
Chapter 7 
Unstable Resonators 

7.1 General Aspects 

If the g-parameters of the resonator mirrors fulfill the relations g,g,<O or g,g,>l, the 
radiation inside the resonator cannot be characterized by a Gaussian beam. Equation (5.10) 
indicates that in these cases the Gaussian beam radii become complex quantities. The steady 
state field distributions are not given by Gauss-Hermite or Gauss-Laguerre polynomials. 
These resonators are referred to as unstable resonators [3.54,3.67], whereby the term 
"unstable" accounts for the fact that a Gaussian beam launched into the resonator will 
increase its beam radius after each round trip and, therefore, does not represent a "stable" 
eigensolution of t h ~  resonator (Fig. 7.1). Note that the term "unstable" does not mean that 
the resonator is more sensitive to mirror misalignment as compared to stable resonators. In 
fact, unstable resonators are generally less sensitive to mirror tilt than stable resonators in 
fundamental mode operation. By using the equivalent G-parameter G=2g,grl we can 
characterize the different resonator schemes as follows: 

stable resonators 0 < /GI < I 
resonators on the stability limits : \GI = I  
unstable resonators IGI ' 1 

Fig. 7.1 No Gaussian beam can reproduce itself in an unstable resonator. The beam radii at the 
mirrors increase with each round trip. 
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Fig. 7.2 The stability diagram of optical 
resonators. Unstable resonators are located 
in the non-hatched areas. 

Furthermore, one is able to distinguish positive brunch unstable resonators (G>Z) and 
negative brunch unstable resonators (G<-l). The steady state field distributions on the 
mirrors of unstable resonators, similar to stable resonators, are solutions of the Kirchhoff 
integral equation (see (5.71),(5.72)). In contrast to stable resonators, the beam propagation 
inside unstable resonators, to a good approximation, can be described by the propagation 
laws of geometrical optics. As already discussed in Sec. 1.3, unstable resonators are 
characterized by the presence of spherical waves whose radii of curvature reproduce 
themselves after each round trip. Before we investigate the mode structures and the 
dibction losses by applying diffraction theory, we will discuss the basic properties of 
unstable resonators by analyzing the propagation of these spherical waves. Although t h i s  
geometric-optical treatment does not provide information on the field distributions, the 
geometrical description will provide the reader with a better understanding of the basic 
principles of unstable resonators. 

7.2Geometric Optical Description of Unstable Resonators 

7.2.1 Beam Propagation 

Unstable resonators are characterized by the presence of spherical waves inside the resonator 
that reproduce themselves after each round trip [3.54,3.55,3.67] (see Sec. 1.3). A spherical 
wave starting at mirror 1 with a radius of curvature R, is transformed by mirror 2 into a 
spherical wave with radius of curvature R, (Fig. 7.3). After hitting mirror 1 again, the initial 
radius of curvature R,is reproduced. The resonator mirrors thus image the centers of 
curvatures of the wave fionts 2, and Z, onto each other. In every unstable resonator we can 
find two spherical waves whose radii of curvature at any plane inside the resonator are 
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Fig. 7.3 In unstable resonators spherical waves can be found whose radii of curvatures are 
reproduced after each round trip. The beam propagation of the diverging wave is shown. 

are reproduced after a round trip (note that in Fig. 7.3 only one spherical wave is shown!). 
If R,  and R-denote the radii of curvature at mirror 1 (after being reflected off the mirror) of 
the two spherical waves (Fig. 7.4), the following relation holds: 

If mirror 1 is limited by an aperture with radius a, which means that the beam starting at 
mirror 1 has a diameter of 2a, the radii of curvature R ,  and R- reproduce themselves after the 
round trip, but the beam diameter is magnified by a factor M.+ and M- , respectively, with: 

The spherical wave with radius R, increases the beam radius after each round trip by the 
factor IMt I, called the magnification. Since IM, I >I holds, the corresponding spherical wave 
is referred to as the diverging wuve. If the power starting at mirror 1 (inside the aperture) is 
given by Po,  only the power 

1 P, = - Po 
M,z 

(7.3) 

hits the mirror inside the aperture after the round trip, provided that the intensity profile is 
homogeneous. The loss AVper round trip and the loss factor Vper round trip are thus given 
by: 
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Fig. 7.4 The two self-reproducing spherical waves with radii of curvature R, and R. at mirror 1 
(after the reflection). After one round trip the beam diameter is changed by a factor M+ (>1) and 1M.I 
(M-Kl), respectively. 

The loss factor represents the power fraction that stays inside the resonator after the round 
trip; the remainder of the power is absorbed by or reflected off the aperture material. 

In contrast to the diverging wave, the converging wme (RJ decreases the beam diameter 
afkr each round trip by a factor 1M.I with IM-I<I. The power Po starting at mirror 1 is 
conserved, but with every round trip the beam radius at mirror 1 is continuously decreased 
by 1M.I so that no steady state beam radius can be established on the mirror. After a few 
round trips in the resonator, the beam radius of the converging wave reaches its minimum 
value given by the difiaction limit and will then expand again. The converging wave 
transforms itself into a diverging wave due to dihction. It is for this reason that the beam 
propagation in an unstable resonator is characterrzed . by the divergent wave only. However, 
the convergent wave may have an influence on the mode properties of unstable resonators, 
if it is continuously excited by reflection off apertures or the endfaces of the active medium 
[3.67,3.125]. In the following we will deal only with the diverging wave and we will drop 
the index + in both the magnification and the radius of curvature for convenience. 

Figure 7.5 depicts the beam propagation in an unstable resonator. Instead of limiting 
mirror 1 by an aperture, the size of the highly reflecting area now defines the beam size on 
the mirror. The laser beam is generated by output coupling around the reflective spot on the 
mirror. In circular symmetry, the near field exhibits the shape of an annulus with inner 
radius u and outer radius Mu. The size of mirror 2 is chosen such that no power is coupled 
out at this side of the resonator. The coatings on both mirrors are highly reflecting for the 
desired wavelength of laser emission. 
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The following relations hold (see Fig. 7.5): 

g-parameters: 

Equivalent G-parameter: 

Magnification (round trip): 

Magnification (transit): 

Fig. 7.5 Beam propagation inside 
an unstable resonator (diverging 
wave). 

, i=1,2 L 

Pi 
g t = l - -  

I 

G = 2g,g2 - 1 

4 G T  M' = g, + 

2g2 

Radius of curvature of the spherical wave at mirror 1 : 

L 
MI + 1 - 2g, 

- travelling towards the mirror: R, = 

- reflected off the mirror: 
2Lg, 

A4 + 1 - 2g2 
R, = 

v = -  1 
Loss factor per round trip: 

M 2  

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.1 1) 
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Note that in contrast to stable resonators, the loss of the resonator represents the power 
fraction coupled out of the resonator. 

Example: p1 = -0.5m, pz= 2m, L = 0.75m 
--------- > g, = 2.5, g, = 0.625, G = 2.125 

M = 4, MI= 4, R,= -my q= 0.25 m 
Loss factor per round trip : V = 0.0625 

Three different ways to accomplish this special output coupling scheme in unstable 
resonators exist (Fig. 7.6). The high reflecting, confined mirror can be held in place by thin 
pins or mounted in the bore of a highly transmitting substrate (b). More common is the 
application of a high reflecting coating on an AR coated substrate as depicted in (a). For 
CO, lasers and other lasers emitting in the wavelength range on the order of 10pm, the 
output coupling by means of a scraper is a well established technique (c). The minor is 
confined by an aperture (usually made of copper and polished to optical quality) that reflects 
the beam out of the resonator in a direction perpendicular to the optical axis of the resonator. 

The loss of an unstable resonator is generated by the output coupling, which means that 
a higher loss might generate a higher output power. This probably sounds strange to readers 
that are more familiar with stable resonators, since the output power of stable resonators 
always decreases as the losses are increased. It takes time to adjust to the fact that the losses 
of unstable resonators are determined by the power fraction coupled out of the resonator and 
that the output coupling can be changed by varying the geometrical dimensions (mirror 
curvatures and length) of the resonator. It is definitely helpful to keep in mind that an 
unstable resonator with diffraction loss factor V per round trip provides the same output 
coupling as a stable resonator with a reflectivity of the output coupling mirror of R=V. 
Those readers who are not familiar with unstable resonators should therefore associate the 
loss factor with a mirror reflectivity. 

