
Chapter 3 
Polarization 

3.1 General Aspects 

An infinite plane wave in free space is transversally polarized which means that the electric 
field vector is always perpendicular to the direction ofwave propagationz. The electric field 
is thus characterized by its components in the x-direction and the y-direction. For natural 
light and for the majority of lasers, the field vectors change their orientations randomly and 
in a short time interval compared to the detection time. Light sources with these properties 
are called unpolarized. In the following we discuss completely polarized light which means 
that the electric field vector either points in a fixed direction or changes its orientation 
periodically. The polarization of an electromagnetic field is completely characterized by the 
components of the electric field E in the x- and the y-direction. The field vector can be 
written such that common phase terms in the x- and the y-direction are extracted: 

Fig. 3.1 The polarization of the electric field is characterized by the x-y-components field vector 
with the z-axis pointing into the direction of propagation. The polarization state is visualized in the 
x-y-plane by the projected curve traversed by the tip of the field vector. The field depicted is 
linearly polarized. 
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The field amplitudes E,, and E@ are both real numbers and the time averaged intensity of 
the wave is given by: 

1 2 

2 
I = -COBo (E, + E;) 

with: c,: speed of light in vacuum 
E,: vacuum permittivity 

For the description of the polarization state the common time-dependent phase factor in 
(3.1) has no influence. In the following we will omit this term and deal only with the field 
vector: 

Special Polarization States 

1) Linear Polarization, 04 or 4=x, (Fig. 3.2) 
The two field components are either in phase or have opposite signs. The electric field 
vector oscillates at an angle a with respect to the x-axis w i k  

a = --I[ 34 i f + = o  

a = x - --'[ 21 i f + = x  

Ex 

Fig. 3.2 For a linearly polarized electromagnetic 
wave the electric field vector oscillates only in one 
direction. The inclination is determined by the 
field amplitudes in the x- and y-direction. 
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Fig. 3 3  For circularly polarized light, the tip of the 
field vector rotates on a circle. 

2) Circular Polarization, @+~/2, E&=Eq=Edd2. 
By using (3.1) we get the following field vectors for circularly polarized light: 

x if + = +- 
2 

The temporal behavior of the field vector is depicted in Fig. 3 -3. The two field components 
are oscillating with a phase difference of 90". The electric field vector sweeps out a circle 
with radius Eo as time evolves. If we look back at the source, the field vector rotates in 
clockwise direction for @=+ "2 (right circularly polarized) and in counterclockwise 
direction for 4=-"2 (left circularly polarized). 

3) Elliptical Polarization, E,,Ew, and 4 arbitrary. 
If we assume that both field amplitudes are equal (E,=E,=E,) the field vector is given by: 

E = E , , (  eXP[i+l ) 
Projected onto the x-y plane, the tip of the field vector describes an ellipse whose semi-axes 
are rotated by 45" with respect to the x-axis. Linearly and circularly polarized light are 
special cases of elliptical polarization (Fig. 3.4). 
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Fig. 3.4 Polarization states of light as a 
function of the phase difference Q between 
the electric field components in the x- and y- 
directions. In this graph the amplitudes of 
both components are different and the view is 
with the light propagation away from the 
observer. 

Even if the two field amplitudes have different magnitudes, the field vector still traverses 
an ellipse with the semimajor axis rotated with respect to the x-axis by the angle cz with: 

Polarized light is called right elliptically polarized (clockwise rotation when looking back 
at the source) for O<+<TC and left elliptically polarized light is obtained for 7c<+<27c 
(clockwise rotation when viewed in propagation direction). 

3.2 Jones Matrices 

3.2.1 Definition 
Similarly to ray matrix theory in geometrical optics one can describe the changes in 
polarization generated by optical elements by means of a 2x2 matrix W .  If E, denotes the 
field vector in front of the optical element, the new field vector at the output plane is given 
by: 

(3.3) El = M P  E,, 

The matrix W is referred to as the Jones matrix of the optical element [ 1.1 1 1 ,l. 1 131. In the 
following we present the Jones matrices for common polarizing optics. 
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Fig. 3.5 Polarizer with a horizontal pass 
direction. 

1) Polarizer 
A polarizer transmits only electric fields oscillating in one direction called the pass 
direction. In case arbitrary polarized or unpolarized light is incident on the polarizer, only 
the field components in the pass direction will be transmitted. For an ideal polarizer, the 
light becomes linearly polarized. Thus, the Jones matrix of a polarizer can be written as: 

M : = t [ ;  3 if the pass direction is the x-axis 

if the pass direction is the y-axis 

The factor t with 0std.O denotes the amplitude transmission of the polarizer. If the pass 
direction does not coincide with the x- or the y-direction, the Jones matrix can be found by 
rotation, as shall be discussed later. 

In reality, polarizers do not provide 100% linear polarization. To a certain degree, field 
components oscillating perpendicular to the pass direction are also transmitted. If 4, and Z, 
denote the intensities of the transmitted light being linearly polarized parallel and 
perpendicular to the pass direction respectively, the quality of the polarizer is characterized 
by the degree of polarization P: 

For the ideal polarizer Z,=O holds, and the degree of polarization is P = l .  The Jones matrix 
for a real polarizer with the pass direction along the y-axis reads: 

High quality polarizers provide degrees of polarization of P=O. 999 and greater. 
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Y 

Fig. 3.6 Stack plate polarizer with three plates 
tilted by the Brewster angle 0. 

