
Chapter 5 

Stable Resonators 

5.1 General Aspects 

In this part the basic properties of both stable and unstable optical resonators with spherical 
mirrors are explained. We neglect the presence of an active medium inside the resonator and 
assume that both resonator mirrors exhibit 100% reflectance at the wavelengths considered. 
Resonators that do not provide amplification of the light are called passive resonators. 
Although the active medium is required to generate laser emission, the concept of the 
passive resonator is applicable to the investigation of the physics of laser radiation. The 
inclusion of the gain only modifies the resonator properties. The influence of the 
amplification upon the radiation characteristics of resonators will be discussed in Part IV. 

A stable optical resonator generally consists of two mirrors with radii of curvature p, and 
p2 separated by an optical distance L=nLo (Lo: geometrical mirror spacing, n: index of 
refraction inside the resonator). The range of L within which a resonator is stable is 
determined by the condition that a ray launched inside the resonator parallel to the optical 
axis remains inside the resonator after an infinite number of bounces. Equivalent to this 
definition is the lack of self-reproducing spherical waves inside the resonator 
(eigensolutions of the ABCD law, see Sec. 1.3). 

Fig. 5.1 The general optical resonator is determined by the g-parameters of the mirrors, the mirror 
spacing Lo and the radii a, of internal apertures. 
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By introducing the g-parameters of the resonator mirrors: 

the condition for a stable resonator reads: 

As discussed in Sec. 2.8.2, stable resonators exhibit a Gaussian beam as the fundamental 
eigenmode. Note that the radius of curvature is positive for a concave mirror and negative 
for a convex mirror. In Fig. 5.1 both radii of curvature are positive. It is convenient to 
visualize optical resonators in the g-diagram, also referred to as the stability diagram, in 
which a resonator is determined by a point in the g,.g2 plane (Fig. 5.2). The area of stable 
resonators is limited by the coordinate axes and the hyperbolasg,=*I/g,. The resonators on 
the stability limits, represent a unique class of resonators since the Gaussian beam is not an 
eigensolution of the electric field. The exception is the confocal resonator with g,=g2=0 
which is usually considered a stable resonator. However, since it exhibits some properties 
that are quite unique compared to common stable resonators, we will discuss the stable 
confocal resonator as well as resonators on the stability limits in a later section. 

An optical resonator is generally defined by the g-parameters of the mirrors, the mirror 
spacing, and the dimensions of apertures that might be located inside the resonator. The goal 
of this chapter is to achieve a detailed understanding of how the mode structure and the 
diffraction losses are affected by these resonator parameters. We will first assume that there 
is no aperture inside the resonator and both mirrors have infinite lateral dimensions. 

___------ 

unstable 

Fig. 5.2 The stability diagram 
of optical resonators with 
spherical mirrors. The hatched 
area indicates the region of 
stable resonators. 
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5.2 Unconfined Stable Resonators 

We first want to know which field distributions on the resonator mirrors represent the 
steady-state solutions of the stable resonator. Such an eigensolution Ei(x,y) on mirror i will 
reproduce itself after each round trip. The round trip in the resonator is described 
mathematically by the Kirchhoff integral equation derived in Sec. 2.7.1 [3.7,3.10,3.16- 
3.20,3.24,3.25]: 

with: G = 2g,g2-1; i,j=1,2; izj (5.3) 
L : optical resonator length =nL, (Lo : geometrical length) 
,lo: vacuum wavelength, k=2n/rZO : wave number 

The solutions to this integral equation represent the eigenmodes of the optical resonator. In 
general an infinite number of eigenmodes exist. The field distributions of the eigenmodes 
do not change their shapes but they might experience a decrease in amplitude due to 
diffraction losses. This is taken into account by the complex eigenvalue y. The loss factor, 

v = lY12 Y 
(5.4) 

represents the fraction of the initial power hitting the mirror after the round trip. The loss 
factor Vis related to the loss AVvia AV=I-V. If both resonator mirrors are unconfined and 
perfectly reflecting, no power is lost during the round trip and the loss factor, therefore, is 
equal to 1.0. The condition ~ 1 . 0 ,  referred to as the resonance condition of the optical 
resonator, yields the resonance frequencies. 

G G 

Fig. 5.3 A steady-state field distribution E(x,y) must reproduce itself after each round trip. On the 
right side the round trip is presented as a transit in the equivalent resonator (see Sec. 5.3.2). 
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5.2.1 Transverse Mode Structures 

Equation (5.3) can be solved analytically yielding an infinite number of eigensolutions. 
Which of these eigensolutions will actually be observed in the resonator depends on the 
geometry and the size of the mirrors. In reality, the mirrors will have a finite size with a 
shape that usually is round or rectangular. This boundary condition is taken into account by 
choosing those eigensolutions that exhibit circular or rectangular symmetry, respectively. 
The solutions to (5.1) for the two symmetries are described below (the index i denotes the 
mirror) [3.1,3.5,3.7]: 

a) Circular Symmetry (Gauss-Laguerre Modes): 

with L;) [t] : 
r, @ : radial and azimuthal coordinate 
k : 
L 

Laguerre polynomial of orderp, P, p,  L integer 

wave number = 2 dA,,; A,,: wavelength in vacuum 
optical mirror spacing = nL, 

The Laguerre polynomials can be found in mathematical handbooks [3.13,3.14]. For low 
ordersp,Pthey read: 

L f ) ( f )  = 1 

L f ) ( f )  = Q + l  - t 

L$)(f) = 0.5(4+1)(4+2) - (Q+2)f + 0.5t2 

L f ) ( f )  = (4 + 1)(P +2)(Q +3)/6 - OS(P +2)(4 +3)f + OS(4 +3)t2 - t 3/6 

b) Rectangular Symmetry (Gauss-Hermite Modes): 

(m+n+l) a c o s G  
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The Hefinite polynomials H,,, can also be looked up in mathematical handbooks. For low 
order numbers m,n they read: 

H,(t) = 1 
H2(r) = 4t2 - 2 

H4(r) = 16t4 - 48r2 + 12 

H,(r) = 2t 

H3(r) = 8 t3  - 12t 

H,(r) = 32t5 - 160t3 + 120t 

In both symmetries the loss factor V is equal to 1 .O since the mirrors are not limited by an 
aperture and, consequently, no power can leak out of the resonator. Figure 5.4 presents 
intensity distributions as a function of the order numbersp, Pand m,n, calculated with (5.6) 
and (5.8), respectively. 
The steady-state electric field distribution is characterized by the indices plq and mnq, 
whose meaning becomes apparent by looking at Fig. 5.4. In rectangular symmetry the first 
two indices represent the number of nodal lines of the intensity distribution in the 
corresponding direction. In circular symmetry the intensity distributions exhibitp radial and 
@azimuthal nodes at which the intensity is equal to zero. The index q was already discussed 
in Chapter 4; it represents the number of half wavelengths fitting into the mirror spacing. 

A steady-state field distribution oscillating inside the resonator is called an eigenmode of 
the resonator. The eigenmodes are characterized by the transverse mode structure (transverse 
mode indexp, lor  m,n) and the axial mode order q. The notations for the eigenmodes are 

where the abbreviation TEM represents the fact that the electric and the magnetic field 
vectors are perpendicular to each other and to the wave vector R (Transverse Electro 
Magnetic). This is not entirely true since the difiaction generates small field components 
in the direction of the wave propagation(see Sec. 2.9). Only in the limit of large beam radii 
(large Fresnel numbers) is the field truly transverse. The notation TEM was adopted from 
the modes of waveguides which in fact are transversal. Although not physically correct, it 
is customary to refer to the modes of open resonators as TEM modes as well. In general, the 
axial mode index q is not used and the mode structure is specified by the order numbersp, P 
and m,n (as we have seen, q can be very large). 

The lateral extent of the eigenmodes on mirror i is determined by the beam radius wi of 
the TEM, mode. The beam radii w, and w2 on the two mirrors depend on the mirror spacing 
and the g-parameters of the resonator: 

(5.10) 



T

FTTTig. 5.4 Intensity distributions on the mirrors of stable resonators calculated with (5.6) and (5.8) 
for different mode orderspland mn. The radius w, is the same for all distributions [S.3]. 
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As can be seen in Fig. 5.4, the size of the intensity distributions increases as the mode order 
is increased. In both symmetries the TEWo mode has the same shape (Fig. 5.5); the intensity 
distribution is Gaussian. At a distance r=wi from the center of gravity, the intensity has 
decreased by a factor of l/ez and 86.5% of the beam power is contained within the 
corresponding circle. The lateral extent of the T E b  mode is therefore defined by the beam 
radius wi , also referred to as the Gaussian beam radius. The TEM, mode is the mode with 
the smallest size that can oscillate in a stable resonator. It is generally referred to as the 
jirndamental mode or the Gaussian beam. 

For transverse modes of higher orderpaor mn, the beam radii are defined via the second 
intensity moments introduced in Chapter 2.6 ( see Eqs. (2.93) and (2.97)). This definition 
of the beam radii enables one to calculate the propagation of arbitrary field distributions 
through ABCD-type optics by applying the generalized ABCD law (2.1 11) (see Sec. 2.6). 

The beam radii on mirror i read [3.31,3.32]: 

Circular Symmetry: wPl = W i  Jm 
Rectangular Symmetry: w 2  = w, (/zmT-T x-direction 

w: = wi 4- y-direction 

(5.1 1) 

(5.12) 

(5.13) 

x [mm] ---> x [mm] ---> 

Fig. 5.5 Measured (solid line) and calculated (dashed line) one-dimensional intensity distributions 
of transverse modes TEM, in rectangular symmetry. The horizontal lines indicate the beam radii 
w, defined by the second intensity moments. 
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Note that, as far as the power content is concerned, the second intensity moments yield 
beam radii that are too large, especially for modes in rectangular symmetry. For higher order 
modes the power fraction contained within the radius wpp  is greater than 86.5%. Table 5.1 
shows the difference between the beam radii and the 86.5% power content radii for different 
mode ordersp,land m,n. For some laser applications it may be more applicable to define 
the beam radii via the 86.5% energy content. However, since the beam propagation can be 
calculated for arbitrary field distributions with the ABCD law (2.1 1 l), the definition of the 
beam radius using the second intensity moments was standardized by IS0 for the 
measurement of beam quality, beam diameter and beam divergence [ 1.861. As far as the 
modes of stable resonators are concerned, the generalized ABCD law can also be applied 
to the power content radii (see Fig. 2.20) provided that the far field angle is defined the same 
way. 