AR 

H 

Fig. 7.6 Technical realization of the output coupling mirror of unstable resonators. 
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Resonator Schemes 
Unstable resonators can be subdivided into two different classes: 

301 

1) g,g, > 1 , positive branch 
These resonators exhibit either zero or two focal points inside the resonator. The centers of 
curvatures of the spherical waves at the mirrors (see Fig. 7.3) are located either outside 
(g,>O, gz>O) or inside (g,<O,gz<O) the resonator. Unstable resonators exhibiting these 
properties are referred to as positive brunch unstable resonators. 

2) g,g, < 0 ,  negative branch 
One center of curvature of the spherical wave is located inside the resonator. The negutive 
brunch unstuble resonators therefore exhibit a focal spot in the resonator. Due to possible 
damage of the active medium by the high intmxvity intensities, these resonators are only 
used in high gain gas lasers. Compared to positive branch resonators they exhibit a much 
lower misalignment sensitivity. 

Resonators for which the relation: 

holds, are referred to as confocal resonators (Fig. 7.7). For confocal resonators, the focal 
points of the two resonator mirrors are on top of each other, which means that the unstable 
resonator acts like a telescope. This special mirror arrangement provides several advantages: 

a) the beam radius stays constant as the beam propagates fiom the unconfined 
mirror to the output coupler (as long as diEaction is neglected). The mode volume 
can thus be easily adapted to the volume active medium yielding optimum fill 
factors. 
b) the beam is coupled out in the form of a plane wave which saves transformation 
optics for beam handling. 

a) b) 
Fig. 7.7 Beam propagation in confocal unstable resonators with magnification IMI=2. a) positive 
branch, b) negative branch. 
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Fig. 7.8 Curves of constant magnification in the stability diagram. The broken lines indicate the 
confocal resonators. The curves with magnification 111.11 = I  are the stability limits. 

So far the geometrical description indicates that unstable resonators having the same 
absolute value of the equivalent g-parameter G=2g,g2-I exhibit the same absolute value of 
the magnification. Consequently, they have the same loss factor per round trip. Unstable 
resonators with equal losses are thus located on hyperbolas in the stability diagram, as 
shown in Fig. 7.8. 

Unstable resonators can, of course, also be realized in rectangular symmetry. If the 
confined mirror has a rectangular shape and both mirrors are spherical, the beam radii in the 
x- and in the y-direction are both magnified by the magnification M(Fig. 7.9). The decision 
as to whether rectangular or circular symmetry is chosen depends on the symmetry of the 
active medium. In general, the resonator geometry has to be designed so that the beam 
travelling towards the output coupler fills the entire active medium, and optimum output 
coupling is provided. The geometry of the output coupler is thus determined by the geometry 
of the active medium. Rectangular geometry active media (slab technology) are used in CO, 
lasers and Nd:YAG lasers. The extraction ofthe power from the active medium is optimum 
for confocal resonators since the beam radius of the back travelling wave stays constant. 
It is for this reason that confocal positive branch unstable resonators play an important role 
in practical applications. The magnification is determined by the small-signal gain of the 
active medium. Higher gain media tolerate higher magnifications as far as the laser 
efficiency is concerned. Since the focusability and the misalignment sensitivity are enhanced 
as the magnification is increased (see later sections), unstable resonators are generally 
utilized in medium to high gain lasers. Typical values of the magnification are around M=2. 
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Fig. 7.9 Confocal positive branch unstable resonator in rectangular symmetry. 

7.2.2 Focusability 

The laser beam emerges from the unstable resonator in the form of an annular ring with 
inner radius a, outer radius Mu, and a radius of curvature of R, (see (7.9)). The beam thus 
exhibits an angle of divergence 8, (Fig. 7.10), with: 

(7.13) 

This angle, which can assume very high values, is generated by the geometrical set-up of the 
resonator (for a confocal unstable resonator Bg=O holds), and it does not affect the beam 
quality of the laser. This is due to the fact that the angle of divergence can be varied by 
using a lens right behind the output coupler without changing the beam quality. It is 
advantageous to use a focal length that transforms the emerging beam into a plane wave 
(8,=0 ), as shown in Fig. 7.1 1. 

Fig. 7.10 The geometrical 
angle of divergence 6!! of an 
unstable resonator. 
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Fig. 7.11 The angle of divergence 8, can be varied by changing the design of the resonator or by 
collimating the beam with a focusing lens. All three resonators shown exhibit the same beam 
quality. The beam quality depends on the magnification Mand the mirror radius a only. 

All unstable resonators having the same magnification and the same mirror radius a exhibit 
the same beam quality, no matter how large the geometrical angle of divergence 6'' is. The 
theoretical reason for this is the fact that the beam parameter product remains constant. 
Therefore, the beam waist w, which is located at the center of curvature of the spherical 
wave with radius R, (virtual beam waist), is increased as the angle of divergence is 
decreased. The geometrical divergence angle, however, determines the position ofthe focus 
if the beam is focused by means of a lens (Fig. 7.12). Only for confocal resonators is the 
focal spot at the focal plane of the lens. The distance z of the focus from the lens, to a good 
approximation, can be calculated by using the imaging condition of geometrical optics. If 
x denotes the distance of the focusing lens fiom the output coupling mirror, the distance z 
reads: 

If w is the beam radius at the focusing lens, this relation can be written as: 

z =  ' f 
1 - l e p  

(7.14) 

(7.15) 
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Fig. 7.12 The position of the focus of unstable resonators, to a good approximation, can be 
calculated by using the imaging condition of geometrical optics, as long as w/B,d  

Example: pl=-0.5m, p2=1.5m, L=0.7m, a=3mm, x=lOOmm, f=15Omm (Fig. 7.12) 

equivalent G-parameter : G = 1.56 
magnification M =2.76 
radius of curvature R, =-2.52m 
angle of divergence Br =3.28mrad 
beam radius at lens w = 8.61 mm 
position of focus Z = 159.1 mm 

The beam quality of unstable resonators is determined by the diffraction at the confined 
output coupling mirror. If we assume that the outcoupled beam exhibits a plane phase front, 
the intensity distribution in the focal spot is given 6y the intensity distribution in the far field 
of a homogeneously illuminated annular ring with inner radius u and outer radius Mu. 
Application of the difkction integral in the Fraunhofer approximation yields the far field 
intensity distribution: 

(7.16) 

where J, is the Bessel function of order 1. Figure 7.13 presents far fie Id intensity 
distributions calculated with (7.16) as a function of 2=2nMu&A. For high magnifications 
(MA) we obtain the far field intensity distribution of a round aperture (see Sec. 2.2.2) with 
a full width half maximum (FWHM) diameter of the central peak of: 

A 
Ma 

A0 = 0.51- (7.17) 
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Fig. 7.13 Far field intensity 
distributions of a homogeneously 
illuminated ring with inner radius 
u and outer radius Mu in the limits 
of low and high magnification M 
(calculated with (7.16)). 
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In the limit of low magnification (M-l d ) ,  we get a distribution with a narrower center peak 
(d6"0.35Ah), but now the power fraction in the first side lobe is increased. No matter what 
the radius of curvature R, of the outcoupled beam is, the intensity distribution at the focus 
is always given by the distribution (7.16). The radial extent of the focal spot can be 
calculated by using the distance z of (7.14): 

r = z A012 (7.18) 

The power fraction in the side lobe and the spot radius r decrease as the magnification of 
the resonator is increased. It is for this reason that the magnification of unstable resonators 
is generally chosen as high as possible with an upper limit given by the gain of the medium 
(a high magnification requires a high gain in order to operate the resonator at optimum 
output coupling). Unstable resonators are mostly applied to active media with sufficiently 
high small-signal gain (gaPZ.5). For low gain media the optimum magnification would be 
too low to have the major power fraction going into the central peak. 