X 

A simple way of generating a polarizer is by using an array of dielectric plates with 
refractive index n, arranged at the Brewster angle 8=atun(n, (Brewster-plates), as shown 
in Fig. 3.6. This so called stack plate polarizer, used as early as the 19th century, has the 
advantage of transmitting one oscillation direction without reflection loss. Light polarized 
in the plane defined by the surface normal and the wave (propagation) vector of the light 
(p-polarized, along the y-axis in Fig. 3.6) passes a Brewster plate without loss. Field 
components oscillating in the perpendicular direction (s-polarized, along the x-axis) 
experience an amplitude transmission of: 

t = -  2n 
n2+1 

at each of the two interfaces. For a stack plate polarizer with N Brewster plates, as shown 
in Fig. 3.6, the Jones matrix reads: 

The degree of polarization is given by: 

1 - t 4 N  p = -  
1 + t4N 

(3.7) 

The intensity goes as the square of the field, and we can define the intensity transmission 
T =t". For three glass plates @=I. 5)  the intensity transmission for s-polarized light is 0.383 
resulting in a degree of polarization P of 0.446. In low power gas lasers (HeNe, Ar') the 
discharge tubes are sealed off with Brewster glass plates (N=2). Note that the Brewster 
plates are inside the resonator - the resonator mirrors are typically located a few cm behind 
the plates. A resonator round trip will generate a loss (=Z-T' of 0.72. Since the gain ofthese 
lasers is generally low and can therefore not compensate for combined losses of more than 
a couple of percent, the output beam is p-polarized. 
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2) Retardation Plates 
Retardation plates are made of birefiingent material that exhibit different indices of 
refraction along two perpendicular axes, denoted as the principal axes. If light incident on 
the retardation plate is oscillating along one of those principal axes, it experiences a phase 
shift of 4, or &, depending on which principal axis lies along the oscillation direction. If 
the principal axes coincide with the axes of the coordinate frame, the Jones matrix of a 
retardation plate reads: 

The phase term outside the matrix has no influence upon the polarization and therefore the 
Jones matrix can be written in the form: 

M [ = [ '  ] with 6= @,-@, 
0 exp[i6] 

Special Cases: 

a) 6=f7c/2. 'Ouarter Wave Plate' 
The Jones matrix (3.8) now reads: 

For linearly polarized light incident at an angle of 45" (field vector Eo=Eo(Z,Z)), the output 
field vector becomes: 

Depending on the sign we get right circularly polarized or left circularly polarized light (Fig. 
3.7). 
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plate 

Fig. 3.7 Influence of a quarter wave 
plate and a half wave plate on the 
polarization of a linearly polarized 
beam oscillating at 45". The principal 
axes of the plates are denoted by h, . 

b) b+n. 'Half Wave Plate' 
According to (3.8), the Jones matrix for the half wave plate is: 

After passage through the half wave plate, light linearly polarized under 45" will still be 
linearly polarized but the oscillation direction has rotated by 90". The same effect can be 
generated by a series of two quarter wave plates. 

3) Faraday Rotator 
When inserted into the beam path, a Faraday rotator exhibits the unique property of rotating 
the plane of polarization for a linearly polarized wave regardless of the inclination angle at 
the entrance plane. This rotation, called the Faraday effect, can be generated in dielectric 
materials by applying a static magnetic field B along the propagation direction of the 
electromagnetic wave. The rotation angle pis  proportional to the lengthL of Faradayrotator 
and to the magnetic field component in the direction of the wave vector k: 

kB P = V L -  
Ikl 

The Verdet constant Vdetermines the strength of the Faraday effect. Faraday rotators used 
in laser systems use doped glass or crystal rods with the magnetic field either generated 
electrically, as shown in Fig. 3.8, or by means of strong permanent magnets (Table 3.1). 
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Fig. 3.8 The Faraday rotator rotates 
the plane of polarization of linearly 
polarized light. 

Since the rotation of the polarization plane does not depend on the inclination of the input 
field vector, the Jones matrix of a Faraday rotator has the form of a rotation matrix (rotation 
in the counterclockwise direction when looking along the wave vector): 

cosp -sir$ 

sinp cosp 

Table 3.1 Verdet constants of different materials. 

