
Chapter 2 
Wave Optics 

2.1 Huygen's Principle and Diffraction Integral 

The geometrical treatment of the propagation of light presented in the preceding chapter is 
only an approximate description. It does not take the spatial amplitude distribution of the 
electromagnetic wave into account. Geometrical optics can be applied as long as the 
wavelength is small compared to the lateral extent of the wave. This restriction, as already 
discussed, is equivalent to a large Fresnel number N. The exact description of the 
propagation of light is obtained by utilizing Maxwell's equations to derive the wave 
equations for the electric and the magnetic fields. If we neglect the vector properties of the 
field, the wave equation for the electric field E in homogeneous, isotropic, loss-free, 
dielectric media reads [1.1,1.3,1.63]: 

with c being the speed of light in the medium. This equations holds for each of the three 
components of the field. In general an infinite number of solutions to this wave equation 
exists since all fields E for which the relations: 

E(XyJ,t) = E(W - &> - & y ~  - &z) 
2 2 2 m 2  

142 = k, + k + &* = - 
C 2  

Y 

hold are solutions of the wave equation (2.1). One well-known electromagnetic field is the 
plane wave, which reads in the real presentation: 

with: o = 2 nv angular frequency 
V = C / A  light fkquency 
k = (k, ky kJ wave vector with lkl = 2xIA 
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The wave vector k points into the direction of propagation of the wave and is perpendicular 
to the planes of constant phase. Another common solution is the spherical wave: 

with r being the distance from the source. Although both waves are solutions of the wave 
equation, they cannot be realized since no spatial codmement is allowed. Without lateral 
confinement the waves are infinite in extent and contain infinite power. Therefore, infnite 
waves do not make physical sense. However, they can be considered as very good 
approximations applicable to the description of many optical phenomena. 

Before we discuss more realistic electromagnetic waves, we will now introduce the 
complex notation for the electric field which is very use l l  to simplifl analytical derivations. 
Since it is much more convenient to replace the cosine by the complex exponentials, the 
plane wave (2.4) can be rewritten in the form: 

where, as usual, the asterisk indicates a complex conjugate. It is sufficient to consider only 
one of the two complex electric fields on the right hand side. The real, physical field has 
been replaced by a complex field. In a similar way, one obtains the complex field for the 
spherical wave (2.5): 

I. 
r 

E = E,, - exp[i(ot-kr)] 

The real physical field E, is linked to the complex field E through: 

E, = 1 + E * ]  
2 

and the time-averaged intensity is given by: 

1 
2 

I = -CE~ EE' 

Note that throughout this book we will always present the electric field in its complex 
notation. For any optical system only one electric field out of the infinite number of 
solutions of the wave equation describes the light propagation. This unique wave is 
determined by the boundary conditions of the optical system. This means that at a certain 
time the electric field in a certain area is given and the propagation in space and time is 
calculated by using the wave equation. In the following we will describe this time-space 
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development of electric fields. We will find a mathematical way to determine the electric 
field at any point in space for an initial field distribution given in a confined area (e.g. a 
resonator mirror). The propagation of a given confined electric field into space is called 
diflaction. The propagation of electric fields can be evaluated by using Huygen's Principle: 
An electric field distribution E(x,y) given on a surface propagates into space in such a way 
that each point (x,y) can be considered as the source of a spherical wave with amplitude 
E(x,y). At a point P=(x,y,z) the resulting electricfield is the superposition of all of these 
spherical waves. As shown in Fig. 2.1 we have to subdivide the starting plane into points 
(x,,y, 0). Without lack of generality, we assume in the following that the points are equally 
spaced in both directions. At point P the spherical wave originating fiom one point on the 
source plane reads: 

with ri being the distance from point (x,,y,, 0) to P and h , d y  denoting the point spacing in 
the x- and y-direction. The term cos 0, accounts for the radiation pattern of a Lambertian 
source: the energy flow is  maximum in the direction of the surface normal (cost9=1) and is 
equal to zero tangential to the surface. The constant Cis as yet an unknown proportionality 
factor which ensures that the total energy is conserved. In order to attain the resulting field 
at point P we have to take the sum over all starting points. For a monochromatic source the 
summation over N points yields 

N N exp( -ikri) 
E(P) = C E,(P) = c exp(iot) C E(x,\Y,) cos0, AxAy 

i - 1  i=  1 ri (2.9) 

This calculation of the field in point P will, of course, become more and more accurate as 
the number of points is increased. In the limit N ---> 00, the summation is replaced by the 
integration over the starting surface. This discussion of diffraction is purely 
phenomenological. However, compared to the mathematical derivation of the diffraction 
integral, this empirical approach provides a better feeling for the physical meaning of the 
diffraction integral. 

F 

Fig. 2.1 The propagation of an electric 
field distribution given on a plane at 
z=O can be dealt with by adding the 
spherical waves emerging from all 
points on the plane. 
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Fig. 2.2 The electric field E at a point P in front of a mirror can be calculated by applying the 
Kirchhoff integral (2.10) to the field distribution E,  on the mirror. The paraxial approximation 
(case= 1) must hold and the diameter of the mirror needs to be much greater than the wavelength. 

A mathematical derivation*[l.1,1.4,1.23,1.63] yields for the electric field at point P: 

(2.10) 

This surface-integral is referred to as the Kirchhofintegrul. 
Comparing the integral with (2.9), we notice that the cosine term has disappeared. This 

stems from the paraxial approximation (cosB=l) used in the mathematical derivation. A 
second approximation made is that the extent of the surface A, defined as the square root of 
the surface area, has to be much greater than the wavelength. As far as optical resonators are 
concerned both restrictions are easily satisfied. Mirror size and spacing are generally large 
enough to ensure the validity of both approximations. The paraxial approximation also 
assumes that the distance r does not change considerably during the integration. It is for this 
reason that the term Z/r is commonly placed outside the integral. 

*A strict mathematical derivation of the Kirchhoff-integral is not possible since a 
fundamental theorem of mathematics is violated. In spite of this mathematical inconsistency, 
the integral is used in the presented form since the experimental results are in agreement 
with its theoretical predictions. An exact treatment of difffaction was performed by Arnold 
Sommerfeld [1.4]. This exact diffraction integral differs from the Kirchhoff integral only 
for small distances from the surface or for large distances from the optical axis [ 1.271. With 
the above-mentioned restrictions that apply to the Kirchhoff integral, both diffraction 
integrals provide the same results. 
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2.2 Diffraction 

In the following, we apply the Kirchhoff integral to two common diffraction geometries and 
discuss the properties of the diffracted field at different distances from the aperture. The 
time-dependent exponential in (2.10) will be dropped for convenience. 

2.2.1 Rectangular Aperture 

We consider a rectangular aperture with width 2a and height 2b, as depicted in Fig. 2.3, and 
we calculate the field distribution E,(x,yJ for different distances L fiom the aperture by 
applying the Kirchhoff integral (2.10) to the field distribution E,(x,,y J inside the aperture. 
The distance r between two points in plane 1 and plane 2 reads: 

(2.1 1) 

The field E,(x,,yJ is given by the Kirchhoff integral (2. lo), which reads: 

4 - a  

The l /r  term in the integrand of (2.10) was replaced by l/L outside of the integral due to the 
validity of the paraxial approximation. This integral cannot be solved analytically in its 
present form. However, if we restrict ourselves to distances large compared to the aperture 
dimensions (L>x,,y J and assume that the field distribution does not spread too fast laterally 
(xJL ,yJLd) ,  the square root in the exponential of (2.12) can be expanded into a series: 

Fig. 2.3 Geometry of a rectangular aperture. The 
electric field at a plane separated by a distance L 
from the aperture plane is being calculated. 
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1 Y2-Y1 

(2.13) 
The following three areas can be distinguished: 

a) Fraunhofer-Diffraction 
For distances L very large compared to the aperture size, the quadratic terms x:/L, y;/L 
become negligibly small and the expression (2.13) for the distance r can be reduced to: 

2 2  
X l X 2  +Y 9 2  x2 +Y2 r = L- + -  

L 2L (2.14) 

The quadratic term of (2.14) represents the phase curvature of a spherical wave with radius 
of curvature L. This term is usually disregarded since it vanishes when the intensity of the 
field is calculated. By using the angular coordinates O,=xJL and B,=yJL, the normalized 
coordinates x,*=x,/u and x2*=xJb, and 4. (2.14), the Kirchhoff integral (2.12) reads: 

with 
2 2  

+ = k L + -  x2 +Y2 
2L 

This integral equation can be separated into two equations, one for the x-direction and one 
for the y-direction, if the field E, can be written as a product: 

EttXltLylt) = UItX,')  V l o l l t )  

The resulting field E2(0,0,,) = uz(e,) vz(e,,) is given by the two integral equations: 
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with N,=d/AL and N,,=b2/AL being the Fresnel numbers in x-direction and y-direction, 
respectively. The field distributions (2.16) and (2.17) are referred to as the far field of the 
field distribution E,(x,y). The angular coordinates 6'' 0, denote the angles under which the 
field diverges into space, also called the divergence angles. If the far field is observed at the 
back focal plane of a lens, the distance L has to be replaced by the focal length$ 
Mathematically, these equations correspond to the Fourier transformation. 

Example: Homogeneously Illuminated Aperture 
For a homogeneous field distribution E,(x,y) =const. =E, the integral equation (2.16) and 
(2.17) can be solved analytically. This yields for the field intensity in x-direction (excluding 
a proportionality factor): 

(2.18) 

and the corresponding expression for the y-direction. The intensity distribution at a 
sufficiently large distance from the aperture is thus given by: 

(2.19) 

with I, being the intensity across the aperture. Figure 2.4 shows the onedimensional 
intensity distribution (2.18) in the x-direction. The intensity minima are determined by: 

A 8, = n- 
2a 

A 0 =m- 
y 2b 

with n,m being integer numbers greater than zero. 

- 1  0 1 
a m  

(2.20) 

Fig. 2.4 One-dimensional intensity distribution in 
the far field of a homogeneously illuminated 
rectangular aperture. 
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The full width half maximum (FWHM) diameters of the central lobe of the intensity 
distribution (2.19) are: 

A. A0, = 0.44 - 
a 

A. AeY = 0.44 - 
b 

(2.21) 

In conclusion, the field distribution at a sufficiently large distance L from the aperture is 
given by the Kirchhoff integral with the Fraunhofer approximation (2.15) (often referred to 
as the Fraunhofer integral). This field distribution, which remains constant as the distance 
L is increased, is called the far field. The far field is usually expressed in terms of the 
divergence angles 0, and 4. The lateral position of the field minima and maxima can be 
determined by multiplying the divergence angles by the distance L. The Fraunhofer 
approximation can be applied if the Fresnel numbers Nx,y are much smaller than 1 ; a "safe" 
limit is N,,<O. 2. 

Example: For /2=500nm and an aperture width of 2a=2mm, the Fraunhofer-approximation 
can be used if the distance L is greater than 1 Om. At a distance of L 4 0 m  the position of the 
first intensity minimum with respect to the optical axis is x=lOmm. Propagation over a 
distance of L = 4 h  results in a minimum position of x=lm. At both distances, the shapes 
of the intensity distributions are the same. 

b) Fresnel-Diffraction 
If at least one of the Fresnel numbers Nr,+ is greater than one (which means that we get 
closer to the aperture), the linear approximation (2.14) of the distance r is not applicable. 
We have to add the quadratic terms of x,  and y ,  in order to be able to calculate the field 
distribution. Thus, we insert the second order series of the distance: 

2 2 2  
*lX2+YlY2 x:+y, x2 +Y2 r = L -  + - + -  

L 2L 2L 

into the integral (2.12) and we obtain: 

E2(x2j2) = i exp[ -ikL] a 

(2.22) 

(2.23) 

- 1 - 1  

with the normalized coordinates x*=x/a and y*=Y/b. The Fresnel approximation can be 
applied if the Fresnel number N is smaller than 100. Similar to the Fraunhofer integral 
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(2.15), the Fresnel integral can be separated into two one-dimensional integrals if the 
electric field can be expressed as a product of one-dimensional fields. Unfortunately, there 
is no analytical solution to the Fresnel integral and the electric field distribution has to be 
computed numerically. In the case of a homogeneously illuminated rectangular aperture the 
values of the Fresnel integral can be found in mathematical handbooks such as [1.28]. 
Figures 2.5 and 2.6 show numerically calculated and experimentally recorded intensity 
distributions for different Fresnel numbers for a homogeneously illuminated square 
aperture, In the experiment a metal aperture of side length 2mm was inserted into a 
collimated HeNe-laser beam (A=632.8nm) with a beam diameter expanded to 15mm by 
means of a telescope. Note the agreement between the calculated and the recorded intensity 
distributions and how the intensity distributions approach the intensity distribution in the 
far field as the Fresnel cumber decreases. 

N=20 
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7 
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Fig. 2.5 Calculated normalized one-dimensional intensity distributions for a homogeneously 
illuminated aperture with width 2u and different Fresnel numbers N. The lower right graph shows 
the far field intensity distribution 
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Fig. 2.6 Intensity distributions photographed at different distances L behind a square aperture with 
side length 2mm. The aperture was homogeneously illuminated with a HeNe-laser beam 
(b632.8nm) and the intensity distributions were recorded by means of a CCD-camera. The lower 
right photograph shows the far-field, recorded in the focal plane of a focusing lens. Here the CCD 
camera was overexposed to show the side lobes more clearly. 



Diffraction 67 

c) Geometrical Optics 
If we approach the aperture even closer, so that the Fresnel numbers N,, N,become greater 
than 100, the quadratic series (2.22) for the distance r is not accurate enough. Unfortunately, 
simply adding the next term (fourth power) to the expansion, does not solve the problem. 
The Kirchhoff integral (2.10) is not applicable to such high Fresnel numbers since we are 
too close to the aperture and the paraxial approximation ( c o s 6 l )  does not hold anymore. 
A detailed investigation, however, indicates that the field distributions do not change 
considerably for large Fresnel numbers. Additionally, the shape of the intensity distribution 
is almost identical to that of the initial distribution across the aperture (seeN=40 in Fig.2.6). 
Field propagation for Fresnel numbers greater than 100 can be calculated by using the laws 
of geometrical optics as long as one is not interested in fine structures near the aperture 
edges, or by using the place wave approximation (see Sec. 2.9). 

2.2.2 Circular Aperture 

If the electric field is diffracted by a circular aperture with radius R (Fig. 2.7), it is 
convenient to express the Kirchhoff integral in terms of polar coordinates r,@with 

xi  = ri c o d i  , y, = ri Sinai , OrrirR 

In the Fraunhofer approximation one obtains with 8=rJL: 

E2(e,a2) = i N exp[-ikl] El(r,’,Q1) exp[-ikRBr;cos(a2-a1)] r;dr;da1 71 0 0  

(2.24) 

with N=R’/(AL) : Fresnel number 
r, *=r/R normalized radial coordinate 

For field distributions E, that can be expressed as products of a purely radial function u(r) 
and an oscillating angular term: 

m = 0,1,2 ,... ; i = 1,2 



68 Chapter 2 Wave Optics 

Fig. 2.7 Diffraction at a circular aperture. The field distributions at both planes are expressed in 
terms of polar coordinates r,@. 

both integrals can be simplified by performing the angular integration. The fmal result with 
the Fraunhofer approximation is given by: 

u2(8) = -(-i>"'+' 2xN exp[-ikl] 

0 

(2.26) 

and the Fresnel integral is given by: 

2xN exp[ -ikL] u,(r;) exp[ - i ~ N ( r ; ~  +ri2)3 Jm(2xNr,'r,') r;drl j. t,(rz') = - ( - i )m+l 

0 

with Jm(x.  : 

Example: Far field of 

Bessel function of order m [ 1.281. 
(2.27) 

homogeneously illuminated circular ape1 -Ire with radius R. By 
using equation (2.26) with m=O and u(r)=E,=const. one obtains: 

J1(2xR8/h) 

2xR8lh 
u2(e) = 2 x  N E,, 

(2.28) 
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The corresponding intensity distribution is shown in Fig. 2.8 together with the photograph 
of a far field pattern of a HeNe-laser diffracted by a round aperture with radius R = 1 mm. The 
far field intensity distribution of a circular aperture is called the Airy pattern. It looks very 
similar to the far field of a rectangular aperture in one dimension. The position of the 
intensity minima, height of the intensity maxima, and the energy content in the central lobe 
are, however, quite different as Table 2.1 indicates. 

