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Iterative Reconstruction Methods

B.F. Hutton*, J. Nuyts§ and H. Zaidiy

1. Introduction

The direct reconstruction in emission tomography (ET) using analytical

methods was described in chapter 3. This included filtered back projection

(FBP), until recently the most commonly used method of reconstruction in

clinical practice. Analytical reconstruction usually assumes a relatively sim-

ple model of the emission and detection processes and would become quite

complex if rigorous models were applied. FBP has further limitations due to

the presence of streak artefacts that are particularly prominent near hot

structures and the noise enhancement that is inherent in the reconstruction.

An alternative to analytical reconstruction is the use of iterative reconstruc-

tion techniques, which can more readily incorporate more complex models

of the underlying physics and also can better accommodate assumptions

regarding the statistical variability of acquired data. Unlike analytical re-

construction where FBP dominates, there are many approaches to iterative

reconstruction. Difficulties in understanding the classification of these algo-

rithms have led to considerable confusion in the choice of appropriate

algorithms, particularly in routine clinical application. This chapter is in-

tended to provide a general overview of iterative reconstruction techniques

with emphasis on practical issues that may assist readers in making an

informed choice. Iterative reconstruction can be applied equally well to

single-photon emission computed tomography (SPECT) or positron emis-

sion tomography (PET) or indeed any tomographic data. The coverage in

this chapter will be general, although some specific issues relating to either

PET or SPECT will be highlighted. Reconstruction of transmission data will

also be briefly addressed. For additional coverage readers are referred to

other recent texts that specifically address iterative reconstruction.1-3
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2. What is Iterative Reconstruction?

2.1 General Iterative Techniques

Iterative techniques are common in problems that involve optimization. The

reconstruction problem can be considered a particular casewhere one is trying

to determine the ‘best’ estimate of the distribution of activity based on the

measured projections. An assumption underlying analytical reconstruction

techniques is that there is a unique solution. However in practice, due to

presence of noise, there are normally a number of possible solutions to the

reconstruction problem. The ‘best’ reconstruction is determined by defining

some criterion that measures goodness of fit between the reconstruction esti-

mate and measurements and by adopting an algorithm that finds the optimal

solution. Iterative techniques are well suited to solving this sort of problem.

A flow-chart that illustrates the general iterative technique used in re-

construction is presented in Figure 1. The iterative algorithm involves a

feedback process that permits sequential adjustment of the estimated recon-
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Figure 1. Schematic of general iterative reconstruction algorithm. Starting from a

uniform grey image, estimated projections are constructed by forward projection.

These are compared with the measured projections and a correction matrix is con-

structed by back projection. The reconstruction estimate is update either by summa-

tion or multiplication and this becomes the starting point for the next iteration.
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struction so as to improve its correspondence with the measured projections.

The iterative process begins with an initial estimate of the object count

distribution, which may either be simply a uniform arbitrary count level or

a previous reconstruction (e.g. using FBP). Provided a suitable model of the

emission and detection physics is incorporated, the projections that would

arise from this initial object can be estimated (by forward projection): this is

effectively an estimate of what the detectors would measure given the initial

object. Clearly this estimate of projections will differ from the actual meas-

ured projections, unless the initial guess happens to coincide exactly with the

actual object. The difference between estimated and measured projections

can be used to modify the original estimate of the object by use of suitable

additive or multiplicative corrections at each point (usually via back projec-

tion). The adjusted object then becomes the starting point for a second

iteration. This proceeds as the first with the forward projection so as to re-

estimate the projections that would derive from this updated object. The

process continues for multiple iterations using the continuous feedback loop

until a final solution is reached (where usually a predetermined number of

iterations have been completed, resulting in very little object change between

iterations). This iterative process is central to all iterative reconstruction

algorithms.

2.2 Attractions of Iterative Methods

Iterative reconstruction has a number of potential advantages that make it

attractive in comparison with analytical methods. Foremost is the limiting

assumption in analytical techniques that the measured data are perfectly

consistent with the source object, a requirement that is never true in practice

given the presence of noise and other physical factors (e.g. attenuation). The

lack of consistency generally results in problems with noise and possible

problems in finding a unique analytical solution. In contrast, iterative tech-

niques function with either consistent or inconsistent data and can attempt to

model noise directly, with improved noise properties in the final reconstruc-

tion. In addition iterative algorithms are well suited to handling complex

physical models of the emission and detection processes, including position

variant attenuation or distance dependent resolution. This ability to directly

model the system, including some consideration of the noise characteristics,

provides considerable flexibility in the type of data that can be reconstructed.

Iterative reconstruction methods have various additional properties that

make them attractive, although some properties (e.g. non-negativity) are

specific to the particular type of reconstruction and will be dealt with in

the appropriate section. In general though, iterative methods provide recon-

structions with improved noise characteristics. They greatly reduce the

streaking artefacts that are common in analytical reconstruction and are

better able to handle missing data (such as may occur due to truncation or

inter-detector gaps). They generally provide accurate reconstructions that
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can be used for quantification, provided some caution is exerted in choice of

reconstruction parameters.

The main limitation in using iterative algorithms is the execution speed,

which is significantly slower than FBP. However improvements in computer

speed in combination with acceleration techniques (described in section 7)

permits reconstruction in a clinically acceptable time.

2.3 Classification of Iterative Reconstruction Methods

It is convenient at the outset to introduce a general classification for the

various iterative reconstruction methods. These broadly form three logical

groups, defined mainly by the underlying assumptions regarding the nature

of the data, whether statistical or non-statistical. The earliest developments

involved no assumptions regarding the origins of noise in emission data and

led to the various classical algebraic reconstruction techniques, which are

non-statistical. These are described in section 3. The statistical techniques

can be broadly divided into two main groups, those that assume Gaussian

noise (involving least squares solutions: section 4) and those that assume

Poisson noise (involving maximum likelihood solutions: section 5). These

two fairly basic assumptions have led to two distinct classes of reconstruc-

tion that involve different algorithms and different properties. Variations on

these algorithms specifically address issues such as noise control and accel-

eration (described in sections 6 and 7 respectively).

2.4 Nomenclature for Discrete Iterative Reconstruction

It is useful to establish nomenclature with reference to the general iterative

algorithm in Figure 1. Consider the measurement of a set of projections

p(s,f), where s represents distance along a projection and f represents the

angle of acquisition, originating from a distribution of activity in the corre-

sponding single slice in an object given by f(x,y). It is convenient to consider

the equivalent discrete set of projection pixel values pi for counts originating

from the object voxel activity concentration fj. The process of estimating

projections from a known (or estimated) activity distribution requires a

description of the physical model that adequately describes the emission

and detection processes. This essentially defines the probability of detecting

an emitted photon, originating from location j, at any particular position, i,

on the detector, which will depend on many factors including detector

geometry, attenuation and resolution. A single matrix, aij , referred to as

the transition matrix or system matrix, can conveniently describe this rela-

tionship. The process of forward projection can then simply be expressed as

pi ¼
X
j

aijfj (1)

Similarly the back projection operation can be expressed as:
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fj ¼
X
i

aijpi (2)

3. Algebraic Reconstruction Algorithms

Algebraic reconstruction techniques are based on relaxation methods for

solving systems of linear equalities or inequalities. Recent developments

suggest that with proper tuning, the convergence of these algorithms can

be very fast. However, the quality of the reconstructions has not been

investigated thoroughly. In this section, a summary overview of algebraic

reconstruction techniques is first set out, followed by a description of the

algorithmic implementation of the classical algebraic reconstruction tech-

nique (ART) and its variants.