In order to get a better agreement with the power content radii, we modify the beam 
radii for rectangular symmetry modes by dividing by d2: 

w:! = wi Jm x-direction 

Table 5.1 Calculated ratio of 86.5% power content beam radii raa.sn to the beam radii w,defined 
via the second intensity moment for transverse modes of stable resonators in circular and 
rectangularsymmetry(Eqs. (5.1 1),(5.12)). Forcomparison: ahomogeneouscircular intensityprofile 
with radius R yields a second moment radius of wd=R and an 86.5% power content radius of 
rM,,,=0.93R (ratio of 0.93). The radius ratio for a homogeneous intensity profile of width 2a is 
(0.865a)/(2dd) =O. 749. 

P P r*6.5%JWpl P Q ra4.5dwpl 

0 0 1.000 
1 0 0.960 
4 0 0.960 
7 0 0.960 
m 0 0.960 
0 1 0.944 
0 4 0.857 

0 7 0.853 
0 10 0.813 
0 100 0.746 
0 OD 1 142 
1 10 0.865 
4 10 0.920 
7 10 0.941 

m X86.5K/Wmn m x86.5n/w,, 

0 0.740 3 0.667 
1 0.678 4 0.665 
2 0.670 5 0.664 
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If we use the modified beam radii in rectangular symmetry, the ratio of the 86.5% power 
content radius to the modified beam radius is increased to about 0.94 for higher order modes 
and to 1.05 for the fundamental mode. However, we have to apply the same correction 
factor of 1/42 to the angles of divergence in order to preserve the validity of the generalid 
ABCD law (2.1 1 1). The modified beam radius gives the position of the outermost inflection 
point of the intensity distribution. To be consistent in our notation for the beam radii, we 
will use wWf” instead of w, for the beam radius of the fundamental mode (Gaussian beam) 
on mirror i. Let us first look at some examples to get a feeling for the transverse mode size 
of stable resonators. 

Examples: 
a) HeNe laser, circular symmetry, /t=632.8nm, L=Im, p1=p2=2m. 

w$’ = w$) = 0.4823 mm 

ws’ = WE) = 0.8354 mm 

wi i )  = w f )  = 0.9646 mm 

b) HeNe laser, circular symmetry, R=632.8nm, L=lm, p1=5m, p2=m flat). 
w$ = 0.7092 mm wg’ = 0.6437 mm 

w,$’ = 1.2284 mm 

w$)  = 1.4184 mm 

WE) = 1.0992 mm 

w z )  = 1.2692 mm 

c) CO, laser, circular symmetry, A=10,600 nm, L=lm, pl=5m, p,=w flat). 
wz) = 2.9026 mm w$ = 2.5972 mm 

ws’ = 5.0275 mm 

wii’ = 5.8052 mm 

WE) = 4.4984 mm 

WE) = 5.1944 mm 

The cross sectional m a  of the Gaussian beam radius scales linearly with the wavelength and 
the resonator length. It is for this reason that CO, lasers with their large emission 
wavelength of 10.6pm exhibit relatively large beam radii of the fundamental mode. On the 
other hand, diode lasers have very small Gaussian beam radii on the order of pm due to their 
short mirror spacing in the sub-mm range. Furthennore, at a fmed wavelength and a fixed 
resonator length, the Gaussian beam radius will decrease as the resonator design is chosen 
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closer to a stability limit in the g-diagram. This fact is visualized in Fig. 5.6 which presents 
curves of constant cross sectional area of the Gaussian beam at mirror 1. The beam radius 
at mirror 2 can be obtained fiom this graph by switching gl and g,. 

The transverse modes that are actually observed in a laser resonator, are mainly 
determined by the size of the mirrors. The resonator mirrors are generally limited either by 
apertures or by the active medium itself. Only those transverse modes whose beam radii are 
smaller than the radii of the mirror apertures can be observed. This means that only modes 
up to a certain transverse order are allowed to oscillate. Modes with higher transverse orders 
exhibit losses that are too high to be compensated by the gain medium. If the gain of the 
medium is increased, more transverse modes will, however, reach the laser threshold. As 
a rule of thumb, a higher order transverse mode will oscillate if the radius of the aperture a 
is greater than 0.9-1.0 times the beam radius. Fundamental mode operation requires an 
aperture radius a of 0.9-1.3 times the Gaussian beam radius. Upper values and lower values 
correspond to low gain and to high gain active media, respectively. 

r 1 

5 

3 

2 

0 
0 1 2 3 4 

91 - 
Fig. 5.6 Curves of constant cross sectional area of the Gaussian beam at mirror 1 in the stability 
diagram. The cross sectional area is normalized to WE. The beam radius at mirror 2 can be 
obtained by switching g, and g,. 
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Example: 
HeNe laser, circular qymrnetry, 1=632.8nm, L=0.3m, pl =5m, p2=3m. The mirrors are close 
to the endfaces of the discharge tube with inner diameter of 2a=3mm. 

According to (5 .  lo), the Gaussian beam radii on the mirrors are w,(')=O. 388mm and 
wwo)=O. 397mm. Only those transverse modes are observed for which the beam radii at both 
mirrors are smaller than the tube radius: 

a 2 1.0 w$ J2jTiTi  

This is equivalent to the condition 2p+ p+ Z 6 4 .  The transverse modes with the highest radial 
and highest azimuthal order oscillating in the HeNe laser are TEW0 and TEW,,, 
respectively. 

Lasers can be forced to oscillate only in the fundamental mode by inserting apertures into 
the resonator with a diameter close to the diameter of the Gaussian beam at the aperture 
plane. If the apertures are considerably larger than the Gaussian beam, all higher transverse 
modes fitting into the aperture will oscillate. It is for this reason that in multimode lasers one 
does generally not observe the characteristic intensity distributions of Fig. 5.4. Since all of 
these modes exhibit virtually no loss, they are oscillating simultaneously resulting in a more 
or less homogenous beam profile. The more modes that participate in this process the more 
homogenous the laser beam becomes. This multimode behavior is supported by the fact that 
different modes exhibit their intensity maxima in different areas of the active medium. The 
gain at the nodal lines of the intensity distribution is not depleted and can then be used by 
a different mode that has its intensity peaks in these vacant areas. Figure 5.7 presents a 
photograph ofthe intensity distribution at the output coupling mirror of aNd:YAG rod laser. 
The large rod diameter of 1 O m m  enables all transverse modes with 2p+Ptl<60 to oscillate. 
The high number of modes results in a good homogeneity of the beam. 

Fig. 5.7 Photograph of the beam profile of a Nd:YAG rod laser (A=Z.O64pm) with a stable 
resonator in multimode operation (maximum of2p+PI is about 60). 
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Fig. 5.8 Set-up to observe the transverse 
intensity distributions of individual 
transverse modes in a multimode laser. 

It is possible to observe the intensity structure of individual transverse modes by generating 
losses for all other modes. One technique to accomplish this is to insert cross-wires into the 
resonator 8s depicted in Fig. 5.8. The mode having nodal lines along the wires is prefened 
since it experiences lower losses than all other modes. By moving the cross wires, different 
transverse modes can be selected. Due to the symmetry of the obstruction, only modes with 
rectangular symmetry are observed. The intensity distributions ofthe modes of a HeNe laser 
shown in the photographs of Fig. 5.9 were generated this way. 
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Fig. 5.9 Photographs of intensity 
distributions of different transverse 
modes at the output coupling mirror 
of a HeNe laser with a stable 
resonator. The cross- wires select 
modes with rectangular symmetry. 
The lower right photograph shows the 
lowest order donut mode (without 
cross-wires). 
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Hybrid Modes 
In circularly symmetric laser resonators one can quite often observe intensity distributions 
of modes that exhibit an annular intensity profile with almost zero intensity in the center. 
These beam profiles are generated by a superposition of two circularly symmetric transverse 
modes of the same order pP which are both linearly polarized and oscillate rotated by an 
angle of 90" with respect to each other (Fig. 5.10). There are four different ways to combine 
two linearly polarized modes resulting in different polarization states of the sum mode. The 
superposition always yields the same annular intensity profile with p+l  rings with 
maximum intensity and a characteristic hole in the center. It is quite obvious why these 
modes are called donut modes. Sometimes they are also referred to as hybridmodes. Hybrid 
modes are marked by an asterisk next to the mode order numbers. Due to the different 
polarizations, the two transverse modes do not interfere and the intensity distribution of the 
sum is given by the sum of the individual mode intensity profiles. Application of (5.6) yields 
for the radial intensity distribution of hybrid modes at mirror i :  

with t = 2 [ r / w ] 2 .  

Fig. 5.10 Hybrid modes are generated by the superposition of two linearly polarized circularly 
symmetrictransverse modes of the same orderptwhich oscillate rotated by 90" with respect to each 
other. The graph shows two of the four possible ways to superimpose the mode structures. The 
lower graphs present the radial intensity distributions of the three lowest order hybrid modes 
TEW,*,TEM 1I.Y and TEMn*. 
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Hybrid modes are quite often observed if an aperture inside the resonator is continuously 
varied. As an example, Fig. 5.11 presents the development of the beam profile of an 
NdYAG laser as the diameter of an aperture inside the stable resonator is increased. 
Although these intensity distribut ions represent the superposition of more than two 
transverse modes, they often exhibit the center hole characteristic of hybrid modes. 