Table 2.1 Comparison of far field properties of rectangular and circular apertures. Positions and 
diameters are given in terms of divergence. *The height of the central lobe is normalized to 1 .O. 

rectangular aperture circular aperture 
width 2a diameter 2R 

FWHM diameter 
Position 1. minimum 
Position 2. minimum 
Height of 1. maximum* 
Height of 2. maximum* 
Diameter containing 86% of 
total power 
Power content of central peak 
Peak intensity of central 
Peak Llx4l 

0.44Ma 
0.50L/a 
I .OOL/a 
0.0471 8 
0.01694 
1.05 Lla 

81.5% 
( 4ab1Lf12 

0.52LIR 
0.6 1 UR 
1 .12m 
0.01753 
0.00522 
1.61 L f R  

84% 
(xp2/Lf)* 

Fig 2.8 Calculated and measured far field intensity distributions for a circular aperture with radius 
a. For the photograph a pinhole with radius lmm was inserted into an expanded and collimated 
HeNe- laser beam @=632.8nm). The far field was generated in the focal plane of a positive lens. 
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Fig. 2.9 Calculated radial intensity distributions for different Fresnel numbers N of a 
homogeneously illuminated circular aperture of radius R. With decreasing Fresnel number the 
distributions become less spiky and for Fresnel numbers of less than 1, the far field intensity 
distribution is approached. 

For Fresnel numbers greater than about 0.2, the Fresnel integral should be used to calculate 
the field distribution. Similar to the rectangular symmetry, this can only be accomplished 
by using numerical methods. Figure 2.9 shows the calculated radial intensity distributions 
for a homogeneously illuminated circular aperture with radius R for different Fresnel 
numbers N. The diffraction patterns are similar to those of a rectangular aperture (Fig. 2.5), 
but now the rotational symmetry results in a high intensity peak on the optical axis. In high 
power lasers having circular output beams this so called "Spot of Arago" can lead to the 
destruction of optical components. For both rectangular and circular apertures, the far field 
depends only on the product of the aperture diameter and the far field angle 8 (assuming a 
constant wavelength A). Decreasing the aperture width thus results in the increase of the 
beam divergence. Again we observe that the beam parameter product is a constant of the 
optical system. This is quite a satisfying result since it is in agreement with our discussion 
of the phase space transformations (see Sec. 1.2.2). Let us define the far field half angle of 
divergence 8 via the 86% power content (see Table 2.1) and the beam radius w in a similar 
way (w=0.86a for the rectangular ape- and w=O. 93R for the circular aperture). We then 
get for the beam parameter products in the two geometries: 

3L circular: we = 2.337 - a rectanmlar: we =1.418 - 

This is already close to the minimum beam parameter product of 
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Fig. 2.10 Propagation of an electric 
field through an optical system. The 
fieldsat plane 1 and plane 2 are 
linked to each other via the Collins 
integral (2.29). 

2.3 Collins Integral 

2.3.1 One-Dimensional Optical Systems 

We have so fat only discussed the free propagation of the electric field without any optical 
elements like lenses and mirrors being in the path. We have found that the electric field after 
propagation is linked to the initial field via the Kirchhoff integral. It is possible to 
incorporate any optical system with parabolic surfaces into the propagation and derive a 
corresponding diffraction integral. This generalized Kirchhoff integral is referred to as the 
Collins integral. The derivation of the Collins integral is beyond the scope of this book, the 
interested reader is referred to the original paper [ 1.341. The basic principle ofthe derivation 
is to find the shortest distance between points on two separated planes where arbitrary 
optical elements may be located between those planes. By applying Fermat’s principle one 
can derive an expression for the distance r which depends on the elements of the ray transfer 
matrix M. We will first restrict the discussion to one dimensional optical systems, which 
means optics that exhibit rotational symmetry and can thus be described by a 2x2 ray 
transfer matrix. As already shown in the last chapter, the generalization to two dimensions 
can be performed by replacing the matrix elements with the corresponding submatrices. 

If the electric field propagates &om a plane 1 to a plane 2 and an optical system with a 
ray transfer matrix M is located between the planes, the Kirchhoff integral in the Fresnel 
approximation reads (Fig.2.10): 

(2.29) 

with A,B,D being the elements of the ray transfer matrix Mand L is the optical path along 
the optical axis. 

plane 1 Optical System plane 2 
I I 
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This integral is referred to as the Collins integral. It does not differ from the Kirchhoff 
integral with the Fresnel approximation, except for the fact that the shortest distance 
between two points is already incorporated with the ray transfer matrix elements being 
system parameters. Similar to the Kirchhoff integral the derivation is based on the 
applicability of the paraxial approximation. This means that the Collins integral is valid for 
Fresnel numbers lower than 100. 

Examples: 

1) Free Space Propagation: 
We consider the simplest case of an empty optical system with length L. By inserting the 
ray matrix elementsA =I, B=L and D=1 into (2.29) we obtain, as to be expected, the Fresnel 
integral (2.23). 

2) Field Distribution at the Focal Plane of a Lens: 
A field distribution E, is given at a plane in front of focusing lens with focal length$ The 
distance from the plane to the focusing lens is d. We want to calculate the resulting field 
distribution at the focal plane of the lens. The ray transfer matrix elements for the 
propagation to the focal plane of the lens are found to be A=O, B=j’and D=l-&$ Insertion 
into (2.29) yields: 

(2.30) 

with 

and 

A comparison with (2.15) indicates that this integral is equivalent to the Kirchhoff integral 
in the Fraunhofer approximation. This means that at the focal plane of a focusing lens the 
far field intensity distribution of the electric field E, can be measured. This is the common 
experimental technique used to determine angles of divergence of laser beams. In the special 
case of d=f; the parabolic phase term in front of the integral disappears and the exact Fourier 
transform of the field is observed in the back focal plane. The integral in (2.30) is referred 
to as a Fourier transform. Fourier transforms play an important role in diffraction theory not 
only because of their linkage with the far field, but also because they can provide a better 
understanding of the properties of electric fields and their propagation. We shall discuss the 
Fourier transforms and the mathematics involved in more detail in Sec. 2.4.2. 
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2.3.2 Two-Dimensional Optical Systems 

The Collins integral formalism can be generalized for arbitrary optical systems provided 
they have parabolic interfaces or parabolic index profiles in paraxial approximation. As was 
discussed in the preceding chapter, these optics are described by 4x4 ray transfer matrices 
M. Propagation of rays through these optical systems can be written in the form: 

(2.3 1) 

and A,B,C,D being the 2x2 matrices presented in Sec. 1.2.4. 

By using the same generalization we have already applied to the matrix determinant (1 .61)y 
we can find the generalized Collins integral for two-dimensional optical systems: 

(2.32) 
with B' being the inverse of matrix B and derB denoting its determinant. 

The beauty of this equation lies in the fact that we can easily memorize the diffraction 
integral for two-dimensional systems due to its similarity to the one-dimensional equation 
(2.29). The generalized Collins integral (2.32) enables us to calculate even complex 
diffraction problems like the propagation through rotated and tilted optical elements as the 
following examples will show: 

Examples: 
1) Phase Space Beam Analyzer 
We 'we the Phase Space Beam Analyzer as discussed in Sec. 1.2.4 and calculate the light 
propagation from the entrance plane 1 to the recording plane 4 (see Fig. 1.23). We neglect 
the presence of the second slit and determine the phase term exp[ -in@/)c] in the integrand 
of (2.32). By using the resulting ray transfer matrix (1.78) we get (note that the coordinates 
in the recording plane are denoted as x , ~ , ) :  

(2.33) 
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which can be rewritten as: 

The diffraction integral (2.32) then reads with detB=-S? 

(2.34) 

(2.35) 

exp[ -iR(a+b)] 
E4(X4#4) = 

This integral can only be solved numerically, except for Gaussian input beams. 

2) Far Field Measurement with Tilted Lens 
We want to record thk far field intensity distribution in the focal plane of a focusing lens 
with focal lengthf: The electric field incident on the lens is E,. Unfortunately, the surface 
normal of the lens is tilted by an angle a around the x-axis with the z-axis being the optical 
axis (see Fig. 1.20). By using (1.84) and (1.85), the ray transfer matrix for the passage 
through the lens and propagation to the focal plane can be approximated by: 

M = [ ” c ]  = 

1-cosa 0 f 0 

O f  
1 0 1-- 

cosa 

0 1 0  -cosa 

f 
0 1  -1 0 -  

f cosa 

(2.36) 
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By introducing the variables @=.if and By=y/f we can rewrite this as: 

(2.38) 

with 

and 6 = f + -(eZ+e:, f 
2 

A comparison with (2.30) indicates that we measure the far field intensity distribution of the 
field E,+ which is the product of the original field and the parabolic phase terms induced by 
the lens tilt. Fortunately, there are transformation rules available that simplify the analytical 
calculation of Fourier integrals like this. This will be shown in the following section. 

2.4 Collins Integral and Vanishing Ray Matrix Elements 

2.4.1 Imaging Condition (B=O) 

We know from our discussion of ray transfer matrices in the preceding chapter that a 
vanishing B-component represents an imaging optical system. The matrix component ,4 
represents the magnification by which the object is scaled in the image plane. In terms of 
wave optics, imaging means that the initial field distribution EI(xI,y J at the input plane 1 
is reproduced at plane 2. Following relation then holds for the field E2 (x,yJ at plane 2: 

(2.39) 

The constant C can be a complex function of x, y2 with CC*=I, and the factor I/A is 
necessary to conserve the total power. It is possible to prove that the Collins integral (2.29) 
yields the imaging condition (2.39) in the limit B-->O [1.72]. In order to show this we 
rewrite Eq. (2.29) as: 

i Ic 1 2 2  
E , ( ~ , J ~ )  = - exp[-ikl] exp[-i-(D--)(x2 +y2)] LB LB A (2.40) 
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By using one of the definitions of the D i m  delta function: 

(2.41) 

(2.42) 

the Collins integral (2.40) in the limit B + O can be written as: 

Performing the integration and applying the relationship Qaz) =tS(z)/lal yields the final 
result: 

Equation (2.39) holds for B+O (imaging and the original plane at z=O) if the paraxial 
approximation is fulfilled. 

2.4.2 Fourier Transformation (A*) 

We have already seen that in the focal plane of a focusing lens, the Collins integral becomes 
proportional to the Fourier transform of the incident field E,. This means that the intensity 
distribution in the focal plane equals the intensity distribution in the far field. For an 
arbitrary optical system, the general condition for propagation to a focal plane is given by 
A =O. In this case the Collins integral (2.29) reads: 
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which is equivalent to the Kirchhoff integral in Fraunhofer approximation and thus 
represents the far field distribution. If the optical system is chosen such that in addition to 
A, both A and D are equal to 0, the far field amplitude is proportional to the Fourier 
transform. The useful feature of the Fourier transform is the fact that a light source is 
completely characterized either by its electric field E or by the Fourier transform F(E) of 
the field. It is for this reason that Fourier transforms and the knowledge of their 
transformation properties are more important in optics than their basic relationship to the 
far field. Diffraction calculations can be considerably simplified if the light is represented 
by its Fourier transform rather than by the electric field itself. This will become more clear 
when we apply the mathematics behind Fourier transforms to diffraction problems [1.30]. 

Properties of Fourier Transforms 
The Fourier Transform F of a function f(x) is defined by: 

k /  
25c 

A(8) = FMx)) = - Ax) exp[iMx] & , h B  (2.44) 

A(@ is called the Fourier spectrum or Fourier transform off@). For the Fourier transform 
to exist, the functionf(x) has to meet certain requirements: 

a)f(x) is continuous and its derivative dfdx exists at all but a finite number of points, 
b)f(x) is square-integrable, which means that it has to decrease faster than 112. 

The inverse Fourier transformation, F' , restores the original functionflx): 

(2.45) 

IfA(9, B ( 9  are the Fourier transforms of the complex functions fix) andg(x), respectively, 
and a,b are complex numbers, the following rules apply [l .l]: 

Function Fourier Spectrum Name of Operation 

afW +bg(x) aA(@ + bB(9 Linearity 
f(a) 
f(x-xd A(@ exp[i& J 
f(x) eXPP @I A ( @ @  
f(x)g(x) A (9 mB) 
so QCX) A (9W9 
f(4 a(.,, A ( 9 B ' ( 9  

A(O/a) l/a Reciprocity 
Shifting 
Shifting 
Convolution 
Convolution 
Correlation 
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Convolution and correlation are defined as: 

Correlation: j(x)@g(x) = f i x ' )  g'(x'-x) &' J 

(2.46) 

(2.47) 

Table 2.2 Common Fourier transforms (u,b.and k are real and c is a complex number) [l .l]: 

C for all x 
c 6(x) 
C fora<x<b I 
0 else I 
exp[ike#] for all x 
cos(kO& for all x 
sin(k0,x) for all x 
exp(-n(x/a)') for all x 
exp(-da) for x>O I 
0 else I 

C 

k/(27c/( l/a+ike)) 

Examples: 
1) Far Field of a Sinusoidal Amplitude Grating 
We consider a slit of infinite height in the y-direction and width 2u in the x-direction which 
is homogeneously illuminated by a plane wave with wavelength A. Thus, we have an 
electric field E(x) which is equal to a constant amplitude E, for 1x1 su and exactly zero for 
Ixl>a. The amplitude transmission t(x) inside the slit varies sinusoidally between 0 and 1, 
according to 

1 1 
2 2 

r(x) = -(l+cos"27cx/u]) = -(1 +g(x)), N=0,1,2, ... 

and g(x) = cos[N2xx/u] 

The transmission always exhibits maxima at the edges and center of the slit while Ncontrols 
the number of oscillations in between. The far field Ed9 is proportional to the Fourier 
transform of the product E(x)t(x) (with k=2 zdA in (2.44)): 
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By using the convolution theorem and the linearity theorem we can rewrite this as: 

J%@> = c ~ t ~ ~ ~ ~ ~ l + ~ ~ ~ ~ ~ l o l )  

We can look up both Fourier transforms in the Table 2.2 (with O,=NR/a) and together with 
(2.46) we obtain: 

The sinusoidal transmission generates peaks in the far field at angles &*tB,=*N,Uu. 