3.1 ART

The ART algorithm is based on the Kaczmarz method and uses a successive

over-relaxation method well-known in numerical linear algebra.4 It was first

proposed as a reconstruction method in 1970 by Bender et al.5 and was

applied mainly to X-ray photography and electron microscopy. The early

developments addressed mainly reconstruction of X-ray CT data but more

recently, ART-type algorithms have been proposed specifically for PET.6

The principle of the basic ART algorithm consists of describing every

iteration point by point (row-action method), and in correcting all voxels

in the image which are found on a projection ray, so as to minimise the

difference between the values of the calculated and measured projections at

the point under consideration. The process comes to a stop when a certain

criterion becomes relatively small. For example the sum of squared differ-

ences between the calculated and measured projections can be used as such a

criterion.

In fact, ART consists of guessing at a value for all the voxels fj, and then

modifying each element along each ray by a factor which compensates for

the discrepancy between the measured and the calculated ray sum:

f newj ¼ f oldj

piP
k

aik f oldk

(3)

Here f newj and f oldj refer to the current and previous estimates of the recon-

structed object respectively. If the calculated ray sum is the same as the

measured value, it implies that the guessed value is correct for a particular

projection; however, for another projection there might be a large discrep-

ancy. Thus the pixels of the last views (while lying in the ray for the new

view) will be modified according to the discrepancy between the new ray and

the measured value. Thus, each ray from each projection is examined

and values of f falling within that ray are changed iteratively for all the
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projections for a certain number of iterations. It is evident that the compu-

tational effort of the ART algorithm is relatively low, but data matrices can

be several hundred of Megabytes in size.

It has been shown that by careful adjustment of the relaxation parameters

and the order in which the collected data are accessed during the reconstruc-

tion procedure, ART can produce high-quality reconstructions with excel-

lent computational efficiency.4 In particular, the choice of the projection

data access scheme proved to be crucial for improvement of low-contrast

object detection.7 An important modification of ART consists of setting to

zero those values in the array that are clearly zero because they correspond

to a ray sum that was observed as zero. This is an important boundary

condition for any of the iterative techniques.

3.2 Other Variants

A large number of ART variants have subsequently been proposed in

literature. Eq. (3) above is called multiplicative ART (MART). Another

method of correcting the discrepancy between the measured and calculated

projections consists of adding the difference between them. This is called the

additive form of ART (AART). The diverse variants of ART correspond to

row-action techniques, as each iteration only calls for the use of one equa-

tion at a time. Other algorithms like the simultaneous iterative reconstruc-

tion technique (SIRT) consist of correcting simultaneously each voxel for all

rays passing through it. So, these corrections are incorporated by using data

from all of the projections simultaneously. The simultaneous version of

MART (SMART) is similar to the ML-EM approach (see section 5.1).

The block-iterative version of ART (BI-ART) is obtained by partitioning

the projection set and applying the ART equation to each subset (a block

represents a subset of the projection data). The correction is computed for

each block, and may be interpreted as a weighted back-projection of the

difference between the computed image projection and the acquired projec-

tion. This correction is performed only after an entire projection image is

computed. Other variants of ART include the block-iterative version of

SMART (BI-SMART) and the rescaled block-iterative SMART (RBI-

SMART).8 With BI-SMART in PET, an issue is the way to define a block

to ensure the convergence of the algorithm, at least for the consistent case.

4. Statistical Algorithms-Gaussian Assumption

4.1 Least Squares Solutions

In nuclear medicine, the count rates are usually fairly low, and as a result,

the data tend to be rather noisy. As mentioned above, one cannot hope to

recover the true solution from such data, and some criterion to define the
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‘best solution’ is needed. In statistical reconstruction, the best solution is

defined as the one that is most likely, given the data. Thus, the reconstruc-

tion is obtained by finding the image f̂f that maximises the conditional

probability prob[ f jP], where P are the measured projections. Using

Bayes’ rule, this objective function can be rewritten in a more convenient

form:

prob f jP½ 	 ¼ prob Pj f½ 	prob f½ 	
prob P½ 	 (4)

Because P is constant, maximising prob f jP½ 	 is equivalent to maximising

prob Pj f½ 	prob f½ 	. The factor prob Pj f½ 	 is called the ‘‘likelihood’’ and tells

how well the data agree with the image. The factor prob f½ 	 is the ‘‘prior’’,

and tells what is known already about the image f, prior to the measurement.

Finally, prob f jP½ 	 is called the ‘‘posterior’’, and represents what is known by

combining the a-priori knowledge with the information obtained from the

measurement. If it is assumed that nothing is known in advance, then the

prior is constant and maximum-a-posteriori (MAP) reconstruction is

equivalent to maximum-likelihood (ML) reconstruction. The discussion of

the posterior is deferred to a later section.

In emission and transmission tomography, the noise on the counts meas-

ured at two different detector locations is uncorrelated (the noise is ‘‘white’’).

This allows for factorisation of the likelihood:

prob Pj f½ 	 ¼
Y
i

prob½pij f 	 (5)

Maximising a function is equivalent to maximizing its logarithm. Therefore,

the maximum-likelihood reconstruction f̂f is obtained by maximising

log-likelihood ¼
X
i

ln prob½pij f 	 (6)

Assuming that the noise can be well approximated as a Gaussian distribu-

tion with known standard deviation makes the maximum-likelihood solu-

tion identical to the least squares solution. The mean of the Gaussian

distribution for detector i is computed as the projection of the image f̂f .

Consequently, the least squares solution is obtained by minimizing (over F):

LG(P;F ) ¼
X
i

pi �
P

j aijfj

	 

2s2

i

2

¼ 1

2
P� AFð Þ0C�1 P� AFð Þ (7)

where P is a column matrix with elements pi, A is the system matrix with

elements aij and F is a column matrix with elements fj , and prime denotes

transpose. C is the covariance matrix of the data, which is assumed to be

diagonal here, with elements cii ¼ s2
i . A straightforward solution is obtained

by setting the first derivative with respect to fj to zero for all j. This solution

is most easily written in matrix form:
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F̂F ¼ A0C�1A
� ��1

A0C�1P (8)

The problem with this expression is the large size of the matrices. The inverse

of the so-called Fisher information matrix A0C�1A is required.9 It has J � J

elements, where J is the number of voxels in the image to be reconstructed.

Its matrix elements equal

FIM j,kð Þ ¼
X
i

aijaik

s2
i

(9)

which is mostly non-zero: although the diagonal dominates, this matrix is

not sparse at all and direct matrix inversion is prohibitive.

As an exercise, it can be assumed (although totally unacceptable) that all

standard deviations si are identical and equal to 1. Moreover, consider an

idealized parallel-hole projection, with perfect resolution and no attenuation

or other degrading effects. The image minimizing LG then becomes

F̂F ¼ A0A½ 	�1A0P (10)

The operator A0A computes the backprojection of the projection of a point.