(3.10) 

Material V[degree/(cm Tesla)] 

water 2.2 
phosphate glass 
quartz 
flint glass 
Terbium doped glass 
Terbium doped GGG 

2.7 
2.8 
5.3 

40.0 
76.8 

3.2.2 Matrices for Rotated Polarizing Optics 

If the Jones matrix M p  for the aligned optics is known, we can calculate the Jones matrix 
W(ql for a rotation by an angle u by using (see Sec. 1.2.5): 

cosa sinu 

sinu cosu -sinu cosa 
(3.1 1) 

whereby the optics are rotated in the counterclockwise direction as we look towards the 
optics in the propagation direction of the electric field (Fig. 3.9). 
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Fig. 3.9 Rotated polarizer and rotated retardation plate (viewed along the propagation direction of 
the field). 

a) Rotated Polarizer (Fig. 3.9) 
We assume that the pass direction of the aligned polarizer (with t=Z) is along the x-axis. 
Application of (3.1 1) yields: 

I cos2u sinucosu 

sinacosu sin2u 
MF(U) = (3.12) 

b) Rotated Retardation Plate (Fig. 3.9) 
By inserting the Jones matrix of the aligned retarder (3.8) into the transformation law (3.1 1) 
one gets: 

(3.13) 1 cos2u + exp[i6]sin2u 

sinucosa( 1 -exp[i6]) 

sinucosu( 1 -exp[i6]) 

sin2a + exp[i6]cos2a 
M a r t )  = 

For a W2-plate (6=n), the matrix (3.13) reads: 

co2u -sin2u 2sinucosu ] = [cos2a sin2u 1 
2sinucosa sinzu -cos2u sin2u -cos2u (3.14) Mas) = 

Light that is polarized linearly in x- or in y-direction will be rotated by an angle 2a. 
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c) Rotated Faraday Rotator 
The Jones matrix of the Faraday rotator is invariant under rotation: 

(3.15) 

This is easy to understand since the Faraday effect does not depend on the inclination of the 
polarization plane at the entrance face of the rotator. 

3.2.3 Combination of Several Polarizing Optics 

When several polarizing optics are located in the beam path, the Jones matrices of the 
individual components have to be multiplied to find the resulting Jones matrix of the total 
optical system. If M,!' denotes the Jones matrix of the i-th optical element passed by the 
beam, the resulting Jones matrix for N elements is given by: 

(3.16) 

Similar to the ray matrices in geometrical optics, the optical element passed first stands at 
the right hand side of the matrix product. Note that (3.16) can only be used if no more than 
one Jones-matrix depends on spatial coordinates (such as for radially and radial-azimuthally 
birefiingent materials). If the optical system comprises more than one of these elements, 
the ray propagation between the elements has to be taken into account. 

When the light is reflected off a mirror and travels through the same polarizing optics 
again, but in the opposite direction, the same Jones matrices for these elements are used. As 
already discussed in geometrical optics, the observer always rides with the beam which 
means that the coordinate frame is reflected by the mirror such that the z-axis points again 
in the propagation direction. There is, however, one exception to this rule: For polarization 
rotators based on optical activity (such as crystalline quartz, sugar solution, or milk acid), 
the negative angle -p has to be used for the reverse direction in the Jones matrix (3.10). This 
is the mathematical description of the fact that for an optically active medium, the 
polarization is completely unaffected if the beam propagates through the medium twice, 
once in the forward and once in the reverse direction. 

A high-reflecting mirror generally does not influence the polarization properties of the beam 
since both field components experience the same phase shift of TC and the same reflectivity. 
Partially reflecting mirrors with non-normal incidence and all reflecting devices based on 
total internal reflection (porro prisms, corner cubes), however, affect the polarization state 
since the reflectivities and the phase shifts are different for p-polarized and s-polarized light. 
The general Jones matrix for a mirror thus reads: 
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(3.17) 

with r,,r, are the amplitude reflectivities in the x- and the y-direction, respectively. For a 90° 
roof top prism with index of refraction n, the phase shift 6 is given by: 

8 = 4 tan-'im - x roof edge along y-axis (3.18) 

8 = IE - 4 tan-$/- roof edge along x-axis (3.19) 

A roof top prism acts like a 1/4 plate for an index of refkction of n=I.5538. 

Examples: 
1) The Optical Diode 
A combination of a @larizer and a quarter wave plate with an angle of 45'between the pass 
direction of the polarizer and the principal axes of the plate is called an optical diode (Fig. 
3.10). Light reflected off a mirror or atarget (e.g. work piece in laser material processing) 
cannot pass the polarizer in backward direction. The reflected light is prevented from 
entering the laser system which can cause unwanted feedback effects. The optical diode is 
also used to physically separate the signal beam from the source beam path in laser 
measurement systems that make use of light scattered or reflected back into the source. 
(remote sensing, LIDAR). 

The principle of operation of an optical diode is based on the fact that the combination 
of forward and backward propagation through the quarter wave plate will rotate the 
polarization plane by 90". Any back propagating portion of the beam will be completely 
absorbed or reflected by the polarizer. This is, of course, only true if the mirror or the target 
does not change the polarization state. 

Fig. 3.10 The optical diode. The quarter 
wave plate rotates the polarization plane by 

Polaruer a4-plate ~~~~~f 90". For best results, the target must not 
affect the polarization. 4 9  
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By calculating the resulting Jones matrix with (3.16) we find that the resulting Jones matrix 
has indeed only zero components: 

(3.20) 

If the target affects the polarization of the beam, the quarter wave plate has to be replaced 
by a Faraday rotator with rotation angle p 4 5 "  and a polarizer attached to its end face (such 
that the rotated beam will be completely transmitted). If the pass direction of the first 
polarizer is in the y-direction, the resulting Jones matrix for this system reads: 

Pol.(y) FR(45") P01.(45") Target PoI(45") FR(45") Pol.(y) 

(3.21) 

Equation (3.21) clearly shows that this system always blocks the light in the backwards 
direction, no matter what the Jones matrix elements mri of the target are. 