2) Collins Integral Written In Terms of Fourier Transforms 
We can rewrite the Collins-Integral (2.29) in terms of Fourier transforms and inverse 
Fourier transforms of the electric field and the parabolic phase factors. This rearrangement 
is very usehl for a fast numerical calculation of diffraction integrals since time-efficient 
algorithms for the computation of Fourier transforms exist (such as the Fast Fourier 
Transform Algorithm). The basic idea is to transform the Collins integral into a convolution 
integral and apply the Fourier transform convolution theorem. A straightforward 
rearrangement of the Collins integral (2.29) results in: 

i A 2 2  
E2(x2a2) = - exp[ -ikL] exp[ -i-(D- 1)(x2 +y2)] XB XB 

which is a two-dimensional convolution integral. 
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We know that the Fourier transform of a convolution integral equals the product of the 
individual Fourier transforms F f l  and F(&. The inverse Fourier transform of this product 
is therefore equivalent to the convolution integral itself: 

The Fourier transform of g(x,,y J can be calculated analytically and the final form reads: 

i Ic 

XB AB 
~ , ( x , j , ) =  - e x p f - i ~ ]  ~XP[-~-(D-I)(X;+Y~~)I F-' 

2.5 Gaussian Beams 

2.5.1 Gaussian Beams in One-Dimensional Optical Systems 

The Collins integral,describes the changes in field structure as the electromagnetic field 
propagates through an optical system. In general the amplitude as well as the shape of the 
electric field distribution varies during propagation. We can, however, find a special class 
of fields for which the shape of the distribution remains constant and only the amplitude and 
lateral extent of the field is changed. These fields are referred to as eigensolutions of the 
diffraction integral. In the case of an unconfined electric field (which means that the 
integration is performed from -00 to +), the eigensolutions of the Collins integral can be 
found analytically. Again, we first deal with one-dimensional optics which can be described 
by 2x2 ray transfer matrices and which exhibit rotational symmetry. An electric field E,(x, y) 
is an eigensolution of the Collins integral (2.29) if the following relation holds: 

The form of the integral leads us to the assumption that a Gaussian field distribution 

(2.49) 

with q, being a complex number, might be a solution of the integral equation (2.48). 
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Insertion of (2.49) into (2.48) yields: 

(2.50) 

(2.5 1) 

This fundamental eigensolution of the diffraction integral is called the Gaussian beam. A 
Gaussian beam stays a Gaussian beam as the field propagates through an optical system 
with parabolic surfaces or parabolic index profiles. Only the amplitude and the characteristic 
parameter q, called the beam parameter, are changed. The transformation rule (2.5 1) is 
called the ABCD law of Gaussian optics. This ABCD law can be considered as a 
generalization of the geometrical optics ABCD law (1.90) already discussed in Section 
1.2.6. In the limit A+, the geometrical optics ABCD law is obtained fiom (2.51) and all 
imaging characteristics of Gaussian beams can then be described by geometrical optics, as 
will be discussed in further detail below. 

Free Space Propagation of Gaussian Beams 
In the simplest case, the field distribution in plane 1 (at z=O) is a real Gaussian distribution 
with a beam radius wo (Fig. 2.1 1): 

(2.52) 

A comparison with (2.49) indicates that the Gaussian beam parameter q, is given by: 

2 . n'wo q1 = I -  = izo 
A, (2.53) 

Propagation over a distance z will change the beam parameter according to the ABCD law 
(2.5 1). By using the ray transfer matrix for free space propagation (1. lo), the new beam 
parameter at a distance z is found to be: 

(2.54) 

In order to obtain the new Gaussian beam according to (2.50), the term I/q(z) has to be 
determined. A straightforward calculation yields: 
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Fig. 2.11 Free space propagation of a Gaussian beam. 

The real and imaginary parts of I/q(z) determine the phase and the beam radius of the 
Gaussian beam, respectively. To show this, we define two new quantities, 

We can then write the beam parameter q(z) as: 

The Gaussian beam at a distance z from plane 1 thus reads: 

(2.56) 

(2.57) 

(2.58) 

(2.59) 
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We see that the R(z) represents the radius of curvature of the phase front and w(z) is the 
beam radius, defined by a l/e*-decrease of the intensity with respect to the on- axis value. 
The Gaussian beam diverges as it propagates along the z-axis according to (2.57). A 
characteristic parameter of the Gaussian beam is the Rayleigh range z, with: 

2 
'ICWO zo = - 

A (2.60) 

which is also referred to as the depth of field, or sometimes as the confocal parameter. The 
Rayleighrange denotes the distance fromthe origin (location of the beam waist wo) at which 
the beam radius has increased by a factor of d2. At distances z much greater than the 
Rayleigh range the Gaussian beam exhibits the behavior of a spherical wave. In this case, 
the imaginary part of I/&,, becomes negligibly small and the radius of curvature R(z) 
increases linearly with the distance z. The Gaussian ABCD law (2.51) will then be 
transformed into the geometrical ABCD law (1 .go). The same behavior can be found if the 
wavelength 1 is increased, since this is equivalent to decreasing the Rayleigh range. 

For smaller distances z, however, the propagation behavior is completely different than 
that of spherical waves in geometrical optics. The radius of curvature R(z) of a Gaussian 
beam shows a minimum value of 2z0at z=zo, whereas a spherical wave increases its phase 
curvature proportionally to the distance from the origin. This is why Gaussian beams exhibit 
imaging properties that are quite different from those of geometrical optics. 

For large distances z>zo the beam radius w(z) approaches an asymptote at a finite angle 
0, This angle, known as the divergence angle, reads: 

(2.61) 

The product of the divergence angle and the beam waist is called the beam parameter 
product. All Gaussian beams have the same beam parameter product of: 

A 

x 
wo eo = - (2.62) 

which represents the minimum value possible for any field distribution if a suitable 
definition for the beam radii is used (see Sec. 2.6). The beam parameter product is a 
constant of the beam and is not changed by propagation through an optical system, provided 
that the optical elements can be described by ray transfer matrices. 

Example: For waist woof Imm and a wavelength of k 5 O O n m  we get: 
Rayleigh range: 6.283 m 
Divergence angle: 0.159 mrad 
Distance z with w(z)=lm: 6.283 m. 
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I 2wo 

t ? -.,r.l-.:::::::::: ................................ 0. .. 

Transformation Rules for Gaussian Beams 
In the general case of an arbitrary optical system, the relationships for the beam radius and 
the radius of curvature become more complicated. If the ray transfer matrix of the optical 
system is given by: 

% 
..... "..._ e9.: h.- 1: :) > t 

the new beam radius and phase curvature can be calculated by applying the ABCD law 
(2.51). The Gaussian beam entering the optical system is described by the q-parameter 
q=z+iz, and at the exit plane a new Gaussian beam emerges with the beam parameter q'= 
-z'+iz,'(Fig. 2.12). The distances zandz'denotethe locationofthe beamwaist oftheinitial 
and the transformed Gaussian beams, respectively. The ABCD law yields for the new waist 
location and the new Rayleigh range: 

(Az+B)(Cz+D) - A C Z ~  
z l  = if CzO 

Czz? + (Cz+D)' 

Az+B z' = - - 
D 

I Cz'+A zo = zo - 
Cz+D 

if C=O 

(2.63) 

(2.64) 

withz' from (2.6312.64) (2.65) 

Note that the new beam waist is located left of @e exit plane if z' is negative. A positive 
value of z' refers to a beam waist location to the right of the optical system, as it is the case 
in Fig. 2.12. 

Fig. 2.12 The propagation through an optical system of length L and ray transfer matrix M 
transforms the Gaussian beam into a new Gaussian beam with beam waist location z: Rayleigh 
rangez,', and divergence angle do'. 
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The new angle of divergence Po and the new beam waist w 6 can be calculated from: 

which means that the beam parameter product Pow '0 remains constant (=an). 
A different approach to calculating the Gaussian beam transformation is to link the beam 

radii and angles of divergence at the exit plane of the optical system to those at the entrance 
plane. If w,, R, ,and O,, denote the beam radius, radius of curvature, and divergence angle 
at the entrance plane, respectively, then the beam radius w2, the radius of curvature R2, and 
divergence angle 8, at the exit plane are given by: 

W ;  = A ~ W :  + 2 ABW:/R, + B ~ o ; ,  (2.66) 

8, 2 = C2w: + 2 CDW:/R, + D28;, 

2 
W2 R, = 

/- 

(2.67) 

(2.68) 

The new beam waist location z' , the Rayleigh range 26 , and the beam waist radius w 6 can 
be found by using the relations: 

A. , wIo = - , z'() = - I. -1 1 2' = - 

R ,  - + -  1 L2 no262 x e m  
R: n%v: 

In the following we will present the transformation rules for common optical systems: 

a) Plane Dielectric Slab 

n -- Fig. 2.13 Propagation of a Gaussian 
beam through a plane dielectric slab 
with refractive index n. 
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The ray transfer matrix of the plane slab (see Fig. 1.5) yields with (2.63)-(2.65): 

1 2' = - z- - 
n 

do = zo 

e', = e, = wo 

If the refractive index of the slab were n = l ,  we would get the new waist location z r  =+I, 
which is just the location of the original beam waist. For indexes other than unity, the new 
beam waist is shifted to the right (as seen looking back into the slab) by: 

n-1 
n 

A = 1 (-) 

but the Gaussian beam remains unchanged. 

b) Propagation Through a Telescope 
Telescopes are widely used in laser systems to magnify the beam and thus decrease the 
angle of divergence (Fig. 2.14). A lower divergence results in a smaller spot size in the focal 
plane of a focusing lens. With (2.63)-(2.65) we get: 

A telescope with magnification M=fJf, decreases the divergence by a factor I/M and 
increases the beam radius by M. Again, the beam parameter product stays constant. 

_ _ _ _ e _ _ _ -  ---- M i  

- - -  _ _  - _ _ _ _  F - 2 --f,--f* 

Fig. 2.14 Gaussian Beam propagation inside a telescope (not to scale). 
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t 
zo 

I n 

Fig. 2.15 Gaussian beam propagation through a focusing lens. An image of the beam waist is 
generated at a distance I' behind the lens. 

c) ImaginglFocusing with a Lens 
We are looking for the location and the size of the new beam waist when the Gaussian beam 
is transformed by a lens. For a lens with positive focal lengthf; the Gaussian beam is 
focused as depicted in Fig. 2.15. Since the focusing of Gaussian beams plays an important 
role in laser optics, we will discuss this beam propagation problem in more detail. 

Note that we use the sign convention of geometrical optics for the distances z and z': 
both distances are positive if the object (beam waist wo) and the image (beam waist w 6) are 
located to the left and to the right of the lens, respectively. The imaging condition of 
geometrical optics: 

does not apply to the waist of Gaussian beams since it is only valid for spherical waves 
whose radii of curvatures increase proportionally to the distance z. For Gaussian beams the 
different phase front propagation behavior generates an additional term in the imaging 
condition. By using the ABCD law (2.51) and setting the radii of curvature to infinity at 
both planes, the imaging condition can be found to be: 

(2.69) 

with z' being the distance of the new beam waist location from the lens. If z' is positive the 
beam waist is located at the right hand side of the lens. 
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The following relations hold for the parameters depicted in Fig. 2.1 5 :  

W I o  = wo f 
/- 

EL 
z'o = zo J 

zo' + (PA2 

w, = f  0, 

(2.70) 

(2.71) 

(2.72) 

Figures 2.16 and 2.17 show the graphic presentation of (2.69) and (2.70), respectively. The 
imaging condition for geometrical optics is reached in the limit zdz=O which means that the 
distance of the object beam waist has to be much greater than the Rayleigh range. This is 
to be expected because for large distances from the beam waist, the Gaussian beam behaves 
like a spherical wave as far as propagation is concerned. 

The reader should note that there are major differences in the imaging of the waist of 
Gaussian beams as compared to geometrical optics. One example worth mentioning is the 
beam waist of the Gaussian beam located in the front focal plane (z=J. According to (2.69), 
the image waist is found in the back focal plane (z'=j. This is quite surprising since from 
our experience in geometrical optics we would expect that placing a source in the front focal 
plane would produce a collimated beam (image at infinity)! This focusing experiment can 
serve as a quick check to determine whether a laser beam can be described as a Gaussian 
beam or as a geometrical optics light source (at the exit aperture of a fiber for example). 

t l f  - 

Fig. 2.16 Imaging of 
Gaussian beams according 
to (2.69). 
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Fig. 2.17 Imaging of Gaus- 
sian beams. Shown is the 
relationship between the 
magnification and the 
distance z of the beam waist 
from the focusing lens 
according to (2.70). 

Equations (2.70) and (2.71) indicate that we cannot simultaneously attain a small focal spot 
radius wband a large Rayleigh rangez;. Division of (2.70) by (2.71) yields: 

2 2 

= woeo WIO - wo - h 
zIo zo x (2.73) 

In addition to the beam parameter product WOOo, the ratio of focal spot size to Rayleighrange 
is a constant of the beam. If we try to decrease the focal spot radius (by choosing a lens with 
a shorter focal length or by increasing the Rayleigh range z, of the object beam with a 
telescope), we will reduce the Rayleigh range proportional to the area of the focal spot. 
Equation (2.73) holds only for Gaussian beams. Laser beams usually have beam parameter 
products that are larger than a n ( b y  a factor 3-100, depending on the type of laser and the 
output power). Equation (2.73) then reads: 

(2.74) 

with M2 being the beam propagation factor. It is for this reason that in laser material 
processing it is difficult to generate thin, deep cuts into a work piece. The quality of a laser 
cut is commonly defined by the aspect ratio which is the depth of the cut over the width. In 
order to get a high aspect ratio it is a prerequisite to have a laser beam with a low beam 
parameter product. Laser beam quality can thus be characterized by the beam parameter 
product. High beam quality is equivalent to a low beam parameter product (beam 
propagation factor, M2, near unity) or, described in other words, by a large Rayleigh range 
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for a given focal spot size. It is interesting that the beam radius in the focal plane (2.72) 
depends only on the divergence angle of the Gaussian beam in front of the lens. This is a 
direct consequence of the fact that the Fourier transform of the beam is generated in the 
focal plane. 

In most cases the beam waist w, and the Rayleigh range z, of the beam are not known 
and only the beam radius w, at the lens can be determined and (2.70) cannot be used to 
calculate the focal spot radius w '0. Fortunately, if the object distance z is large compared to 
the focal lengthf(z>5f is a good rule of thumb), we can derive an approximate formula for 
the spot size w',, According to (2.57) the beam radius on the lens is given by: 

WL = wo \Il+(z/zo)2 

By using this expression and the assumption z..S, we can rewrite (2.70) and (2.71): 

Z ' f f  

(2.75) 

(2.76) 

Example: A Nd:YAG laser whose output beam is a Gaussian beam with w0=O.582mm, 
z,=lm, and A=I.O64pm is focused by means of a 50mm lens. The lens is at z=lm in front 
of the beam waist. Using (2.69) and (2.70) we get for the position and the size of the focal 
spot: 

The approximated equations (2.75) and (2.76) provide the following solutions: 
z' = 5 1.25mm 

z' = 50.00mm 

wto = 0.021 1 mm 

wl0 = 0.0206 mm 

d) Penetration into a Medium with a Higher Index of Refraction 
We have a Gaussian beam hitting a dielectric planar interface with refractive index n. The 
radius of curvature and beam radius of the beam at the interface are R,and w,, respectively. 
The ray transfer matrix for the refraction at the interface reads: 

M = [ 1  0 l/n 0) 

The ABCD law (2.5 1) yields for the new q-parameter q2 : 
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Separation into the radius of curvature R and the beam radius w according to (2.58) yields: 

The refracton leads to an increase in curvature, but the beam radius at the interface remains 
unchanged. 

2.5.2 Elliptical Gaussian Beams 

So far one-dimensional Gaussian beams or Gaussian beams of rotational symmetry have 
been discussed. They are completely characterized by the complex beam parameter q with: 

1 - 1  iA _ _ _ - -  
4 R xw2 

By measuring the real part and the imaginary part of q at a position z in the reference h e ,  
the beam is completely determined. Equations (2.56) to (2.58) provide the position z, of the 
waist and the Raylaigh range zp If it is known that the beam is a TEM, mode with 
rotational symmetry,the waist radius wo is obtained from (2.60), and (2.61) provides the far 
field divergence angle 8,. Such a beam is called a stigmaticfindamental mode. It exhibits 
a circular spot and a spherical wave front at every distance z. The curves of constant 
intensity (isophotes) and the lines of constant phase (isophases) in the x-y plane are always 
circles. 