In our geometrical model, the beam waist is located at the plane of the output coupling 
mirror. We can thus make a first estimate of the beam parameter product by multiplying the 
near field diameter do with 86.5% power content: 

do = 2a 40.865M2 + 0.135 (7.19) 

with the numerically calculated full angle of divergence Q, with 86.5% power content of the 
far field distribution (7.16) to get the beam parameter product: 

1 1  do' - a /0.865M2 + 0.135 @ = - - 
4 2  K s e  

(7.20) 

where K is the beam quality factor with K<l. 
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Figure 7.14 shows numerically calculated beam parameter products as a function of the 
magnification M and the power fractions in the central peak and in the first side lobe. This 
graph indicates that the beam quality is enhanced as the magnification is increased. In the 
limit of high magnifications, the beam parameter product approaches the value for a round 
beam with a homogeneous intensity distribution (K=O. 3 75). Compared to a Gaussian beam 
(K=l ) ,  the beam parameter product of unstable resonators is at least 2.5 times higher. For 
typical magnifications between M=2 and M=4, the beam quality of unstable resonators is 
about three times worse as compared to a Gaussian beam. 

Keep in mind that the model used to calculate the beam quality assumes that the near 
field is a perfect annular ring. In reality the mode structure in the near field exhibits 
variations in both the amplitude and the phase. This diffraction effect leads to a lower power 
fraction in the side lobe and to slightly lower beam parameter products (see Fig. 7.14a). This 
is mainly due to a less steep slope in the outer area of the beam. Furthermore, with the 
incorporation of the mode structure the beam quality will become dependent on the mirror 
radius a, as will be discussed in a later section. 
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Fig. 7.14 Calculated beam parameter 
products (86.5% power content, 
upper graph) and power fractions in 
the center peak and in the side lobe as 
a function of the magnification (using 

h 
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mode structure = (Neq4.5 

l ~ o  * * i0 * 4lO * 5:o * the far field distribution of a 
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A similar geometrical treatment can be performed for unstable resonators in rectangular 
symmetry. The one-dimensional far field is given by the Fourier transform of a double slit 
with a slit width of (M-1)a and a slit separation (center-to-center) of (M+l)a. The angular 
intensity distribution in one dimension reads: 

(7.21) 

For the same magnification, the intensity distribution at the focus of unstable resonators in 
rectangular symmetry exhibits much higher side lobes as compared to circular symmetric 
unstable resonators. Figure 7.15 presents measured focal intensity distributions for both 
symmetries in comparison with the theoretical distributions calculated numerically with 
taking the near field mode structure into account. This graph clearly indicates the relation 
between the height of the side lobes and the magnification. Measured beam parameter 
products for an Nd:YAG slab laser With unstable resonators in rectangular symmetry as a 
function of the magnification are shown in Fig. 7.16. Similar to circular symmetry unstable 
resonators, the beam parameter products are 3-6 times higher as compared to a Gaussian 
beam. 

a0 [mmmrad] 0 [mad] 

Fig. 7.15 Measured (solid lines) and calculated (broken lines) intensity distributions at the focus 
of unstable resonators for Nd:YAG lasers (A=Z.O64pm). a) circular symmetry, u=Z.Smm, b) 
rectangular symmetry, a=2.Omm [S.7]. 
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Fig. 7.16 Measured beam 
parameter products (86.5% 
power content) of an Nd:YAG 
slab laser (li=1.064pm) with 
unstable resonators in 
rectangular symmetry. The 
beam parameter product of a 
Gaussian beam is 0.25mmmrad 
(note that this is less than UJX 
due to the symmetry) [3.129] 
(0 Chapman and Hall 1992). 

It is important to understand that for unstable resonators, the intensity distribution in the far 
field and the intensity distribution at the focus are generally different. The two distributions 
are only similar if the geometrical angle of divergence 8' is equal to zero. For a 
nonvanishing geometrical divergence, the far field has an annular shape whereas the 
intensity distribution in the focal spot is still determined by the distributions (7.16) and 
(7.21) and exhibits a central intensity peak. The measurement of the far field in the focal 
plane of a lens will thus not provide any information on the focusability of the beam. This 
is in contrast to stable resonator modes where identical distributions are observed in the far 
field and in the focus. 

focus 
t 

Fig. 7.17 The intensity distributions in the far field and at the focus are identical only for confocal 
resonators. The far field is observed in the focal plane of the lens (b) whereas the focus is found at 
a distance z from the lens (c). 
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Fig. 7.18 Measured beam radii (86.5% power content) and radial intensity distributions in the 
vicinity of the focal spot for an unstable resonator (Nd:YAG laser, R=l .  064pm, M=3, f=500mm). 
The curves represent the caustics for a Gaussian beam (lower curve) and a higher order stable 
resonator mode with the same beam parameter product as that of the unstable resonator. In the right 
hand graph, the focus is at z=O. 

The reason for this behavior is the fact that the mode structures of unstable resonators do 
not represent eigensolutions of the free space diffraction integral. This means that the mode 
structure changes as the beam propagates; an annular ring in the near field is transformed 
into a centered intensity distribution at the focus. The power fraction in the center peak is 
continuously transferred to the sidelobe as the observation plane is moved from the focal 
plane back to the output coupler. In the vicinity of the focal spot, unstable resonators thus 
exhibit an increase in the side lobe intensity in addition to the increase in the beam size (Fig. 
7.18). This graph indicates that despite the changing intensity structure, the beam radii 
follow, to a good approximation, the same parabolic propagation law as a higher order stable 
resonator mode. The knowledge of the beam parameter product thus enables us to calculate 
the Rayleigh range in a way similar to stable resonators: 

2 
WO zo = - 

d0W4 (7.22) 

where wo is the beam radius at the focus and d0@4 is the beam parameter product. 
So far we have assumed that the intensity distribution inside the unstable resonator is 

represented by a rectangular profile. Unfortunately, this is only a fair approximation of the 
real mode structure. Due to difiaction at the output coupler, the field distributions inside 
and outside the resonator exhibit a more complicated phase and amplitude structure which 
influence both the losses and the beam quality. The geometrical loss factor (7.1 1) represents 
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only a lower bound for the real loss factor in unstable resonators. In order to get a detailed 
understanding of unstable resonators the mode structure has to be calculated by using 
diffraction integrals. However, the geometrical discussion presented so far is not worthless, 
since the beam propagation can alwaysbe described by geometrical optics. Furthermore, the 
mode structure and the losses will converge to the geometrical quantities if the Fresnel 
number is chosen high enough. This is a consequence of the fact that for Fresnel numbers 
greater than 100, the field distributions do not change significantly during propagation and 
can therefore be propagated by using the laws of geometrical optics. 

7.3 Diffraction Theory of Unstable Resonators 

7.3.1 Mode Structures, Beam Quality, and Losses 

The steady state field distributions on the mirrors of unstable resonators can be calculated 
similarly to those of stable resonators by applying the integral equations (5.71) in 
rectangular symmetry and (5.73) in circular symmetry. For both stable and unstable 
resonators the same integral equations can be used, the only difference is that the absolute 
value of the G-parameter is now greater than 1 .O. Similar to the treatment of stable resonator 
modes, the integral equations can be simplified by separating the coordinates. The intensity 
distributions of the eigenmodes and the loss factor V=l fl’ again depend on the absolute 
value of the equivalent g-parameter G and the absolute value of the effective Fresnel number 
Ne~d/(2Lg2.1). Unstable resonators exhibit an infinite set ofTEM modes with mode indices 
pPand mn, but the mode properties are completely different as compared to the modes of 
stable resonators. Figure 7.20 presents calculated loss factors per round trip of unstable 
resonators with magnification M=2 for some transverse modes in circular symmetry with 
Q=O and P=l . In contrast to stable resonator modes, the loss factor does not always increase 
as the aperture radius is increased leading to extreme values of the loss factor. 