Fig. 5.11 Photographs of intensity distributions at the output coupling mirror of an Nd:YAG rod 
laser. The radius a of an aperture located inside the stable resonator is increased; w denotes the 
Gaussian beam radius at the aperture (g,=Z, g,=0.5, L=O.5m,,R=Z.O64pn). 
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5.2.2 Resonance Frequencies 

The development of steady-state field distributions in any optical resonator requires that 
both the amplitude and the phase of the electric field E(x,y) are reproduced after each round 
trip. According to (5.3) this requirement is met if the eigenvalue y is equal to 1 .O, which is 
referred to as the resonance condition. Together with (5.7) and (5.9), the resonance 
condition yields the resonance frequencies v of the eigenmodes [3.7]: 

Circular Symmetry: 
2L x 

m+n+l  
x 

Rectangular Symmetry: 

(5.15) 

(5.16) 

with co : speed of light in vacuum 
L : optical mirror spacing = nL, (L,: geometrical spacing, 

n: index of refraction inside the resonator) 

The resonance frequencies thus depend on both the axial and the transverse mode order. In 
contrast to the plane-parallel FPI (g,=g,=l, Sec. 4.1) whose resonance frequencies are only 
determined by the axial mode index, each axial mode of stable resonators is subdivided into 
a sequence of frequencies corresponding to different transverse modes. This separation is 
controlled by the g-parameters of the resonator mirrors (Fig. 5.12). As the origin of the g- 
diagram is approached, the frequency gap between different transverse modes having the 
same axial mode order becomes wider. In the limit of the stable confocal resonator 
(g,=g2=O), the frequency gap equals cd(4L) which is half the axial mode distance. The 
confocal resonator exhibits frequency degeneracy which means that all modes meeting the 
conditions 29 + 2p + P + 1 = k and 2q + m + n + 1 = k, with k : integer, oscillate at the 
same resonance frequency kc,J(4L). 

The difference in resonance frequencies plays an important role in the temporal stability of 
the laser emission. If several transverse modes oscillate, the emission is modulated with the 
difference frequencies of the modes, called the beat frequency (Fig. 5.13). Chaotic laser 
emission can occur if more than two transverse modes oscillate simultaneously. Lasers 
featuring a stabilized temporal output operate at one single transverse mode (usually the 
fundamental mode) and preferably at one single axial mode. Single transverse mode 
operation is usually achieved by aperture-limiting the Gaussian beam inside the resonator. 
Single axial mode operation can be attained with one or a combination of the following 
techniques (depending on the type of laser): a) reduction of the gain bandwidth with 
intracavity etalons, gratings, or Lyot filters, b) increase of the axial mode spacing by using 
longer resonators or coupled resonators, c) prevention of standing waves inside the active 
medium (unidirectional ring resonator, twisted mode resonator) (see also Chapter 2 1). 
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Fig. 5.12 Resonance frequencies of 
the modes of stable resonators with 
rectangular symmetry for different 
g-parameter products. The indices 
mn of some transverse modes are 
shown for the axial mode of order 
q+2. 

Fig. 5.13 Measured frequency 
spectrum of a pulsed single axial 
mode Nd:YAG ring laser (L=lm, 
g,= g,=O.5) operating at two 
transverse modes and the temporal 
emission fS.41. The beat frequency 
is 45MHz. The additional 
modulation at I2MHz is caused by 
the nonlinear interaction between 
the modes in the active medium 
(sloshing of power between the 
modes). 



Unconfined Stable Resonators 235 

5.2.3 TheTEM,,Mode 

So far we have only discussed the intensity distributions of the modes at the resonator mirrors 
and how the mode structure depends on the resonator length and the g-parameters of the 
mirrors. The Gaussian beam radius wW(" at mirror i determines the lateral dimension of the 
mode. For stable resonators, the intensity distributions at any plane inside or outside the 
resonator exhibit the same shape as the distributions on the mirrors; only the beam radius 
changes with the propagation. 

For the fundamental mode, or Gaussian beam, the beam radius as a function of the 
distance can be calculated by using the ABCD law (2.51). Ifz denotes the distance along the 
optical axis from the position of the beam waist with radius wg, the Gaussian beam radius 
w,(z) inside the resonator reads (Fig. 5.14): 

with: 

zo = - x Rayleigh range 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

The waist position Lo, is the distance of the minimum beam radius (beam waist) from mirror 
1. If Lo, is positive the waist is located to the right of mirror 1 (as shown in Fig. 5.14), for a 
negative Lo, the waist is found to the left of mirror 1 (see Fig. 5.15). 

I 
I 

- 
z -bi 0 

Fig. 5.14 Propagation of a Gaussian beam in a stable resonator. 
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At the distance of one Rayleigh range zo from the position of the beam waist the beam radius 
has increased by a factor of v'2, which means that the cross sectional area of the beam has 
doubled. The physical meaning of the Rayleigh range will be discussed in Sec. 5.2.5. If we 
insert the values z=L,, andz=L-L,,into (5.17) we obtain expression (5.10) for the Gaussian 
beam radius on mirror 1 and mirror 2, respectively. 

Example: Stable Resonator with L=1.5m, pl=lm, p2=2m, A432.8nm (Fig. 5.15) 
The g-parameters of this resonator are g,=2.5 and g2=0.25. With (5.17)-(5.20) we obtain: 
w, = 0.3123mm, z0=485mm, L0,=-375mm, w ,,,,(')=0.395 mm, woo '2/=1.249mm 

The beam waist is located at a distance of 375mm to the left of mirror 1 .  It is for this reason 
that the beam radius on mirror 1 is much smaller than the beam radius on mirror 2, since the 
latter mirror is farther away from the beam waist. 

The Gaussian beam is l l l y  determined by the beam radius, the Rayleigh range, and the 
location of the beam waist. The divergence angle @alf cone angle) 8, is obtained from these 
quantities by using the relation: 

(5.21) 

The beam parameter product w08,is a constant of the Gaussian beam as long as the beam 

propagates through ABCD-type optical systems. 

Fig. 5.15 A stable resonator with the beam waist being outside the resonator. According to (5.20), 
he distance Lo, is negative. 
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The radius of curvature R(') of the Gaussian beam at mirror i is always equal to the radius of 
curvature p, of the mirror. The general expression for the radius of curvature R as a function 
of the propagation distance z reads: 

(5.22) 

If we set z=L,, and z=L-L,, we can easily verifl that the mirror surfaces indeed represent 
surfaces of constant phase of the Gaussian beam. 

The general expression for the electric field of a Gaussian beam as a function of the 
distance z fiom the waist is given by: 

(5.23) 
The last term is referred to as the Gouy phase shift. This additional phase is the reason why 
the resonance frequency (5.15/5.16) has an additional term that depends on the g-parameters 
of the resonator. By introducing the q-parameter of the Gaussian beam: 

(5.24) 

the field distribution can be written as (see Eqs. 2.50/2.59): 

Propagation ofthe Gaussian beam through ABCD-type optics can be accomplished by using 
the ABCD-law (2.5 1) for the q-parameter. For the propagation of the Gaussian beam outside 
the resonator the imaging properties of the resonator mirrors have to be taken into account. 
In general, the mirror substrates have a planar rear surface and, therefore, act as lenses 
transforming the Gaussian beam into anew Gaussian beam (Fig. 5.16). The new divergence 
angle behind mirror i with refractive index n is given by: 

(5.26) 
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/ 

Fig. 5.16 Propagation through a mirror substrate 
changes the angle of divergence 8, of the 
Gaussian beam. 

The two divergence angles are different for nonsymmetric resonators (g, *g2) and usually 
greater than the intracavity divergence angle 8,. The new beam waist radius of the Gaussian 
beam behind mirror i can be determined with woi=Iz/(nBoJ. 

Resonator Schemes, Beam Radii, and Angles of Divergence of the TEM,,,, Mode 
The beam radii and the angles of divergence of common stable resonators are presented in 
Table 5.2 and in Fig. 5.17. The resonators on the stability limits have been included in this 
table to show that the beam waist radius goes to zero or infinity and, accordingly, the angle 
of divergence assumes values of sc/2 or 0 if the stability limit is approached. This behavior 
is caused by the fact that a Gaussian beam is not an eigensolution of these resonators. The 
only exception is the confocal resonator located at the origin of the g-diagram. 

Table 5.2 Stable resonators and the properties of their Gaussian beam. 
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Fig. 5.17 The g-diagram of optical 
resonators and the location of 
common resonators. 

Figure 5.18 presents the dependence of the angle of divergence on the resonator parameters. 
By combining (5.18) and (5.2 l), the angle of divergence 0, for a general stable resonator is 
given by: 

(5.27) 

The normalized angle B0v@2J'depends only on the g-parameters of the resonator. For a 
constant resonator length L, the angle of divergence becomes very small if the resonator is 
chosen close to the hyperbola in the first quadrant. The corresponding beam waist radius w, 
is, of course, very large for these resonators since the beam parameter product woBO is a 
constant. The largest angles of divergence are found for negative g-parameters at the stability 
limit g2=l/gly where the concentric resonators are located. Since the large angles of 
divergence are generated by extremely small intracavity beam waists, these resonators have 
a small mode volume and have therefore found only limited application in laser systems. 

Examples: 
1) L=lm, L=1064nm, semi-confmal: w0=0.582mm, €10=0.582mrad 
2) L=lm, A=1064nm, confocal: w0=0.41 2mm, €l0=O.823mrad 

4) L=lm, A=1064nm, p,- m,p2=5m: w04.823mm, 00=0.4 12mrad 
3) L=lm, A=1064nm, p,=1.5m,pz=1.5m: w,,=0.435mm, e0=0.778mrad 

5 )  L=lm, A=1064nm, p,=pz=0.55m: W0=o.232my eo=i .463mrad 
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Fig. 5.18 Curves of constant angle of divergence 8, of the Gaussian beam in the g-diagram. The 
parameter is the normalized angle of divergence t i o m w h i c h  is 1 .O for the confocal resonator. 

