Partial Volume Correction

Like any other correction algorithm, PVC methods must be validated and

their limit tested before being applied to clinical or research data. This

includes the assessment of the accuracy of the algorithm and its sensitivity

towards methodological considerations such as simulation of the system’s

PSF, MR-ET image registration and MR image segmentation.

Absolutemeasurement of accuracy is only attainable in phantom and simu-

lation studies. Accuracy is usually given as a percentage of the true activity, or

can be expressed by the apparent recovery coefficient (ARC), which represents

the apparent (observed or partial volume corrected) regional radioactivity

concentration to true activity ratio.23,48,52 Precision, or data reproducibility,

is a more subjective measure of performance and will depend to a great extent

on the level of automationofdataanalysis andcorrection.Methods thatdonot

require human intervention may have a great level of reproducibility, but

particular attention needs to be paid to accuracy of unsupervised methods.

7.1 Registration and Segmentation Errors

Post-reconstruction partial volume correction methods requiring additional

anatomical information from e.g., MR imaging, such as the pixel-based

approach or the GTM approach, rely on the spatial realignment of func-

tional and anatomical images. Usually, a rigid-body transformation is used,

with spatial transformation parameters being derived from the minimization

of the distance between homologous points found in both modalities, or

increasingly based on some similarity criterion between the two images.
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These include methods such as Woods’ popular minimization of the variance

of ratio between the 2 images to be registered.53 Other similarity criteria,

such as the maximum cross-correlation54 or mutual information,55 are also

popular methods for image realignment.56 The final image resolution, sig-

nal-to-noise ratio, and contrast in the image, all condition the success of the

registration (see chapter 9).

The accuracy of the partial volume correction method will depend in part

on the degree of accuracy in the realignment of the anatomical images with

the emission image of tracer distribution. This has been investigated for both

the pixel-based method22,46,57,58 as well as for the GTM approach.24,52,58,59

For the GTM approach, it is interesting to note that errors introduced

during mis-registration only affect the observed estimates, and does not

modify the coefficients of the GTM matrix. As a consequence, the registra-

tion error effect on the corrected estimates is of the same magnitude as the

effect of mis-registration on the observed estimates due to poor RoI place-

ment.59 Those errors have been found to have relatively little impact (<2%

of true value for typical 1-2 mm mis-registration error) on the final accuracy

of the corrected estimates.52,59 As for errors in segmentation of the tissue

components of the system, they have been found to be of greater significance

with for example a 5% decrease in Caudate Nucleus ARC if a 25% error in

total volume is made.52 However, it has been shown that the effect of the

segmentation error was limited to the mis-segmented region.52 Overall,

it appears that the success of the segmentation of the structural information

provided by e.g., MR images, has a higher impact on the accuracy of

the corrected estimates,60 compared to the influence of image co-

registration, although some authors recently suggested that mis-registration

errors have the strongest impact on data accuracy and precision.58 This

recent finding is also in contradiction with the conclusion achieved in the

case of the performance evaluation of the method proposed by Müller-

Gärtner.22,57 The accuracy of this latter method further depends upon the

accuracy in measurement of background (i.e., white matter) activity concen-

tration. This error has been evaluated as being in the order of 5% error in

grey matter (GM) PET estimate for a 20% error in white matter tracer

concentration.22

As for the overall performance, i.e., in the absence of major sources of

registration or segmentation errors, partial volume corrected estimates have

been found to be typically within 5-10% of true tracer concentration with

a standard deviation of a few percent in both phantom and simulation

studies.24,48,52,58,59,61

7.1.1 Tissue Homogeneity

Segmentation errors can be thought as a more general problem of tissue

heterogeneity. Indeed, the major limiting factor of those methods is primar-

ily the assumption made about the homogeneity of tracer distribution in
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each identified, or segmented, tissue components. Aston and colleagues have

proposed a test of inhomogeneity based on Krylov subspace iteration that

can test for hypothesis on homogeneous tracer distribution.61 This would

however only be effective in the case where the specified noise model is

sufficiently accurate, which still remains a difficult endeavour.

However, if known, the tissue mixture of each identified component can

be used to compute the various regional spread functions (Eq. 35). This is

achieved by the use of statistical probabilistic anatomical maps (SPAM’s)62

that represent the probability of each tissue class (e.g., GM,WM, CSF) to be

present in a given location of a standardized, or stereotaxic space.