Fq. 7.19 Calculation of the field distribution at the plane of the output coupler for unstable 
resonators in circular symmetry. After the round trip the shape of the field at mirror 1 is still the 
same. 
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Fig. 7.20 Calculated loss factor per round trip as a function of the effective Fresnel number N for 
unstable resonators in circular symmetrywith magnificationM=2. The radial intensity distributions 
at the plane of the output coupler are shown for the first three loss factor maxima. 

Since different transverse modes exhibit their maxima at different Fresnel numbers, the loss 
factor curves cross, which means that at this point two transverse modes have the same 
diffraction loss. For transverse modes without azimuthal structure (H) the loss factor is 
higher as compared to other modes and also higher than the geometrical loss factor of UM. 
The reason for the lower loss becomes apparent if we investigate the intensity profiles of the 
modes at the loss factor maxima. Since the profiles are more centered as compared to the 
homogeneous profile assumed in the preceding section, a higher power fraction hits the 
output coupler again after the round trip resulting in a higher loss factor. 

It is important to note that the beam radii of different transverse modes are the same. 
This property, together with the difference in difiaction loss between transverse modes, 
determines the special oscillation behavior of unstable resonators. The mode with the lowest 
loss will start oscillating first and deplete the gain in the same area of the active medium that 
might be used by other transverse modes. These modes, however, exhibit too high of a loss 
for the leftover gain to reach the laser threshold. Except for the operation at mode crossing 
points, unstable resonators thus oscillate in a single transverse mode with no azimuthal 
structure (P=O). 
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For practical applications, therefore, it is sufficient to determine the loss and the mode 
structure only for the lowest loss modes, which means that we only have to calculate the 
envelope of the curves in Fig. 7.20. The calculated loss factor per round trip of the lowest 
loss mode for unstable resonators in circular and rectangular symmetry are presented in Fig. 
7.2 1. In these graphs, the loss factor is plotted versus the equivalent Fresnel number Ne4, 
which is related to the effective Fresnel number via: 

(7.23) 

By using the equivalent Fresnel number as a mode parameter, the mode crossing points are 
characterized by integral values of Nq. A s  the intensity distributions in Fig. 7.22 indicate, 
the mode structure suddenly changes if the Fresnel number is slightly increased around an 
integral value of Nq. Since the two modes have complementary intensity profiles and 
nearly the same diffraction losses, they can oscillate simultaneously. In order to attain true 
single transverse mode operation in an unstable resonator, it, therefore, is recommended to 
choose half integral values of the equivalent Fresnel number because the loss difference 
between modes is a maximum in these areas (Fig. 7.23). 

1.0, I 

O f  I 
0 2 I 6 

Equivalent Fresnel Number Nes 
1.0 . , . , . , . , . , . , 

Equivalent Fmncl Numbcr N q  

Fig. 7.21 Calculated loss factor per round trip of the lowest loss modes as a function of the 
equivalent Fresnel number Nq. a) circular symmetry with mirror radius a, b) rectangular symmetry 
with mirror width 2u, one-dimensional loss factor V, the total loss factor is V = t V ,  [I1291 
(Chapman & Hall 1992). 
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Fig. 7.22 Calculated radial intensity distributions on the confined mirror at an equivalent Fresnel 
numberNq=3 for a magnification ofM=3.75 [3.116](0 AIP 1988). 

Fig. 7.23 Time resolved measurement of the radial mode structure of an Nd:YAG laser with an 
unstable resonator. The drawing depicts the experimental set-up. The upper row represents the 
temporal laser emission, the photographs below show the corresponding radial intensity 
distributions. The simultaneous oscillation of two transverse modes is observed at N,=l.I 
(photograph in the middle) r3.1161 (Q AIP 1988). 
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Figure 7.24 shows measured radial intensity distributions at the plane of the output coupler 
in comparison to the theoretical profiles. The radius (I of the output coupler 
and the geometrical beam radius Mu are indicated. With increasing Fresnel numbers the 
mode structures exhibit more side lobes and will approach a homogeneous profile for very 
large Fresnel numbers. Note that the geometrical beam radius Mu is quite a good 
approximation for the lateral extent of the modes. Similar to the mode structures, the loss 
factors converge to the geometrical loss factor for large Fresnel numbers (Fig. 7.25). 
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Fig. 7.25 Measured and calculated loss factors per round trip of unstable resonators in circular 
symmetry for different magnifications Mas a function of the equivalent Fresnel number (pulsed 
NdYAG laser) [3.116] (0 AIP 1988). 
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Fig. 7.26 Calculated normalized beam parameter products d0@'(4A) (86.5% power content) of 
unstable resonators in circular symmetry as a function ofthe equivalent Fresnel number for different 
magnifications M. The corresponding values for a homogeneous annular ring (Fig. 7.14) are 
indicated by the horizontal lines. 

The mode structure at the output coupler not only influences the loss factor, but also affects 
the beam quality of the unstable resonator. Figure 7.26 shows beam parameter products 
(86.5% power content) as a function of Nq and M, taking into account the mode structure 
in the near field. The comparison with the beam parameter products obtained by 
approximating the near field by a homogeneous ring profile indicates that the incorporation 
of the mode structure at the output coupler generally improves the beam quality (except 
close to integral values of Nq). Furthermore, the power content in the central peak is 
increased as compared to the far field of an annular ring (Fig. 7.27, cf. Fig. 7.14). 

I " " " " " ' I  
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Fig. 7.27 Calculated power content in the central peak and in the side lobe of the far field intensity 
distribution as a function of the magnification (circular symmetry,Nq=0.5). 
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7.3.2 Applications of Unstable Resonators 

The main advantage of unstable resonators is the adaptation of the beam radius inside the 
resonator by changing the mirror radius u. Since single transverse mode operation is not 
linked to the size of the mirror, as is the case for stable resonators, beam quaIities close to 
the diffraction limit can be attained even for gain media with very large cross sections. In 
contrast to stable resonators, a high mode volume and a high beam quality can be realized 
simultaneously. This sounds too good to be true. So what are the drawbacks ? 

First of all, the power content in the side lobes of the far field might cause problems in 
specific applications. In order to minimize the power content in the side lobes the 
magnification has to be chosen as high as possible. This, however, quires an active 
medium with ahigh gain. It therefore makes no sense to use an unstable resonator in a HeNe 
laser, since the gain is too low to obtain a good laser efficiency. Secondly, the output power 
of unstable resonators generally is 20%-30% lower as compared to a stable resonator in 
multimode operation. This is due to a lower fill factor in combination with additional 
dihction losses induced by the rim of the active medium. If one is mofe interested in the 
output power than in attaining an excellent beam quality, it is therefore more advantageous 
to use a stable resonator in multimode operation. This preference of multimode stable 
resonators is also due to their easier alignment and their lower sensitivity to mirror 
misalignment. 

Unstable resonators have found application in high power CO, lasers 
3.60,3.64,3.66,3.69,3.83,3.122] and excimer lasers [3.92,3.102,3.119], both of which 
generally exhibit a high gain and a large cross section of the active medium. Unstable 
resonators are also used in pulsed solid state lasers [3.85,3.106,3.111,3.125- 
3.129,3.137,3.146,3.152,3.156,3.163-3.1691. Unfortunately, the thermal lensing of the solid 
state laser materials deteriorates the beam quality and makes beam handling quite difficult, 
as will be discussed in Chapter 12. It is for this reason that most applications of unstable 
resonators in solid state lasa engineering are limitkd to low power Q-switch systems. The 
utilizationofunstableresonatorsindiodelasers [3.124], dyelasers r3.1711, andheelectron 
lasers [3.100,3.107,3.114] has also been reported. 

7.4 Misalignment Sensitivity 

All geometrical relations presented in Sec. 5.4'for stable resonators also apply to unstable 
resonators. Since mimr 2 is always unconhed, the additional losses occur at the output 
coupling mirror 1 due to a shift A,jof the optical axis with respect to the center of mirror 1.  
If mirror 2 is tilted by an angle a, and the output coupling mirror exhibits a radius a, the 
relative shift is given by (Fig. 7.28, see also Fig 5.47): 

(7.24) 
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91 

Fig. 7.28 Misalignment of mirror 2 induces 
a shift A of the optical axis (oA) on mirror 
1. Additional diffraction losses are 
generated at the confined mirror 1. 