2) Rotatable Retardation Plate between Crossed Polarhers 
Two crossed polarizers cannot transmit light. Only if the polarization is changed between 
the polarizers can field components in the pass direction of the second polarizer be 
generated. This effect can be used to visualize stress in transparent materials. Since stress 
induces birefringence, the intensity distribution behind the second polarizer contains 
information on the area and the magnitude of stress in materials. The retardation plate is a 
model for such a stressed material. The resulting Jones matrix for the system depicted in 
Fig. 3.1 1 reads: 

co2a + exp[i6]sin2a sinacosa(l-exp[i6]) 

sinacosa(1 -exp[ib]) sin2a + exp[i6]cos2a 

(3.22) 
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Dolarlzer retardation plate polarizer 

An unpolarized input beam with intensity I, results in an output intensity I of 

I = I, 2sin~ucos~u(l-cos6) (3.23) 

We get zero transmission when the pass directions of the polarizers coincide with the 
principal axes of the retardation plate (u=0",90",180",270"), and maximum transmission is 
attained for u=45",135", 225", and 315". The phase shift 6 can be determined from two 
intensity measurements, performed at different angles. 

3) Two half-wave plates offset by 45" 
The first half wave plate has its principal axes rotated by an angle a, the second plate is 
rotated by an additional 45" (angle: u+x/4). By using (3.14), the resulting Jones-matrix can 
be easily calculated: 

cos2(u +x/4) sin2(u +d4) 

M'n(u) = I sin2(u+x/4) 

A comparison with the matrix of a Faraday rotator (3.10) indicates that this combination of 
two half-wave plates is equivalent to a 90" rotator with counter- clockwise rotation (viewed 
along the propagation direction). If the second wave plate were rotated by an angle u+x/4, 
a 90" rotation in the clockwise direction would result. 
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3.3 Eigenstates of Polarization 

For any combination of polarizing optics we can find states of polarization which remain 
unaffected after passage. These polarization states are called the eigenstates of the optical 
system and they play an important role in resonator physics since they represent the steady 
state solutions. If iW denotes the Jones matrix of the optical system, the field vector E, must 
be proportional to the input field vector Em with: 

El = pPE, = M'Eo (3.24) 

The eigenstates of polarization are given by the two eigenvectors of the Jones matrix @. 
The physical meaning of the eigenvalues f l  is revealed if we compare the intensities at the 
input plane I, and at the output plane Z,: 

(3.25) 

The factor IflI' represents the intensity fraction remaining inthe beam after passage through 
the polarizing optics. This factor is called the loss factor V. The power fraction getting lost 
due to reflection or absorption is given by AV=1-V. The two eigenvalues for the general 
Jones matrix given by: 

can be calculated by using: 

P - m11+m22 * I[ "11 m22)2 + ~ 1 ~ % 1  

2 PI92 - 

The corresponding eigenvectors read: 

(3.26) 

(3.27) 

(3.28) 
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Examples: 
1) Retardation Plate 
The Jones matrix of the rotated retardation plate is: 

cos2a + exp[i6]sin2a sinacosa(1 -exp[i6]) 

sinacosa(1 -exp[ia]) sin2a + exp[i6]cos2a 
MAa) = 

By using (3.26) and (3.27) we get the following eigenvectors and eigenvalues: 

The eigenstates are linear polarization along the two principal axes. Since the retardation 
plate does not induce any losses (surface reflections are not accounted for in the Jones 
matrix!), both loss factors V are equal to 1. 

2) Brewster Plate 
The Jones matrix for a Brewster plate with index of refraction n and the surface normal in 
the y-z plane reads: 

The eigenvectors and eigenvalues are: 

2 

The s-polarized wave E: exhibits a loss of I-lp:J2 due to reflection at the two interfaces. 

3) Faraday Rotator 
It can be easily shown that left circular and right circular polarizations are the eigenstates 
of a Faraday rotator, with both loss factors being equal to 1. 
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3.4 Polarization in Optical Resonators 

3.4.1 Eigenstates of the Round trip Jones Matrix 

The Jones matrix formalism enables us to determine the polarization of the electric field in 
laser resonators [ 1.1 121. If polarizing optical elements are inserted into the resonator, the 
polarization will reproduce itself after every round trip as soon as a steady state electric field 
has been established. The steady state polarization is thus determined by the polarization 
eigenstates of the round trip Jones matrix. The reference plane from which the round trip 
is started can be chosen arbitrarily since the steady state condition must hold everywhere 
inside the resonator. 