7.1.2 Data Precision

Even if the registration, segmentation, or other homogeneity errors

were inexistent, like any type of ‘‘deconvolution’’ procedure, compensating

for partial volume effects will result in some degradation of the precision

of the processed data. The variance associated with the corrected estimates

can be estimated by explicit study of the covariance nature of the correction

method. The degradation of the coefficient of variation (std/mean)

after/before PVC can be seen as the noise magnification factor (NMF )

resulting from the correction.24 Maximum theoretical values of the

NMF can be easily predicted for the GTM method and have shown to

be in good agreement with experimental values derived from a brain

phantom experiment.24 Variance associated with the correction has

been shown to only slightly increase after partial volume correction23,24,48,52

suggesting the applicability of GTM-PVC to dynamic emission

studies.63,64

7.2 Simulation Studies

Computer simulations are a powerful way to explore the limits of correction

algorithms since they give a complete control to the operator. By reprodu-

cing realistic noise characteristics associated with emission tomography, one

can demonstrate the usefulness of PVC algorithms and their applicability for

a wide range of realistic situations. Another powerful application of com-

puter simulation is the replication of methodological flaws and their conse-

quence on image quantitation. These include simulation of erroneous

definition of the scanner’s PSF, registration errors between MR/CT and

PET/SPECT, segmentation errors, and assumptions made about homogen-

eity of tracer distribution.

Computer simulation of emission tomography images would usually con-

sist in reproducing the 4-D spatial distribution of the tracer in a digitized

model of the organ of interest, and mimicking the geometry and other

physical effects specific to the scanner.
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7.2.1 Simulation of Objects

Simulation can consist in using mathematical models of simple shaped

objects such as spheres or ellipses. For example, Mullani65 designed a special

phantom to measure the quantitative recovery of myocardial emission tom-

ography images as a function of the size of the object and the angulation of a

1-cm-thick simulated myocardium inclined with respect to the image plane.

Muzic et al.41 used a set of 5 different elliptical models as part of their

validation for the proposed PVC method applied to myocardial PET. This

mathematical model represented the porcine torso including the lungs, myo-

cardium, ventricular cavity, and soft tissue background.

Early digital phantoms were derived from post-mortem brain slices and

used to evaluate the signal-to-noise performance with decreasing detecting

crystal size.66-68 A digitized version of the Data Spectrum sphere phantom

was used for the evaluation of the Müller-Gärtner method.57

More recently, the development of classification and segmentation tech-

niques applied to MR or CT images have allowed for the creation of

numerical anatomical models of the spatial distribution of the parameter

of interest. Digitized models can be a carefully segmented single individual

MR volume69 or models derived from the average of repeated high-

resolution images of the same subject.70 Atlases derived from tissue

probability maps have become a popular way for automatic image segmen-

tation,71 and can be applied to individual data sets to create customized

numerical phantoms. Simulated MR images can also be used to investigate

the impact of MR image quality on segmentation accuracy60,72 and could be

used to study its subsequent effect on the accuracy of partial volume cor-

rected estimates.

Those objects can be subject to local or global deformations to simulate a

variety of situations. For example, the effect of tissue atrophy can be

simulated to estimate the effect of a reduced brain structure volume on

expected observed estimates.73 Segmentation error can be simulated by

erosion or dilation of the structure of interest and assess the resulting effect

on the corrected estimates.52,58

7.2.2 Simulation of Image Formation Process

The effect of finite spatial resolution is usually reproduced either at the

projection level, or directly in image space. The latter allows for a much

faster implementation but does not offer the possibility of adding appropri-

ate noise characteristics that are hard to define in image space. Adding

appropriate noise to the image data is necessary for assessing the accuracy

and precision of the correction technique in the presence of noise conditions

comparable to that encountered in clinical practice. On the other hand,

simulation of sinogram data allows for incorporation of the scatter com-

ponent and the effect of attenuation at the detector level. This provides an

opportunity to reproduce the propagation of Poisson noise encountered in a
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more realistic way. Further, filtered backprojection type of image recon-

struction is still widely used despite the forthcoming of reliable iterative

reconstruction schemes for emission tomography (see Chapter 4). Smooth-

ing the projection before projecting them back onto the image grid will get

rid of a lot of the high-frequency noise, and will modulate both the magni-

tude of the signal—further degrading spatial resolution—and the character-

istics of the noise.