In this idealized case, the operator A0A is shift invariant, and it can be shown

that its inverse is (a digital version of ) the inverse Fourier transform of the

ramp filter. Consequently, this analysis reveals that FBP computes the

solution of the unweighted least squares problem.

In emission tomography, it is not realistic to assume that all the standard

deviations si are identical. As a result, the Fisher information and its inverse

become more complex, position dependent operators, that cannot be imple-

mented with shift invariant filters (such as a ramp filter). Consequently, one

has to turn to numerical, iterative optimisation techniques.

Another problem is the estimation of the standard deviations si. The

Poisson distribution is well approximated as a Gaussian with variance

equal to the mean. But the mean (noise-free) projection count is unknown.

There are two approaches to deal with this problem. The first one is to

estimate si from the noisy counts pi. One could simply set si = pi
0.5.

However, this leads to a negative bias in the reconstruction: all counts that

happen to be smaller than the mean will be assigned a smaller standard

deviation, and hence a higher weight in the weighted least squares compu-

tations. These noisy weights may even cause streak artefacts in the recon-

struction. So the noise on the weights has to be reduced, e.g. by estimating si

from a smoothed version of the data. The second approach is to estimate si

from the current reconstruction, rather than from the data. This is closer to

the physical reality, because the measurement is assumed to be a noise

realization of the noise-free projection of the tracer distribution. However,

it is also more complex, because now the weights depend on the unknown

solution of the problem. Possibly because of this, the data-based estimate of

the weights has received more attention in the literature.
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4.2 Approaches to Minimization

Many optimisation algorithms can be applied to this problem (e.g. conjugate

gradient or steepest descent), but it is beyond the scope of this text to present

these in detail. One thing that most of these algorithms have in common is

that they will modify each voxel such as to decrease the value of LG in every

iteration. To do that, the value added to voxel j must have the opposite sign

to the derivative of LG with respect to fj . This can be written as

f̂f newj ¼ f̂f oldj �
1

aj

@LG

@fj






f̂f old
j

(11)

where aj is some positive value, that may change during iteration, and that

has to be tuned in order to guarantee convergence. To show the typical form

of the optimisation algorithms, the derivatives of the two following cost

functions are computed:

LG1(P,F )¼
X
i

pi� p̂pið Þ
2s2

i

2

andLG2(P;F )¼
X
i

pi� p̂pið Þ
2p̂pi

2

with p̂pi ¼
X
j

aij f̂fj (12)

LG1 is the cost function with pre-computed (data based) standard deviation.

LG2 is the version where the variance is estimated from the current recon-

struction. The derivatives with respect to fj equal:

@LG1

@fj
¼ �

X
i

aij
pi � p̂pi

si

and
@LG2

@fj
¼ �

X
i

aij
pi � p̂pið Þ pi þ p̂pið Þ

2p̂p2i
(13)

The difference between algorithms is mainly in how the step size aj is tuned.

Note that (weighted) least squares algorithms do not ‘‘naturally’’ produce

non-negative solutions. If non-negativity is desired, it must be imposed

during the iterations, which can adversely affect convergence. Sauer and

Bouman10 and Fessler11 proposed an effective method, which has been used

successfully by others.12,13 It updates the reconstruction voxels sequentially

(as in ART), sets the step size aj equal to the element FIM(j,j) of the Fisher

information matrix and produces a non-negative solution. Other solutions

have been proposed, e.g. scaled steepest descent by Kaufman14 and a pre-

conditioning algorithm by Chinn and Huang.15

5. Statistical Algorithms-Poisson Assumption

5.1 Maximum Likelihood Solution: the ML-EM

Algorithm

The random nature of radioactive decay suggests that a Poisson model is

more appropriate for emission data (although this is well approximated by a

Gaussian provided measured counts are reasonably high). An appealing

4. Iterative Reconstruction Methods 115



consequence of using the Poisson model is that non-negativity is assured

even at low count levels.

The basic Poisson model provides the probability of measuring a particu-

lar count, c, given an expected measurement, r:

prob cjr½ 	 ¼ e�rrc

c!
(14)

Using this Poisson model the probability of acquiring the projection count

distribution that was measured, P, given an estimated distribution of activity

in the emission object, f , can be represented by the product of probabilities

for individual projection pixels. This conditional probability is referred to as

likelihood, L

L Pj fð Þ ¼ prob Pj f½ 	 ¼
Y
i

exp �
X
j

aij fj

" # X
j

aij fj

 !pi

pi!ð Þ�1 (15)

As argued above (section 4.1, eq (4)-(6)), maximising (the logarithm) of

prob Pj f½ 	 is equivalent to maximising prob f jP½ 	, provided the a priori dis-

tribution can be assumed to be constant. This provides the most likely

distribution of emissions that represents the original activity distribution,

given the measured projections.

There are various approaches to determine the maximum likelihood (ML)

solution but the most commonly used is the expectation maximization (EM)

algorithm, which unifies various previous statistical approaches.16 This in-

volves an iterative process with the attractive property that convergence is

guaranteed. ML-EM was originally applied to emission tomography in the

early eighties17,18 but continues to be widely used. Other groups also deserve

credit for much of the early application of ML-EM to emission tomography

(e.g. Miller et al.19). The EM algorithm involves two distinct steps. First the

expected projections are calculated by forward projection using the appro-

priate system / transition matrix, based on the estimate of the activity

distribution from the previous iteration (an initial guess in the case of the

first iteration). Second the current estimate is updated so as to maximise the

likelihood, achieved by multiplication of the previous estimate by the back

projection of the ratio of measured over estimated projections. The resultant

ML-EM equation is derived elsewhere, as cited above, and is given by

f newj ¼ f oldjP
l

alj

X
i

aij
piP

k

aikf
old
k

(16)

5.2 Properties of ML-EM Reconstruction

The EM algorithm results in an iterative process for estimation consistent

with the general iterative flow-chart given in Figure 1. In this case the update

is multiplicative, not unlike SMART, with the update simply being the ratio
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of measured over estimated projections. As the number of iterations in-

creases the likelihood increases, providing an estimate that theoretically is

more likely to be close to the true object distribution. In practice, however,

the image reaches an optimal visual quality at typically around 16 iterations

and, in the absence of any noise constraint, appears progressively more noisy

at higher number of iterations (Figure 2). The noise characteristics are

appealing, with the variance remaining proportional to number of counts

rather than being approximately position-independent as in FBP.9,20 This

tends to favour lesion detection in low count areas where the signal to noise

ratio can be markedly improved. The ML solution after a large number of

iterations is not the most ‘desirable’ solution as it reflects the actual noisy

distribution of emitted counts rather than the underlying activity, whose

distribution is likely to be much less variable. In clinical practice it is

common to stop at a small number of iterations in order to limit noise.

However it should be recognised that the reconstruction does not converge

at the same rate for all points. Halting the reconstruction early runs a risk of

reducing reconstruction accuracy, which can be avoided by using a larger

number of iterations with post-reconstruction smoothing.21 Alternative ap-

proaches to controlling noise are discussed in section 6.