A polarized laser beam, however, can only be generated if the loss factor for one 
polarization eigenstate is lower than that for the other one. In this case, the polarization with 
the lowest loss is preferred. This is due to the fact that the threshold condition is reached 
first for the lowest loss polarization. After the onset of laser oscillation in this polarization 
eigenstate, gain saturation will prevent the second polarization eigenstate fiom reaching the 
threshold. In case both loss factors are equal, the electric field will be unpolarized. A laser 
resonator with an internal Brewster plate (Fig.3.12) will therefore emit a linearly polarized 
beam. The round trip Jones matrix starting on mirror 1 reads: 

The polarization eigenstates are linear polarizations along the x- and y- axis, respectively. 
The field will, however, be polarized along the y-axis @-polarization), since this oscillation 
mode will not generate any reflection losses at the Brewster plate. The second eigenvector 
representing the s-polarized beam exhibits a round trip loss of 

8 

AV = l-[%] 

mirror 1 Brewster plate medium mirror2 

Fig. 3.12 A laser resonator with 
an internal Brewster plate 

I generates a linearly polarized 
R, c 1  R, - 1 beam (P-POl=i=d). 
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3.4.2 Polarization and Diffraction Integrals 

In Sec. 2.8 we presented the integral equations for the calculation of the electric field 
distributions at the resonator mirrors and at any other plane inside the resonator. For the 
derivation of the Collins integral it was assumed that the electric field is a scalar quantity, 
neglecting the polarization. Fortunately, as far as optical resonators are concerned, it is not 
necessary to repeat a similar derivation of the dif€iaction integrals when the polarization is 
taken into account. Since the scalar wave equation holds for both the x- and the y- 
component of the field vector, we can apply the Collins integral in the x- and y-directions 
separately. If KE denotes the Collins integral for a round trip inside the resonator applied 
to the scalar field E , we can write the integral equation for the vector field in the form: 

(3.29) 

The two field components do not mix since we have no polarizing element inside the 
resonator. We are dealing with two scalar field integral equations that can be solved 
separately. 

If a polarizing optical element with Jones matrix M p  is located inside the resonator, as 
depicted in Fig. 3.13, the two components will interact. We can still calculate the four 
propagations between the mirrors and the polarizing elements using diagonal integral 
matrices as in (3.29), but we now have to mix the x- and y-components of the field at the 
plane of the polarizing element according to its Jones matrix. The integral equation for a 
resonator round trip will then read: 

mirror 1 mirror 2 (3.30) 

I 

Fig. 3.13 Round trip in an optical resonator with an internal polarizing element. It is assumed that 
the length of this element is small compared to the resonator length. The field is propagated to and 
from the dotted plane by means of Collins integrals . 
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which can be written as: 

If the Jones matrix has non-vanishing elements m,2,m21, the two field components become 
coupled and we have to solve both integral equations simultaneously. Note that the 
swapping of the integral operators and the Jones matrix elements in the above equations is 
prohibited if the Jones matrix elements depend on the spatial coordinates. Once the solutions 
of these coupled integral equations are found (in most cases numerically), the field 
distribution E and the loss factor V are given by: 

(3.31) 

3.5 Depolarizers 

In the preceding sections we have only discussed polarizing optics that either change the 
polarization state of polarized light, like the retardation plate, or generate a well-defined 
polarization from unpolarized light, like the polarizer. In addition to this class of polarizing 
optics, optical elements that transform polarized light into unpolarized light also exist. The 
latter type of polarizing optics are called depolarizers. Whereas the generation of polarized 
light out of unpolarized light cannot be accomplished without loss of energy, the 
depolarization can be achieved in a lossless way. The depolarization of polarized laser 
beams is most often applied to decrease measurement errors in power and intensity 
measurements since the polarization interacts with the measurement apparatus. Furthermore, 
as far as material processing is concerned, an unpolarized beam provides a more flexible 
tool since the interaction with the work piece is less affected by changes in the processing 
geometry (e.g. angle of incidence, direction of focal spot movement). Depolarization can be 
attained by reflection off or transmission through a scattering screen. This technique will, 
however, generate considerable loss and will also spoil the beam quality. A more suitable 
technique is to generate a continuum of different polarization states across the beam. The 
beam will then behave like an unpolarized beam. One commonly used depolarizer working 
on this principle is the Cornu depolarizer, as shown in Fig. 3.14. 

This depolarizer for monochromatic light consists of two crystalline quartz prisms 
attached such that they form a cube. The first quartz prism (left handed quartz) acts like a 
retardation plate whereby the induced phase shift 8, is proportional to the distance over 
which the beam has to propagate within the prism. At the interface, the phase shift of a 
collimated beam is a function of the entrance height y of the beam: 
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Fig. 3.14 Comu Depolarizer. 

6 , Q  = n[%-.,l( 2% -7j- +a-y ) (3.32) 

Without the second prism, the beam would be deflected fiom the optical axis due to 
refraction. The second prism must be arranged such that the phase shift has a negative sign 
compared to the first one, otherwise the total phase shift would not depend on the y- 
coordinate. This is accomplished by switching the principal axes (right handed quartz). The 
phase shift induced by the second prism is given by: 

Addition of the two phase shifts results in the total phase shift: 

(3.33) 

(3.34) 

The beam emerging fiom the Cornu depolarizer exhibits different polarization states at 
different heights. Hence, the beam is not truly unpolarized, but by averaging over the total 
beam cross section it will simulate the behavior of unpolarized radiation. It is advantageous 
to focus the exit beam to a smaller spot size to more closely mimic unpolarized light. 
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3.6 Momentum and Angular Momentum of a Beam 