However, in some lasers, such as diode lasers and slab lasers, the fundamental mode 
exhibits an elliptical cross section. Let us assume a stigmatic TEM, mode, generated by a 
HeNe laser, passing through a thin cylinder lens with refractive power Dy and the focal line 
along the x-axis (see Fig. 1.18b). The spot size directly behind the lens is unchanged and the 
radius of curvature in the x-direction is unaffected. The radius of curvature in the y-direction 
now reads: 

The isophases are now ellipses. Due to the focusing in y-direction, the beam radius w,, will 
differ fiom w, with increasing distance z from the lens (Fig. 2.18). The isophotes, which are 
circles right behind the lens, become elliptical. Such abeam is called simple astigmatic. The 
ellipses of constant intensity and constant phase have the same orientation (along the 
principal axes of the cylinder lens) as the beam propagates. 
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Fig. 2.18 Transformation of a stigmatic beam into a simple astigmatic beam and into a general 
astigmatic beam. For a general astigmatic beam, the isophotes and the isophases have different 
orientation and the ellipses rotate as the beam propagates. 

The two ellipses are determined by 4 parameters plus one additional parameter for the 
orientation of the ellipses with respect to the reference frame. The field of a simple 
astigmatic beam can still be separated in the form: 

The Gaussian beam propagation law (2.51) can be applied separately in the x- and the y- 
direction for the q- parameters qx and q,, , respectively. If such a beam is focused with a 
spherical lens, two line foci will appear at different distances from the lens. 

After a distance L the simple astigmatic beam passes a rotated cylinder lens. The ellipse 
of constant intensity is not affected by this, but the ellipse of constant phase is rotated. The 
two ellipses now have different orientations. Such a beam is called a general astigmatic 
beam. The main axes of the two ellipses form an angle to each other and the orientation does 
not remain constant during the propagation. A general astigmatic beam is characterized by 
six parameters, three for each ellipse (two for the main axes and one for the orientation). 

The concept of the complex beam parameter can still be applied if we introduce a 
complex beam matrix 0' with [1.35,1.36]: 

(2.77) 
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Table 23 Properties of Gaussian beams 

constant intensity constant phase free parameters 

The general astigmatic hdamental mode is given by: 

E = E, e x 4 9  4 ' r ]  , r = (xa) 
(2.78) 

(2.79) 

The beam is determined by the three different complex parameters of the 0' matrix. The 
propagation of such a beam through ABCD-type optical systems can be evaluated by 
applying the Collins integral (2.32). A straightfonvard but troublesome calculation yields 
the generalized ABCD law 11-53]: 

Q2-' = (C + &)(A + BQ;')-' (2.80) 

with A,B,C,D being the 2x2 submatrices introduced in Sec. 1.2.4. 

Examples: 
1) Transformation of a general astigmatic Gaussian beam by an astigmatic thin lens. 
By using (2.80) with: 
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weobtain: Q2-’ = C + Q;’ (2.81) 

This relation is equivalent to the three equations: 

1 -  1 1 

4=,2 f, %,l 

1 -  1 

4v,2 qv.1 

1 -  1 1 

4YY2 fu 4YYA 

The real parts of Z/q, and Z/q, , which represent the radii of curvatures, are changed. 

2) Propagation of a general astigmatic Gaussian beam in free space over a distance z.  
The four submatrices are A=I, B=zI, G O ,  P I .  The propagation law (2.80) yields: 

This complicated set of equations reflects the fact that the two ellipses are rotating while the 
beam propagates in the z-direction. The simple case of the stigmatic beam is immediately 
obtained for l/qu,,=l/q,,,,=l/ql, Z/qx,,,=O and the upper equation results in (2.51). 

A stigmatic beam can be transformed into a general astigmatic beam by a suitable set 
of lenses as shown in Fig. 2.18. The inverse transformation can also be applied, but only for 
Gaussian beams, as was shown in r1.361. First, the matrix Q’has to be diagonalized by a 
rotation. The angle of rotation is given by: 

(2.82) 
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Since this equation generally yields a complex angle, a simple astigmatic lens cannot 
transform a general astigmatic beam into a stigmatic one. These transformation properties 
were first investigated in detail by Amaud [1.32]. It is interesting to note that the complex 
angle @ is constant for free space propagation. This can be easily proved by inserting the 
three equations of example 2 into (2.82). 

The transformation of a general astigmatic Gaussian beam into a stigmatic one has to 
be done in two steps. First we generate a simple astigmatic beam by a rotation and in a 
second step the simple astigmatic beam is transformed into a stigmatic one. The ellipse of 
constant intensity is rotated with respect to the reference frame by an angle 8, , given by: 

and the ellipse of constant phase is rotated by 8,, with: 

2 Re( 1 /q& 2/R, 
tan(202 = - 

Re(l/q* - llq,,,) 11R, - l/Rw 

(2.83) 

(2.84) 

If 8, is equal to 8,, we already have a simple astigmatic beam, and by rotating the reference 
frame by this angle we obtain the beam in the main axes presentation. If the two angles are 
not equal, we have to rotate the axis of the phase ellipse by a suitable bifocal or cylindrical 
lens. In both cases we obtain a simple astigmatic beam. If this beam is focused, two foci 
appear at different distances from the focusing lens. By using a set of cylindrical lenses the 
foci can be imaged into one circular waist [ 1.571. 

Note that all the equations discussed above hold only for Gaussian beams. For other beams 
such as higher order modes, these relations are not valid! The case of general fields will be 
discussed in the next section. 

2.6 Intensity Moments and Beam Propagation 

2.6.1 Stigmatic and Simple Astigmatic Beams 

We have seen in the last section how to calculate the beam radius w and the divergence 
angle 8 of Gaussian beams in any plane within an optical system by using the AF3CD law 
for the beam parameter q. If we start at the plane of the beam waist woad  propagate through 
an optical system with ray matrix elements A,& C, D, the beam radius w at the new plane and 
the divergence angle Bof the new Gaussian beam read according to (2.66) and (2.67) 
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w 2  = A2w; + B20t (2.85) 

(2.86) 

assuming the simplest case of a stigmatic Gaussian beam (circular symmetry). For simple 
astigmatic beams the above relations can be applied separately for the two main axes. Beam 
radius and divergence angle are both defined by the 112-decrease of the intensity. For free 
space propagation over a distance z with A = I ,  B=z, C=O, and D=I, we obtain the familiar 
result: 

w = wo/- , 0 = 0, 

The majority of laser beams, however, cannot be described by Gaussian beams. The 
application of the above shown propagation rules is restricted to lasers working in 
fhdamental mode operation like HeNe lasers or single emitter diode lasers. Fortunately, the 
ABCD law can be generalized to arbitrary, partially coherent beams by defining beam sizes 
via the intensity moments of the beam [1.53,1.58,1.60,1.62,1.64]. In this section we will 
discuss simple astigmatic beams. These are elliptical beams whose main axes of the phase 
and the intensity ellipses coincide with the x,y reference fiame, the equivalent to the simple 
astigmatic Gaussian beam of Sec. 2.5.2. The field can then be factorized into a product of 
functions depending on x or y. The propagation of the x and the y terms can be treated 
separately. The stigmatic beam with circular symmetry is a special case of the astigmatic 
beam. In the following only the x terms are considered. By replacing x with y the 
corresponding formulas for the y-direction are*obtained. The general case in which a 
separation in x and y terms is not possible will be discussed in Sec. 2.6.2. 

First Order Moments 
The first order moments are defined as: 

(2.87) 

(2.88) 

with PN being a normalization factor, related to the total power in the beam: 
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(2.89) 

The Fourier transform in (2.88) can be replaced by the first derivative of the field. 
Application of (2.44) and (2.45) yields: 

(2.90) 

This equation is sometimes more convenient for analytical calculations. The above 
definitions require that the field decreases sufficiently fast with x ,  otherwise (2.87) will 
diverge. Furthermore, in order to get a finite value in (2.88) the field must be continuous. 
Note that although the integrals have infinite limits, the paraxial approximation has to hold 
for the electric field. This means that the far field exists only for small values of 8,. 

The first moments provide the center of gravity of the near field and the propagation 
direction (far field). These moments can be measured by recording the intensity distributions 
with a CCD camera and processing the image mathematically using image processing 
software. It is interesting to look at the propagation of the first moments. By applying the 
Collins integral, (2.87) and (2.88) yield after some troublesome but straightforward 
calculations: 

and the corresponding expressions for the y-direction. These equations are identical with 
those we obtained for the propagation of rays in geometrical optics, as discussed in Sec. 1.2. 
The center of gravity of an arbitrary field propagates through optical systems in the same 
way as rays, a very simple and satisfiring result. 

Second Order Moments 
For simple astigmatic beams the following relations can be applied separately for the x- and 
the y-direction. Beam radius and divergence angle are defined by: 

(2.93) 
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Equation (2.94) can again be transformed by using the Fourier transform of (2.87): 

(2.94) 

(2.95) 

A third, mixed moment of second order exists which is defined by: 

The factor 4 in the above equations is introduced to adapt the results to the waist radius and 
the divergence angle of a Gaussian beam. If the electric field of a Gaussian beam, which 
may be astigmatic but aligned, is inserted one obtains: 

2 2 
X Y  

<w > = ww 

The second intensity moments of an arbitrary field can be identified with the beam radius, 
the angle of divergence, and the radius of curvature. It is assumed that the origin of the 
reference frame coincides with the centers of gravity, which means that the fvst moments 
of the field vanish. At the beam waist the radius of curvature is infinite. For an arbitrary field 
the waist can thus be defined by the condition: 

<wxex> = 0 

If the beam and the optical system both exhibit rotational symmetry (a one-dimensional 
optical system with a 2x2 ray transfer matrix), the second moment definitions of the beam 
radii read: 

(2.97) 
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6E‘ 
(2.99) 

Using these definitions of the beam radii and divergence angles the generalized ABCD law 
for one-dimensional optics can be derived by applying the Collins integral or the Wigner 
function presented in Sec.2.7. The ABCD law holds in rectangular symmetry as well as for 
the radial components: 

<w2% = A2<w> + 24B<wl0,> + B2<8> 

<w2e2> = A C < ~ : >  + (AD+BC)<W,B,> + BD+ 

(2.100) 

(2.101) 

It is convenient to refer to the beam waist with <w:> = <w& and <w19,> = 0. The above 

equations then reduce to: 

2 <w2 > = A 2<wil> + B2<@> 

<w2e2> = AC<wi,> + BD<0;> 

(2.103) 

(2.104) 

We can define a Rayleigh range z,, by generalizing the expression from Gaussian optics: 

-3 = <W,z>/i8> (2.106) 

Be aware that the Rayleigh range can be different for the x- and the y-direction if the beam 
is elliptical. By using this definition, the generalized law for free space propagation of an 
arbitrary field over a distance z has the same form as for Gaussian beam propagation: 

2 <w2> = <wo> 1 + - [ :;>I (2.107) 
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The product of the waist => and the divergence && is called the beam parameter 
product. It characterizes the beam quality. In the best case of a Gaussian beam it results in: 

Y 

W e  = 25rnrnomrad - 
1 -  NdYAG tube flashlamps 

d o: 

Lenselm 

- 

For higher order modes (see Sec. 5.2.1) one obtains in rectangular symmetry: 

[ < W o k 0 2 > L  = (2rn+l) 2 - A2 
I R2 

and in circular symmetry: 

[cwO%Os] = (2p+P+1) 2 - A2 
WPI R2 

Arbitrary fields, especially high power laser beams, are a mixture of modes and the beam 
parameter product is defined by: 

(2.108) 

with M2 being the beam propagation factor. With the exception of the fundamental mode 
(Gaussian beam, hf=1),  the beam propagation factor is always larger than one. @ is a 
constant of the beam and does not change during propagation through ABCD-type optical 
systems. 

- 2 1  , , . , . , . , . , , I 
-30 -20 -10 0 10 20 30 

Distance from Waist [mm] 

Fig. 2.19 Second moment beam radii in the vicinity of the beam waist of a focused Nd:YAG tube 
laser beam. A parabolic fit using (2.107) yields a beam parameter product of 25 mm mrad. 
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Fig. 2.20 Measured beam radii of a focused Nd:YAG laser beam (stable resonator in multimode 
operation) using the second moment definition (2.97) and two different power content (PC) 
definitions of the beam radius [I .70] (0 SPIE 1994). 

Figure 2.19 shows an experimental application of the generalized propagation law (2.103). 
The beam from an Nd:YAG tube laser (outer beam diameter at the output coupler: 55mm, 
inner beam diameter: 35mm) was focused by means of a focusing lens with focal length 
p l m .  The second moment beam radii were determined in the vicinity of the focal spot 
according to (2.97) by using a CCD camera and an image processing system. The solid line 
in the right hand graph represents the parabola, fitted according to (2.107). This 

knowledge of these two parameters is sufficient to calculate the divergence angle and the 
beam parameter product [ 1.661. It should be noted that the second moment beam radii do 
not exist for intensity distributions that decrease slower than Z/?. This is the reason second 
order moment radius definitions cannot be applied to beams diffracted by hard edge 
apertures (the second moment diverges in the far field). 

fit enables one to determine the waist radius -> and the Rayleigh range f l y  <q, > The 

In practice, beam radii and divergence angles are defined via the confinement of 86.5% of 
the total beam power. In most cases beam radii defined by the second order intensity 
moment are larger than those containing 86.5% ofthe total power [ 1.701 (see Fig. 2.20). The 
generalized ABCD law, therefore, is a powerfid tool to understand the characteristics of 
electromagnetic fields and define the beam quality of laser beams 
[1.64,1.71,1.73,1.86,1.107], but itdoesonlyprovidelimited informationthe focusability of 
laser beams in material processing applications. 
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The Complex Beam Parameter q 
As was shown for the Gaussian beam, the mixed moment <w 8> is directly related to the 
radius of curvature. For arbitrary fields a generalized radius of curvature can be defined 

By using the generalized q-parameter [ 1,601: 

(2.109) 

(2.110) 

we can rewrite (2.100)-(2.102) into the convenient form of the well-known ABCD law: 

(2.1 11) 

Unfortunately, this generalized ABCD law cannot be applied to general two-dimensional 
beams as will be discussed in the next section. 

2.6.2 Generalized Astigmatic Beams 

In Sec. 2.5.2 the generalized Gaussian beam was discussed, characterized by different 
ellipses for constant intensity and constant phase. Additionally, these ellipses are rotated 
with respect to each other and with respect to the reference kame. This most general 
Gaussian beam is determined by six free parameters. In the case of an arbitrary beam with 
general astigmatism, we will have more parameters since the divergence is no longer related 
to the beam waist, but is given by (2.95). 

First Order Moments 
Two-dimensional beams are characterized by four first order moments which transform like 
rays as discussed in Sec. 1.2.4. The center of gravity of arbitrary fields propagates through 
two-dimensional optics on a trajectory that is defined by the ray transformation: 

(2.112) 
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With the ray transfer matrix: 
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Second Order Moments 
They can be defined in the same way as given by (2.93), (2.94), and (2.96). But now ten 
second order moments exist which are conveniently arranged in a 4x4 matrix P, called the 
second order moment matrix or the variance matrix [1.71]: 

with the newly introduced second moments: 

+r+* 

+r+c 

By using the Fourier transform, the last equation can also be written as: 

(2.1 13) 

(2.114) 

(2.115) 

(2.116) 

(2.117) 

The physical meaning of the mixed second order moments are as follows: 
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<W,W,> characterizes the rotation of the near field 
intensity ellipse with respect to the reference frame 

< ex ey> characterizes the rotation of the far field intensity 
ellipse with respect to the reference frame 

<wxq>,<wye,> 

<w 1.y e X , Y  >=<W*J/R,, 

orbital angular momentum of the field (twist) 

characterizes the radius of curvature in x-and y- 
direction, respectively 

: 

In total sixteen second order moments exist which, due to symmetry relations, reduce to a 
maximum of ten different moments. In the most general case, an arbitrary radiation is thus 
characterized by ten different parameters. These parameters have to be determined 
experimentally by intensity measurements. By using the two-dimensional ABCD- 
propagation law in free space and by measuring <w;(z)>, <w;(z)> and <wxwy(z)> at a 
reasonable number of positions z along the focal region of the beam, the following nine 
parameters can be determined: <w;(O)>, <wi(O)>, <w,w,(O)>, <w,B,(O)>, <wYBY(0)>, 
<€I:>, < 8,8,>, < B;>, and the sum <wxtly(0)>+<wyO,(O)>. One additional measurement 
is required to separate the sum. This can be done by using a cylindrical lens. Details are 
discussed in [1.71,1.125]. 