Q2 

If mirror 1 is tilted by an angle a,, the corresponding relation reads: 

(7.25) 

We see that a tilt of the unconfined mirror by the angle a, is equivalent to the misalignment 
of the output coupling mirror by the angle a,=aJg,. These two geometrical relations already 
provide us with valuable information on the tilt sensitivity of unstable resonators: 

- the misalignment sensitivity gets lower if the equivalent g-parameter G or the 
magnification M is increased. 
- negative branch resonators (G<-l) are less sensitive to mirror tilt than positive 
branch resonators. For a magnification of 1M=2, we can expect a nine times lower 
sensitivity in the negative branch (assuming equal length L and equal mirror radius a). 

Similar to stable resonators, unstable resonators experience a parabolic increase of the losses 
if one of the resonator mirrors is tilted [3.60,3.68,3.79,3.89,3.118,3.129]. However, the 
diffraction losses of unstable resonators can also increase at higher tilt angles as shown in 
Fig. 7.29. The resulting loss factor minima can be related to a switching of transverse modes 
similar to the mode switching of the aligned resonator at integer equivalent Fresnel numbers 
Neq. Using the shift A of the optical axis, we can define two new equivalent Fresnel numbers 
N,' with: 

(7.26) 
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Fig. 7.29 Measured loss factor 
per round trip of a circularly 
symmetric unstable resonator for 
misalignment of the unconfmed 
mirror 2 (NdYAG rod laser). The 
dots represent a numerical 
calculation using difhction 
integrals [3.118] (0 Taylor & 
Francis 1988). 

The tilt angles at which the mode crossings occur can be related to integer values of this 
newly defined equivalent Fresnel number. For the misalignment of the unconfined mirror, 
the loss factor minima occur at the angles: 

r 1 

(7.27) 

withp being an integer. The upper sign holds forp>INql, the lower sign forp<IN,I. For 
the measurement shown in Fig. 7.29, Eq. (7.27) yields 21.7prad @=I), 37 prad @=2), and 
82prad @=3), which is in good agreement with the experimental data. 

In general, the tilt angle at which the fmt mode crossing occurs is greater than the tilt 
angle at which the losses have increased by 10%. Similar to stable resonators, we can 
therefore define a parabolic dependence of the loss factor Von the angle of misalignment: 

(7.28) 

As was already done in Sec. 5.4 for the misalignment of stable resonators, it is convenient 
to introduce the misalignment parameter D=La,opdu to quantify the misalignment sensitivity 
of unstable resonators. The misalignment parameter depends only on the equivalent g- 
parameter G and the absolute value of the equivalent Fresnel number N,. Figure 7.30 
presents calculated misalignment parameters for the misalignment of the unconfined mirror 
2 as a function of the equivalent Fresnel number for both positive branch and negative 
branch unstable resonators. The calculations were performed by numerically solving integral 
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equation (5.85). These graphs enable us to determine the 10% angles of any unstable 
resonator. Note that the 10% tilt angle of the confined mirror 1 can also be determined by 
applying the above mentioned equivalency relation between the tilts of the two mirrors. As 
we already found in our preliminary geometrical result (7.24), the misalignment sensitivity 
becomes lower for high magnifications and small ratios of resonator length L to mirror 
radius a. Furthermore, a low Fresnel number is advantageous for the stability of an unstable 
resonator. Figure 7.30 also confirms the lower sensitivity of negative branch resonators 
predicted by our geometrical analysis! 

How does this compare to the misalignment sensitivity of stable resonators ? The 
misalignment parameters for stable resonators in fundamental mode operation with adapted 
aperture radius (a=l.3w, w: Gaussian beam radius at the aperture) and for positive branch 
unstable resonators with N,=0.5 are presented in Fig. 7.3 1. This graph indicates that the 
misalignment parameters are comparable. However, in order to get a high mode volume of 
the Gaussian beam in the stable resonator, an equivalent g-parameter G between 0.95 and 
1.0 or a large resonator length is required. Considering this, the 10%-angle of stable 
resonators in fundamental mode operation, therefore, is several times smaller as compared 
to unstable resonators. 
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Fig. 7.30 Calculated 
misalignment para-meter 
Lcx,,Ja as a hnction of the 
equivalent -Fresnel number for 
misalignment of t h e  
unconfined mirror of unstable 
resonators i n  circular 
symmetry. a) positive branch, 
b) negative branch [3.118] (0 
Taylor & Francis 1988). 
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Fig. 731 Measured and calculated 
misalignmentparameter of stable resonators in 
fundamental mode operation with adapted 
aperture radius a and positive branch unstable 
resonators with equivalent Fresnel number Nq 
as a function of the equivalent g-parameter G. 
The unconfined mirror 2 is tilted (circular 
symmew. 
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Example: 

Confocal resonator with M=2 (g,=1.5, g2=0.75, 6 4 . 2 5 ,  L=0.5m, A=1.064pm) 
In order to fill an active medium of diameter 6.35mm we need a mirror radius a of 1.5Smm. 
This results in an equivalent Fresnel number of Ne,=2.36. For this resonator the 
misalignment parameter in Fig. 7.30 is 20 mrad. This results in a 10%-angle of 63 prad for 
the unconfined mirror. If the output coupling mirror is misaligned the 1 0%-increase of the 
loss occurs at a tilt angle of 84prad (=63prad/g,). 

comparable mode volume and the same resonator length. The Gaussian beam radius w, at 
mirror i is given by (see Sec. 2.8.2): 

Now let us design a stable resonator in hdamental mode operation having a 

, ij=1,2 ; i+j 2LgA w: = 

We place the active medium close to mirror 1. In order to completely fill the medium, the 
Gaussian beam radius w, has to be 1.3 times smaller than the radius of the medium, resulting 
in w,=2.44mm (the radius of the medium is the aperhue radius a). We choose a mirror 
radius of mirror 2 of -0.25m. With this choice all other resonator parameters are defined: 
g2=3.U, G=U.985, g,=U.331. According to Fig. 7.31 (or Fig. 5.49), the misalignment 
parameter for mirror 2 is about Smrad. This results in 10%-angles of 5 lprad for mirror 2 
and 17prad for mirror 1. This resonator would be several times more sensitive to 
misalignment than the unstable resonator! 
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Equivalent Fresnel Number 

Fig. 732 Measured and calculated misalignment parameter as a function of the equivalent Fresnel 
number for unstable resonators in rectangular symmetry with magnification M=I. 6 (Nd:YAG slab 
laser) [S.7]. 

In rectangular symmetry, the misalignment sensitivity of unstable resonators is comparable 
to the circularly symmetric ones as a comparison of Fig. 7.32 and Fig. 7.30a indicates. 

The reader should keep in mind that the misalignment of unstable resonators increases 
the output coupling. This is in contrast to stable resonators in which the output coupling 
remains constant and the increase in loss is due to clipping of the beam at an aperture. It is 
for this reason that the influence of mirror misalignment on the output power is quite 
different for the two resonator types. In contrast to stable resonators in which a mirror tilt 
is equivalent to a decrease of output power, unstable resonators may exhibit an increase of 
power, This increase can be observed if the aligned resonator is undercoupled, which means 
that the output coupling is too low for the given small-signal gain of the active medium. 
This interesting property will be discussed in more detail in Chapter 14. We will see that the 
increase in output coupling results in a misalignment sensitivity of the output power that is 
twice as low as compared to the sensitivity of the power of stable resonators in fundamental 
mode operation, assuming the same 10%-angle for the loss for both resonators. A similar 
statement holds for the shape of the far field intensity distribution. Even for tilt angles much 
higher than the 10%-angle, the shape stays almost constant, as the measured intensity 
distributions in Fig. 7.33 indicate. For stable resonators in fundamental mode operation, the 
far field structure already exhibits a noticeable asymmetry at the 1 0%-angle. 
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Fig. 733 Measured, normalized intensity distributions in the far field of a positive branch unstable 
resonator for different tilt angles of the unconfined mirror (G=l. 75, N,=2.85, L=0.32m, a=lmm, 
1=1.O64pmy Nd:YAG rod laser). The 1 0%-angle alOX is 50prad [3.118](0 Taylor & Francis 1988). 