The electromagnetic field carries momentum and angular momentum, which depend on the 
Poynting vector, the structure of the beam and its polarization. This is easy to understand, 
if we remember that in Quantum Optics the beam can be represented by a stream of photons. 
Each of them with a momentum trk and an angular momentum R, which is related to the 
polarisation. If these photons are absorbed by a target (a small piece of matter), momentum 
and angular momentum are transferred and the target will be pushed away and starts to 
rotate. However, this is not a quantum effect, and it has been already well known in classical 
electrodynamics [1.116]. The interaction between field and matter occurs by the 
Coulomb/Lorentz-force Facting on the electrons [ 1.1 171. This force depends on the electric 
field E and the magnetic induction B . For dielectric media with B = p$I the 
CoulombiLorentz force reads: 

v x H  e F = e E + -  
EOCO 

2 (3.35) 

with e : charge of the electron (1.6021 As) 
v : velocity of the electron 

The Coulomb force is parallel to the electric field, the Lorentz force perpendicular to the 
magnetic field and the velocity of the electron. The oscillating electric field forces the 
electron to oscillate in the same direction as the electric field vector. The oscillating 
magnetic field interacts with the oscillating electron and generates a force in direction k of 
the propagating field, as shown in Fig. 3.15. Momentum is transferred to the target, but only 
if the field is partly absorbed or reflected. This force can be used to deflect atoms [ 1.1 181 
or to balance small glass beads in the gravitational field [l .119, 1.1201. 

Fig. 3.15 A plane wave is transmitting a 
dielectric target and partly reflected or 
absorbed. The interplay of Coulomb and 
Lorentz force generates a force Fr on the 
target in the direction k of beam propagation. 
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An application is the optical tweezer [ 1.1281 a tool for handling microscopic particles. The 
correct calculation of this force is given in text books [ 1.1 17,l. 12 1 , 1.1301. A laser pulse 
with an energy Ep consists of N = EJAw photons. Each photon carries the momentum Ilk 
which results in the total momentum P in direction of propagation: 

p = - -  EP k (3.36) 
co lkl 

The momentum flux is the momentum per time and is equivalent to a force. It reads for a 
continuous field of power P=dEddt : 

(3.37) 

This equation holds for plane waves. A more precise expression for arbitrary in non- 
magnetic media reads [ 1.1211: 

and the momentum flux in z -direction is given by: 

(3.38) 

(3.39) 

This momentum flux can transfer momentum to a target only if power is absorbed. A loss 
free crystal interacts with the radiation field, demonstrated by the lower speed of light inside 
the medium. But in average, the Lorentz force is zero and no momentum is transferred, 
because the velocity of the electron and the magnetic field have a phase shift of 90'. In order 
to transfer momentum, absorption is necessary, which results in a slight change the phase 
shift. If reflection occurs, the incident and the reflected wave generate a standing wave. In 
this case the electron velocity and the magnetic field are in phase and momentum transfer 
occurs. The momentum flux absorbed or reflected is equal to the force on the target. 
Therefore, the force on the target is given by: 

(3.40) 

where P is the incident power, R is the reflectivity and T the transmission of the target. 
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Example: 
A tiny mirror with a mass of m = 2x 10’’ kg is suspended by a string with a length of P=O. 1 
m, as shown in Fig. 3.16. A short laser pulse with energy E,=l Joule is completely reflected 
by the mirror. The momentum of the beam is changed by Ap=2Ep /cW This momentum has 
to be absorbed by the mirrorp = mv= 2Ep /co leading to a recoil. The kinetic energy of the 
mirror becomes: 

The mirror is deflected and lifted by AQ in the gravitational field, at which point the potential 
energy equals the initial kinematic energy: 

with g = 9.81 d s 2 .  The maximum deflection angle A a  is thus given by: 

For the parameters given above, the resulting angle of 0.3 mad can be easily observed. 

Using the momentum transfer due to reflection, it is even possible to stabilize a small 
particle in the center of a Gaussian beam [1.121, 1.1221, as is shown in Fig.3.17. This can 
be easily explained by examining the resulting momentum. If the particle is decentred, the 
conservation of momentum results in a momentum AP, which pushes the particle back to 
the center. 
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Fig. 3.17 A small particle can be stabilized in the 
centre. of a Gaussian beam (left). If the particle is 
decentered, the resulting transferred momentum 
pushes it back to the center (right). 

3.6.2 The Poynting Vector of Structured Beams 

Before dealing with the angular momentum let us briefly discuss the pointing vector of 
structured fields. The field of a quasi-plane wave propagating in z-direction, slightly 
distorted by difiaction, can be described by the slowly varying envelope approximation: 

EO = [3 (3.41) 

where Er and E, are the transverse and longitudinal components, respectively. Slowly 
varying envelope approximation means that 

In the case of elliptically polarized light, the transverse part of the electric field reads: 

(3.42) 

The Poynting vector for such a field is again given by Eq.( 1.1). It is a bit troublesome, but 
nonetheless straight forward, to derive the magnetic field by applying Maxwell's equations. 
Neglecting higher order derivations of u, one obtains [ 1.123,l. 1361 for the Poynting vector: 
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Now a transverse flow of power S, appears. The width of the beam is increasing when 
propagating in free space, a result of diffraction and energy flowing radially. The transverse 
part of the Poynting vector is given by: 