Mode Volume of the TEW, Mode 
The output power of a laser resonator, among other parameters, is determined by the volume 
of the active medium that is filled by the mode. Only in this area can the stored energy be 
extracted by the mode via induced emission. Let us calculate the volume of the Gaussian 
beam between the resonator mirrors assuming that the mode volume is determined by the 
Gaussian beam radius w(z). As far as the output power is concerned, we consider an active 
medium that fills the whole resonator. Integration of the square of the beam waist w(z) given 
by (5.17)-(5.19) from z=-Lo, to z=L-Lo, yields the mode volume of the Gaussian beam: 

The normalized mode volume Vd(n/zL2) as a function of the g-parameters is shown in Fig. 
5.19. It is apparent from this graph that the highest volume of the fimdamental mode is 
achieved for resonators close to the stability limit at positive g-parameters and one g- 
parameter being much lower than 1. These resonators are formed by a concave and a convex 
mirror (see Fig. 5.15) and, therefore, are referred to as concaveconvex resonators. A 
concave-convex resonator is the preferred means to achieve high output power in 
fundamental mode operation, even though they are more sensitive to mirror tilt than other 
resonators. Figure 5.20 presents measured output energies of a pulsed Nd:YAG laser in 
fundamental mode operation for different resonator configurations. 
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Fig. 5.19 Normalized mode volume V&dL') of the fundamental mode of stable resonators as a 
fiinction of one of the g-parameters. The corresponding resonators are indicated in the g-diagram by 
dotted lines. 
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;. 5.20 Measured output energy of a pulsed 1.064pm Nd:YAG rod laser (rod diameter: 6.35mm, 
I length: 76mm) in hndamental mode operation for different resonator configurations as a 
iction of the electric energy supplied to the flashlamp. 
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5.2.4 Higher Order Modes 

The treatment of the propagation of higher order modes in the resonators becomes quite 
simple given the preceding detailed discussion ofthe propagation of Gaussian beams. In both 
circular and rectangular symmetries the propagation of the fundamental mode and of the 
higher order modes is similar (Fig. 5.21). If wo and Oo denote the waist radius and the angle 
of divergence (half angle) of the fundamental mode, the beam radius as a function of the 
propagation distance from the waist position reads as follows: 

a) in circular symmetry: 

beam radius af Zocation z: w,,(z) = wo 4- 4% 
waist radius: wpt = wo JP 

angle of divergence: opt = 8, 4- 

b) in rectangular symmetry: 
2 

beam radius at location z: w,(z) = wo 4 1 + [ 
waist radius: wm = w, Jzx 

angle of divergence: 8, = 8, @Tl 

The Rayleigh range is the same as for the Gaussian beam: 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

Fig. 5.21 Beam propagation of higher 
order modes. All modes have the same 
Rayleigh range. At any plane the 
beam radii are d m l a r g e r t h a n  the 

I' u\. Gaussian beam radius. 
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The beam parameter product w 8 is a constant of the beam with: 

wptep, = (2p+~+1)- A. = M 2 1  - 

Wmem = (2m+1)- a = M 2 A  - 
51: x 

x A 

(5.36) 

(5.37) 

The term M2 is referred to as the propagation factor of the mode. In a laser resonator, the 
maximum propagation factor corresponding to the highest order transverse mode determines 
the beam quality of the laser beam. Let us assume that N apertures with radii a, are located 
inside the resonator at positions z,. .z, and w,,(z,) are the beam radii of the Gaussian beam at 
the apertures. The maximum propagation factor, to a good approximation, is given by: 

where min is the minimum term in the group and int rounds to the next integer value. 

propagation distance z reads: 
The electric field distribution of individual transverse modes as a function of the 

a) in circular symmetry: (5.39) 

b) in rectangular symmetry: (5.40) 

exp -i(m+n+l)utun - 1 (:)I 
The beam radius w,,&) and the radius of curvature R(z) are those of the Gaussian beam (see 
(5.17) and (5.22)). The Gouy phase shift (far right term) generates the frequency difference 
between modes of different transverse order. By introducing the q-parameter: 

(5.41) 

the propagation of higher order modes from a plane 1 to a plane 2 through ABCD-type optics 
can be calculated by using the ABCD law: 
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waist lens waist 

1- 2 __L_t__ 2’- 

Fig. 5.22 Focusing of transverse modes TEM,. The beam waist is imaged at a distance z’ from the 
lens. 

(5.42) 

Note that the q-parameter is the same for all modes including the fundamental mode since the 
square of the waist is larger by M’, which cancels the numerator term in (5.41)! We can use 
the ABCD law to calculate the focusing properties of the modes. If plane 1 is at the beam 
waist with radius wpI and a focusing lens with focal lengthfis located at a distance z from the 
waist, the position z’ (measured from the lens) of the focal beam waist with radius w are 
given by (see Fig. 5.22 and Sec. 2.5.1): 

f 
= W*f /- 

(5.43) 

(5.44) 

Example (Fig. 5.23): 
CO, laser, A=l0.6pm, tube diameter d=30mm, tube length 1=300mm, p,=-Sm, pz=+Sm, 
L=0.5m. The gas tube is in the middle of the resonator. A focusing lens with f=100mm is 
located at a distance of50mm from mirror 2. The g-parameters of the mirrors are: g,=1.1 and 
g,=U.9. With (5.10) and (5.17)-(5.20) we get the following properties of the Gaussian beam: 
beam radius at mirror I Wm‘” = 3.906mm 
beam radius at mirror 2 Wm0’ = 4.319mm 
beam waist WO = 2.897mm 
waist position LO, =-2,2SOmm 
Rayleigh range 20 = 2,488 mm 
beam radius at leji tube end wodzl) = 3.985 mm 
beam radius at right tube end W d Z J  = 4.233 mm 
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TEMpl 
P1 = -5 m / p2-5m f-100mm 

Fig. 5.23 CO, laser 
with concave-convex 
resonator. 

The Gaussian beam radius is largest at the right end of the tube. The maximum propagation 
factor (5.38) is given by: 

2 
M, = (2p+Q+l), = 

All modes with transverse mode order 2p+P+1 s 13 will oscillate simultaneously. The beam 
radii at any plane inside or outside the resonator are determined by the highest order mode and 
therefore are J13 larger than those of the Gaussian beam. The lens is at a distance 
z=~Lo,~+L+50mm=2,800mm from the beam waist. With Eqs. (5.38) and (5.39) we obtain: 
position of focal spot: 2' = 101.9 mm 
spot radius: w ; ~  =O.O79mm 

Transverse Multimode Operation 
All transverse modes whose beam radii fit into the apertures located inside the resonator will 
oscillate simultaneously. The resulting output beam is a superposition of these transverse 
modes. Although each individual mode is a steady state solution of the resonator, the 
superposition is not since the modes exhibit different resonance frequencies vVp The 
frequency difference leads to temporal oscillations of the intensity distributions. To get a 
better understanding of this phenomenon let us investigate a superposition of a T E b m o d e  
with amplitude Eo and a TEM,, mode with amplitude E, (in rectangular symmetry and one 
dimension, w is the Gaussian beam radius). The time-dependent electric field is given by: 

with: A = atan(z/zo) (5.45) 
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1 IT  0 

Fig. 5.24 Superposition of a ' I E b  and a TEM,, mode according to (5.4 1) with E,=E,. The different 
curves depict various phase delays 4= f i - A  between the modes. The curve for 4=n/2 represents the 
time-averaged intensity distribution. 

This results in an intensity distribution: (5.46) 

with: n = 2x(vq,0-vqm) = - a q i z  (see Eq. (5.16)) 

The intensity distribution is the sum of the intensity distributions of the individual modes plus 
an oscillating term generated by the fresuency difference. The oscillation fresuency P 
typically is on the order of 100 MHz. Figure 5.24 presents the temporal change of the intensity 
distribution during one oscillation cycle. If the intensity pattern is mrded, the 
instrumentation (e.g. CCD camera) will average over the mode oscillations and only the sum 
of the intensity distributions of the individual modes is observed. However, during short time 
intervals the intensity can be much higher at certain areas, especially if a high number of 
modes with varying amplitudes is oscillating. These so-called hot spors can induce damage 
on the surfaces of optical components. 
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The calculation of the intensity distribution for a high number of modes generally has to be 
done numerically. For an infinite number of modes, however, the superposition can, in special 
cases, be performed analytically. In rectangular symmetry, the infinite sum of eigenmodes 
yields the field distribution: 

E(x,z,t) = ex{$] EE,,, H i $ ]  exp[i(m+l)(nt-A)] 
a = O  

(5.47) 

If we assume that the field amplitudes are given by E,=Edm!, we can use the generating 
function of Hermite polynomials, 

m=O 

to calculate the intensity distribution. The final expression then reads: 

Z(x,z,t) = const. (5.48) 

The intensity distribution is Gaussian with a beam radius of w/& and the whole profile 
oscillates back and forth in the x-direction with an amplitude of d'w , as shown in Fig. 5.25. 
This effect is referred to as transverse modelocking. If we recorded this intensity distribution 
with a CCD camera we would observe the time-averaged intensity indicated by the dotted 
line. At any time, however, the peak intensity is more than twice as high! 

In contrast to the cases discussed above, the amplitudes Em of the transverse modes in laser 
resonators will exhibit temporal variations caused by their interaction in the active medium. 
Since different modes make use of different gain areas, the gain unused by one mode will 
allow a different mode to oscillate with an increased amplitude. This mode competition may 
be such that no steady-state solution for the mode amplitudes is found. Depending on the type 
of active material and the boundary conditions of the system (e.g. resonator set-up and 
pumping conditions), this may lead to a periodic, a quasiperiodic, or a chaotic behavior of the 
laser emission. 
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Fig. 5.25 The superposition of 
an infinite number of Gauss- 
Hermite modes with Gaussian 
beam radius w according to Eq. 
(5.48). The resulting Gaussian 
intensity profile exhibits 
temporal oscillations in x- 
direction with an amplitude of 
dw. The parameter of the 
curves is the phase @=nt-A. 