Special Beams 
The different types of beams discussed in Sec. 2.5.2 appear again in the general case. The 
most simple one is the beam of circular symmetry, the stigmatic beam, with beam radius w 
and half angle of divergence 8. Its second order moment matrix reads: 

(2.118) 

The stigmatic beam is characterized by three parameters. This is one more than for the 
stigmatic Gaussian beam, because the waist radius wo and the half angle of divergence are 
no longer related by (2.62) but by: 

2h woe = M - 
x 

The simple astigmatic beam, which is aligned and can be factorized, is described by the 
second order matrix: 
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(2.119) 

Now six parameters are required to characterize this beam, two more than for a Gaussian 
beam with simple astigmatism. The beam propagation factor can be different in the x- and 
the y-direction. 

The next, more complicated, beam is the rotated simple astigmatic beam. The 
corresponding matrix is obtained by applying the rotation matrix R(a) of (1.71) and (1.72). 
This results in: 

P,(a) = R-’(a) P, R(a) (2.120) 

Now all elements of the rotated second order matrix differ from zero, but only seven 
independent parameters exist. In addition to the six parameters of the simple astigmatic 
beam, the rotation angle a is a new parameter. In contrast to more complicated beams, the 
matrix P,(a) exhibits the following restrictions: 

The beam quality, characterized for simple astigmatic beams by the propagation factors in 
the x- and the y-direction, now becomes more complicated. As was shown by Nemes [ 1.7 13, 
the generalized beam propagation factor is a constant of propagation: 

M4 = (dA.)*@ 2 1 (2.121) 

For the simple astigmatic beam, it can be written as the product of the beam propagation 
factors in the x- and the y-direction: 

M4 = M;Mi (2.122) 
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(2.123) 

(2.124) M -  = - k ,/cWy%e> - <wyey>2 2 1 
2 

A second interesting invariant quantity is the astigmatism factor T given by: 

(2.125) 

The astigmatism factor characterizes the astigmatism of the beam. For stigmatic beams, T 
is equal to the generalized beam propagation factor: 

Ts = M4 

and for simple astigmatic beams one gets: 

Rotated and general astigmatic beams are characterized by the parameters T and M'. 

Beam Propagation 
The beam propagation of a general astigmatic beam cannot be described by the generalized 
ABCD law (2.1 1 1) since the generalized q-parameter &does not provide all information on 
the beam properties. The transformation rule of the second order moment matrix for 
propagation from plane 1 to plane 2 through an optical system described by a 4x4 ray 
transfer matrix Maccording to (2.1 12) can be derived using the Wigner function (see Sec. 
2.7) [1.109,1.110]: 

Pz = MP,MT (2.126) 

with MT being the transpose of M. This equation can be written in a form similar to the 
linear case given by (2.100)-(2.102). The first two of the ten equations read: 

<w> = <(A,wXl + Avwy1 + BmO, + BXyey,)2> 
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In the most general case, each parameter of the beam depends on all ten parameters of the 
incident beam. The equation arises now as to whether a general astigmatic beam can be 
transformed into a stigmatic one by using suitable ABCD optics. This is a delicate problem 
which is beyond the scope of this book [ 1.671. Under certain conditions this transformation 
is possible, but not in general. 

2.6.3 Beam Quality 

We have seen that the propagation of partially coherent fields can be characterized by the 
second order intensity moments. If the intensity Z(x,y) in the beam waist is known, the beam 
radii at any distance z from the waist as well as the angle of divergence in the far field can 
be calculated using the generalized ABCD law (2.1 03/105). Laser beams can, in general, be 
described by partially coherent fields. Therefore, we can apply the generalized propagation 
laws to investigate the focusing properties of laser beams and define a measure for laser 
beam quality. 

As shown in Fig. 2.21, the focusing of a laser beam with beam parameter product w e  
is equivalent to generating a beam waist with a small waist radius w,. Note that we define 
beam radii of the laser beam by the squareroot of the second intensity moments, according 
to (2.93) or (2.97). At a distance z from the plane of this focal spot, the beam radius w(z) is 
given by the generalized ABCD law: 

(2.127) 

At the distance of one Rayleigh range z,, from the focal spot, the cross sectional area has 
increased by a factor of 2. The Rayleigh range and the beam waist radius are related to the 
divergence angle via: 

(2.128) 

We are interested in a small focal spot size and a large Rayleigh range. This leads us to the 
following ratio for the definition of laser beam quality: 
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Fig. 2.21 Focusing of a laser beam with propagation factor M by means of lens. Good beam 
quality is characterized by a small beam cross sectional area in the focal plane and a large Rayleigh 
range z,,. 

2 
WO 2 A  - = woeo = we = M - 
20 IF 

(2.129) 

A measure for the beam quality is a low beam parameter product w Bwhich is equivalent to 
a low beam propagation factor M’. The knowledge of the beam propagation factor is 
sufficient to characterize the beam quality of the laser. Once M‘ is measured for the laser 
beam (see Part VI for experimental techniques), the beam quality is well delined no matter 
what kind of optics are used for beam transformation and focusing (M’ stays constant in 
ABCD-optical systems!). 

Size and position of the beam waist wo can be calculated by using the Gaussian beam 
imaging conditions (2.69) and (2.70). Both equations also apply to partially coherent fields 
if the beam radii and the divergence angles are defined by the second intensity moments. 
To a good approximation, wo is determined by the divergence angle 0 of the beam in fiont 
of the lens and the focal len@j 

wo = y e  (2.130) 

Since we have defined all beam dimensions viathe second intensity moments, Eqs. (2.103)- 
(2.106) exactly hold for all laser beams. Definition and measurement of laser beam quality 
was recently standardized in ISO-procedures using this second order intensity moment 
approach [ 1.861. Unfortunately, the second moments do not provide consistent information 
in regards to the power contained within the beam diameter. For Gaussian beams, the second 
order intensity moment provides a beam diameter that is equal to the Gaussian beam 
diameter with a power content of 86.5%. For other beams, the power contained in the 
second order intensity diameter is in general higher. Therefore, for some beams, the beam 
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quality definition via the second order intensity moments may not reflect the focusing 
properties in materials processing applications. This is especially true for unstable 
resonators, whose beams exhibit side lobes in the far field (Fig. 2.22). If a hard edged 
output coupler is used, the second intensity moment in the far field is not defined (integral 
is infinite). 

Fig. 2.22 Calculated beam radii of a focused unstable resonator laser beam The position of the 
beam waist is changed and the beam caustic becomes non-hyperbolic if the beam radii are defmed 
by power contents (PC-radii) [ 1.701 (0 SPIE 1994). 
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2.7 Coherence 

A common definition of coherence is: "Coherence is a fixed relationship between the phase 
of waves in a beam of single-frequency radiation. Two waves of light are coherent, when 
the phase difference between their waves is constant; they are non-coherent if there is a 
random or changing phase relationship. Stable interference pattern are formed only by 
radiation emitted by coherent (or partially coherent) light". A monochromatic beam with a 
beam propagation factor of M2=1 is a TEM,,-Gaussian beam and always coherent. But a 
beam with hi2> I can be a coherent higher order mode, or a superposition of several modes 
with different frequencies. A coherent mode with M2>1 can, in principle, be converted into 
a fundamental mode by a suitable phase plate, as was shown theoretically and 
experimentally [ 1.75,1.91 , l .  1011, whereas a superposition of modes cannot. Therefore, the 
characterization of a beam only by M2 is not sufficient. At least one additional number, the 
global degree of coherence Kis  required. 

Coherence is discussed extensively in the well known book by Born and Wolf [1.2], 
starting from first principles, but neglecting the photon character of light. A more 
fundamental approach, taking into account the quantized field, can be found in [ 1.741. In the 
following section a simplified version, adapted to the requirements of laser radiation, will 
be presented. For an easier understanding, temporal coherence will be briefly summarized. 

2.7.1 Temporal Coherence 

Normal light sources emit a statistical sequence of light bursts of duration T with no fixed 
phase relation between each other. This is also true for high power lasers, with the only 
difference that the duration T is much larger. Even the emission of stabilised single 
frequency-lasers is not a precise sinusoidal wave since the phase fluctuates statistically with 
a time constant in the range of milliseconds to seconds. Coherence characteristics of some 
lasers are shown in Tab. 2.4. 

Table 2.4 Temporal coherence parameters of some light sources. All numbersdepend on the special 
mode of operation and are rough estimates. (Atcoh=Pcoh/c, Atcoh Ao=0.5).  

Source temporal coherence coherence time bandwidth 
length P,, [m] AtC& [SI I34 

torch light 5 x 10.' 1.5 x 1 0 "  3.34 x 1014 
solid-state laser 1 o-, 3 x lo-'' 1.67 x lo', 
CO, laser 1 3 10-9 1.67 x 10' 
He-Ne laser 10 3 x I .67 x lo7 
He-Ne laser (stabilised) 1.5 x 10' 0.5 1 
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A wave train of limited duration T can be described by: 

E(r,t) = A(r) Ath) exp[iwt-ikz] (2.13 1) 

The time T is a measure for the duration of the wave. If such a field is superimposed with 
the same field delayed by At, an interference pattern will appear only if the time delay is in 
the range of z or smaller. An example for time-limited radiation is the spontaneous emission 
of atoms. The amplitude decays exponentially in time: 

0 for t<ro 

exp[ -(t-t,,)lt +i4,] for m0 I At) = 

where amplitude A, phase an and time of emission z are random. A gas discharge of high 
temperature emits Gaussian-like wave-trains, due to Doppler-broadening: 

The emission of a cw-laser is nearly stable in amplitude, but fluctuates in phase: 

where the time constant t is roughly the inverse bandwidth. For a more quantitative 
description of temporal coherence, an experimental set-up, the Michelson-interferometer has 
to be discussed. 

iq,t 

.-  s, 

Fig. 2.23 The Michelson- 
interferometer to determine 
temporal coherence. 
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The Michelson Interferometer 
In Fig. 2.23 a schematic Michelson-interferometer is shown. The 
incoming beam is split by the mirror S into two beams. Each beam is reflected by mirrors 
S,, S,, respectively, and both are recombined in the observation plane. By moving mirror S,, 
a time delay At between the two beams can be generated. Using expression (2.131), the 
resulting field in the observation plane reads with (2.13 1): 

EOb,(f) = E,(t)  + E,(t) = A ,  At)exp[iw,t] + A ,  ~r+Af)exp[iwo(t+Ar)] (2.132) 

The intensity is recorded with a detector (CCD-camera, film), which squares and integrates 
Eobs(t). The resulting signal I is: 

1 
2 

= -c,E,<EE*> 

0 

(2.133) 

with T being the observation time. It is assumed that T is large compared to the time 
constant T ofthe fluctuations. The bracket denotes the time average. Insertion of (2.132) into 
(2.133) results in: 

1 
2 

I= -C,E [ V I2<f(t)f’ (t)> + p2l2<f(t + At2f * (t +At)> +A ,A;exp[ iwoAt] <f(t2f’ (t +At)> + cc.] 

I = I ,  + z2 + r,, + r;, 
(2.134) 

I,,  I2 are the intensities of the individual wave trains and 4, is called the auto-correlation 
function, because the field is correlated with itself. The normalised value of r,, is the 
complex degree of coherence z, (At): 

I? I I ( A t )  A #;exp[ - zw ,At] <f(t)f* (t  +At)> 
Y11 = - = m m 

Using Equation (2.139, (2.134) can be written as: 

I = I ,  + I2 + 2 ~ y l , ~ ~ ~ o s ( w 0 A t + ~ )  

(2.135) 

(2.136) 

The intensity is modulated with the delay-time At. The intensity contrast is referred to as 
visibility Vwhich is derived from (2.136): 
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(2.1 3 7) 

For a coherent beam the complex degree of coherence will be modulated, but the modulus 
is constant and equal one. In all other cases Iy, , I  will decrease with increasing delay At. An 
example is shown in Fig. 2.24. 

Coherence Time 
The parameter T in (2.131) is a measure for the coherence time. If the delay At is large 
compared with t, the contrast will be low and vice versa. It is convenient to define the 
coherence time by an average value, weighted with the auto-correlation function. By 
convention, the following definition is used for the coherence time [ 1.21: 

\Ar211?ll(Ar)]2d(Ar) 
Atfo,, = 

(2.138) 

Some examples are given in Tab.2.5. Note that the coherence time is not equal the pulse 
duration, as will be shown in the next section. 

Table 2.5 Characteristic parameters of different pulses 

amplitude spectrum coherence function coherence time-bandwidth 
E(t)/A, E(~)/A,K r'(At)//&l% length At& product At,,,Aw 
rectangular pulse 

exponential decay 

Gaussian pulse 

exp(iod - exp-[(o-o,)~/2]' 

0.91 

0.71 

0.5 
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.... 
I 

P 

Fig. 2.24 Measurement of the temporal 

position of mirror S ,  [pm] - Ti-Sapphire-laserwith A t , , , , = 5 . 8 ~ 1 0 ' ~ ~ [ 1 . 8 5 ] .  

0 
0 10 20 coherence of a beam generated by a short-pulse 

Spectrum 
The amplitude spectrum E(u) and the power spectrum G(w) of the field are given by the 
Fourier transform of the field: 

+- 
n 

E(o) = - E(t)exp[iot]dt G(o) = E(w)E *(o) (2.139) 
fi 'J 

A very useful relation between the auto-correlation function and the power spectrum is the 
Wiener-Khinchin theorem: 

G(o) = I',,(Af)exp[ioAt]d(Af) - s (2.140) 

which is easy to prove [ 1.21. The Fourier spectrum of the auto-correlation function is equal 
to the power spectrum. With the Wiener-Khinchin theorem, it is possible to determine the 
power spectrum of a light source using a Michelson-interferometer. 

Spectral width 
The power spectrum can be used to define the center frequency 4 and the spectra width Aw 
of the field by its first order and second order moments: 

(2.141) 
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(O -Gj)’G 2(w)do 
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(2.142) 

Fourier Relation 
Spectral width Aw and coherence time Atcoh are related by the Fourier relation: 

1 
2 

Atcoh Am t - (2.143) 

This relation holds for arbitrary fields, if the two parameters are defined according to 
(2.138) and (2.142) and the two weighting function 6 G are related by the Fourier 
transform. The equality in (2.143) holds for Gaussian shaped fields [1.2]. 

Pulse width and Chirp 
The width of a single pulse is defined by its second intensity moment: 

Atp 2 = 4 It212(t)dt  1 I12(t)dt (2.1 44) 

The factor 4 is arbitrary, but guarantees that the pulse width is larger than the coherence 
length. In general, the pulse width will differ from the coherence length. A well known 
example is the chirped Gaussian pulse, given by: 

E = A exp[iw,t-6t2] 6 = a-ib 

where 6 is a complex constant. This special pulse is produced by non-linear interaction of 
high intensity pulses with Kerr-active media (glass, liquids). The instantaneous frequency 
is the time-derivative of the phase and increases (in this case) linearly with time. The 
constant b is called the chirp: 

d 
wjmt = -(o,++ bt’) = o0 + 2bt 

dt 
(2.145) 
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t"" l 1 Y l  

amplitude spectrum 

power spectrum 

center frequency 

spectral width 

coherence time 

pulse duration 

Fig. 2.25 Field Eft) and 
power spectrum G(w) of 
a chirped Gaussian 
pulse. The oscillation in 
the left figure is not to 
scale. 

s = oo 

Am = J -  a 2 + b 2  
2a 

1 
At = - 
" & I  

The following relations hold for a chirped Gaussian pulse: 

1 Atcoh Am = - 
2 

It is important to know that the Michelson-interferometer can lneasure the spectrum or the 
temporal coherence length, but not the pulse width. To determine the pulse width correctly, 
non-linear methods have to be used such as frequency conversion or two-photon 
fluorescence [ 1.901. 
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Fig. 2.26 The shear interferometer to determine spatial coherence [ 1.871. 