There are several attractive theoretical properties of ML-EM although in

practice these rarely offer real advantage due to approximations in the

system model and the relatively high level of noise in most emission tomog-

raphy studies. The use of a multiplicative update guarantees positive values

and also means that areas outside the object, where zero counts are expected,

object
10 iterations 100 iterations

sinogram

Figure 2. PET simulation of circular object in a uniform background, with uniform

attenuation. ML-EM reconstructions at 10 and 100 iterations are shown, obtained

from a sinogram without noise (top) and with Poisson noise (bottom). At 10 iter-

ations, convergence is clearly incomplete. At 100 iterations, the noise level is becom-

ing unacceptable.
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are constrained so as to remain zero. This can result in problems near object

edges when the projection counts are low as any zero pixel on a projection

defines a projected line where counts are set to zero and remain unchanged,

even when intersected by non-zero projections. The conservation of counts

that occurs, results in the possibility of misplaced counts (usually hot spots)

near the object edge.

A definite limitation with ML-EM reconstruction is the time taken for

reconstruction. Each of the forward and back projection steps in all iter-

ations takes approximately the same time as FBP; twenty iterations ML-EM

would therefore take forty times as long as FBP. Fortunately steps can be

taken to significantly accelerate the reconstruction as outlined in section 7.

6. Approaches to Controlling Noise

As mentioned above, the ML-criterion does not prevent noise propagation,

and in many clinical cases the noise becomes unacceptably high at high

iteration numbers. Stopping iterations early is dangerous: because the con-

vergence of ML-EM depends on position and even orientation, the spatial

resolution can be very position dependent at low iteration numbers. This is

illustrated by the PET simulation in Figure 2. The true object is a circular

ring of activity, embedded in a large disc with background activity. Attenu-

ation within the disc is uniform. Because the attenuation along central

projection lines is higher, the convergence of ML-EM is slower in the centre.

At 10 iterations, the spatial resolution in the centre is clearly lower than near

the edge. At 100 iterations, the resolution has become uniform. However,

when Poisson noise is present, the noise level at 100 iterations is very high.

6.1 MAP with Gibbs Prior

As discussed above, maximising the likelihood is equivalent to maximising

the posterior, if one can assume that nothing is known about the image,

prior to the measurement. But obviously, some a-priori knowledge is avail-

able: the image should not be too noisy. Somehow, this prior knowledge

must be translated into a mathematical expression, which can be inserted in

equation (4).

A convenient way to define a prior distribution favouring smooth solu-

tions is via a Markov random field (or equivalently: a Gibbs random field).

In a Markov random field, the probability of a particular voxel depends on

the voxel values in a neighbourhood of that voxel. The dependence is defined

with a Gibbs distribution of the following form (e.g. Geman and McLure22):

prob fj
� � ¼ 1

Z
e�bU(f ) with U( f ) ¼

X
k2Nj

V fj , fk
� �

(17)
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where prob[ fj ] denotes the conditional probability for the value in voxel j

given the rest of the image, Z is a normalization constant, b a factor that

determines the strength of the prior (1/b is the ‘‘temperature’’), and Nj

contains the voxels neighbouring voxel j. U is the so-called energy function,

and higher energies are less likely. In fact, more complex forms of U are

allowed, but this one is nearly always used. To favour smooth images, noisy

ones should be penalized with a higher energy (hence the alternative name

‘‘penalized likelihood’’). An obvious choice for V is the ‘‘quadratic penalty’’:

VQ fj, fk
� � ¼ fj � fk

� �2
2s2

(18)

which makes prob[f] maximum for a perfectly uniform image. A possible

disadvantage of VQ is that it heavily penalizes large differences, causing

strong smoothing over edges. To avoid that, the Huber function (e.g. Mum-

cuoğlu et al.23) quadratically penalizes ‘‘small’’ differences, but penalizes

‘‘large’’ differences only linearly:

VH fj, fk
� � ¼ fj � fk

� �2
2s2

if j fj � fkj < s

¼ jfj � fkj � s=2

s
if j fj � fkj$s

(19)

A function with a similar edge-preserving characteristic (but with a grad-

ual transition to the linear behaviour) is the logcosh function (see e.g. de

Pierro24): VL ¼ ln ( cosh ((fj � fk)=s)). Functions have been devised that

preserve edges better than VH or VL, e.g. by applying a constant instead of

a linear penalty for large differences. However, in contrast to the functions

mentioned above, functions applying a constant penalty are not concave;

they introduce multiple local maxima, making the final MAP-reconstruction

dependent upon the initial image and the particular optimisation algorithm.

For that reason, these functions are rarely used in emission tomography.

The functions VQ, VH and VL penalize in proportion to the (square of)

absolute differences between neighbouring voxels. But because the absolute

tracer uptake values vary with scan time, injected dose, attenuation, patient

weight and metabolism, it can be difficult to select a good value for the

parameter s. As one can see from the equations, ML-EM is insensitive to the

absolute counts in the sinogram: if the sinogram is multiplied with a factor,

the corresponding ML-EM reconstruction will simply scale with the same

factor. This is no longer true for the MAP-reconstruction based on the

quadratic or Huber prior. To avoid this problem, a concave function pen-

alizing relative differences rather than absolute ones has been proposed:25

VR fj, fk
� � ¼ fj � fk

� �2
fj þ fk þ gj fj � fkj (20)
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Similar to the Huber prior, VR has some edge-preserving features: the

penalty decreases slower when the relative difference jfj � fkj=(fj þ fk) is

large compared to 1/g.
Having defined the prior, an algorithm is needed to maximise the poster-

ior, or equivalently, its logarithm: ln prob Pj f½ 	 þ ln prob½f 	. Direct applica-

tion of the EM strategy yields the following expression:

f newj ¼ f oldjP
l

alj

X
i

aij
piP

k

aikf
old
k þ b @U( f )

@fj

(21)

whereU( f ) is the energy function of the Gibbs prior. The problem is that the

derivative must be evaluated in f newj , which complicates the solution dramat-

ically. Green26 proposed the one step late (OSL) approach, which is to

evaluate the derivative in the available reconstruction image f oldj . This ap-

proach is effective if b is not too large, but convergence is not guaranteed, and

with large b the algorithm can actually diverge. de Pierro24 found a new (non-

statistical) derivation for the classical ML-EM algorithm, which is based on

the construction of a surrogate function at each iteration. This is a function

that coincides with the likelihood function up to the first derivate and which is

easier to maximise than the likelihood. Each iteration, the surrogate is maxi-

mised, and one can show that this guarantees an increase of the likelihood.

The same approach can be applied to most Gibbs priors, and hence, to the

posterior. This has led to the development of new andmore robust algorithms

for MAP-reconstruction (see Ahn and Fessler27 and the references therein).

6.2 Post-smoothing Unconstrained ML-EM

As shown in Figure 2, possible convergence problems of ML-EM are elim-

inated by iterating sufficiently long. This leads to unacceptable noise levels,

but the noise can be reduced considerably with moderate smoothing,21,28 as

illustrated in Figure 3. Since this is high frequency noise, smoothing is even

more effective than with uncorrelated noise.29

100 iterations 10 iterations100 it. + post-smooth

Figure 3. Same PET simulation as in Figure 2, comparing post-smoothing ML-EM

after 100 iterations with the reconstruction without post-smoothing (left) and the

ML-EM reconstruction at 10 iterations.
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An advantage of post-smoothed ML-EM is its wide availability. It is

currently available on most SPECT and PET systems. As will be discussed

below, an additional advantage (for some applications) is that it can impose

nearly uniform spatial resolution. A disadvantage is that many iterations are

required to achieve this resolution uniformity.