Orthogonality of Transverse Modes 
Any field distribution inside or outside of an unconfined stable resonator can be Written as a 
sum of the field distributions of the transverse eigenmodes [3.1,3.30]. Let us consider Gauss- 
Hermite eigenmodes in one dimension with field distributions $, (XJ) at a distance z fiom the 
beam waist, given by(5.8). Any field distribution E(x,z) can then be expressed as: 

- 
m=O 

(5.49) 

where c, is the amplitude (complex number) of each eigenmode. The power of the field 
distribution is given by: 

r 1 

1 J 

(5.50) 
For Gauss-Hermite modes the right-most integral is zero, since: 

(5.5 1) 
with S,,=l for m=n and d,,,,,=Ootherwise. The Gauss-Hermite modes thus form an orthogonal 
set and the total power is the sum of the powers of each mode: 
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(5.52) 

All modes contain the same power as the fundamental mode, if the amplitudes are given by: 

- cm - - 
(5.53) 

For Gauss-Laguerrre modes the orthogonality relation reads: (5.54) 

2x- 

//fJkh4)= 2"7LPi[t]LJ4 t f+m exp[-t] exp[i2(q-p)A] rdr= 2%- (P+Wij 6 
p !  Pf 

0 0  0 

with: t = [$I 
Any field distribution E(r, q can be expressed as a sum of eigenmodes: 

p=oi=o 
(5.55) 

Similar to rectangular symmetry, the power is-given by the sum of the powers of each mode 
and the modes exhibit equal power if the following relation holds for the amplitudes: 

(5.56) 

The expansions of a field distribution into the transverse eigenmodes (5.49) and (5.55) are 
only possible because the Gauss-Hermite and the Gauss-Laguerre modes form a complete set 
of orthogonal functions. These modes represent the eigenmodes of passive stable resonators 
with unconfined mirrors. If we insert apertures or an active medium into the resonator, the 
field distributions of the transverse eigenmodes are changed. The new eigenmodes are 
generally not orthogonal which means that the total power cannot be expressed as a sum of 
individual mode powers (the cross integral (5.51) is not equal to zero). We can still expand 
a field distribution in the resonator as a series of Gauss-Hermite or Gauss-Laguerre modes, 
but it is mathematically not guaranteed that the power can be expressed as the sum of the 
powers of the resonator eigenmodes. 



250 Chapter 5 Stable Resonators 

5.2.5 Focusability and BeamQuality 

The focusing of a laser beam can be considered as the imaging of the beam waist by means 
of transformation optics such as a lens or a telescope. The position and the beam radius of the 
focal spot can be calculated by using the Gaussian imaging conditions (5.43) and (5.44). Let 
w be the beam waist radius of a circularly symmetric beam with Rayleigh range z, and 8 the 
corresponding angle of divergence (Fig. 5.26). Two quantities are preserved when the beam 
is focused no matter what kind of focusing optics are used: the beam parameter product w e  
(we drop the mode indices for simplicity) and the ratio of the cross sectional area in the waist 
rcw2 to the Rayleigh range z,. The following relation holds: 

(5.57) 

In order to attain a small focal spot and a large Rayleigh range (remember that this is the 
distance from the waist at which the beam area has doubled), a low beam parameter product 
is required. The ratio of the beam area in the focal plane to the Rayleigh range is a 
characteristic of the laser beam and proportional to the beam parameter product. The ratio 
cannot be changed by transformation optics. This is shown in Fig. 5.26 in which two different 
optics are used to focus the same laser beam. It is for this reason that the beam quality is 
defined via the beam parameter product. The general expression for the beam parameter 
product, with A8 being the propagation factor, is given by: 

(5.58) 2 k  we = M - , M*>I 
x 

f2 f 

Fig. 5.26 The focusing properties of a laser beam are characterized by the beam waist radius w and 
the angle of divergence 8. The beam parameter product wt9determines how small the focal spot area 
is compared to the Rayleigh range 20 no matter what type of focusing optics are used. 
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The propagation factor is equal to 1 .O for the fundamental mode. Both the beam radius and 
the angle of divergence are defined via the second order intensity moments (see Sec. 2.6). 
Note that for the same beam, the propagation factor hf? assumes different values in (5.58) and 
(5.59) (except for the Gaussian beam where &'=Z in both cases). In order to specify the beam 
quality it is necessary to measure the beam waist diameter and the angle of divergence 
separately. This is generally done by generating a waist with a focusing lens and the waist 
diameter d is determined by the second intensity moment. The corresponding far field with 
divergence angle can be measured in the focal plane of a second lens (see Chapter 23 for 
different beam quality measurement techniques). An alternate quantity occasionally used to 
speciij the focusability of a beam is the beam quality factor K defined by: 

(5.60) 

Focusing of Arbitrary Beams to Equal Spot Size 
Let us investigate the beam propagation of different quality beams which exhibit the same 
focal spot radius w,(Fig. 5.27). For apure Gaussianbeam the following relation holds for the 
beam radius in the vicinity of the focus: 

w(2) = WT 4- (5.61) 

2 
A WT zo = - 

A 
with: 

For a transverse multimode beam being focused to the same spot size, the corresponding, 
"embedded, Gaussian beam radius is Mtimes smaller. This results in the propagation law: 

2 
ZO 

ZM = - XWT zo = - 
A ,  MZ 

with: 

(5.62) 

The Rayleigh range is now shorter by a factor Z/hf?. This is not in contradiction with (5.35) 
and Fig. 5.21 where we assumed that higher order modes exhibit an increased beam radius 
and, therefore, the same Rayleigh range as the Gaussian beam. 
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Fig. 5.27 Beam propagation 
around the focal spot for a 
fundamental mode and a 
multimode beam. 

Since we now have a fixed beam diameter and more modes have to fit within this diameter, 
the Rayleigh range will decrease. This behavior is typical for solid-state lasers exhibiting 
thermal lensing. Attaining a constant focal spot size when the beam propagation factor M 
changes will be discussed later. 

The propagation laws (5.1 7) and (5.43h.44) of Gaussian beams can be applied to arbitrary 
beams if the following transformations are made: 

The following relations are useful for the experimental determination of the beam propagation 
factor: 

2 

'It 'hf 

w $ = M - -  Z A .  - 3 

2 
=WT 

ZM = - 
AM2 

(5.63) 

(5.64) 

(5.65) 

Note that according to (5.43), the beam propagation factor Malso affects the position z' of 
the image beam waist (Fig. 5.28). 
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Fig. 5.28 The imaging of a laser beam with 
beam waist wr depends on the beam 
propagation factor M. 

f 

2 __sfc___ 2- -4 

Beam Quality and Resonator Parameters 
The magnitude of the beam parameter product of a stable laser resonator depends on the 
numkr of transverse modes oscillating. The beam propagation factor is determined by the 
radius and the location of the smallest aperture (with respect to the Gaussian beam radius) 
inside the resonator. To a very good approximation, the beam propagation factor can be 
calculated by using (5.38). If b denotes the radius of the active medium with length d and the 
distances from the endfaces to the nearest mirror are e, and P,, the beam propagation factor as 
a function of the resonator parameters reads (Fig. 5.29): 

(5.66) 
with X = P, + P 

X =  4 otherwise 
L = PI + 4 + P 

if Lo/ < 4+#2 (see Fig. 5.29 and (5.20)) 

The same expression holds for rectangular media if the radius b is replaced by half the 
thickness t of the medium. Once the beam propagation factor is determined, we can 
calculate, in addition to the beam parameter product, the beam radius w(z) as a function of the 
distance z fiom the waist w, the angle of divergence 0, and the mode volume V inside the 
resonatorbyusingthe correspondingexpressionsforthehhental mode (5.17), (5.21), and 
(5.28): 

w(z) = woo(z) 
e = e o M  
v = v,Mz 
we = woeoM 
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Fig. 5.29 The size of the 
active medium determines the 
number of transverse modes. 
The ratio of the radius b to the 
largest Gaussian beam radius 
inside the medium woo 
determines the beam 
propagation factor. Lo, is the 
distance of the beam waist 
frommirror l,givenby(5.20). 

Figure 5.30 presents the beam parameter product as a hc t ion  of the g-parameters for stable 
resonators of equal length L=lm and different locations of the active medium with radius 
b-5mm. The best beam quality is attained near the stability limits at positive g-parameters 
since the Gaussian beam radii go to infinity in this area. If the active medium is placed in the 
middle of the resonator, the concentric resonator generally exhibits the worst beam quality. 
Note that the beam parameter product in multimode operation does not depend on the 
wavelength! This means that the size of the focal spot does not depend on the type of laser 
material used. This is due to the fact that a smaller wavelength will generate a smaller radius 
Gaussian beam which in turn increases the number of transverse modes fitting into the 
medium. Therefore, the product M2R is a constant of the resonator (see (5.66)). 

Beam Quality of Laser Systems 
We have discussed the beam parameter product and its dependence on the resonator 
parameters. Now let us generate a small focal spot size for a given laser beam (Fig. 5.3 1). We 
focus a beam with a diameter $at the waist and a full angle of divergence 0, both defined by 
the second intensity moments (2.93194) or (2.97/98), by means of a lens with focal length$ 
According to (5.44), the beam diameter d', in the focus is given by: 

with: 

d o  I = do f 

d0 zm = - 
@ 

(5.67) 

and z being the distance of the beam waist @om the lens. 
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Fig. 5.30 Beam parameter products in the stability diagram for different positions of the active 
medium (b=Smm, PZOOrnm). The resonator length is always L=lrn. For each graph the maximum 
beam parameter product is given [MI. 
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Fig. 5.31 Focusing of a laser 
beam with beam waist 
diameter do and angle of 
divergence @=d,/'zW 

In general, the exact waist position z is not known. This is not a serious problem if we know 
the beam diameter dL at the lens. The propagation law (5.62) yields: 

By inserting (5.68) into (5.67) and making the assumptionzsf; we get: 

I 4MLAf do = - 
nd, 

The new Fbyleigh range z ' ~  can be calculated with: 

, xd12 
ZM = - 

4AM2 

(5.68) 

(5.69) 

(5.70) 

Since the beam propagation factor is a constant of the beam, the spot size can be decreased 
by either using a shorter focal length lens or by increasing the beam diameter at the lens. This 
is the reason laser beams are generally expanded by means of a telescope in front of the 
focusing lens. But keep in mind that this will also decrease the Rayleighrange zkbecause the 
beam parameter product is preserved. Table 5.3 presents typical beam propagation factors M", 
Rayleighranges z'w and .spot diameters d$ for different laser systems. A beam diameter at the 
focusing lens of dL=ZOmm (calculated using (5.69) and (5.70)). 
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Table 5.3 Focusing properties of different laser systems at several output powers (focal length 
f=100mm, beam diameter at lens d,=lOmm). 