7.5 Unstable Resonators in Off-Axis Geometry 

Unstable resonators in rectangular geometry exhibit high side lobes in the far field, even for 
high magnifications (M>2). This is due to the fact that the far field is determined by 
diflkction at a double slit which leads to a strong modulation of the intensity distribution 
in the far field (see Fig. 7.15b). Fortunately, the side lobes can be decreased considerably 
if the radiation is coupled out at one side of the high reflecting output coupling mirror 
[3.1,3.129]. This can be accomplished by misaligning both resonator mirrors in such a way 
that the optical axis is positioned along a comer of the active medium rather than choosing 
the symmetryaxis of the medium as the optical axis (Fig. 7.34). If spherical mirrors are used 
the beam is magnified along the x- and the y-axis during a round trip but only in one 
direction. Accordingly, the beam is coupled out at one side of the output coupler only. The 
one-dimensional intensity distribution in the far field is now given by the Fourier transform 
of an illuminated single slit (see Sec. 2.2.1). The effect of this special output coupling 
scheme on the mode structure and the far field ihtensity distribution is presented in Fig. 7.35 
for a confocal unstable resonator with magnification M=1.5. The power content in the side 
lobes of the far field is clearly reduced resulting in an improvement of the beam quality by 
a factor of 2. Note that in off-axis geometry the near field experiences diffraction losses at 
the edge of the active medium (hatched area in the upper right graph). These additional 
losses can be minimized by adjusting the mirror alignment so that the optical axis is slightly 
moved outside the active medium. Since the off-axis unstable resonator can be viewed as 
a misaligned on-axis resonator, the difhction losses are higher as compared to on-axis 
unstable resonators in rectangular symmetry (Fig. 7.36, see Fig. 7.21b for a comparison). 
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Fig. 734 Confocal unstable resonator with spherical mirrors in off-axis geometry. The optical axis 
is positioned along the lower left comer of the active medium. The hatched area marks the HR 
coating of the output coupling mirror [3.129] (0 Chapman and Hall 1992). 
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Fig. 735 Calculated intensity distributions in the near field and in the far field of an unstable 
resonator with magnification M=2, both in on-axis and in off-axis geometry. The near field inside 
the resonator at the plane of the output coupler, is shown (HR indicates the high reflecting area) 
[3.129] (0 Chapman and Hall 1992). 
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Fig. 736 Calculated one-dimensional loss factors of unstable resonators in off-axis geometry as 
a function ofthe equivalent Fresnel number N-= d m / ( Z g 2 A )  (a: width ofthe HRcoating on the 
output coupler hit by the beam). The curve parameter is the magnification M(see also Fig. 7.21 b). 

In spite of the asymmetry ofthe L-shaped intensity distribution coupled out ofthe resonator, 
the intensity distribution in the far field is symmetric with respect to the x-axis and the y- 
axis. The slight asymmetry in the far field intensity distribution in Fig. 7.35 is a result of the 
near field mode structure; if the near field were a perfect L with homogeneous illumination, 
the focus would be completely symmetric. Figure 7.37 presents photographs of the near field 
and the far field of a Nd:YAG slab laser with an unstable resonator with magnification 
M=1.4 in off-axis geometry. The comparison of the beam quality of on-axis and off-axis 
unstable resonators shown in Fig. 7.38 clearly indicates the advantages of the off-axis 
geometry. 

Fig. 737 Photographs ofthe near field and the far field intensity distributions of a confocal unstable 
resonator in off-axis geometry with M=Z.4 (Nd:YAG slab laser, A=1.064p, cross sectional area 
of the slab: 4x12 mm') [3.129] (0 Chapman and Hall 1992). 
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For active media with rectangular cross section the off-axis geometry is the preferred means 
to attain good beam quality. Since the aspect ratio of the medium (ratio of height to width) 
is generally high (for solid state slab lasers and CO, slab lasers the aspect ratio is 4-6 and 
5-10, respectively) it is common to apply the off-axis unstable resonator scheme only in the 
direction of the larger dimension. In the perpendicular direction (width) a stable resonator 
(solid state) or a waveguide resonator (Cod is usually chosen [5.80,5.104]. Since the width 
is on the order of millimeters it is possible to obtain beam qualities near the diffraction limit 
by using the latter two resonator concepts. A detailed discussion on these so calIed hybrid 
resonators is given in Chapter 19. Figures 7.39 and 7.40 show layout and perfomance of 
a diode-pumped Nd:YAG slab laser using an off-axis unstable resonator along the slab 
width and a stable resonator along the thickness of the slab.. By using a variable reflectivity 
mirror (VRM) as the output coupler, a beam propagation factor MZ of less than 1.2 was 
attained in the unstable direction r3.1791. Similar results have been reported at even higher 
power levels [3.173-1751 and also for Vanadate slabs [3.177,3.178]. 

Fig. 739 End-pumped Nd:YAG slab laser with off-axis unstable resonator t3.1801. 
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Fig. 7.40 Measured focus intensity distribution for the slab laser of Fig. 7.39 in the unstable 
resonator direction, with a hard edge (left) and avariable reflectivity output coupler (VRM, right). 
Output power in both cases was 60W, magnification : 1.7 for hard edge and 1.2 for VRM [3.180]. 

It is also possible to apply the off-axis concept to circularly symmetric media (Fig. 7.41). 
Unfortunately, it is very difficult to manufacture glass substrates exhibiting the aspheric 
shapes required for this resonator concept. It is for th is  reason that circularly symmetric off- 
axis resonators have only been realized in CO, lasers for which copper mirrors of any shape 
can be made using diamond milling [3.130]. The basic principle of the resonator set-up can 
be understood if we imagine a one-dimensional off-axis unstable resonator in rectangular 
symmetry whose cylindrical mirrors are bent to form a tube. The output coupling mirror 
now exhibits an annular shape and the laser beam emerges fiom the resonator through the 
central aperture. Thus, the far field is similar to the Fraunhofer diffraction pattern of a 
circular aperture having much lower side lobes as compared to an on-axis unstable resonator 
(Fig. 7.42). Note that for a given magnification M, the output coupling losses are lower in 
the off-axis geometry. Instead of l/M2 for the on-axis resonator, the geometric loss factor 
is now given by (Fig. 7.43): 
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L 

(7.29) 

Fig. 7.41 The off-axis unstable resonator in circular geometry [S. 81. 



328 Chapter 7 Unstable Resonators 

1 0  

0 8  

0 6  

4 0.4 

0 2  

0 0  

______-  -----  _.--- __-- 
\*/- 

Fig. 7.42 Calculated far field intensity 
distributions for confocal on-axis (a) and off- 
axis (b) unstable resonators in circular 
symmetry. The magnification is M=1.5 
(d=20mmn. A=10.6pm) [S.8]. 
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7.6 Unstable Resonators with 
Coupling 

Fig. 7.43 Geometric loss per round 
trip for circularly symmetric unstable 
resonators in on-axis (a) and off-axis 
geometry (b) as a function of the 
magnification [S.8]. 

Homogeneous Output 

The side lobes in the far field of unstable resonators are caused by diffraction off the edge 
of the output coupling mirror in combination with the annular shape of the near field. A 
method to overcome this disadvantage is to transmit the laser beam through a partially 
reflecting unconfined mirror (Fig. 7.44). The beam size is defined by an aperture in front of 
the high reflecting mirror which replaces the output coupler described in previous sections. 
Similar to the off-axis resonators, the far field distribution is given by the Fraunhofer 
diffraction pattern of a round aperture which exhibits smaller side lobes. However, due to 
the mode structure at the aperture, which for low equivalent Fresnel numbers exhibits a 
Gaussian-like field distribution, the power content in the side lobes is even smaller. 
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Fig. 7.44 Unstable resonators with homogeneous output coupling. a) using a partially reflecting 
mirror 2, b) using a polarizer with a rotatable quarter wave plate to vary the output coupling. 