2.7.2 Spatial Coherence 

Spatial coherence is of interest for many applications such as holography, lithography, or 
laser etching of gratings. Whether high or low spatial coherence is required depends on the 
application. Whereas temporal coherence is determined via a temporal shift of the field, 
transverse coherence is measured by a transverse shift between the two fields. 

The Shear Interferometer 
It was originally used to measure lens aberrations [ 1.22,1.33]. A schematic set-up is shown 
in Fig. 2.26. The beam under investigation is divided by a beam splitter into two beams, 
which are recombined by the mirrors S,, S, in the observation plane. By shifting mirror S,, 
a transverse shift S of the two beams is produced. The resulting field reads. 

E = E , ( r 1 4  + E 2 ( r 2 4  

For quasi-monochromatic fields the time difference At between the two beams can be 
neglected. The intensity is the time average, squared value. After some manipulation, the 
same relation as in the case of temporal coherence (2.134) is obtained: 

where r,, now denotes the 
dimensional function. 

cross-correlation function, which in general is a four- 

1 (2.146) 
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t’ 
I 

Fig, 2.27 The vectors r,s identifying the two points 
of the field, which interfere. 
Fig, 2.27 The vectors r,s identifying the two points 
of the field, which interfere. 

Often the variables r,s are used instead of r!, r2 (Fig. 2.27). These are defined as: 

(2.147) r = (r l+ rJ2 s = rl - r2 

The bracket again represents the time average. It can be expanded into a series of coherent 
functions, which is called modal-expansion [1.42,1.45,1.93,1.97]. For s=O and rl=r2, the 
intensity and the power are directly related to c2: 

Z(r) = r12(r ,  s=O) (2.148) 

P = s=O) dr with dr = dxdy (2.149) 

The complex degree of coherence is the normalized cross-correlation function: 

where O12(rl.rJ represents the mutual phase of the two fields (phase difference) in the two 
points r/,r2. The intensity can now be written as: 

I = 1, + 12 + 2 1 Y , 2 1 ~ s [ @ 1 2 1  (2.15 1) 

which has a from analogous to the temporal coherence case (2.136). If the field is 
completely coherent the modulus of yl2 is equal to one everywhere. The modulation of the 
intensity is given by the mutual phase If the two fields in the observation plane have 
a plane wave front, the phase @,* is constant. For non-planar waves the phase difference 
depends on the shape of the wave front. An example is given in Fig. 2.28, which shows the 
shear interferogram of a fundamental mode (Gaussian beam). 
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Fig. 2.28 Shear interferogram of a 
fundamental mode with M2=1.2 of a 
Heme-laser [ 1.871. s/w: shear normalized 
to the beam radius. 

'K 

' y l z ' ; ~  1x1 ; a a ,  , 1 
@ a .  

Fig. 2.29 Iy,21 vs the normalized shears for 
a Heme-laser with M2 =1.2 [1.87]. w: 
beam radius. O /  

0 SJW 1 

Outside the waist the mode exhibits a spherical wave front, and consequently interference 
patterns appear. From the intensity pattern the wave front can be reconstructed, using 
(2.147) and (2.148). Ifthe beam is not completelycoherent (Iy1214), two measurements are 
necessary to determine 1y,21 and @,*. This can be done by inserting a quarter wave plate in 
one beam and performing a second measurement. Equation (2.15 1) then reads: 

(2.152) 

The result of such a measurement is shown in Fig. 2.29. The degree of coherence Iy,21 is 
plotted versus the shear for a beam with M* =1.2. To obtain reliable results, the optical 
elements must be very homogeneous and free of stress induced birefringence. The shear- 
interferometer has the advantage that for each value s, the CCD-camera delivers the 
complete set of r parameters. A useful device to measure the two-dimensional spatial 
coherence is shown in Fig. 2.30, where a rotating Dove-prism is used to scan the full 
transverse plane. Some experimental results are compiled in Fig. 2.3 1. 
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Dove Prism 
rotation angle 9 

7 
Camera eg. Gated 

Diode Array 

MI  

Fig. 2.30 A shearing interferometer 
with a rotating Dove prism [ 1.791 (0 
OSA 1998). 

Fig. 2.31 Shear interferogram of a copper- 
vapour laser beam. Parameters are the 
magnification M of the unstable resonator 
and the number of round trips [1.79] (0 
OSA 1998). 

Young’s Double-slit Interferometer 

One of the most famous experiments in quantum optics is Young’s double slit experiment, 
because it proved the wave theory of light. The set-up is in principle very simple (Fig. 2.32). 
A light source is illuminating a double slit, or two pin-holes. From the two pin holes 
separated by the distance s two spherical fields E,, E, emanate and are collimated with a 
lens. An interference pattern is generated in the observation plane, which is magnified and 
recorded by a CCD-camera. The two pinholes are realized by two masks with cross slits as 
shown in Fig. 2.33. The cross-correlation function for this special example is also given in 
Fig.2.33. Using the cross-correlation function all beam parameters such as phase fiont, 
mode-content, beam width, beam divergence, global degree of coherence and transverse 
coherence length can be evaluated. In an alternate embodiment, the two pin holes can be 
replaced by two single mode fibers [ 1.881. 
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beam cleaner 

Heme-laser 

interference 

microscope Fig. 2.32 Young's interferometer to determine CCD 

- 

c 

Fourier 
lens Young's pin holes 

the cross-correlation function of a multimode 
Heme-laser [1.55] (0 Springer-Verlag 1989). 

70 

Fig. 2.33 The two pin holes r,, r2 of Young's interferometer and a measured cross correlation 
function [ 1.551 (0 Springer-Verlag 1989). 

The determination of the beam parameters by Young's interferometer is very time 
consuming, because for each value r the parameters has to be scanned point by point over 
the complete two-dimensional transverse plane. 

Some useful definitions: 

Visibility 
The visibility or contrast is defined in the same way as for temporal coherence: 

(2.153) 

The decrease of V with increasing shift can be caused by poor coherence or by different 
intensities of the two beams. 
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Global Degree of Coherence 
The modulus of the cross-correlation function will decay with increasing shear and 
approaches asymptotically zero. To eliminate the influence of the intensity decay, the cross- 
correlation function has to be normalised. A convenient definition of the global degree of 
coherence is [ 1.102,1.48]: 

If the field is completely coherent with: 

the cross-correlation function becomes 

rI2 = 0.5 C~E, ,A ,A;  

and (2.154) results in K‘=l. In all other cases, Kz will be smaller than unity. A relation 
between the global coherence and the beam propagation factor exists [ 1.90,1.48]: 

th? M 2  > 819 (2.155) 

This relation is useful to check on experimental results. If the cross-correlation function can 
be factorized, e.g. in the case of rectangular symmetry: 

the global degree of coherence can be simplified to yield (with = P: P;): 

Transverse Coherence Length 
For a fixed position r, the degree of coherence will decrease with increasing s, but it can be 
modulated, depending on the beam structure. Therefore, the local coherence length is defined 
as an average value, weighted with the modulus of the cross-correlation function: 
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Using (2.147), the global coherence length now reads: 

Similar to the temporal case, the factor 8 is arbitrary, but guarantees that the coherence length 
is always smaller or equal the beam diameter, defined by (2.93). It is important to notice that 
the coherence length is a measure for the decay of the contrast, which can be caused by 
different intensities or by poor coherence. Even a coherent beam has a limited coherence 
length given by the beam diameter. In the case of rectangular symmetry the transverse degree 
of coherence reads: 

(2.158) 

with: 

The far field angle of coherence is defined by 

(2.160) 

Examples 
To demonstrate the practical aspects of these definitions, let us discuss some examples 
[ 1.1021, without going into the mathematical details. In the cases below, beam radius wRx and 
coherence length Pa,ob,x are normalized to the fundamental mode radius wox, which propagates 
according to (2.107). 
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Pure TEM,, 
In rectangular symmetry, the field is given by (5.8) and the cross-correlation function reads: 

Beam radius and divergence are defined by the second moments (2.93,2.94, 5.12): 

WR,(Z) = w,(z )@x = W , c O ) / ~ / @ x  

0, = e , W  

The beam radius scales according to (2.107). The coherence parameters result from the 
above equations: 

beam propagation factor: 

degree of coherence: 

M," = 2m+1 

IY,21 = 1 

global degree of coherence: K, = 1 

coherence length: Qplob.x(Z) = 2 W o x ( Z > r n  

The coherence length is the same as the beam diameter and scales hyberbolically with z. 

b) Two oscillating modes TEM,, +TEIV&,, 
The fundamental mode and the next higher order mode may oscillate in a rectangular one- 
dimensional resonator. Then ( 5 . 8 )  holds and the resulting field reads: 

b, exp(iw,,r) + b, exp(iolot) Hl 

In non-degenerated resonators the eigenfrequencies moo, o ,o are different and the cross-terms 
vanish when averaged over time. The cross-correlation function reduces to: 
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0 

o - EM,, power a, 1 

Fig. 2.34 Coherence parameters of the two-mode oscillation vs the power a, of the TEM,,-mode. 

Equation (2.149) yields a condition for the mode expansion coefficients: 

a, + a, = pol* + (bJ2 = 1 0 I a,,a, i 1 

The beam parameters can be evaluated analytically and depend on the fractional powers 
a,,, a, of the modes: 

2 beam propagation factor: M, = 1+2a1 

degree of coherence: 

2 2 2  global coherence: K,  = a, +al 

coherence length: 

It is interesting to note that the coherence length has a minimum for a,=1/3 (Fig. 2.34). 

The Gauss-Schell beam [1.47,1.68,1.74] 
This is the most general partially coherent beam with respect to the second order moments 
and a Gaussian intensity distribution. The general Gauss-Schell-beam, which is often used 
to describe multimode lasers, is characterized by ten independent parameters [ 1.681. We will 
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restrict the discussion to the one-dimensional beam with its two parameters wRx, G, which 
describe beam radius and degree of coherence, respectively. The Gauss-Schell beam is only 
defined by its cross-correlation function. It reads in the one-dimensional case: 

z,  = ozo : Rayleigh range 

The beam intensity is given by (2.148) and results from the above equation for s=O: 

with w,(z) = W , ( O ) / W  

The intensity is Gaussian and remains Gaussian when the beam is propagating in free space 
or through parabolic optical systems. The divergence, however, is higher for the same beam 
waist and the Rayleigh range shorter compared to a Gaussian TEM,,-mode. The parameter 
ocharacterizes the degree of coherence with Oiusl. For complete coherence o i s  equal to 
1 .O, an incoherent beam exhibits CT = 0 .  The local transverse coherence length of this 
specific beam does not depend on the position x. Some relevant parameters are: 

beam radius: w,@) 

beam divergence: 

beam propagation factor: 

degree of coherence: 

global coherence: 

coherence length: 

0, = OoJ0 

with w ( , ~  and 
For coherent light (G =1), the parameters ofthe fundamental mode are obtained. The Gauss- 
Schell beam can be realized by an incoherent superposition of squared Gauss-Hermite 
polynomials with suitable coefficients [ 1.42,1.48]. 

being the values of the fundamental mode. 
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Determination of Phase and Coherence by Non-interferometric Measurements 
For sake of simplicity, fields with only one transverse coordinate E(x,z) are discussed. The 
two-dimensional case is not straight forward, as will be briefly pointed out in the next 
section. The cross correlation function of E(x,z) is a two-dimensional function c ( x , , x J  or 
T,(x,s.J, using (2.147). By measuring in one transverse plane (e.g. z=O) all parameters of 
interest such as beam width, divergence, phase front, and coherence can be evaluated. On 
the other hand, the propagation of the field and the intensity depend on the phase and the 
amplitude distribution in a z-plane and is also determined by the cross-correlation function 
c. The full information on the field is contained in G a s  well as in the intensity structure. 
It is possible to reconstruct the two-dimensional cross-correlation function c ( x , s J  from the 
two-dimensional intensity I(x,z) by using the ambiguity function Z, , as will be 
demonstrated. 

The Ambiguity-function Z, 

The propagation of the cross-correlation function T, (x , ,x , z )  in free space is given by the 
Fresnel-integral in the paraxial approach (2.23). However, & is the product of two fields 
resulting in a complicated diffraction integral. It is much easier to use the ambiguity- 
function, which is the Fourier-transform of the cross-correlation function with respect to x 
[ 1.25J.381: 

(2.162) 

The ambiguity function is a representation of the field in the sx,a, space. The propagation 
of this function is determined by the ABCD-law [ 1.381, which for propagation in free space 
reads: 

The propagating function remains the same, if s, is replaced by s,-a,z. This coordinate 
transformation means a shearing of the function by the angle cp, as plotted in Fig. 2.35, with 
tancp= dz,  where zo is the Rayleigh length and cp the Guoy-shift (see (5.39) and (5.40)). Let 
us discuss some properties of this new function. For a, = sx= 0, (2.162) and (2.149) 
immediately deliver: 

1 z,,(o,o) = - rx(x,sx=o)h = -pX a ‘J I. 
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This special value of the function is equal the square root of the power. According 
Parseval’s theorem, the following relationship holds for IZA,x12 : 

which according to (2.136) is the x-part of the global degree of coherence. 

The transverse coherence length is given by (2.1 59). Replacing & by ZA,x and using (2.162) 
results in: 

(2.165) 

The second moment of s,., weighted with the squared modulus of the ambiguity function is 
the transverse coherence length as shown in Fig.2.35. The second moment of a, does not 
depend on z and is the far field angle of coherence as defined by (2.160): 

(2.166) 

Fig.2.35 The ambiguity 
function is sheared by 
the angle tancp=zlz+,, 
when propagating in 
f ree  space. It is 
convenient to normalise 
the s,-parameter to the 
corresponding Rayleigh 
length zRx. The Fourier 
t ransform of the  
intensity is  given by the 
dotted lines. 
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The transverse coherence length is given by (2.159). Replacing r, by ZA,x and using 
(2.162) results in: 

(2.165) 

The second moment of s,, weighted with the squared modulus of the ambiguity functior 
is the transverse coherence length as shown in Fig. 2.35. The second moment of a, does 
not depend on z and is the far field angle of coherence as defined by (2.160): 

(2.166) 

The relevant coherence parameters can be evaluated, if ZA,x is known. To understand how 
it is obtained from intensity measurements, let us start with (2.162) at z=O, which for s, = 
0 together with (2.148) delivers: 

n 

ZAJ(sx=O,ax) = I(x,z=O) exp[ikap] dr J (2.167) 

Propagation by a distance z is described by (2.163): 

Z,,(sx,ux) = Z(x,z) exp[ikct2] dx with z = -s*Ja, (2.168) s 
In a measurement, the one-dimensional intensity distribution I(x,z) is Fourier-transformed 
to generate the ambiguity function with sx=-za, z is running from -m to +m. In reality it is 
sufficient to determine the intensity in 10 to 20 positions around the focal range, where it 
is varying strongly. This simplifies the determination of the coherence parameters, 
because the transverse intensity structure can be easily measured with a CCD-camera. 
Details of the measurement technique were published in [1.80]. The procedure is as 
follows 

measure I (x,z) at 10-20 different positions around the focal region 
calculate ZA,x using (2.168) and replace z by +/a 

calculated according to (2.165) and (2.166) 
from 

which amplitude and phase front can be calculated. 
beam width, divergence, and beam propagation factor can be calculated from 
I(x,z) using the second order intensity moments (see Sec. 2.6) 

a With ZA,=, global coherence, coherence length and far-field divergence can be 

Fourier transform of ZA,x generates the cross-correlation function (2.162), 0 
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Figure 2.36 shows experimental results for an off-axis diode-end-pumped Nd:YAG laser. 
By moving the pump spot laterally with respect to the optical axis of the stable resonator, 
Gauss-Hermite modes of a desired order can be excited. The measured global coherence 
versus the diode adjustment is shown in Fig. 2.36. The global degree of coherence always 
has a maximum when a pure TEM,, mode oscillates, but never reaches K i  = I ,  which 
means that other modes oscillate as well. Table 2.6 compares the results of this non- 
interferometric measurement with the ones obtained with a Young-interferometer. The 
theoretical values are based on the assumption that only two modes are oscillating, using 
the formulas of the two-mode-case. 