6.3 Expectation-Maximisation-Smooth (EMS)

Some groups have investigated the application of a smoothing filter after

every ML-EM iteration, called EMS (expectation-maximisation-smooth) or

inter-iteration filtering.28,30,31 Although there is no proof of convergence,

this algorithm always appears to converge in practice. The image character-

istics are somewhat similar to those of penalized likelihood reconstruction.

6.4 Uniform Resolution

For some applications in emission tomography it is desirable that the spatial

resolution in the images is predictable, independent of the object and usually

also independent of position. Examples are quantitative analysis of PET

studies, where one has to assume that changes in numbers are due to changes

in metabolism, and not to changes in characteristics of the imaging system.

A problem with most MAP-algorithms (and also with EMS) is that they

tend to produce object and position dependent resolution. The likelihood

term seeks ideal resolution, while the prior (penalty) wants no resolution.

The final resolution depends on the relative strength of both terms. The

strength of the prior is usually chosen to be constant, but the strength of the

likelihood depends on the object, on the position within the object and even

on the orientation. To obtain the same balance between the two everywhere,

the strength of the prior has to follow that of the likelihood. Such algorithms

have been designed, and compared to post-smoothed ML-EM.32-34 It is

found that at matched resolution, the noise characteristics of these penal-

ized- likelihood algorithms are similar to those of post-smoothed ML-EM.

Post-smoothed ML-EM is much easier to program, and is already widely

available. However, the penalty improves the conditioning of the inverse

problem, which can be exploited to obtain faster convergence.34 So for

applications requiring uniform resolution, penalized-likelihood may still

have its role as an acceleration technique.

6.5 Anatomical Priors

Many attempts have been undertaken to exploit anatomical knowledge,

available from registered MRI or CT images, during the reconstruction of

PET or SPECT data. The aim is to avoid the resolution loss due to the

regularization, or even to recover the resolution of the emission reconstruc-

tion, by making use of the superior resolution of the anatomical images.
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These attempts are only meaningful if one can assume that there is a fair

overlap between anatomical and functional (tracer uptake) boundaries.

Fortunately, this seems to be a valid assumption in many applications.

The anatomical information has been used to tune the noise suppressing

prior in a MAP-algorithm, by limiting smoothing to within organ boundar-

ies revealed by the anatomical data.35-40 In addition, the segmented MR

image can be used for attenuation and scatter correction purposes.41 If the

finite resolution of the emission tomograph is modelled, then these algo-

rithms can produce a strong resolution recovery near anatomical boundar-

ies. To further push resolution recovery, Sastry and Carson42 introduced a

tissue composition model, which considers each (coarse) PET-voxel as com-

posed of one or more tissue classes, which are obtained from a segmented

MRI image of the same patient. The PET-activity in every voxel is then a

weighted sum of tissue class activities. Figure 4 shows an example obtained

with a similar approach.

6.6 Median Root Prior

Alenius et al.45,46 have proposed a penalized-likelihood method based on a

median filter. The algorithm can be written in the following form:

f newj ¼ f oldjP
i

aij

X
i

aij
piP

k

aikf
old
k þ b

f old
j
�Mj

Mj

(22)

where Mj is the value of voxel j, obtained by median filtering the image f oldj .

Following the OSL interpretation discussed above, the difference between a

voxel and the median of its neighbourhood is used as the gradient of some

energy function. The derivation is empirical, and in fact, the corresponding

energy function does not exist. Hsiao47 recently proposed a very similar

Figure 4. PET image obtained with MAP-reconstruction without (left) and with

(right) the use of anatomical information from a registered MRI image (center), using

a tissue composition model.43 The 3D sinogram was first rebinned with FORE,44

then the MAP-reconstructions were computed.12
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algorithm, which does minimize a well defined objective function. Albeit

empirical, the algorithm is very effective and has some interesting features.

In contrast to most priors, it does not strive towards a completely flat image

(which is not a very realistic prior assumption). Instead, it only requires that

the image be locally monotonic. Locally monotonic images do not have

small hot spots, but they can have sharp and/or smooth edges. In addition,

similar to the relative difference prior, it penalizes relative differences, mak-

ing b a ‘‘unit-less’’, easily tuned parameter. Stated intuitively, the MRP

algorithm essentially suppresses all hot or cold spots that are small com-

pared to the size of its median filter. It follows that, when applied in hot spot

detection applications (such as PET whole body imaging in oncology), the

mask should be chosen sufficiently small and b not too large.

Figure 5 illustrates the behaviour of ML-EM with moderate post-smooth-

ing,MRPand the relative difference prior.Largehomogenous regions (suchas

the liver and the mediastinum) are much better visualized in the MAP-recon-

struction images, inparticularwithMRP.Smaller structures, suchas theblood

vessels, are somewhat attenuated by both priors. A very hot and small spot,

such as the lesion in the neck, is strongly suppressed by theMRP-penalty. It is

better preserved by the relative difference prior, because of its tolerance for

large voxel differences. But it is best recovered by the noisier ML-EM image,

Figure 5. Three reconstructions of the same patient’s PET scan. Left: post-smoothed

ML-EM; center: MAP with median root prior; and right: MAP with relative differ-

ence prior (VR). The median root prior has superior noise suppression and

edge preservation for larger structures. However, hot spots that are small compared

to the median filter size are suppressed (see the lesion in the neck, indicated by

the arrow).
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becauseonlymoderate smoothingwasapplied.Thepenalties shouldbeapplied

with caution andmust be optimized for each particular task.

7. Approaches to Acceleration of ML-EM

7.1 Ordered Subsets EM: OS-EM

The computation time for iterative reconstruction algorithms is typically

orders of magnitude longer than for FBP. Fortunately steps can be taken to

significantly accelerate these algorithms. The most widely used acceleration

technique, perhaps due to its simplicity, is the ordered subsets EM or OS-

EM algorithm.48 Ordered subsets or block-iterative methods have been

applied to a number of iterative algorithms with OS-EM being similar in

some respects to MART. The essential difference between OS-EM and ML-

EM is the use of only a subset of projections for updating rather than

comparison of all estimated and measured projections. For OS-EM one

iteration is normally considered the use of all data once; consequently use

of only part of the data during the update process is termed a sub-iteration.

In OS-EM the reconstruction proceeds by utilising subsets of the projec-

tions, chosen in a specific order that attempts to maximise the new informa-

tion being added in sub-iterations. Iteration proceeds by using different

projections in each subsequent subset until all projections are used. The

resulting equation is very similar to the standard ML-EM equation, the

only difference being the use of subsets, Sn, where n 2 N, the total number

of projections divided by the number of projections per subset or subset size:

f newj ¼ f oldjP
i2Sn

aij

X
i2Sn

aij
piP

k

aikf
old
k

(23)

Note that sub-iterations recycle through Sn for subsequent iterations. Pro-

vided subset size is not too small and subset order is chosen carefully, the

reconstruction estimate of OS-EM at each sub-iteration is almost indistin-

guishable from the reconstruction for a corresponding number of full iter-

ations of ML-EM (Figure 3). The computation time for each sub-iteration is

roughly equal to the time for a conventional ML-EM iteration divided by N,

due to the reduced number of forward and back projection operations in the

subset. Consequently for 128 projections and subset size of 4, the acceler-

ation factor is approximately 32.