(3.43) 1 
4 k 0 0  

s, = -€ c p 12 

The first part is related to the structure of the beam and is called the structural term, the 
second part depends on the polarisation and is called the polarization term. The z- 
component of the Poynting vector is the well known plane wave energy flow: 

1 
2 

s, = -€oco /Eoup (3.44) 

Example: 
In order to gain a better understanding let us calculate the Poynting vector for'a circularly 
polarized Gaussian beam with @=x/2. As discussed in detail in Sec. 2.5, the electric field 
at the distance z from the waist position is given by: 

If the transverse Poynting vector is normalized with respect to the z-component, the two 
contributions are: 

with the radius of curvature R= z(dz,,+q,lz) (see Sec. 2.5.1). The meaning of these two 
expressions is easier to understand if cylindrical coordinates are introduced: 
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Then the two parts of the transverse Poynting vector read: 

with e,, and e+ being the radial and azimuthal unit vectors, respectively. The structural part 
represents a radial energy flow as discussed in Sec. 2.9, which means that the resulting 
Poynting vector S is always perpendicular to the phase fronts, as shown in Fig. 2.42. The 
polarization part has an azimuthal component only. The energy is circulating around the z- 
axis, a consequence of the circular polarization. 

3.6.3 Angular Momentum 

The angular momentum L is defined the same way as in classical mechanics as the cross 
product of the position vector r and the momentum P : 

In most cases only the angular momentum flow in propagation direction is of interest. This 
flow is obtained from (3.45) with dzdt=c,: 

(3.46) 

The vector of the cross product is perpendicular to both vectors r and S. If S has only a z- 
component, the cross product has no z-component and the angular momentum flow is zero. 
Due to diffraction, S exhibits x,y-components, as was discussed in the previous section. 
Inserting (3.43) into (3.46) delivers two terms for the angular momentum [ 1.124,l. 1251: 

(3.47) 

(3.48) 
1 

Jzpo,. = --E c IE l2 sin@ 
4 o o o  

where cc denotes the complex conjugate. Note that momentum flux is equivalent to a 
torque. 
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Fig. 3.18 A rotating intensity distribution carries an orbital angular momentum. 

The structural (orbital) angular momentum 
The structural term is also referred to as the orbital angular momentum. In Sec. 2.6.2, the 
second intensity moments of abeam were discussed. From the definition of the mixed 
moments <wxey> and <wyex>, a relation between these twist parameters and the orbital 
angular momentum is obtained: 

(3.49) 

where P is the total power of the beam. The existence of a twist or orbital angular 
momentum means that the beam is rotating around the z-axis with constant direction of the 
electric field vector as depicted in Fig. 3.18. An experimental example of such a field are 
the Gauss-Laguerre eigenmodes, which are discussed in detail in Sec. 5.2.1. The field and 
the intensity of such an eigenmode of order P for a rotating field read: (see Eq. (5.6)): 

(3.50) 

For a standing wave, which can be described as the superposition of two counter-rotating 
modes with equal amplitude, the corresponding expressions read: 
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field E intensity Z 

0 + + +  - "OO0 

&- 0 
Fig. 3.19 The superposition of two counter-rotating Gaus-Laguerre modes with mode order p=O 
and 9=2 generate an intensity distribution with an azimuthal structure (top). A single mode exhibits 
a ring-like structure (bottom). 

The standing wave produces an azimuthal intensity pattern, whereas the rotating field 
intensity (3.50) exhibits a ring-like structure as shown in Fig. 3.19. Therefore, only the ring 
mode has an angular orbital momentum. Equations (3.50) and (3.47) deliver for the flux: 

(3.52) 

which means that each photon of the beam has an orbital angular momentum of Oh. 

Generation of modes with orbital angular momentum (twist) 
Gauss-Laguerre modes can be generated in laser systems of perfect circular symmetry, 
which is difficult to realize. It is much easier to transform Gauss-Hermite modes into Gauss- 
Laguerre modes by using astigmatic optical systems [l .125-1.1271. An experimental setup 
is shown in Fig. 3.20. At z = 0 is the waist of a Gauss-Hermite mode with order (m,O). This 
mode is transformed by a system of three cylinder lenses with focal lengthsfl2,fandfl2 
equally spaced by a distancefl2. The lens system is rotated by 45' with respect to the mode 
axis and the focal length is equal to the Rayleigh range zo. If the Rayleigh ranges are 
different in the x- and the y- direction, they have to be equalized by a suitable bifocal lens 
system [ 1.1341. In the distance 372 behind the third lens, the waist of a Gauss-Laguerre mode 
will appear. Let us first evaluate the variance matrices of the beam. 

If the beam has its waist in the plane z=O, the second order moment or variance matrix 
reads in the x,,y, reference system: 
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Fig. 3.20 Transformation of a Gauss-Hemite mode with order (m,O) into a Gauss-Laguerre, mode 
of order p=O and 4=2. 

PI = 

w2x,1 0 0 0 

0 w2y,l 0 0 

0 0 @*,* 0 

0 0 0 0%. 