Table 2.6 Comparison of beam propagation factor kf, global degree of coherence K:, and 
global transverse coherence length !cah,r , obtained by Young’s interferometer and by non- 
interferometric measurements [ 1.1081. a,, a, are the relative power contents of TEM,, and TEM,, 
mode, respectively. 

a, : a, M,Z K,2 Qgl0b.x 1 w Rx 

theory exp. theory Young non-interf. theory Young non-interf. 

1 .oo : 0 00 1.0 1.01 1.0 0 .96 -1 .0  1.0 1.0 0.99 1.01 
0.75 : 0.25 1.75 1.71 0.79 0.70-0.75 0.74 0.63 0.63 0.60 
0.50 : 0.50 2.0 2.04 0.71 0.66 -0.73 0.71 0.71 0.74 0.71 
0.25 : 0.75 2.5 2.39 0.79 0.72 -0.77 0.75 0.94 0.89 0.87 
0.00 : 1.00 3.0 3.04 1.0 0.89 -0.99 0.95 1.0 0.97 0.96 

: I 

O 2  rn 
0.5 0.6 0.7 0.8 

diode laser adjustment (mm) 

Fig. 2.36 Beam propagation factor 
M: and global degree of coherence 
y’. The modes were generated in a 
diode end-pumped Nd-YAG-laser, 
by laterally shifting the diode with 
respect to the optical axis of the 
resonator [ 1.761 (0 Elsevier Science 
1996). 
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If the field cannot be separated according to E(x,y)= E,,f(x)g(yl, it exhibits two transverse 
dimensions, resulting in a four-dimensional cross-correlation function. The corresponding 
ambiguity functions are also four-dimensional. However, since the intensity /(x,y,z) is 
only a three-dimensional function, the missing information is hidden in the azimuthal 
phase structure. By inserting a cylinder lens and rotating it by an angle p, the additional 
information can be recovered. Now the intensity becomes four-dimensional, I(x,y,P,z) and 
can be used to determine all coherence characteristics and beam parameters, but it is a 
time consuming method. 

Wigner-function 
Another function often used in Optics is the Wigner-function h(r, 9, which is defined as 
the Fourier transform of the cross-correlation function with respect to s=r,-r2: 

FI2(r,s) exp[-ikes] ds (2.169) 

where k is the wave vector (ks, kJ, r is the position vector and 8 the far field divergence 
vector: 

This function was first introduced by Wigner [1.24] for the description of quantum 
mechanical phenomena in the phase space and later used by Walther [1.30] and Wolf 
[1.45]. The properties of this function and its application to beam propagation is 
summarized in several papers of Bastiaans [I  .39,1.40,1.44]. The special feature of. 
coherence is discussed in detail by Eppich [1.78,1 .SO]. 

The Wigner-function as well as the ambiguity-function and the cross-correlation 
function completely characterize a radiation field and all three functions contain the same 
information. The cross-correlation function is obtained directly from the interference 
experiments as discussed in the beginning of this section. Ambiguity and Wigner- 
function have to be evaluated from intensity measurements, which are easier to perform 
but require sophisticated numerical approaches. The Wigner-function is related to the 
radiance of geometrical optics, being approximately (but not correctly) the power per area 
and angle [1.30]. The advantage of using the Wigner-function is its simple propagation 
law through first order optical elements. The same relation holds as for the ambiguity 
function: 

h(r,,(3) = h(M-'r, , z) (2.170) 

where Mis the ABCD-matrix of Sec. 2.4.2. For propagation in free space, h is sheared the 
same way as shown for the ambiguity function in Fig. 2.35. 
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Without mathematical derivations, some results are summarized: 

r(xl,x2,z=O) = 5co~olEol 1 

beam power 

near field intensity 

far field intensity 

2 2  

2 (2.176) exp-- x1 +x2 = zco~oIEol 1 
. wo , 

beam width 

P = h(r,e)drde s 
s 
s 

Z(r) = h(r,O)dO 

l(0) = h(r,e)dr 

(2.171) 

(2.1 72) 

(2.173) 

(2.174) 

A look at Section 2.6.2 shows that the Wigner-function delivers all beam parameters. 
Unfortunately, it can not be measured directly, but for one-dimensional transverse fields it 
can be evaluated from the intensity by a suitable transformation [1.78]. For two- 
dimensional fields it is also possible to retrieve the Wigner-function from intensity- 
measurements, but the procedure is much more complicated 11.781. Therefore h is more 
of a mathematical tool, that can be used to calculate the propagation of light, also through 
non-parabolic optical systems, including slits and arbitrary phase plates. In order to gain a 
better feeling for this concept, let us apply the Wigner-function theory to a one- 
dimensional Gaussian beam with a field distribution at the waist position of: 

The cross-correlation function is given by (2.150/2.15 1): 
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Application of the Fourier transform (2.169) results in the Wigner-function at z = 0: 

wo 1 ho(x,O,z) = @- -c E IE l 2  exp 
A 2 O o o  

h,(x,e,z=o) = (2.177) 

(x - o z ) 2  k2O2w; -2- - ~ 

2 2 (2.178) 
WO 

Free space propagation of the Wigner-function is performed by applying the ABCD-law 
(2.170), replacing x by x-a: 

which again is a Gaussian shaped function in x -  and 8- direction. This function and its 
propagation in free space are shown in Fig. 2.37. Starting at the waist, the projection onto 
the x-axis is the near field intensity with the waist-radius <x2>= w?I4.The projection on 
the 0 -axis is the far field intensity with the divergence <02>= 8,214. With increasing 
distance z, the beam radius increases according to (2.57), whereas the far field divergence 
remains constant. 

z = O  

"t 
z = zo 

"t 

I(x,z=O) 
4 

I( x,z=z,) 1 

Fig. 2.37 The Wigner-function of the Gaussian beam and its propagation in free space. The x 
coordinate is normalized to the Rayleigh-length q=xw;IA. 
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2.8 Diffraction Theory of Optical Resonators 
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2.8.1 Integral-Equation for the Electric Field Distribution 

By using the formalism of the Collins integral introduced previously, it is now a 
straightforward task to develop a diffraction theory for optical resonators [ 1.26,1.29, 1.3 I]. 
We are basically interested in the steady-state electric field distribution on the two resonator 
mirrors. Let us consider an optical resonator with rotational symmetry, as depicted in Fig. 
2.38, with a field distribution E,(x,y) on mirror 1. What does the electric field look like after 
one round trip inside the resonator? In Sec. 1.3 we calculated the ray transfer matrix for a 
round trip, assuming an empty resonator: 

(2.179) 

By inserting the matrix elements into the Collins-Integral(2.29) we get the field after the 
round trip: 

(2.180) 
whereby the integration is performed over the surface of mirror 1 

Fig. 2.38 After one round trip inside the resonator, the field distribution E,(x,y) has reproduced 
itself. In steady state operation the field amplitude can change but the shape ofthe field distribution 
has to remain constant. 
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The steady state oscillation is defined by the constancy of the field distribution: field E2 is 
identical to the starting field E,,except for a proportionality factor y. The following relation 
must therefore hold: 

(2.181) 

The complex proportionality constant y is called the eigenvalue of the field distribution. 
Replacing the left hand side of (2.1 80) with (2.181) yields an integral equation for the field 
distribution E,(x,y). Once this distribution is calculated (in general this is done numerically), 
the electric field on any other plane inside or outside the resonator can be determined by 
applying the corresponding Collins integral [I .26,1.29,1.3 11. 

It should be kept in mind that the Collins-integral can only be used strictly to 
calculate the beam propagation between two apertures. If both of the resonator mirrors are 
limited in size, as is the case in Fig. 2.38, one must not use the Collins integral for the 
complete round trip. The two transits between the mirrors have to be dealt with separately 
by using two Collins integrals with the corresponding ray transfer matrices for each transit. 

The physical meaning ofthe eigenvalue ybecomes clear when we compare the total 
power P, hitting the mirror after the round trip with the initial power P,. We get: 

= YY' p ,  (2.182) 

where we have used (2.18 1). The integration is again performed over the surface of mirror 
1 .  It is obvious that the factor yy* represents the power fraction that hits the mirror surface 
again after one round trip. This factor is referred to as the loss factor or the diffraction loss 
factor V. In Fig. 2.38 only the fraction Vofthe initial power falls into the aperture and gets 
reflected by the mirror, whereas the remainder I-V hits the aperture and gets absorbed or 
scattered. The fractional power loss is called the diffraction loss dV=1-V of the field 
distribution. For a laser in steady-state oscillation, the diffraction loss as well as other losses 
generated by output coupling and scattering are exactly compensated by the gain of the 
active medium. In general an infinite number of self-reproducing field distributions that 
fulfill (2.180) and (2.181) can be found for a given resonator. Each of these field 
distributions represents an eigenmode of the resonator with a well defined eigenvalue y. 
Which of these eigenmodes will oscillate inside a laser resonator depends on the boundary 
conditions like aperture location and size and the gain of the active medium. All of those 
eigenmodes whose losses are compensated by the gain can oscillate. Since different 
eigenmodes experience different loss, the number of oscillating eigenmodes is decreased 
as the aperture size or the gain of the active medium are reduced. By using this mode 
selection technique one can force only the lowest-loss mode, also referred to as the 
fundamental mode, to oscillate. 
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2.8.2 The Gaussian Beam as a Fundamental Resonator Mode 

One special solution of the eigenvalue problem (2.180/2.18 1) is the Gaussian beam, which 
represents the fundamental mode in a stable resonator. In the following, we will discuss the 
integral equation for an arbitrary optical resonator by using the Collins integral (2.29) 
expressed in terms of a general round trip ray transfer matrix M. The mirror surfaces are. 
assumed to extend to infinity and no apertures are located inside the resonator (Fig. 2.39). 
In reality, this means that the transverse dimension of the field is small compared to the 
sizes of all apertures. 

We consider a resonator with an arbitrary number of optical elements located inside 
and the ray transfer matrix M represents the matrix for a resonator round trip starting on a 
given, but arbitrarily chosen, reference plane. The field distribution on the reference plane 
is a solution of the Collins integral equation: 

We know already that a Gaussian beam with beam parameter q, will transform into a 
Gaussian beam with beam parameter q2 in this integral equation, with: 

(2.183) 

Since we are looking for a steady-state solution, q2=q, must hold. By replacing the left hand 
side of (2.183) with q,, we can determine q, to be: 

reference plane 
I 

(2.184) 

self-consistent Gaussian beam 
parameter on the reference plane 
for a round trip in an optical 
resonator. 
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Comparison with (2.58) yields the radius of curvature and the beam radius of the Gaussian 
beam on the reference plane: 

I. 2B , w ; = -  2B R, = - 
D -A 7r JzKS (2.185a,b) 

Equation (2.185b) reveals that a Gaussian beam can only be a solution if: 

H+DI < 2 (2.186) 

holds. Optical resonators for which (2.186) holds are called stable resonators. It should be 
added that this result always holds no matter which reference plane in the resonator is 
chosen. The Gaussian beam represents the fimdamental mode inside a stable optical 
resonator. 

Example: Linear two-mirror resonator without internal optical elements 
As already discussed .in Sec. 1.3 the ray transfer matrix for the roundtrip starting on 
spherical mirror 1 reads: 

The stability condition (2.186) now reads: 

(GI < 1 * 0 < glgz < + I  (2.187) 

By using (l.l85a,b), the radius of curvature and the beam radius on mirror 1 are: 

An infinite radius of curvature on the mirror means that the mirror surface represents the 
wave front of the Gaussian beam (remember that in Sec. 1.3 we have replaced the mirror by 
two lenses and our reference plane is located in between). The Gaussian beam parameters 
on mirror 2 can be obtained by switching the indices in (2.187). 

Beam radii and radii of curvature at any other plane inside or outside the resonator 
can be easily obtained by applying the ABCD law for Gaussian beams. However, for 
propagation outside the resonator one has to incorporate one 'replacement lens' into the 
corresponding ray transfer matrix. 
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2.9 Plane Wave Representation of Diffraction 

An exact solution of the wave equation (2.1) is the infite, monochromatic plane wave, 
which, omitting the frequency term, reads in the complex notation: 

(2.188) E(xy,z) = A,  exp[-ikr] 

with E= (Ex, E, , EJ : electric field vector 
k=(k,, k,, k )  
r=(x,y,z) : position vector 

: wave vector with Ik/=2dA=w/c 

Any superposition of plane waves travelling in different directions k is also a solution of 
(2.1): 

E(x,y,z) = / /A(kx,k, , )  exp[-ikr] dkxdky (2.189) 

A (kx, k J is called the angular spectrum of the field E. For a single plane wave propagating 
in direction k=(k,, k,d, the spectrum is a delta peak: 

tmtm 

A(k,&,,o) = A , W x  -k,&,, 

Since lkl is constant, (2.1 89) can be rewritten into the form: (2.1 90) 

t 
k,' + k i c k 2  

Fig. 2.40 A plane wave propagation in the directionofk. Left: rectangular symrnetry,right: circular 
symmetry. 
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The exponent in (2.190) becomes real for k;+k,2>k2 which means that the field amplitude 
decays very fast with exp[-2nz/A]. This evanescent term does not contribute to the 
propagating field and can be neglected. The integration is limited to values k:+k;_ckz or 
angles I @.I, 10,J <n/2 and (2.190) holds for PA.. Ifthe field E(x,y,z) is given at the plane F O ,  
(2.190) results in: 

E(x,,y,, 0) is the inverse Fourier transform F“ of the angular spectrum, as discussed in Sec. 
2.4.2, and accordingly, the angular spectrumA(k,kJ is the Fourier transform of the field E. 
Now (2.190) can be rewitten as: 

E(x2J2J) = //flE(x1S190)1 eXp[-i( k * . 2 . k , Y 2 + z l ) ]  dkxdk (2.191) 

If the field is given at the plane z=O, its propagation in free space is determined by 
(2.191).This so called plane wave representation is a better approach to diffraction than the 
Kirchhoff/Fresnel-integrals [ 1.2,1.77]. In addition, it automatically incorporates the vector 
character of the electric field. The plane wave presentation is useful for the evaluation of 
beam propagation in anisotropic media, higher order approximation of beam propagation 
and for the evaluation of diffraction free beams. 