The laser beam can be described as a Gaussian beam to a good approximation. 
Unfortunately, the price to be paid for this improvement is a considerable decrease of output 
power because the d m o n  loss of the unstable resonator represents a true loss. It is 
recommended to use a low magnification to keep this loss as low as possible. This resonator 
concept, therefore, is only suitable for applications in which a perfect beam quality and a 
Gaussian intensity distribution is more important than the optimization of the laser 
efficiency (e.g. as a master oscillator to feed the beam into an amplifier chain) [5.29]. 
Unstable resonators with homogeneous output coupling are used for active media with high 
gain and small emission wavelengths (Q-switched solid state lasers and excimer lasers). For 
these lasers no other resonator concept exists that combines near diffraction limited 
focusability with a high efficiency. A common stable resonator in fhdamental mode 
operation might not provide the output power required. Note that replacing the aperture by 
a high reflecting flat mirror in order to decrease the losses will not work since the two 
mirrors will then form a stable resonator depleting the gain in the outer area of the medium. 
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7.7 Unstable Resonators with Variable Reflectivity Mirrors 

7.7.1 Resonator Properties 

A better way than using homogeneous output coupling techniques to decrease the power 
content in the side lobes of the far field of unstable resonators is the utilization of output 
coupling mirrors with a variable reflectivity profile [3.13 1-3.1711. The reflectivity profile 
which generally exhibits a maximum at the center improves the beam quality by two effects. 
The diffraction of the power into the side lobes is considerably decreased by replacing the 
hard edge by a continuous transition from high to low reflectance. Furthermore, the center 
reflectivity and the shape of the profile can be varied to generate a specified intensity profile 
in the near field (e.g. flat top beams). Figure 7.45 shows the effect of the reflectivity profile 
on the near field and the far field intensity distributions of a confocal unstable resonator in 
circular symmetry with magnification M=2. The parabolic and the Gaussian profile both 
decrease the power content in the first side lobe from 25% to about 34%. The specific 
shape of the reflectivity profile is only of secondary importance, especially if the center 
reflectivity is chosen lower than 100%. However, in order to maximize the fill factor, 
steeper profiles are preferred since the mode with its correspondingly steeper slopes can be 
better adapted to the active medium. From 1985 to 1995 much effort was spent to develop 
coating techniques for generating variable reflectivity mirrors (VRM) exhibiting Gaussian, 
super-Gaussian, and parabolic reflectivity profiles [3.140,3.151,3.154,3.160,3.162,3.166, 
3.1681. 

Fig. 7.45 Calculated 
intensity distributions in 
the near field and the far 
field of a confocal 
unstable resonator with 
M=2 and N,=0.5 for 
different reflectivity 
profiles of the output 
coupler. 
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Fig. 7.46 Super-Gaussian reflectivity 
0 profiles for different indices n as a 

function of the radius [S.9]. 

Super-Gaussian Mirrors 
The VRMs most commonly used exhibit a super-Gaussian reflectivity profile which in 
circular symmetry reads: 

R(r) = a. ex{-( 5) '1 (7.30) 

with: R,: center reflectivity 
w: profile radius 
n: Super-Gaussian index 
r: radial coordinate 

The Super-Gaussian index n determines the shape of the reflectivity profile. For n=2 the 
profile is Gaussian and with increasing n the slopes become steeper until the hard edge 
profile is approached in the limit n--> m (Fig. 7.46). 

The mode properties can be evaluated by using the stationary condition for the electric 
field. If E,(r) denotes the electric field hitting the output coupling mirror, the electric field 
after one round trip reads (we treat the round trip by magnifying the field by the 
magnification M) : 

The stationary condition E&)=yB,(r)with y being the eigenvalue yields: 

(7.3 1) 

(7.32) 
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After insertion of the Super-Gaussian reflectivity profile (7.30), the stationary electric field 
can be calculated. The corresponding intensity profile is given by: 

(7.33) 

with: wy = w (Mn-1)"" M >  1 (7.34) 

The total loss factor per round trip reads: 

(7.35) 

Thus, the intensity distribution at the output coupler inside the resonator is also super- 
Gaussian with a beam radius w, The intensity profile of the near field can be obtained by 
multiplying (7.33) with the intensity transmission Z-R(r) of the VRM. Note that the loss 
factor per round trip is the same for all Super-Gaussian indices and equal to the geometrical 
loss factor! This result can be verified if diffraction integrals are used to propagate the field 
inside the resonator. Figure 7.47 presents numerically calculated loss factors per round trip 
of unstable resonators with M=2 as a function of the equivalent Fresnel number for different 
super-Gaussian indices. Only for low equivalent Fresnel numbers can the beam propagation 
not be described by geometrical optics. This is to be expected since the purpose of the 
VRMs is the reduction of diffraction effects. 
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Fig. 7.47 Calculated loss factor 
per round trip of the lowest loss 
mode (P=O) as a function of the 
equivalent Fresnel number for 
circularly symmetric unstable 
resonators with magnification 
M=2 using different super- 
Gaussian indices n [3.158] (0 
OSA 1992). 
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Ray Transfer Matrix for Gaussian Mirrors 
For a mirror with a Gaussian reflectivity profile it is possible to define a ray transfer matrix 
which can be used to determine the beam properties by applying the ABCD law. Let us 
assume that a Gaussian beam with beam radius wo and infinite radius of curvature is incident 
on a Gaussian mirror with profile radius w and radius of curvature p. The beam parameters 
qI,q2 before and after the reflection read: 

We know that the beam parameters transform according to the ABCD law: 

(7.36) 
(7.37) 

(7.38) 

with A,B,CJ being the elements of the ray transfer matrix of the mirror. Since B=O (no 
propagation) and A D = l ,  we find the ray transfer matrix of the Gaussian VRM to be: 

By using this matrix we can calculate the radius of curvature and the beam radius of the self- 
consistent Gaussian beam. Starting in front of the VRM (mirror l), the ray transfer matrix 
for a round trip is given by: 

(7.40) 

Application of the ABCD law yields the stationary q-parameter (see Sec. 2.7.2). By using 
the assumption that the effective Fresnel number N,=w2/(2Lg2A) and the equivalent G- 
parameter G=2gIg,-l are related by: 

1 G > -  
2 q f l  

(7.41) 

the radius of curvature R and the beam radius w,of the Gaussian beam in front of the VRM 
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result. Note that this assumption usually holds since in most lasers the effective Fresnel 
numbers are greater than one (see also Fig. 7.47 forthe validity of (7.41)). A straightforward 
calculation yields the final results: 

R =  2Lg, (7.42) 

- G + 2g2 - 1 

. .  
. 

d=2mm ' . . h=O,Smm . 
b 

o+-. =. . , . . . , . . . , , 0 .. 1 

W M  = w / i F T  (7.43) 

The radius of curvature R of the Gaussian beam represents the expected value for unstable 
resonators given by (7.9). The beam parameters of the Gaussian beam at any plane inside 
and outside the resonator can now be determined using the ABCD law for Gaussian beams. 
Although a Gaussian beam is an eigensolution, this resonator is not a stable resonator! 

7.7.2 Production of VRMs 

Variable reflectivity mirrors are produced by coating an AR-coated substrate with one or 
several layers having a decreasing thickness along the radius. The optical thickness in the 
center of each layer is preferably a quarter wavelength. The graded profile is generated by 
using a mask with diameter d located at a certain distance h on top of the substrate. The two 
mask parameters control the shape of the reflectivity profile. The deposition rate of the 
coating particles continuously decreases with increasing distance from the substrate's center 
(Fig. 7.48). With only one graded layer it is difficult to attain high center reflectances due 
to the limited availability of coating materials exhibiting a high enough refractive index (see 
Sec. 4.3.2). 

source 

substrate 

Fig. 7.48 Production of VRMs by coating through an aperture. The number of layers and the 
coating materials determine the center reflectivity. The aperture diameter d and the aperture 
distance h control the profile. The right figure shows the measured reflectivity profile of a single 
TiO, A/4 layer on an AR-coated BK7 substrate. 
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For TiO,(n=2.25), commonly used as high index material for lasers in the 1 pm wavelength 
range, the maximum reflectance is about 50%. Laser mirrors with higher reflectance consist 
of multiple M4 layers, alternating high index and low index coating materials. IfNdenotes 
the number of high index layers and the thicknesses of all layers go to zero as we move 
away from the substrate center, the reflectivity profile exhibits N-Z radial side lobes (Fig. 
7.49). The phase shift associated with these maxima deteriorates the beam quality 
considerably. It is possible to get rid ofthe maxima by holding the layerthicknesses constant 
for radii greater than the radius of the first reflectance minimum. This can be accomplished 
by using a specially shaped rotating mask. Unfortunately, the rotation restricts this technique 
to mirrors with circular geometry. 