Laser P,[WI M2 d'll[mmI z',[mmI 

HeNe (1=0.633pm) 0.005 1 0.008 0.079 

Nd:YAG (1=1.064pm) 20 1 0.0136 0.136 
(lamp-pumped rod) 400 50 0.677 6.77 

1.500 60 0.813 8.13 

C 0 2  (L=10.6pm) 500 1 0.135 1.35 
3,000 2 0.270 2.70 
10,000 3 0.405 4.05 

Special Focusing Optics 

1 ) Focusine of beams with constant beam divergence 
For some resonators with an internal variable lens (thermal lensing) the beam waist w is 
changed as the pump power is increased, whereas the angle of divergence 8 remains constant. 
Despite this behavior a constant spot size can be attained by placing the beam waist in the 
front focal plane of the focusing lens (Fig. 5.32). In this case the focal spot is found in the 
back focal plane with w'=fO. 

2) Focusine of beams with constant waist radius 
If the beam waist radius stays constant and the angle of divergence varies, focusing optics can 
also be designed so that the spot size is preserved. This beam behavior is typical for resonators 
with thermal lensing. Furthermore, the radiation exiting a fiber falls into this category since 
the core radius of the fiber defines the beam waist. Focusing is accomplished by imaging the 
beam waist with a telescope with magnification f J f ,<l ,  as shown in Fig. 5.33. The position 
z'of the focus and the spot radius w'are given by: 

2 
z ' =  -[$I z +A[ I+?] , w ' =  w- ft 

fi 
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Fig. 532 If the beam waist is located at the front focal plane of a focusing lens, the spot radius w' 
is only a function of the angle of divergence 0 and the focal length$ 

- -----t-fl'f*z'-q 

U .- W0.f 

- - , f  

J L  2o.f 

f 1 f2 

Fig. 5.33 Focusing of laser beams having a constant beam waist by means of a telescope. The higher 
order mode (lower graph) with its increased angle of divergence exhibits the same spot size as the 
fundamental mode. The Rayleigh range, however, is decreased. 
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5.3 Aperture Limited Stable Resonators 

In the preceding section we have calculated the transverse eigenmodes for stable resonators 
without any limiting apertures inside the resonator. We have only used an aperture to 
determine the maximum number of transverse modes that can oscillate. A transverse mode 
represented an eigensolution of the resonator if its beam radius was smaller than the 
aperture radius. However, the aperhue will also generate diffraction losses which are the 
result of a changed transverse mode structure. For instance, if we decrease the aperture 
radius so that it becomes smaller than the fundamental mode beam radius, the angle of 
divergence will increase resulting in an increased power fraction hitting the aperture after 
each round trip (Fig. 5.34). The intensity distribution at the mirrors is no longer Gaussian 
andthe beam propagation inside the resonator does not follow the Gaussian beam 
propagationrules. The losses ofthe fundamental mode will decrease as we openthe aperture 
again and the intensity profile will approach that of a Gaussian beam. If the aperture is much 
larger than the Gaussian beam radius, the diffraction losses go to zero and we will observe 
the Gaussian beam again. The next higher transverse mode has by then also decreased its 
diffraction losses far enough to reach the laser threshold. The output beam will then consist 
of a superposition of the two lowest order transverse modes. 

If we plotted the diffraction loss as a function of the aperture radius we would expect a 
graph as shown in Fig. 5.35 (for circular symmetry). With increasing aperture radius the 
losses of an increased number of transverse modes will go below a certain loss threshold 
required to maintain a steady-state oscillation. Since the beam radius is proportional to 

, it is a reasonable assumption that the diffraction losses of the TEMpP mode will 
exhibit the highest slopes if the aperture radius is varied around a value of about 4- 
times the Gaussian beam radius. 
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Fig. 5.35 Qualitative dependence of the diffraction losses per round trip of different circularly 
symmetric modes TEMp,on the ratio of aperture radius to Gaussian beam radius ahu. 

The detailed knowledge of the diffraction losses of the transverse modes is crucial for the 
optimized design of a laser resonator, especially for lasers with low gain media. The pump 
power required to reach threshold is determined by the losses the radiation experiences in 
a round trip. The gain factor per transit Go has to compensate the losses generated by output 
coupling and diffraction. The threshold condition reads: 

where Ri is the reflectance of mirror i, and V is loss factor per round trip (=1-loss). 
Furthermore, the efficiency of a laser is strongly affected by internal losses. As discussed 
for the FPI resonator, even low losses in the percent range can decrease the output power 
by orders of magnitude if the gain of the medium is low. A typical HeNe laser, for instance, 
would stop laser emission if the losses per round trip were increased only by 1-2%. In this 
case the resonator design has to be carefully optimized to attain lossless fundamental mode 
operation while preventing higher order modes from oscillating. 

In the following, we will discuss the dependence of the d i b t i o n  losses of transverse 
modes on the g-parameters, the aperture radii, and the number and location of the apertures 
inserted into the resonator. Our main attention is on the fundamental mode since its losses 
determine the behavior of the laser at threshold. The time it takes to build up the threshold 
gain after onset of the pumping, is only affected by the losses of the fundamental mode, even 
in lasers operating in multiple transverse modes. 
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5.3.1 One Aperture Limited Mirror 

Let us first consider the case that only one aperture is placed inside the resonator directly in 
fiont ofmirror 1 [3.6,3.7,3.10,3.16-3.201 (Fig. 5.36). The field distributions at mirror 1 are 
eigensolutions of the Kirchhoff integral equation (5.3) for the round trip. However, the 
integral limits are not infinite, but given by the size of the aperture. In rectangular geometry 
with an aperture width of 2a and an aperture height of 2b, the integral equation for the fields 
of the transverse eigenmodes reads: 

with: G = 2gigz-l; (5.71) 
L : optical resonator length =do (Lo : geometrical length) 
Ao: vacuum wavelength, k=2 "Ao : wave number 

In circular symmetry with a round aperture with radius a, the corresponding equation is 
given by: 

(5.72) 

L 4 

92 
Fig. 5.36 
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In the following we restrict the discussion to the circularly symmetric resonator. By 
separating the radial and the azimuthal field components according to: 

E@(ry@) = up@) exp[i4@] 

the integration over the azimuthal coordinate can be performed, resulting in: 

with: r,  : normalized radial coordinate 
J,: : Bessel function of order P 
Nef: effective Fresnel number (see below) 

(5.73) 

In contrast to the unconfined resonator, the loss factors V=l r,/l are now lower than 1 .O since 
the eigenmodes exhibit diffraction losses at the aperture. Eq. (5.68) indicates that the losses 
and the mode structure depend only on two parameters: 

the equivalent G-parameter G=2gg,g2-I 
the eflective Fresnel number Nefl= d/(2Lg2/2d 

The effective Fresnel number is proportional to the area of the aperture. Its relationship to 
the Gaussian beam radius wmfg,) at mirror 1 is given by: 

(5.74) 

We see that stable resonators in fundamental mode operation with an aperture radius that 
is 1.2-1.5 times larger than the Gaussian beam radius exhibit an effective Fresnel number 
around 1 .O. All resonators having the same absolute value of the equivalent g-parameter and 
the same absolute value of the effective Fresnel number exhibit the same eigenmodes and 
loss factors. These resonators are referred to as equivalent resonators. If we knew the 
functional relationship between the losses and the resonator parameters \GI, INedy we could 
determine the mode properties of any stable resonator provided that only one mirror is 
aperture limited. 
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0 1 2 3 

Fresnel number N 
Fig. 5.37 Loss factor per round trip of different transverse modes in circular symmetry for G=0. 0 
as a fbnction of the effective Fresnel number N. The aperture radius is equal to the Gaussian beam 
radius for N,d=1/7~=0.318. 

Examples of equivalent resonators: 

1) pl=-, p2=2m, L=lm, a=O.8mm, AO=1.064pm 
-----------> 
2) pl=2.5m, p2=1.333m, L=0.5m, a=0.633mm, &=1.064pm 
------- ----> 
3) p1=03777m, p2=0.3077m, L=0.5m, a=0.633mm, Ao=1.064pm 

g, = 1 .O, g,= 0.5, G = 0.0, NeR= 0.602, a/w,,,,(')= 1.376 

g, = 0.8, g,= 0.625, G = 0.0, N,= 0.602, a/w,,,,(')= 1.376 

------------> g, = -0.8, g,= -0.625, G = 0.0, NcR= -0.602, a/w,,,,(')= 1.376 

The integral equation (5.73) generally cannot be solved analytically. Figure 5.37 presents 
the numerically calculated loss factors of different low order transverse modes as a function 
of the effative Fresnel number for resonators with G=0. 0. The curves agree quite well with 
the expected dependence of Fig. 5.35. Since the losses are now plotted versus the square of 
the aperture radius, the curves are almost equally spaced. 

In order to determine the losses of all transverse modes of a stable resonators, we have 
to make graphs like the one shown in Fig. 5.37 for all values of the G-parameter between 
0.0 and 1 .O. This timeansuming procedure is not really necessary since only the properties 
of the fundamental mode are of practical interest. The loss of the fundamental mode 
determines both the laser threshold and the efficiency, whereas the losses of higher 
transverse modes affect only the output power. Figure 5.3 8 shows calculated loss factors per 
round trip in fundamental mode operation as a function of the equivalent G-parameter, a 
comparison with experimental data is shown in Fig. 5.39. As to be expected, the losses are 
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symmetric at G=O since resonators having the same absolute value of G are equivalent. Note 
that the diffraction losses for a constant ratio of aperture radius to Gaussian beam radius 
depend on the G-parameter and go to zero as the G-parameter approaches 1 .O. This means 
that resonators close to the stability limits experience the lowest loss for the fundamental 
mode. In order to minimize the fundamental mode loss this graph encourages us to increase 
the aperture radius as much as possible. However, to prevent the next transverse mode from 
oscillating it is necessary to choose an aperture radius of 1.2-1.4 times the Gaussian beam 
radius. The larger IGl and the higher the gain of the medium, the closer the aperture radius 
can approach the Gaussian beam radius. 
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v) 
0 
-J 

per round trip of the fundamental 
mode in stable resonators with a 
circular aperture of radius a as a 
function of the equivalent G- 
parameter G=Zg,g,-l.  The 
aperture radius is shown 