There are some theoretical concerns regarding OS-EM. For example,

there is no proof that OS-EM in its standard form converges to the same

solution as ML-EM. In fact OS-EM reaches a limit cycle, where the result

depends to a small extent on the point in the subset sequence at which

iteration is stopped. However, with the noisy data typical of clinical practice,

this has not been found to be of particular concern, since the possible
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solutions tend to be very similar, provided subset size is not too small.

Choosing subset order is important as a necessary condition is that there

be subset balance, which requires that
P

i2Sn
aij is independent of n. In

practice the use of four well spaced projections is a reasonable compromise

between speed and reconstruction quality.49

7.2 Variants of OS-EM

There have recently been a number of variants of OS-EM that address some

of its theoretical limitations. The rescaled block-iterative (RBI) algorithm50

does converge to a single solution in the absence of noise, independent of

subset order. The equation for RBI is

f newj ¼ f oldj þ f oldj

max
P
i2Sn

aij

X
i2Sn

aij
piP

k

aikf
old
k

� 1

0
B@

1
CA (24)

which can be seen to reduce to exactly OS-EM when
P

i2Sn
aij is constant for

all n. Alternatively the row-action maximum likelihood algorithm

(RAMLA) is designed to avoid the limit cycle by using under-relaxation

(deliberately decreasing the influence of the update as iteration advances).51

The equation again has a very similar form:

f newj ¼ f oldj þ lkf
old
j

X
i2Sn

aij
piP

k

aikf
old
k

� 1

0
B@

1
CA, 0 < lk#

X
i2Sn

a�1ij (25)

where lk decreases with iteration k, but remains constant throughout the

sub-iterations within each main iteration. More recent work suggests that l
could be varied with sub-iteration.52 An alternative approach to controlling

the limit cycle is to increase the subset size with iteration,48 providing results

similar to over-relaxation.53 The similarity in these algorithms leads to some

confusion in their applicability, particularly as some of the theoretical con-

cerns are of little clinical relevance e.g. with noisy data the ML solution is

undesirable. Nevertheless, as seen from the above equations, some level of

standardisation in the approaches is emerging.

7.3 Acceleration for Regularized Reconstruction

Algorithms

The same approaches to acceleration can be applied to regularised statistical

algorithms as to ML-EM since their formulations are generally similar. The

OS-GP was suggested as the regularised OS-EM equivalent for MAP-OSL

reconstruction based on the Gibbs prior.48 Similarly block-iterative

approaches have been used for the basis of developing the RBI-MAP
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algorithm54 and the block sequential regularized EM algorithm (BSREM) as

a regularized form of RAMLA.55 There is some debate regarding the choice

of regularized acceleration algorithm, with suggestion that BSREM type

algorithms have theoretical advantages.27,55 Still further work is necessary

to confirm which algorithm is optimal for clinical application.56

8. Using ML with Non-Poisson Data

8.1 Transmission

The ML-EM algorithm described above is based on the assumption that the

data can be considered as linear combinations of the unknown tracer distri-

bution, and that they are Poisson distributed. In transmission tomography,

the counts ti are Poisson distributed, but they are a non-linear function of

the image mj. For that purpose, dedicated ML and MAP algorithms have

been developed for transmission tomography. The likelihood function to be

optimised is now:

Lt ¼
X
i

ti ln t̂ti � t̂ti, with t̂ti ¼ bi exp �
X
j

lijmj

 !
þ si (26)

where ti is the measured transmission count rate, bi is the blank scan, lij is the

intersection length of projection line i with the image voxel j, and si contains

additive contributions, such as Compton scatter, random coincidences or

emission activity in post- injection transmission scanning in PET.

One can apply the expectation-maximisation (EM) strategy again.57,58

However, in this case, it leads to a somewhat cumbersome expression. To

obtain more elegant algorithms, other optimisation methods have been used.

Mumcuoğlu et al.59 proposed a conjugate gradient method. Using de Pier-

ro’s surrogate function approach, Fessler60 derived a suitable class of algo-

rithms. The unconstrained and non-parallel version can be written as:

mnew
j ¼ mold

j þ
P
i

lij 1� ti=̂ttið Þ t̂ti � sið Þ
dj

with dj ¼
X
i

l2ij(ti � si)
2

aij ti
(27)

where aij can be chosen, as long as aij $ 0 and
P

j aij > 0.

Setting aij ¼ lijm
old
j =

P
k likm

old
k yields the convex algorithm of Lange and

Fessler,18 choosing aij ¼ lij=
P

k lik produces the algorithm used in Nuyts.61

These algorithms behave similarly to the ML-EM algorithm in emission

tomography: they have similar noise propagation; they need a comparable

amount of computation time and show similar convergence speed. They can

be accelerated with ordered subsets as well.62

As in emission tomography, the noise can be suppressed by combining the

likelihood with a prior. However, in transmission tomography more prior
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information is available: the attenuation of tissue and bone is known. In

addition, attenuation images are much smoother than emission images. For

this reason, more aggressive priors can be applied.59-61 An example is shown

in Figure 6. The effect of these strong priors can be considered as a segmen-

tation, thus producing transmission maps resembling those of the so-called

‘‘segmented attenuation correction’’ algorithms.63-66 The main difference

with the MAP-approach is that the segmentation is done during, not after

the reconstruction.

8.2 Corrected Emission

To reduce processing time and data storage, it is often convenient to work

with pre-corrected data. For example, careful reconstruction on a PET

system requires separate storage of at least three sinograms: one containing

the raw, Poisson distributed data, one containing multiplicative effects

(including attenuation and detector efficiency) and another one containing

additive effects (Compton scatter and randoms). In particular in 3D PET,

this represents an impressive amount of data, requiring considerable pro-

cessing time for reconstruction. An attractive alternative is to produce a

single smaller sinogram by pre-correcting the data and applying Fourier

rebinning. But then the data are no longer Poisson distributed. It has been

shown that ML-EM yields suboptimal images from such data.12

An obvious solution is to abandon ML-EM and use a weighted least

squares algorithm instead (e.g. Fessler11). However, because the ML-EM

algorithm is more widely available, an alternative solution has been devised.

Figure 6. Comparison of FBP (above) and MAP (below) reconstruction of very

short PET transmission scan.

4. Iterative Reconstruction Methods 127



It is possible to manipulate the data in order to restore the Poisson distri-

bution approximately, and then undo the manipulation during ML-EM

reconstruction. Consider a random number x, and assume that estimates

for its mean and variance are available. The distribution can be shifted, such

as to make the variance equal to the mean, as required by a Poisson

distribution: mean (xþ s) ¼ (xþ s). It follows that the shift amount to

s ¼ (x)�mean(x). This approach, for example, is used to deal with randoms

correction in PET.67 Alternatively, one can scale x, such that mean(a x) ¼
var(a x), which yields a ¼ mean(x) / var(x). This approach can be used for

reconstruction of transmission scans, if no dedicated transmission algorithm

is available.68

9. Application to Specific Problems

9.1 More Complex Emission Models

The attraction of iterative reconstruction is that it can be relatively easily

modified so as to be applicable to specific emission models. The limitation

tends to be that the computational speed is directly related to the complexity

of the underlying model. Not only does the computation per iteration

increase but also the number of iterations required. Fortunately the com-

bination of faster computers and effective acceleration models means that

tackling more complex problems can now be contemplated.