Monte Carlo simulations represent a powerful way to reproduce the

physics occurring in emission tomography (see Chapter 11). Similar to

popular analytical simulators, simulated PET or SPECT images derived

from Monte Carlo simulations can be used for validation of partial volume

correction methods. In particular, Monte Carlo-based generation of projec-

tion data typical of [18F]-dopa and [11C]-raclopride uptake have been simu-

lated using a digitized brain phantom69 to assess the recovery capability of

the GTM algorithm.52

7.2.3 Simulation of Tracer Kinetics

Simulation of the dynamic uptake of PET tracers such as neuroreceptor

ligands, allows for testing the PVC capability to recover known distributions,

both in terms of raw activity concentrations, and in terms of physiological

parameters extracted from the kinetic modelling process. Tissue time-

activity curves (TAC’s) can be derived from individual emission data, cor-

rected for partial volume effects using the GTM approach, and then fitted

with a mathematical model normally used for extracting meaningful physio-

logical parameters. The fitting curves can then be taken as true TAC input,

assigned to the various tissue components identified from anatomical source,

and processed through the simulator. This provides a convenient way for

studying for example the effect of cortical grey matter heterogeneity on sub-

cortical PVC estimates for various levels of heterogeneity and for varying

contrast conditions.74 More generally, this allows testing the performance of

the PVC algorithms in noisy conditions similar to those expected or seen in

clinical and research setting.

7.3 Experimental Phantom Studies

As discussed at the beginning of the previous section, physical phantoms can

be used to directly derive correction factors. Those phantoms are limited in

terms of their applicability due to the limitation in complexity one can

achieve in reproducing the organ under study. However, physical phantom

experiments are mostly used for validation purposes and represent the sine

qua non step for proper acceptance of the technique. Physical phantoms of

various degree of complexity can be used to demonstrate that the PVC

algorithm works well for known distributions of radioactivity. They include

simple geometrical objects with one, two, or all three dimensions suffering
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from PVE for which the analytical expressions of quantitative recovery are

available (cf. Eqs. 19-24). Validation is usually sought out by first making

sure the partial volume correction method works for simple geometrical

shapes such as cylinders or spheres. For example, a set of 5 spheres of

various sizes was used for the validation of the simulated PSF used in the

GTM-PVC algorithm.24 Validation is further carried out with phantoms of

increased complexity, with possible multiple isotope experiments for simu-

lating time-varying contrast.52 Realistic phantoms containing several inde-

pendent compartments surrounded by a realistic medium, such as the brain

phantom used to validate the GTM approach24,48 represents more realistic

imaging conditions. Those models are suitable for neuroreceptor studies

where the tracer accumulates specifically in the striatum. For tracers diffus-

ing more homogeneously throughout the cortex, an anthropomorphic

phantom (STEPBRAIN) separating the cortex from white matter has been

proposed.75

7.4 Clinical and Research Studies

7.4.1 Brain Imaging

Because of limitations of spatial resolution, quantitative PET measurements

of cerebral blood flow, glucose metabolism and neuroreceptor binding, are

influenced by partial-volume averaging among neighbouring tissues with

differing tracer concentrations.1 Partial volume effects are important for

describing the true functional contribution of nuclear medicine images.76

Decomposition of these images into a functional and structural component

is necessary for studies of healthy ageing and pathophysiology, as well as for

assessing clinical patients.3,63

Several algorithms have been proposed to improve positron emission

tomography quantification by combining anatomical and functional infor-

mation. The anatomical information could also be used to build an attenu-

ation map for attenuation and scatter correction purposes.77 The precision

of these methods when applied to real data depends on the precision of the

manifold correction steps, such as PSF modelling, magnetic resonance im-

aging-positron emission tomography registration, tissue segmentation, or

background activity estimation. A good understanding of the influence of

these parameters thus is critical to the effective use of the algorithms.20,24,78

It has been shown that a two-compartment approach is better suited for

comparative PET/SPECT studies, whereas the three-compartment algo-

rithm is capable of greater accuracy for absolute quantitative measures.57

Several neuroimaging studies have attempted to verify the neurophysio-

logic correlates of age-related changes in the brain. In the early 1980s, using

the 133Xe inhalation method, researchers investigated cerebral blood flow

and reported significant reductions with age. Since these pioneering studies,

which suffered from poor spatial resolution and other limitations, the advent
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of PET has provided neuroscientists with more sophisticated tools for the