G = 2g,g2-1 

N =a2/(2L~Xl 
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Fig. 5.39 Measured loss factors per round trip as a function of the ratio of the aperture radius a to 
the Gaussian beam radius w for two different G-parameters. The solid line represents the 
numerically calculated loss factor [S.6]. 
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The loss per round trip of the fundamental mode and the next transverse mode TEM,,, can 
be approximated by using the empirical relation [3.39,3.41]: 

AV = exp[-aivj (5.75) 

The parameters a and p read: 

G 0.0 0.2 0.4 0.5 0.6 0.7 0.8- 0.85 0.9 0.95 0.99 

T E b :  

mM0, : 

u 8.4 6.9 4.9 4.4 3.8 3.5 2.9 2.6 2.3 2.0 1.83 
p 1.84 1.66 1.38 1.34 1.34 1.27 1.16 1.08 1.01 0.86 0.59 

u 5.1 4.3 2.84 2.46 2.18 1.86 1.5 1.34 1.18 1.05 1.02 
p 2.69 2.46 1.91 1.83 1.84 1.81 1.58 1.46 1.35 1.12 0.84 

Diffraction Losses in Multimode Operation 
If the aperture radius is much larger than the Gaussian beam radius, all transverse modes 
fitting into the aperture oscillate simultaneously, Only those modes whose beam radii are 
close to the aperture radius exhibit noticeable diffraction losses. As the aperture is increased 
the loss of the highest order mode will decrease until the next mode starts oscillating and 
the loss increases again. The loss will thus show an oscillating behavior as a function of the 
aperture radius. A numerically calculated example is presented in Fig. 5.40. As soon as the 
next transverse mode reaches the laser threshold, the loss factor decreases again whereas the 
mode volume becomes higher due to the larger beam radius of this mode. The oscillation 
depth will, however, become smaller with increasing aperture radius and the loss factor will 
slowly approach 1 .O. In multimode lasers the number of transverse modes is on the order of 
100 resulting in a round trip loss of 1.0-1.5% (Fig. 5.41). This loss has to be taken into 
account if the output power is calculated (see Chapter 10). Although a loss of 1% seems to 
be small, it has a considerable effect on the design of high power lasers. For a laser with an 
output power of 1 kW, the intracavity power is typically 2kW which means that a power of 
20W falls onto the aperture. Therefore, it is necessary to cool the aperture in order to prevent 
damage. 
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Fig. 5.40 Calculated loss factor per round trip and fill factor (mode volume normalized to the 
volume of the active medium) for a stable resonator as a function of the ratio of the radius b of the 
active medium to the Gaussian beam radius wp The aperture radius a at mirror 1 is held constant 
at a=3.5w,. w,, w, referto the Gaussian beam radii at mirrors 1 and 2, respectively. The oscillations 
of both the loss factor and the fill factor become less pronounced as the transverse mode order 
increases. Only modes without azimuthal structure (P=O) were calculated (small signal gaing&= 2.0, 
loss factor per transit through the medium Vs=O.95). 
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Fig. 5.41 Measured loss per round trip of an Nd:YAG laser in multimode operation as a function 
of the number of transverse modes M. The loss was determined by measuring the power hitting the 
aperture with respect to the total intracavity power. 
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Fig. 5.42 Stable resonator 
with two aperture limited 
mirrors . 

5.3.2 Both Mirrors Aperture Limited 

This case is much more complicated to deal with since the mode properties depend on three 
parameters rather than only on two parameters. If the aperture radii at mirror 1 and 2 are a, 
and a2, respectively (Fig. 5.42), the loss per round trip of each transverse mode is a function 
of the modified g-parameters g,aJa,, g,aJa,, and the Fresnel number N with: 

(5.76) 

It is, therefore, difficult to present a general ovefview of the mode properties of these 
resonators. Furthermore, the number of publications dealing with double aperture resonators 
is very limited [3.16,3.18,3.35,3.36]. 

In order to calculate the loss factor and the mode structure we have to apply the Kirchhoff 
integral to both transits inside the resonator. First we propagate the field from mirror 1 to 
mirror 2 and then back wain. We thus get two coupled integral equations: 

yptulp(r,) = (-i)'2nNexp[ -ikL] 

0 
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with u&-J : radial field distribution at mirror i 
r,, r2 : normalized radial coordinates 
N : Fresnel number = a,aJ(AL) 

(5.77) 

The loss per round trip is given by AVR = 1 -1yJ. It is common to define the loss per transit 

via AVT = 1-m, which represents the average loss per transit since the losses are 
generally different for the two directions. Figure 5.43 presents calculated losses per transit 
of the TEIvb,, mode and the TE%, mode for different resonators as a function of the Fresnel 
number Nfor symmetric apertures (a,=a,=a). 

Fig. 5.43 Diffraction losses per transit of stable resonators in circular symmetry with both mirrors 
limited by apertures with radius a,=q=a as a function of the Fresnel number d/(AL). The losses 
for the fundamental mode and the next order transverse mode are shown. The curve parameter is 
the g-parameter of mirror 2 [after 3.161. 
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Fig. 5.44 Calculated and measured loss factor per round trip of a stable resonator in fundamental 
mode operation as a function of the aperture radius b at mirror 2. The curve parameter is the 
aperture radius a at mirror 1. The Gaussian beam radii at mirror 1 and mirror 2 are wI and w,, 
respectively. Note that the losses decrease when the aperture with radius b truncates the Gaussian 
beam. Resonator parameters: g,=1.0, g2=0.5, L=OSm (pulsed Nd:YAG rod laser, I=l.O64pm). 

Fig. 5.45 Measured output power per pulse of a stable resonator in hndamental mode operation 
as a function of the ratio of the aperture radius b to the Gaussian beam radius w2 at mirror 2. The 
output coupling mirror 1 is limited by an aperture with radius a=1.3wl. Resonator parameters: 
gl=I.O, g2=0.56, effective length L=0.66m (6x318" Nd:YAG rod, small-signal gain g0C2.2, 
reflectance R=O. 7). 
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The losses of stable resonator with one aperture limited mirror do not necessarily increase 
if a second aperture is inserted in front of the second mirror. This is due to the fact that 
diffraction increases the on-axis intensity. Dif€i-action at the second aperture, therefore, may 
decrease the power fraction hitting the first aperture. This effect is shown in Figs. 5.44 and 
5.45 for a stable resonator in fundamental mode operation. In both figures, the aperture 
radius at mirror 1 is remained fixed and the losses and the output power are shown as a 
function of the radius of the second aperture. If both apertures truncate the Gaussian beam, 
the loss factor and, consequently, the output power may be higher than with one aperture 
alone. However, this does not mean that the maximum efficiency in fundamental mode 
operation is attained with two apertures. In general, the highest output power is achieved if 
only one aperture is located inside the resonator (see Chapter 11). 

The special case of symmetric resonators with both the aperture radius and the radius 
of curvature being equal for the two mirrors can be discussed by using the properties of an 
equivalent resonator with one aperture [3.12,3.37]. Any resonator with one aperture limited 
mirror (mirror 1) and a non-vanishing g-parameter of mirror 2 can be transformed into a 
symmetric resonator having the same aperture at both mirrors (Fig. 5.46). The transit in this 
equivalent symmetric resonator is equivalent to the round trip in the resonator with one 
aperture. The imaging properties of the unconfined mirror 2 are taken into account by 
changing the resonator length and the mirror curvatures. Since we get the same ray transfer 
matrix, the loss per round trip in the original resonator with g-parameters g,,g, and length 
L is the same as the loss per transit in the equivalent symmetric resonator with g-parameters 
G=2g,g2-Z and length 2Lg2. The loss per transit of a resonator with g,=g,=g and aperture 
radii a,=u,=a can thus be determined by using Fig. 5.38 (and Eq. (5.75) with G=g and 
N&/(AL)). 
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5.4 Misalignment Sensitivity 

The misalignment sensitivity of a resonator is defined as the sensitivity with which the 
diffiction losses or the output power are changed due to mirror tilt. In this section we will 
only discuss the influence of the mirror misalignment on the resonator losses. The resulting 
variation of the output power will be dealt with in Chapter 14. 

The geometrical effect of a mirror tilt is shown in Fig. 5.47 for a resonator with one 
aperture-limited mirror. Rotation of mirrorj by an angle 4 results in a rotation of the optical 
axis by an angle 8, with the center of curvature of mirror i being the pivot point. As in the 
aligned resonator, the optical axis is defined by the line going through the centers of 
curvature of the mirrors. The angle of rotation of the optical axis 4, also referred to as the 
pointing stability, and the shifts A,,, A, of the intersecting points of the optical axis on mirror 
j and mirror i, respectively, read 

where g, is the g-parameter of mirror i, and ij=1,2 with i 9. 

1 mirror 2 

+I- 

' w2 

(5.78) 

(5.79) 

(5.80) 

Fig. 5.47 Geometry of mirror misalignment in an optical resonator. Rotation of mirror 2 by a, 
results in a shift of the optical axis by A,, at mirror 1 and by AI2at mirror 2. The pointing stability 
Band the shifts can be calculated by using (5.78>(5.80). These equations are also applicable to 
unstable resonators. 
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The transverse eigenmodes will keep oscillating parallel to the optical axis whether the 
resonator is aligned or not. Furthermore, as far as stable resonators are concerned, the mode 
structure also stays almost symmetric to the optical axis. Since the optical axis comes closer 
to one side of the aperture if one or both mirrors are tilted, additional diffraction losses are 
generated. The effective aperture radius is decreased by the shift of the optical axis. In Fig. 
5.47 this means that the aperture radius now is a-A,, rather than a. 