The incorporation of information on distance-dependent resolution in the

transition matrix69,70 results in the iterative reconstruction effectively oper-

ating in 3D, allowing for the probability that photons travelling obliquely to

the detector still can be detected. Incorporation of resolution loss in the

system model in theory suggests that the final reconstruction should have

resolution recovery, although in practice this is limited by slow convergence.

This will be discussed in more detail elsewhere. The correction of scatter is a

particularly demanding problem due to the complex dependence of scatter

on the non-homogeneous attenuation in tissue and the broad 3D distribu-

tion of scatter. Modelling scatter for incorporation in the transition matrix is

difficult since it is object dependent, although appropriate models have been

developed71,72 and efficient Monte Carlo solutions have been proposed.73 It

is worthwhile noting that there are advantages to incorporating measured

scatter estimates (such as might be obtained from multiple energy windows)

directly in the projector.74 The incorporation of estimated scatter (̂ss) in the

ML-EM equation is given by:

f newj ¼ f oldjP
i

aij

X
i

aij
piP

k

aikf
old
k þ ŝs

(28)
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Since the scatter estimate is simply used to provide consistency between

estimated and measured projections the resultant reconstruction is much

more resistant to noise than if the scatter was directly subtracted from the

measured projections. Indeed the direct subtraction introduces concern that

the projections are no longer Poisson distributed (as discussed further

below). A similar approach can be taken to account for measured randoms

in PET or indeed any source of measured counts that is not accounted for by

the transition matrix.

Extensions to the system modelling have been developed to accommodate

the more complex situation with either dual radionuclides75 or multiple-

energy radionuclides.76 In dual radionuclide studies two distributions are

simultaneously determined allowing for cross-talk between the radionuclides

being imaged. In the case of a multiple-energy radionuclide a single estimate

can be determined taking into account the different attenuation that occurs

at different emission energies.

A further complexity to iterative reconstruction can be introduced if a

fourth dimension is included in the model to account for tracer redistribu-

tion with time or motion occurring during gated acquisition. Provided a

model of the time variation is well understood this can be incorporated in the

transition matrix so as to account for inconsistencies that may otherwise

occur between estimated and measured projections. The interested reader is

referred to relevant publications.77,78

9.2 3D Reconstruction

Some of the complexities mentioned above already suggest the need for a 3D

reconstruction (or even in some cases 4D) in order to cater for the possibility

of non-planar detection. Clearly this becomes even more evident with de-

tectors that specifically are designed to acquire data in 3D (e.g. cone-beam

SPECT, pinhole SPECT or septa-less PET). The attraction of iterative

reconstruction is that the basic algorithms do not require any specific change

except for definition of the transition matrix, unlike FBP, which usually

requires the derivation of specific non-standard filters. A specific example

where iterative reconstruction has been widely applied is in 3D PET where

usually some form of rebinning is first performed (e.g. Fourier rebinning or

FORE) in combination with iterative reconstruction.44 Alternatives based

on direct 3D iterative reconstruction have also been implemented.79,80

9.3 Motion Correction

An area where iterative reconstruction is proving particularly useful is the

correction of motion, determined either from independent measurement81 or

via estimation directly from the measured projections.82 Since patient move-

ment can be considered as equivalent to detector movement, the reconstruc-

tion necessitates the incorporation of data at specific angular positions
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relative to the reconstructed object space. Provided most projections can be

considered to correspond to a stationary patient at various locations, recon-

struction can be accomplished rather easily using iterative reconstruction

with OS-EM selecting subsets of projections so as to correspond to specific

patient/detector positions. More exact correction necessitates either multiple

short-duration acquisitions to minimise the possibility of movement in an

individual acquisition frame or use of list-mode83 where each individual

event can be corrected for movement so as to locate the exact ray-path.

The EM list mode equation84,85 can be formulated to be very similar to the

conventional EM equation:

f newj ¼ f oldjP
i

aij

X
i2L

aij
1P

k

aikf
old
k

(29)

Note, however, that the main summation is restricted to the elements in the

list-mode data rather than all projection bins; this effectively ignores zero

projection bins and consequently the numerator reduces to unity. The OS-

EM version simply divides the list-mode data into sub-lists.

10. Clinical Evaluation

Evaluation and clinical validation of image reconstruction algorithms is

inherently difficult and sometimes unconvincing. There is a clear need for

guidelines to evaluate reconstruction techniques and other image processing

issues in emission tomography. A particular concern in clinical studies is the

tendency to compare not only different algorithms but different approaches

to processing, without effort to isolate the effects due to the reconstruction

algorithm itself. Examples are the comparison of iterative algorithms includ-

ing attenuation correction with analytic approaches without attenuation

correction or the comparison of different iterative algorithms where the

fundamental implementation differs (e.g. use of ‘‘blobs’’86 rather than pixels

in the projector). This simply adds to the confusion in interpreting results.

A further common problem is the comparison of clinical images where the

reconstruction algorithm results in different signal to noise properties, typ-

ically dependent on the number of iterations utilised. Evaluation for a range

of parameters tends to provide more objective results where the trade-off

in noise and signal (e.g. recovery coefficient) can be more meaningfully

compared.

Most of the algorithms developed so far have been evaluated using either

simulated or experimentally measured phantom studies, in addition to

qualitative evaluation of clinical data. This has been extended more recently

to objective assessment of image quality using Receiver Operating Charac-

teristics (ROC) analysis based on human or computer observers,87 evalu-

ation of the influence of reconstruction techniques on tracer kinetic
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parameter estimation88 and voxel-based analysis in functional brain imaging

using statistical parametric mapping.89,90

10.1 Validation Using Simulation and Phantom Studies

A simulator is an efficient tool that can be used to generate data sets in a

controllablemanner inorder to assess theperformance ofdifferent reconstruc-

tion algorithms.Medical imaging simulation tools have been shown to be very

useful for validation and comparative evaluation of image reconstruction

techniques since it is possible to obtain a reference image to which recon-

structed images should be compared. The ability to theoretically model the

propagation of photon noise through emission tomography reconstruction

algorithms is crucial in evaluating the reconstructed imagequalityasa function

of parameters of the algorithm. Two broad categories of simulation packages

have emerged: simplified analytical modelling tools and sophisticated Monte

Carlo simulations. In the first class of simulators, several simplifying approx-

imations are adopted to improve ease of use and speed of operation (e.g.

Gaussian noise distribution and scatter model based on an analytical point

spread function).91 On the other hand, theMonteCarlomethod is widely used

for solvingproblems involvingstatisticalprocessesand isveryuseful inmedical

imaging due to the stochastic nature of radiation emission, transport and

detection processes. Many general purpose and dedicated Monte Carlo pro-

grams have been in use in the field of nuclear imaging with many of them

available in the public domain.92,93 Although variance reduction techniques

have been developed to reduce computation time, the main drawback of the

Monte Carlo method is that it is extremely time-consuming.