quantitative measurements of brain physiology.25 Cerebral volume loss

resulting from healthy aging processes can cause underestimation of PET

physiologic measurements, despite great improvement in scanner reso-

lution.79 Thus, the failure to account for the effect of partial-volume aver-

aging of brains with expanded sulci has contributed to the confounding

results in functional imaging studies of aging. After partial volume correc-

tion, no CBF decline with age in healthy individuals is described.44,80

It is therefore expected that an important contribution to PET and

SPECT imaging of the brain will be obtained by enhanced reconstruction

algorithms incorporating resolution recovery techniques. An example of

such method applicable to clinical data is a data-driven automated decon-

volution approach.81 Promising results to achieve such goal have been

obtained by several authors e.g. using probabilistic MRI segmentation,

subsequent binarization and convolution to obtain dispersion coefficients.52

Although different statistical mapping methods may yield grossly similar

patterns of hypometabolism or hypoperfusion, the extent, severity, and peak

location of metabolic changes can be inconsistent. Deformation accuracy

appears to be more prone to atrophy.82 Accurate estimates of striatal uptake

and BP in 123I brain SPECT are feasible with PVC, even with small errors in

registering SPECT with anatomic data or in segmenting the striata.64 In

various pathological conditions, PVC can assess the functional contribution

to pathology. Reduced glucose metabolism measured by PET in DAT is not

simply an artefact due to an increase in CSF space induced by atrophy, but

reflects a true metabolic reduction per gram of tissue.83 Also in epileptic foci,

hypometabolism is larger than a mere atrophy effect.84

It has been demonstrated that cerebral atrophy could not solely account

for the loss of tissue function seen in DAT.85 Conversely, when the same

type of dilution correction is applied in the case of the study of normal aging,

partial volume correction annihilates the significant decrease in cerebral

blood flow in normal aging commonly reported before atrophy correction.44

This is in disagreement with several earlier reports of decreased metabolism

with normal aging.86,87

Brain perfusion studies performed in patients with probable DAT showed

that rCBF was decreased in the parahippocampal gyrus but not in the

hippocampus after pixel-based partial volume correction.88 It was also

demonstrated that the apparent decrease in uptake of a muscarinic choliner-

gic antagonist seen in temporal lobe epilepsy was due to a decrease in

hippocampal volume rather than a decrease in receptor concentration.89

This correction was based on global scaling by total measured volume of

hippocampus from MRI.

Dopamine transporters have been shown to be markedly reduced in Lesh-

Nyhan disease, partial volume correction only accentuating this finding.73

Dopa-decarboxylaze activity has been shown to be greatly reduced in pa-

tients with Parkinson disease compared to normal controls.63
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Studies of the dopaminergic system with SPECT have been shown to

greatly benefit from partial volume correction using a striatal phantom

modelling the basal ganglia90 and a numerical model of the RSD brain

phantom.64 The latter study has shown that the bias in binding potential

can be reduced from 50% to about 10%.

7.4.2 Myocardial Imaging

Several investigators have proposed to compute recovery coefficients and

spillover factors from geometric measurement directly from the image91 or

derived from phantom studies.92 In both cases, count recovery and spillover

factors are derived by convolving the PSF in one dimension with an analyt-

ical model of the heart, comprised of a centre circle (blood pool or radius R)

surrounded by an annulus (myocardium or thickness d), both of uniform

activity. In this case, the PSF being considered as spatially invariant, the

recovery coefficient for the blood pool corresponds to that of a 2-D cylin-

drical object or diameter 2R, and can be expressed as (see Eq. 22):

FBB ¼ 1� e�R2=2s
2

(39)

Similarly, the contribution of the blood pool to the myocardium FBM , the

self recovery of muscle tissue FMM , and the contribution of the myocardial

tissue to the blood compartment FMB can be computed using the convolu-

tion integrals over the myocardium/ventricle model. They can be derived

using formulas recalled in section 5. The original work of Henze and col-

leagues91 proposed to extract the myocardium thickness and left ventricle

diameter directly from PET using specific markers of the 2 regions. Herrero

et al., derived computed recovery and spillover factors using the same

analytical procedure, but computed the dimensions of the left ventricle and

myocardium wall from the dimensions of a standard heart phantom92 (Data

Spectrum, Hillsborough, NC).

Based on the assumption that partial volume errors are the same for

transmission and emission images, it was demonstrated that the activity

per gram of extravascular tissue can be estimated by dividing the perfusion

regional data by extravascular density for the same region.36 It is worth

emphasizing that no convincing evidence was found of thickness above the

partial volume limit in a large sample of 75 normotensive and 25 hyperten-

sive patients.93 Therefore it is likely that relations between myocardial count

increases and wall thickening are similar throughout the cardiac cycle,

even in patients with left ventricular hypertrophy. Using PET and 13NH3-

ammonia for the quantification of myocardial blood flow, Nuyts et al.94

have obtained recovery coefficients of 59% for the myocardial wall and 86%

for the blood pool in animal experiments. In addition, spillover from the

blood pool into the myocardial was �14%.