(3.53) 

It is a simple astigmatic beam with different waist sizes and divergence angles in the x,-and 
the y,-directions. For a Gauss-Hermite mode of order (q0) the following relations hold: 

wx,l = w o @ a  , 

, 20 = Kw,2/2 wy,l = wo , e = e = - 

= e o @ a  
(3.54) 

A 
"WO 

Y J  0 

The variance matrix Pz in the xz,yz plane is obtained by applying Eq. (2.126): 
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- 
Mnon-mtoted - 

The matrix M is the four-dimensional ray transfer matrix of the complete system and 
includes all distances and elements as well as the 45' rotation: 

0 - 1 0 0  

-l/f 0 0 0 

The different matrices are compiled in Sec. 1.2.4. Instead of going straight ahead with the 
matrix multiplication, we use an easier method to obtain the resulting matrix. First we 
calculate the 2x2 matrices of the system in the x- and in the y-direction without taking the 
rotation into account: 

Combination of both matrices results in the fourdimensional ray transfer matrix ofthe non- 
rotated system: 

By using the rotation matrix (1.68): 

( 1  *l 0 0 

R*(45") = - 

( 0  0 T1 1 

the complete matrix of the system is finally obtained: 
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1 1  - 1 f f  
2 -1y -1y -I 1 

M = R-M,,-,&+ = - 

183 

= ("c 3 (3.55) 

Equations (3.53) and (3 -55) deliver the new variance matrix P2 of the field in the x,,y,-plane: 

Pz = 

w2x,l+~2Y,~ 0 

0 e2x,1 +f)2y,l 

(3.56) 

This is a field of rotational symmetry with a waist in this plane. Waist radii and angles of 
divergence, respectively, are equal in the two directions: 

w'*;2 = wzy2 = 2x, 1 +w 2y, I , e2$ = ezY2 = e2x,1 +e2y,* 
2 2 

The astigmatic beam has been transformed into a beam of rotational symmetry. However, 
it is not a stigmatic beam since new non-diagonal term appear in the variance matrix. The 
can be identified as a twist: 

or as an orbital angular momentum: 

(3.57) 
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This equation holds for any astigmatic beam with variance matric P,, which is transformed 
into a beam of rotational symmetry by a suitable optical system. By using the parameters 
(3.54) of the Gauss-Hermite modes of order (m,O), the angular momentum reads: 

(3.58) 

n order to calculate the field distribution in the x2,y2-plane, the two-dimensional Collins- 
ntegral (Sec.2.3.2) has to be solved using the ABCD-parameters of the system matrix 

(3.55). In the x,,y,-plane, the field of a Gauss-Hermite mode of order (m,2) is given by: 

After propagation through the optical system, the output field in the x,,y,-plane reads 
[1.125-1.1271: 

with p ~ = x ~ + y ~ .  An experimental example is shown in Fig. 3.21. Other combinations of 
spherical and cylindrical lenses, as proposed by several authors [1.128-1.130], can also be 
used to transform astigmatic beams into beams with rotational symmetry. This is of 
particular interest for fiber coupling of diode lasers. 

TEM 0,lO 

TEM 0, 10 

TEM 0,49 

Fig. 3.21 Transformation 
of Gauss-Hennite modes 
into Gauss-Laguerre modes 
using the optical system 
depicted in the previous 
figure. A diodepumped 
1064nmNd:YAG laserwas 
used to generate the Gauss- 
Hermite modes. The 
recorded  intens i ty  
distributions at the input 
plane (left) and the output 
plane (right) are shown 
[1.125,1.127]. 
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Gauss-Hermite- transformed interference phase 
modeTEM,, twistedbeam pattern structure 

Fig. 3.22 Interference pattern of a plane wave with a twisted Gauss-Laguerre mode and its phase 
sbucture [1.125]. 

Example: 
A Nd:YAG laser emits a Gauss-Hermite mode of order (m,n)=( 10,O) with an output power 
of 1 OW at 1064nm. After transformation into a Gauss-Laguerre mode, the beam, according 
to (3.58), exhibits torque of J-= 5.4 Nm. This is certainly a low value, but it is 
sufficient to make microscopic particles rotate. 

The polarization angular momentum 
The angular momentum flux due to the polarization term given by Eq. (3.48) can be written 
Bs: 

Integration of this equation yields a very simple result: 
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This means, that for counterclockwise or clockwise circular polarization (a=, IT), each 
photon carries an angular momentum of & [1.132]. The relation between circular 
polarization and spin of the photon was proven experimentally by Beth in 1936 [ 1.1341. The 
set-up he used is depicted in Fig. 3.23. The radiation of a conventional light source was 
collimated, left circularly polarized with a combination of a polarizer and a retarder plate 
and chopped with a shutter. The light was incident on a N2-plateY which was suspended on 
a thin quartz fibre. Each photon that goes through the plate, changes its angular momentum 
by 2h. This angular momentum is transferred to the plate, which results in'an oscillation 
with the shutter frequency. To enhance the sensitivity the shutter frequency is equal the 
resonance frequency of the suspended plate. 

Fig. 3.23 Set-up of Beth's experiment to 
measure the intrinsic angular momentum of 
circularly polarized light [ 1.1341. 
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