Software and physical phantoms used in medical imaging were historically

limited to simple point, rod, and slab shapes of sources and attenuating

media. Such simple geometries are useful in studying fundamental issues of

image reconstruction, but clinically realistic distributions cannot be evalu-

ated by such simple geometries. A precise modeling of the human body

requires appropriate information on the location, shape, density, and elem-

ental composition of the organs or tissues. Several software phantoms

modeling different parts of the human body have been developed over the

years to assess the accuracy of reconstruction procedures and are described

in detail in Chapter 11 of this book. Interested readers are also refereed to

textbooks referenced above discussing extensively issues related to Monte

Carlo modeling in nuclear medicine.

10.2 Subjective and Objective Assessment of

Image Quality

Different approaches have been suggested to judge image quality when

evaluating image reconstruction algorithms. As the ‘best’ reconstruction

algorithm can only be selected with respect to a certain task, different
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‘basic’ performance measures can be used. Basically, there is no single figure

of merit that summarises algorithm performance, since performance ultim-

ately depends on the diagnostic task being performed. Well-established

figures of merit known to have a large influence on many types of task

performance are generally used to assess image quality.94

In a clinical environment, the evaluation is further hampered by the

multiplicity of the medical purposes for which the corrections may be

studied. In the simplest approach, trained nuclear medicine physicians

carry out observer performance studies and are asked to rank images by

their degree of quality. A common method to assess image quality with

respect to a detection task is the use of observer studies where the perform-

ance of any observer (human or computer algorithm) is characterized by

ROC analysis. In such studies, observers rate images based on their confi-

dence that a defect/lesion exists in a large set of images. Curve-fitting

methods are then used to fit the rating data to receiver operating character-

istic (ROC) curves, which plot the covariation in ‘‘true positive’’ and ‘‘false

positive’’ conditional probabilities across changes in the decision-variable’s

criterion for a ‘‘positive’’ binary decision.87,95,96 The estimated area under

the fitted ROC curve is often used as a general index of image quality or

performance accuracy for any alternative classification task. ROC and

localization ROC (LROC) techniques have been extensively used to evaluate

lesion detectability.97 For example, using simulated MCAT phantom data

and randomly located 1 cm-diameter lesions, Lartizien et al.98 demonstrated

that the FOREþAWOSEM (attenuation weighted OS-EM) algorithm re-

sults in the best overall detection and localization performance for 1-cm-

diameter lesions compared with the FOREþOSEM and FOREþFBP algo-

rithms in PET imaging. The major drawback of this approach is that it is

costly and complex, since a reasonable number of experienced observers

should be used to analyse many images under carefully controlled condi-

tions. In addition, such techniques rely on experimental phantom measure-

ments or simulated data since the ground truth needs to be known.

Furthermore, for optimisation of reconstruction algorithms in which pos-

sible parameter settings suffer a combinatorial explosion, human psycho-

physical studies are simply not viable. Therefore, most qualitative

assessment studies are restricted to subjective observer rating scores by

experienced physicians. The diversity of available algorithms also makes

comparison difficult as results can be inconclusive when limited cross-com-

parison is involved.

There are an increasing number of published articles that verify the benefit

of utilising iterative algorithms in clinical situations. These verify many of

the theoretical advantages outlined in section 2.2, including ease of incorp-

orating attenuation correction,99 reduction in streak artefacts,100 tolerance

to missing data101 and most importantly, noise reduction in low count areas

of the image. It should be noted that, since noise generated in iterative

reconstruction is signal-dependent, the signal to noise gains are restricted
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to low count areas, whereas high count areas may at best be un-

affected.102,103 In many nuclear medicine studies there is interest in derived

parameters rather than individual images (e.g. extracted functional param-

eters or significance maps reflecting changes in activity distribution). It

therefore is of some interest to identify which reconstruction algorithms

are optimal for these applications and to verify that the reconstruction

algorithms provide quantitative results.104,105 An interesting approach in

comparative evaluation studies for functional brain imaging is to carry out

voxel-based statistical analysis using statistical parametric mapping

(SPM).106 A recent study on the impact of model-based scatter correction

and iterative reconstruction on spatial distribution of 18F-[FDG] in recon-

structed brain PET images of healthy subjects using this kind of analysis

demonstrated that OS-EM reconstruction does not result in significant

changes when compared to FBP reconstruction procedures, while significant

differences in 18F-[FDG] distribution arise when images are reconstructed

with and without explicit scatter correction for some cerebral areas.89 Other

related studies showed that iterative reconstruction has the potential to

increase the statistical power and to give the best trade-off between signal

detection and noise reduction in PET activation studies as compared with

FBP reconstruction.90

11. Future Prospects

Theprogress in iterative reconstructionhas been immense in the past ten years,

themain opportunities arising from the availability of both improved process-

ing speed and faster algorithms. This has permitted much more ambitious

algorithms that tackle not just conventional 2D reconstruction but a range of

applications in 3D(e.g.Liu et al.80) andeven4D(including the timedomain).78

The appeal of iterative reconstruction in adapting to different acquisition

geometry or physical situation has already been well demonstrated. The prac-

ticality of performing such reconstruction is revitalising the consideration of

alternative approaches to imaging such as use of multiple pinhole collimators

or so-called ‘Compton’ imaging (e.g. Braem et al.107). Although currently

focussed on high resolution imaging for small animals there is potential for

future developments to address specific clinical applications.

Anticipating even greater gains in computer power, even more complex

and ambitious reconstruction becomes clinically realistic. More extensive use

of fully 3D reconstruction algorithms can be expected, with more exact

correction likely to provide optimal quality of reconstruction. The feasibility

of using Monte Carlo-based approaches has been demonstrated108 and

previous work has demonstrated that symmetries can be used to greatly

accelerate the Monte Carlo calculations.73 Whether this degree of sophisti-

cation in accurately modelling the emission and detection processes is war-

ranted in clinical practice remains to be seen.
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The demands placed on reconstruction algorithms continue to expand.

There is a strong evolution towards more complex acquisition hardware, in

particular in PET (more and smaller detector crystals, larger axial extent of

the detectors, better energy resolution allowing multi-energy acquisitions).

In some of these complex geometries, the assumptions of Fourier rebinning

are no longer valid and more accurate rebinning algorithms are needed.44

The huge size of the data sets compensates for the growing computer speed

and, since acceleration of 3D reconstruction has probably reached its limits,

the computational demand continues to push technology to its limit.

The availability of dual-modality instruments is likely to influence the

approaches to reconstruction, with algorithms that combine anatomical

information likely to increase in popularity. These approaches have previ-

ously relied on accurate registration and ready access to anatomical data.

The advent of dual modality instruments makes this much more practical.

Accompanying these developments is the increasingly difficulty task of

understanding the intricacies of the ever-increasing range of algorithms. In

the clinical environment the uncertainty in choice of algorithm has acted as a

deterrent to their use. To some extent there is ‘convergence’ in the various

algorithms and it is to be anticipated that there may be some future consen-

sus as to the best algorithm to choose for specific applications. The avail-

ability of open platforms and more widely available software, specifically

designed for clinical application, should at some stage accelerate the accept-

ance of algorithms. However, at the time of writing OS-EM remains the

most widely used iterative algorithm in clinical practice, with variants spe-

cifically tailored for use with PET or transmission reconstruction. It is clear,

however, that there is great need for development of standard approaches

for evaluation of algorithms e.g. the availability of standard validated data

for inter-lab comparison.
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