More recently, some authors have proposed to use correlated anatomical

images to derive correction maps for partial volume in myocardial perfusion
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studies. For instance, the group from UCSF has used CT images to define

regional myocardial attenuation and count recovery maps of the porcine

heart.27 This method is similar to the pixel-by-pixel approach used for simple

atrophy correction in brain PET,43,95 although it does not provide corrected

maps of the myocardium perfusion, but rather an average regional value.

7.4.3 Oncology Imaging

Despite the widespread applications of nuclear imaging (especially PET) in

oncology, only a limited number of studies investigated the PVE problem

in tumour imaging. The effects of object shape, size and background on

SPECT 131I activity quantification without detector response compensation

has been reported in a detailed Monte Carlo study.96 The activity quantifi-

cation was carried out using a constant calibration factor and no PVC. It has

been shown that the bias increases significantly with decreasing lesion size as

a result of the increased spill-out of counts. More importantly, the bias for

cylindrical lesions is consistently higher than for spherical lesions because

spill-out is more significant for non-spherical objects. The bias also depends

significantly on tumour-to-background ratio (TBR) because of the spill-in

effect.

The simplest approach relies on the use of pre-calculated recovery coeffi-

cients for more reliable estimate of the standardized uptake value in pul-

monary lesions.97,98 The bias affecting TBR estimates owing to PVE is lesion

size dependent. The generally accepted criterion is that PVC is required if

the lesion size is less than 2-3 times the spatial resolution (FWHM) of the

imaging system when the parameter of interest is the maximum voxel value

within a particular VoI. In fact, Soret et al.99 have demonstrated that when

the parameter of interest is the average count density, the bias introduced by

the PVE could exceed 10% even for lesions �6 times the FWHM depending

on the true TBR.

Notwithstanding the known limitations, small animal imaging with a

clinical dual-modality PET/CT scanner has been shown to be feasible for

oncological imaging where the high resolution CT could be used for more

precise localization of PET findings in addition to PVC through size-

dependent recovery coefficient correction.100 An aspect which deserves fur-

ther attention is that robust models have also been developed to correction

for partial volume effect in helical CT.101

8. Summary

Partial volume correction of emission tomography data remains a priority

for accurate image quantitation. The ability to compensate for partial vol-

ume effects usually requires to: (1) characterize the point-spread function of

the imaging system, (2) characterize the tissue components that participate in
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the uptake and metabolism of the tracer, and (3) characterize the resolution

effects in terms of correction factors or maps.

The imaging system PSF can be accurately measured by phantom experi-

ments and is easily modelled by simple mathematical functions such as

Gaussian or a series of Gaussian functions depending on whether the scatter

component is included at that level or not. With the growing availability of

multimodality integration and processing software, additional anatomical

information provided by MR or CT imaging can be used to segment the

distribution of the tracer into functionally meaningful regions. By studying

the interaction of the system’s PSF with a model of the tracer distribution,

the contribution of each distinct region to the emission image can be com-

puted. These interactions can be modelled using sophisticated Monte Carlo

simulation, analytical projectors, or a simple convolution with a defined

resolution kernel in image space.102

In practice self-recovery (RC) and spillover (or ‘‘spill-in’’) factors can be

easily extracted and processed through any given set of user-defined a priori

or a posteriori RoIs,23,24,48 or RC maps and spill-in contributions can be

derived to create images of the corrected radioactivity distribution in

cortical grey matter.22,25 With increased image resolution, the limit in size

of regions that PVC can be applied to will constantly be pushed further, and

it will become increasingly important to be able to account for cross-

contamination of activity between small adjacent regions for which the

assumptions made during the application of the pixel-based method22 will

be largely violated. The GTM approach24 possesses the formidable advan-

tage of not requiring any assumption of any tracer level at any time. The

extraction of the GTM matrix is a one-time process, and does not require

any additional computation for dynamic data, i.e., the same inverse of the

GTM matrix is applied to all the data points since it expresses geometric

interaction between the imaging system and the tissue component, independ-

ent of the contrast present in the image. Comparative assessment of PVC

strategies is an important part of the validation step.52,58,103

Those methods proved to be sufficiently accurate to be applied in a

growing number of research studies, if one considers that the number of

publications related to the effect of the application of PVC algorithms to

research data has grown significantly in the past few years. PVC is now a

powerful and reliable tool that should become systematically used in re-

search or clinical studies involving the use of emission tomography. It is

expected that improvement in all aspects of the prerequisite for accurate

partial volume correction are still required, especially for what concerns the

quality of anatomo-functional mapping needed for accurate quantitation of

cell-specific function and metabolism.
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