If A denotes the total shift of the optical axis at the aperture, to a good approximation, 
we can describe the properties of the tilted resonator by using an effective Fresnel number 
NeAqJ which takes the reduction of the aperture into account: 

(a-A)2 Neda) = - = Nef (1 - 2 N a )  
2Lg&, 

(5.81) 

The Fresnel number will decrease as the angle of rotation Q is increased resulting in an 
increase of the dieaction losses and a corresponding decrease of the loss factor. For all 
linear resonators, stable as well as unstable ones, the loss factor decreases parabolically with 
the angle of rotation for small mirror tilts: 

(5.82) 

with V(0) being the loss factor for the aligned resonator (Fig. 5.48). The angle a,, denotes 
the angle of misalignment at which the loss factor has decreased by 10% and consequently 
the losses have increased by 10%. This angle is used to define the misalignment sensitivity 
of optical resonators. A low misalignment sensitivity is equivalent to a small 10%-angle 
@lo%* 
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Fig. 5.48 Measured loss factors per round trip of a stable resonator as a function of the angle of 
misalignment of mirror 2. Mirror 1 is limited by an aperture with radius a (G=O.34, L=O.7rny 
a=0.55mm, &=I. 0 6 4 ~ ) .  
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Typical values of a,m for a stable resonator in fundamental mode operation are on the order 
of 50 pad. The exact value of the 10%-angle depends on the g-parameters of the mirrors, 
the Fresnel number, the resonator length, and the aperture radii. All resonators exhibit two 
1 0%-angles, each corresponding to the tilt of one mirror. It is customary to define an average 
misalignment sensitivity by taking the geometrical mean value of the two 10%-angles: 

(5.83) 

with the additional indices indicating the corresponding mirror. This mean angle defines the 
average angle by which both mirrors can be rotated simultaneously before a 10% increase 
in diffraction losses is generated. 

A theoretical investigation of the Kirchhoff integral for misaligned resonatom shows that 
the 10%-angle is proportional to the resonator length and inversely proportional to the 
aperture radius. In order to compare the misalignment sensitivity of different resonators it 
is, therefore, advantageous to introduce the misalignment parameter Di for the mirrors: 

L 
a 

Di = -uIWd , i=l,2 (5.84) 

The misalignment parameters of the two mirrors depend only on the g-parameters and on 
the effective Fresnel number. 

5.4.1 One Aperture Limited Mirror 

Let us consider a resonator with mirror 1 being limited by an aperture with radius a and with 
the unconfined mirror 2 being misaligned by an angle a2, as shown in Fig. 5.47. The mode 
structures and the difiaction loss can be calculated as a function of the angle of 
misaligntnent by using a two-dimensional Kirchhoff integral. Starting at mirror 1 with the 
field E(r, 4, the round trip in the resonator reads: 

(5.85) 

where K is the kernel of the aligned resonator according to (5.67) and ri being the 
normalized radial coordinates. 
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The resonator properties depend on the equivalent G-parameter G=2g,gz-Z, the effective 
Fresnel number Nefi and the misalignment parameter Dz, Figure 5.49 presents the calculated 
misalignment parameter D, for stable resonators in fundamental mode operation as a 
function of the effective Fresnel number Neffor different equivalent G-parameters G. The 
comparison with experimental data is shown in Fig. 5.50. 
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Fig. 5.49 Calculated misalignment parameter for stable resonators in fundamental mode operation 
as a function of the effective Fresnel number N ~ U * / ( ~ L ~ , A ~ ) .  Mirror 1 is limited by the aperture and 
the unconfined mirror is tilted (circular symmetry). 
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Fig. 5.50 Calculated and measured misalignment parameter D, for resonators in fundamental mode 
operation with G=0.34 as a function of the effective Fresnel number. Mirror 1 is aperture limited 
and the unconfined mirror 2 is misaligned (circular symmetry, Nd:YAG laser, &=1.064pn). 
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Of particular interest are resonators in fundamental mode operation with the aperture a 
being adapted to the Gaussian beam radius w,. Figure 5.51 shows the misalignment 
parameter of the unconfined mirror for stable resonators with u/w,=1.3. This figure 
indicates how strongly the misalignment sensitivity depends on the location of the resonator 
in the stability diagram. Note that the misalignment parameter is not a function of the 
wavelength A, because the ratio of aperture radius to Gaussian beam radius is only a 
function of NCsand G (see (5.74)). However, the Gaussian beam radius, and therefore the 
aperture radius a, are proportional to ,&E (see (5.10)) which means that the 10%-angle is 
larger for longer wavelength lasers. The lowest misalignment sensitivity is attained near the 
axes of the stability diagram (G=-I), whereas concave-convex resonators with G being close 
to +1 .O exhibit a sensitivity to mirror tilt. A high mode volume of the fundamental mode 
(see Fig. 5.19) and a low misalignment sensitivity, therefore, can generally not be achieved 
simultaneously. 

So far we have discussed only the misalignment of the unconfined mirror 2 which results 
in a shift A,, at the aperture limited mirror 1. If mirror 1 is tilted we get a shift A,, at mirror 
1. If both mirrors are rotated by the same angle the two shifts are related to each other via: 

A,, = A,, s2 (5.86) 

A rotation of the unconfined mirror 2 by an angle a is thus equivalent to the rotation of the 
aperture limited mirror 1 by the angle dg2. The misalignment parameter D, can be 
calculated by dividing the misalignment parameter D2 by the g-parameter of mirror 2. We 
can now determine the sensitivity of all resonators in fundamental mode operation to tilt of 
one of the two mirrors by using Figs. 5.49-5.51. 
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Fig. 5.51 Measured and 
calculated misalignment 
parameter D, of stable 
resonators in fundamental 
mode operation with the 
aperture radius a at mirror 1 
being adapted to the Gaussian 
beam radius (ahu,=1.3). The 
unconfined mirror 2 is 
misaligned. 
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The mean 1 0%-angle is given by: 

(5.87) 

For reliable operation as well as safe shipping and handling of the laser system, each mirror 
should not be misaligned by more than this mean angle. This defines the tolerances required 
for the stability of the mirror mounts. Resonatorswithg2=Oexhibit the lowest misalignment 
sensitivity. Misalignment of mirror 1 does not increase the losses at all (in the geometrical 
model used we do not get a shift of the optical axis intersection point on mirror 1 since the 
center of curvature of mirror 2 is located at th is  mirror) and the sensitivity of mirror 2 to tilt 
is low compared to other stable ~ ~ S O M ~ ~ I S  (see Fig. 5.51). 

Example: Misalignment Sensitivity of a CO, Laser Resonator 
Resonator geometry: p1=3m, p2=-4m, L=lm, A0=1O.6pn, gl=0.667, g2=1.25. The 
cylindrical gas tube with diameter 2a=8.75mm is positioned close to mirror 1. The Gaussian 
beam radius at mirror 1 is 3.37mm which means that the ratio of the tube radius to the 
Gaussian beam radius is 1.3. With G=2g,g2-l=O.666, Fig. 5.51 yields a misalignment 
parameter of about D2=75mrad. The lO?h-angles for the misalignment of the mirrors are: 

a a1(r/02 = ,Dz = 0.328 mrad,  
L 

a 
alOK,l = 2% = 0.263 mrad 

8 2  

These values result in a mean 1 0%-angle of 0.2 1 mrad. 

Multimode Operation 
If the aperture radius is much larger than the Gaussian beam radius, higher order modes will 
also oscillate in the misaligned resonator. The diffraction losses, however, will only increase 
if the optical axis is rotated so far that the Gaussian beam gets limited by the aperture. For 
smaller tilts, the misalignment only results in a decrease in the number of transverse modes 
without noticeably increasing the diffraction losses (Fig. 5.52). However, the output power 
will show a decrease since the mode volume becomes smaller as the mirrors are tilted. 

If K=l/M2 denotes the beam quality factor of the aligned resonator (see (5.60) and 
(5.66)), the 10%-angle in multimode operation, to a good approximation, is given by: 

with a,w4m being the 
radius dw,,=1.3. 

(5.88) 

10%-angle for fundamental mode operation with adapted aperture 
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2 

Fig. 5.52 Mirror misalignment in a 
multimode stable resonator results in an 
increase in diffraction losses as soon as 
the fundamental mode gets clipped by the 
aperture. Since the Gaussian beam radius 
is t& times smaller than the multimode 
beam radius (K: beam quality factor, 
K<Z), the multimode lO%-angle is Z/L% 
times larger than the lO%-angle for 
hdamental mode operation. 

QA. 

5.4.2 Two Aperture Limited Mirrors 

If both mirrors are limited by apertures, the mirror misalignment generates additional 
diffraction losses at both apertures (Fig. 5.53). Similar to the aligned resonators, the 
theoretical investigation is more complicated and beyond the scope of this book. In the 
following we will summarize the main results for fundamental mode operation [3.27,3.33]. 
Let both aperture radii a,,a,be adapted to the Gaussian beam radii wmfl), wmp)at the mirrors: 

(0 ui = s woo (5.89) 

If mirror i is misaligned by an angle 4, a first order perturbation analysis of the difiction 
integral yields for the loss factor per round trip [3.33]: 

S 2  

exp[& '1 - 1 
(5.90) 

with: 

L * = L,-(n-I)Yn : effective resonator length 
Lo .- geometrical resonator length 
n: index of refraction of active medium 
P : length of active medium. 
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Fig. 5.53 Misalignment of a resonator with both mirrors aperture limited [3.33] (0 OSA 1980). 

The 10%-angle for the misalignment of mirror i thus reads: 

If both mirrors are misaligned, the 10%-angle is given by: 

(5.91) 

(5.92) 

We define D as the misalignment sensitivity of the resonator since a small value of D 
results in a large 1 0%-angle. Figure 5.54 presents calculated misalignment sensitivities D 
of stable resonators in fundamental mode operation with both apertures adapted to the 
Gaussian beam radii at the corresponding mirror. The misalignment sensitivity in this graph 
is normalized to the sensitivity Do of the symmetric confocal resonator with g, =g,=O, given 
by: 

Do = 47 
(5.93) 

The misalignment sensitivity is only a function of the resonator length and the g-parameters. 
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Lowest misalignment sensitivities again are attained for resonators near the axes of the 
stability diagram. Figure 5.55 shows a comparison of measured 10%-angles with the 
theoretical prediction given by (5.91). 

I 1 I L 

91 - 

* .  -\ +I- 

10-5 10-4 I0 -3 

Angle of Misalignment aOi [rad] 

Fig. 5.54 Curves of constant misalignment 
sensitivity D for resonators with both 
apertures adapted to the Gaussian beam 
radius. Do is the sensitivity of the confocal 
resonator [3.33] (0 OSA 1980). 

Fig. 5.55 Measured angles of misalignment 
a,=a,,/d7 and the corresponding 
misalignment sensitivities 0, of the 
resonators according to (5.90). The solid 
line represents relation (5.91) [3.33] (0 
OSA 1980). 