Fig. 7.49 Measured reflectivity profiles of 
VRMs with one, three, and five At4 layers using 
Si02 as the low index material (I.,) and TiO, as 
the high index material (H) on a substrate S. 
Coating designs: a) air vH AR S, b) air VH VL 

Jo 

a VRM96 - R0=22.0% w-1.20mm n-3.2 

Radius [mm] 

w [ 20 

0 
-6 
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A better method to generate VRMs with high center reflectances is to use a radially variable 
Fabry Perot interferometer made of dielectric layers (Fig. 7.50). A radially varying layer 
(etalon layer) is situated between two identical stacks of quarter wave layers, which 
determine the maximal possible reflectance. In the center, the maximum reflectivity is 
achieved due to the quarter wavelength spacing between the stacks, and at the positions 
where the etalon layer thickness goes to zero, the residual reflectance is that of the AR 
coating. By using this technique it is possible to generate VRMs with center reflectances as 
high as 95% [3.168]. Figure 7.51 shows a measured reflectivity profile of an FPI mirror for 
aNd:YAG rod laser. VRMs in circular and rectangular geometry can be produces using this 
technique (Fig. 7.52). 

R 

AR 

Fig. 50 Coating design of a variable Fabry Perot 
interferometer mirror (FPI mirror). S: substrate, 
AR: AR-coating, R: reflectance enhancing stack, 
E: etalon layer [S.9]. 

A R  

Radius [mm] 

Fig. 7.51 Measured reflectance profile of an FPI mirror for a Nd:YAG laser at n=I.O64/rm. The 
solid line represents a Super-Gaussian profile with n=5.5, w=3.2mm, and R,=85%. Coating design: 
quarter wavelength layers (air H L vH L H AR S), L:Si02, H:TiO, [S.9]. 
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Fig. 7.52 Three VRMs for Nd:YAG lasers. The two 1" substrates in the front are used in rod lasers. 
The left mirror is an FPI mirror, the reflectance profile of the right mirror is shown in the middle 
graph of Fig. 7.49. The 2" substrate with the rectangular reflectivity profile is used in a slab laser 
[S.9]. 

7.7.3 Laser Properties of VRM Unstable Resonators 

Owing to their excellent beam qualities, unstable resonators with variable reflectivity 
mirrors have found application in both gas and solid state lasers. VRMs are commercially 
available for a variety of laser wavelengths ranging from the visible to the infiared at 
10.6pm. In solid state lasers, these resonators are mostly applied to low to medium power 
Q-switchsysterns[3.146,3.147,3.177,3.178], butsuccessfuloperationinfieerunninglasers 
with output powers in the kW range has also been reported [3.156,3.157,3.163- 
3.165,3.167,3.172-1761. Figure 7.53 presents results obtained for a high power Nd:YAG 
slab laser system using one oscillator and two amplifier stages. By using an unstable 
resonator with VRM this system provides a maximum output power of 2 kW at a repetition 
rate of 22 Hz. The VRM of the negative branch confocal unstable resonator exhibits a 
rectangular shape with profile radii w of 2mm and 7mm in the x- and y-direction, 
respectively. The beam quality is about ten times diffraction limited. The deterioration of 
the beam quality is caused by stress induced aberration in the active medium. With a flat-flat 
resonator an output power of 3 kW is obtained, but the beam quality along the y-direction 
is decreased by a factor of 25 (Fig. 7.53b). Near diffraction limited beam was generated 
with a diode side-pumped thin Nd:YAG slab laser with positive branch confocal unstable 
resonator in the wide direction (Fig.7.45). In the perpendicular direction, the spherical HR 
mirror generated a stable resonator with a Gaussian beam diameter inside the slab of about 
0.4mm. The output coupler was a VRM with a Gaussian profile with 67% center reflectivity 
and a profile radius of ~ 3 . 5 m m .  A cw output power of 220W was reported at beam 
propagation factors of less than 1.5 in both directions (Fig. 7.55) [3.176]. 
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Fig. 7.53 Measured beam parameter products d@4 (d: beam width, a: full angle of divergence, 
both defined via 86.5% power content) in the x- (width) and the y-direction (height) for a pulsed 
Nd:YAG slab laser system with one oscillator slab and two amplifier slabs of dimensions 
7~26x1 79mm3. a) unstable resonator with VRM having profile radii of 2mm and 7mm in the x- and 
y-direction, respectively; b) stable resonator with length SSOmm, flat output coupler and 2m 
concave HR mirror. The schematic shows the set-up with the unstable resonator. Total pump 
energy: 3,4005; pulse length: 4ms. Data are shown for one (osc.), two (osc./amp.) and three slabs 
(osc./amp./amp.) [3.165] (0 OSA 1993). 

360W DIODE BAR ARRAY 

Pi = -1.5m 

* 180mm 
Fig.7.54 Top view of a stableunstable resonator used in a diode-pumped hin NdYAG slab laser. 
A cylindrical output coupler substrate with a variable reflectivity mirror (VRh4) and a spherical 
high reflector are used to realize a positive branch unstable resonator with magnification M=l.26 
in the horizontal direction and a stable resonator in the uemendicular directinn 17 1761 (0 A 
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Fig.7.55 Measured output power of the slab laser shown in Fig. 7.54, with a short, stable resonator 
(open dots) and with the stable-unstable resonator with VRM (filled dots). For the latter resonator, 
the measured Wvalues in the x-direction (unstable) and the y-direction (stable) are shown as well 
[3.176](0 OSA 2002). 

The lower efficiency of unstable resonators is caused by diffraction losses generated by the 
edges of the active medium in combination with a lower mode volume. As will be discussed 
in Chapter 11, unstable resonators generally provide only 70-80% of the extraction 
efficiency attainable with short stable resonators. The reflectivity profile of the VRM is of 
lower importance for the beam quality, but it considerably affects the near field distribution 
and the beam propagation. This is shown in Fig. 7.56 in which measured near field and far 
field intensity distributions for different VRMs with equal profile radii are compared. 

If a flat topped intensity distribution in the near field is required (e.g. for efficient filling of 
amplifier stages), the center reflectivity and the reflectivity profile can be used as design 
parameters. In order to attain optimum filling of the active medium by the laser mode an 
optimization of the reflectivity profile is required. Since the adaptation of the beam width 
to the width of the active medium is easier to accomplish if the mode exhibits steep slopes, 
super-Gaussian profiles with high index n provide better means to maximize the output 
power. For an unstable resonator with a Gaussian VRM, a complete filling of the active 
medium will generate side lobes in the far field. However, for Super-Gaussian profiles with 
n>2, the Super-Gaussian field distributions at the output coupler are not eigensolutions of 
the paraxial wave-equation. The intensity distributions inside the resonator, therefore, will 
change when the field propagates inside the resonator. This may result in ripples and hot 
spots. The same statement holds for the field transmitted through the VRM. Depending on 
the type of application and the damage threshold of the optical components used, the beam 
propagation has also to be considered when the reflectance profile is chosen r3.1591. 
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Fig. 7.56 Measured reflectivity profiles of the VRM (a), near field intensity distributions (b), and 
far field intensity distributions (c) for a confocal unstable resonator with magnification M=1.5 
(pulsed Nd:YAG rod laser, R=1.064p, single shot operation). 