Fig. 2.41 The field distribution in the plane z=O is decomposed into plane waves. The plane wave 
spectrum is the Fourier transform of the field in a given plane (z=O) and it can be observed in the 
far field or in the focal plane of a lens. The propagation of the plane waves is described by (2. I88), 
and their superposition delivers the propagating field E(x,y,z). 
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Equation (2.19 1) automatically predicts that laterally confined electric field distributions 
will develop a longitudinal field component in direction of the beam propagation. The field 
of the single plane wave, travelling with an angle with respect to the z-axis, has a 
longitudinal component E,, and the superposition of all fields will also have a resulting 
longitudinal component. This is a general property of fields with a transverse structure 
propagating in charge free media. Only the infinite plane wave, propagating in z-direction 
has no longitudinal component, which is why light is often described as a transverse 
electro-magnetic field. In the paraxial approach with kx,kyark, the square root can be 
expanded. In first order approximation, (2.191) can then be transformed into: 

(2.192) 
By inserting the Fourier-integral: 

and integrating (2.192) with respect to k&, the well known Fresnel-integral is obtained: 

Example: 
A Gaussian field distribution with the waist radius w,, is given at the plane z=O: 

The Fourier Transform reads: 
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The integral can be solved solved and delivers the angular spectrum of the Gaussian shaped 
field: 

The paraxial approximation of the plane wave presentation (2.192) then yields for the 
electric field at the plane z: 

(2.195) 

with z=xw,,?h being the Rayleigh range. For large values of k,,%, or large angles 8,,8, the 
correct equation (2.1 89) has to be solved. For an x-polarized beam, an approximate second 
order solution reads [1.38,1.41]: 

Z/Zo 
; 0 ; -i- Eo .2+y2 

E(xsy,z) = e q [ -  1 [ 1 -2i h0( 1 + iz/zo) wo (1 +iz/zo) 1 +1z/zo 

The x-component is corrected by an additional term. In the far field (z-+-J), this term 
approaches -2/kz0=-8; where O0 is the half angle of divergence of the beam. This term 
becomes relevant for highly divergent fields. Moreover, a z-component appears, as already 
discussed. The real part of E, is the projection of the tilted E-vector, which is tangential to 
the curved wave front, as shown in Fig. 2.42. 

Fig. 2.42 The orientation of the 
electric field vector of a Gaussian 
beam 
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The z-component can be written as: 

with R(z) being the radius of curvature of the phase front. The longitudinal field component 
vanishes in the waist, where the field is plane and perpendicular to the optical axis. The 
imaginary part of Ez is shifted by 90" with respect to Ex, which means that the field is slightly 
elliptically polarized in the x-z plane. 

Example: 
At the output of a diode laser, the waist radius is about 1 pm for a wavelength of A=0.8 pm. 
The half angle of divergence is 8,=/Z/(mO) = 0.25 mrad, the Rayleigh range is 
z1,=m1;//2=3.9 pm and the z-component of the electric field E, at the waist x=y=w, 
becomes E,(w,,w,,,O)= - Ode' = - i  0.025 E,. In the far field, the correction of the x- 
component is -0.0625 E,. Even for diode lasers, the correction terms are small. 

Circular Symmetry 
If the electric field exhibits circular symmetry and does not depend on the azimuthal angle 
@, the same procedure as shown in Sec. 2.2.2 can be applied. The plane wave presentation 
in circular symmetry is given by: 

E(r,,z) = 2n A(kJ Jo(k,.rz) e x p [ - i z , / m ]  krdk, 1 0 

Replacing the angular spectrum by its Fourier Transform results in: 

(2.1 97) 

r,dr,krdk, (2.198) 

J,, is the zero-order Bessel function. In the paraxial approach (lkJ elkl), the Fresnel-integral 
for circular symmetry of Sec. 2.2.2. is obtained. 
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2.10 Diffraction-Free Beams 

Normally the structure of the electromagnetic field changes while propagating in free space. 
These changes are described by the wave equation (2.1) or by one ofthe diffraction integrals 
(2.12) and (2.191). However, special solutions of the diffraction integral exist, the 
eigensolutions, for which the shape of the field remains constant. Only the amplitude and 
the transverse dimension vary in such a way that the total power remains constant. One 
eigensolution is the Gaussian beam; others are discussed in Sec. 5.1. All of these beams 
experience diffractive spreading which means that their amplitude decreases during 
propagation. Fortunately, diffraction-free solutions of the wave equation exist 
[ 1.5 1,1.52,1.106]. One is the infinite plane wave as discussed in the previous Section. 
Normally, the field distribution generated by a superposition of plane waves will change 
during propagation. But there are special superpositions that do not change their field 
distributions. 

A set-up for the realization of a beam generated by a superposition of plane waves 
is shown in Fig. 2.43. In the front focal plane of a lens with focal lengthfis a coherently 
illuminated ring with radius R and width AR. The field starting from the differential area 
RdRAq5is collimated by the lens resulting in a plane wave: 

AE(xj ,z , t )  = Eo exp[-i(k> + k y  + k g  - or)] A 4  (2.199) 

with the wave vector components: 

271: 
h 

2 x  
h. 

k,, = - C O S ~  sine, k, = - sin4 sine, 
2x 
h 

k, = - C O S ~  C O S ~ ,  

Fig. 2.43 Schematic set-up for generating a diffraction-free Bessel beam. in  order to illuminate the 
lens completely, the width AR of the ring must be smaller than .zf/w., with w being the lens radius. 



144 Chapter 2 Wave Optics 

The resulting field behind the lens is obtained by integrating over all waves with 4 varying 
between 0 and 2 T. Equation (2.199) yields: 

E(xy,z,t)= E,exp[ -i(kg-ot)] exp[ -ia(x sin@ + y cos@)]d@ (2.200) 7 0 

2n; 
A 

with: a = - sine, 

The angle 0,. is determined by the focal lengthfof the lens and the radius R of the ring: 

(2.201) 
tan0, = Rff  

The above integral can be solved analytically and yields the Bessel function of zero order: 

E(r,z,t) = E, exp[i(k,z-wt)] J,(ar) (2.202) 

and the intensity distribution: 

with r being the radial coordinate (Fig. 2.44). This is an exact solution of the wave equation, 
as long as the field is not limited transversally. The intensity distribution does not depend 
on z, meaning the structure of the beam remains constant during propagation (Fig. 2.45). Be 
aware, that (2.202) only holds directly behind the lens. Due to the diameter 2w of the lens, 
the plane wave is limited and will spread due to diffraction. However, diffraction effects can 
be neglected for large Fresnel numbers N=w2/(dL). 

Fig. 2.44 Radial intensity 
distribution of the diffraction-free 

W Bessel beam. 0 W 
r- 
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Fig. 2.45 The intensity distribution of 
a Bessel beam remains constant during 
propagation, even though power is 
constantly flowing transversally as 
indicated by the arrows. 

The transverse structure of the intensity is plotted in Fig. 2.44. A central peak with a half 
maximum radius of: 

(2.204) 1 Ar,, = - 
a 

is surrounded by side lobes with peak intensities decaying with l/r. The distance between 
two consecutive intensity zeroes is almost constant: 

R Ar = - 
a 

(2.205) 

The power in each individual ring is equal to that in the central peak. By using these 
approximations, the power Po in the central peak can be written as: 

(2.206) 

Fig. 2.46 The Rayleigh rangez,,,,of 
the Bessel beam. The shaded area 
is the interference range of the 
plane waves. 
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with P,,,,being the total beam power at the lens. The sharp central peak is generated by the 
interference of the plane waves. It will propagate in the z-direction without broadening as 
long as the plane waves overlap. This diffraction-free propagation distance zo8 is given by 
(Fig. 2.46): 

W 
ZOB = - 

me, (2.207) 

which again is the well-known Rayleigh range, now for large angles 8,. 

The set-up in Fig. 2.43 exhibits low efficiency, because only a small portion of the laser 
beam is used. A more efficient set-up using an axicon with radius R is shown in Fig. 2.47 
[ 1.1061. Again the resulting field is a superposition of plane waves which all have the same 
slope sine,=k,/k, tane,=(n-l)y, where n is the index of refraction of the axicon and y its 
apex angle. Let us apply the plane wave presentation of diffraction in circular symmetry 
(2.197) to calculate the resulting intensity distribution. The angular spectrum is a delta peak: 

J 
0 

and (2.197) right away delivers for field and intensity:: 

E,(r,z) = E, J,(ar) exp[-ikz] with a = k sine, (2.208) 

P 

waist 

4 
OP 

A 

R 

11 
0 

Fig. 2.47 Bessel beam 
generation using an axicon. 
The radius of the waist of 
the Bessel beam is w = W 2  
at z=O. 
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Again a central peak with a half maximum radius of: 

1 Aro e - 
a 

and a power content of: 

P, = x Arl Z(O) 

is surrounded by side lobes. For ar>57iY2, the Bessel function is approximated by: 

which delivers for the distance between two consecutive intensity zeroes: 

x Ar c - 
a 
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(2.2 10) 

(2.21 1) 

(2.212) 

The power in each ring is equal to that in the central peak. By using these approximations, 
the power P,, in the central peak for the set-up in Fig. 2.46 can be written as: 

x 
Po = P'O* Ra (2.213) 

with Pi,, being the total beam power incident on the axicon with radius R. The sharp central 
peak is generated by the interference of the plane waves. It will propagate in the z-direction 
without broadening as long as the plane waves overlap. This diffraction-free propagation 
distance zobl is approximately half the overlap-region in Fig. 2.47: 

(2.214) 

which is consistent with the usual definition of the Rayleigh range, the ratio of waist radius 
to divergence. Compared to the Rayleigh range of a Gaussian beam with the same waist 
radius dr,,: 
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(2.215) 

the Rayleigh range of the Bessel beam is larger by a factor Ra. Unfortunately, the power 
content in the main peak is reduced by the same factor. 

The beam parameter product of a diffraction-free beam can only be evaluated 
numerically, but a rough estimation is easily done. The waist is located in the center of the 
overlap region at z=O. The waist radius containing 86.5% of the total power is given by: 

wo = 0.865 Rl2 

The far field divergence is Bp since plane waves propagating at an angle Opare considered. 
For infinite plane waves, the far field is given by a delta ring d(8 Op). Since the near field 
is limited to a radius of W2,  a broadening occurs with AO,,=2nR. The ring, containing 
86.%% of the power has a divergence of approximately Op+0.865AOp--8p. The beam 
parameter product thus reads: 

and the beam propagation factor results in: 

x MZ = woep - = 0.216 Ra 
A 

which holds for Ra>l 

Example 1 (annular apperture): 
A circular slit with radius R=Zmm and width 20p.m is placed in front of a lens with focal 
length f=200mm and diameter 2w=20mm. A 1 W laser beam with a beam radius of 3mm (we 
assume that the intensity profile is homogeneous) and a wavelength of A=lpm generates a 
Bessel beam with the following parameters: 

Divergence angle of the plane waves: 0,. = 10 mrad 
Width of central peak: 2dr, = 3 1.8 pm 
Total power at the lens: P,,, = 8.89 mW 
Power in central peak: P, =42.4 pW 
Rayleigh range: =o, = l m  

A Gaussian beam with the same waist radius w,, has a Rayleigh range of 794 pm. 



Diffraction-Free Beams 149 

This example clearly indicates that there are some disadvantages to the generation of 
diffraction-free beams: 

- only a small part of the laser beam can be transformed into a Bessel beam using the 
simple annular aperture. This drawback can be overcome by using an axicon, by 
amplifying the Bessel beam, directly or holographically [ 1.59,l. 1061 or by using 
special optical resonators [ 1.82,l. 1061. 

- generation of a small spot radius Ar, with a Rayleigh range that is WAr,  larger than 
the conventional Rayleigh range requires a total beam power that is larger by the 
same factor. 

- the enhancement of the Rayleigh range by the factor WAr,  reduces the power 
in the central peak by the same factor. 

- if the central peak is used only by cutting off the outer diffraction peaks with a 
pinhole, the Rayleigh range will be immediately reduced to the normal value. 
However, the central peak can be used to attain higher efficiencies in nonlinear 
optics and spectroscopy [1.89,1.92,1.95,1.96]. In this case, the central peak is 
reduced during propagation, but the Rayleigh range is not reduced in the same way. 

Example 2 (axicon) [1.106]: 
A ZnSe axicon ( ~ 2 . 4 )  with radius R=9.35mm and apex angle of 0.5" is homogeneously 
illuminated with a 1 kW CO, laser beam at a wavelength of J=ZO. 6pm The generated Bessel 
beam exhibits the following parameters: 

Divergence angle of the plane waves: 8, = 12.2mrad 
Width of central peak: 2Ar, =277 pm 

Rayleigh range: Z08 = 383 mm 
Power in central peak: Po =45.7 w 

A Gaussian beam with the same waist radius wo has a Rayleigh range of 5.69 mm. 
This example indicates, that it is possible to get a considerable fraction of the total power 
into the central peak of the Bessel beam. 
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2.1 1 Beam Propagation in Anisotropic Crystals 

In the previous sections of this chapter the diffraction and the propagation of scalar fields 
was discussed. This is correct for isotropic media, but not for birefringent media and 
anisotropic crystals. Now the situation becomes more complicated, and we have to deal with 
uni- and biaxial crystals. The physics of anisotropic crystals are well treated in the textbooks 
of Optics [1.2,1.6]. Here, only a very simple example will be discussed qualitatively. 

A uniaxial crystal is characterized by two principal refractive indices, no and neo. They 
depend on the orientation of the polarization with respect to the c-axis of the crystal, as 
shown in Fig. 2.48. Inside the crystal the beam is characterized by the field E and the 
electric displacement D .  In the most general case, the correlation between these vectors is 
determined by the dieletric tensor E: 

(2.216) 

For loss-free crystals, the dielectric tensor is symmetric and can be diagonalized by choosing 
the three principal axes for which D and E are parallel. For a uniaxial crystal, (2.21 6) is then 
reduced to : 

(2.217) 

Fig. 2.48 Ordinary and extraordinary beams in a uniaxial crystal. 
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For uniaxial crystals, the wave equation delivers two polarized waves, which propagate 
inside the crystal without changing the polarization: 

- the ordinary beam Do, E, with Do perpendicular to the c-axis of the crystal and 
perpendicular to the propagation vector e of the phase fronts. 

- the extraordinary beam D,,, E,, with Deo perpendicular to Do and e. D,, and 
E,, are in general not collinear because of the anisotropy. 

The two beams are described by: 

Do = Do, exp[i(ot-n,k,er)] (2.2 18) 

where the refractive index nro of the extraordinary beam depends on the angle 0: 

(2.219) 

(2.220) 

The ordinary and the extraordinary beam propagate with different phase velocities. 

Now let us discuss the situation of a Gaussian beam, propagating in z-direction, parallel to 
the crystal axis c, and polarized in x direction. The E field in the y-z plane (shaded in Fig. 
2.49) is perpendicular to the c-axis and to the propagation vector e. It is an ordinary beam 
E,, Do. But the field in the x-z-plane is perpendicular to Do and e, and therefore an 
extraordinary beam. Inside the crystal ordinary and extraordinary parts of the Gaussian beam 
propagate with different phase velocities. 

Fig. 2.49 The Gaussian beam incident on 
a uniaxial crystal consists of ordinary and 
extraordinary parts [1.104] (0 OSA 
2002). 
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These phase shifts, depending on the transverse coordinates, produce interference pattern 
and distort the Gaussian beam. Additionally the x-polarized beam is partly converted into 
y-polarization. The theory is straight forward, but tiring. The plane wave method in the 
paraxial approach is used as discussed in Sec. 2.9 [ 1.103,l. 1041. Some results are presented 
in Figs. 2.50 and 2.51. The theory can be extended to higher order modes and modes of 
cylindrical symmetry [ 1,1051. 

Y 

Experiment 

H W X  
W 

z/zo=l 1 d545 

Fig. 2.50 The distortion of an x-polarized TEM,, beam propagating in a Calcite-crystal for two 
different propagation distances dz, with q, being the Rayleigh range. The transverse coordinates 
are normalized to the beam radius w(z) [ 1.1041 (0 OSA 2002). 
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Fig. 2.51 The power P,,(z) of the y-component versus the normalized propagation length z / ~ .  In the 
limit of z >> q, 25% of the total power is converted into the y-component [ 1.1041 (0 OSA 2002). 




