
Chapter 1 

Geometrical ODtics 

1.1 General Aspects 

Light is an electromagnetic wave which differs from the waves known in radiofrequency 
technology only by a higher frequency v and a shorter wavelength /2 [1.1-1.51. In both 
cases, the electromagnetic field is characterized by (Fig. 1.1): 

the electric field E . . . ( V W  
the magnetic field H . . . . ( A m  
the wave vector k=2 d/2 e ( 1 W  . 

In homogeneous, isotropic, and unconfined media, all three vectors are perpendicular to one 
another and the wave vector k points into the direction of propagation e of the wave. The 
energy flow is characterized by the Poynting vector S=ExH. The physical property that 
humans detect, with the eye or with a light-sensitive detector, is always the time averaged 
intensity: 

I = *  

The power content of the electromagnetic wave is obtained by integrating the intensity over 
the area perpendicular to the propagation direction: 

+ d 4 =  < E x H > d A  s 
A A 

Fig. 1.1 The electromagnetic wave is 
completely determined by the field 
vectors E, H,  and the wave vector k 
pointing into the direction of propagation. 
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Note that this expression contains both the electric and magnetic field. Within the scope of 
this book we are only interested in non-magnetic media with low absorption losses. In this 
case the magnetic field H i s  linked to the electric field vector E via: 

H = n co e0 le x El 

The intensity then reads: 

with: 

1 
2 

t = - n co E~ m2 

c, = 3x108 m / s  . . . .  speed of light in vacuum 
E,= 8.85~10"~ As/(Vm) . . . 
n : dimensionless number = refractive index of the medium 
E=2E0 / ( I  +n) 

permittivity in vacuum 

field inside medium, where E, is the 
field in vacuum 

Thus it is sufficient in most cases to use only the electric field to describe the properties of 
the electromagnetic wave. It can easily be shownthat the magnetic and the electric field both 
contribute the same amount to the total power of (1.2). 

In the following we consider only the electric field E which depends on the spatial 
coordinates XJ,Z and is assumed to show a purely periodic oscillation with a frequency v. 
It is common to chose the z-axis as the main direction of propagation. The general 
electromagnetic wave can then be expressed as: 

E = E,(xJ,z) COS(W~-~Z) 

with w=2 7cv. Since we consider only linear media, the frequency v remains constant as the 
electromagnetic wave propagates through areas of different indices of refraction n. Lmsarity 
means that the index of refraction does not depend on the intensity 1. This is in contrast to 
the propagation of high intensity beams through nonlinear materials such as KTP or BBO, 
which exhibit a change of the refractive index with the intensity, resulting in frequency 
conversion. The wavelength R and the speed of light c, however, do change in linear media: 

A =&In c = cdn v = c / l  = cdAo 

with A, c,, being the wavelength and the speed of light both in vacuum. 

Examples: 
1) On a bright summer day in California the intensity of the sun light is about 500 W/m2 for 
normal incidence. By using (1.1) we get an electric field of 6 14 V/m. 
2) For a 1 kW C 0 2  laser with a beam diameter of 1 Omm the intensity is 12.7 MW/m2. The 
corresponding electric field is 98,935 Vim. 



Ray Transfer Matrices 9 

V =  

1.2 Ray Transfer Matrices 

Y 
a 

In the following we will discuss the propagation of light geometrically by analyzing the 
propagation of rays [ 1. lo]. In this geometrical optics approximation the spatial structure of 
the electromagnetic wave as well as diffraction effects caused by apertures or edges 
encountered by the wave are not taken into account. This approximate description of light 
propagation can be applied as long as one deals with a light beam whose characteristic 
parameter N, called the Fresnel number, is much greater than one: 

a2 N = - > l  
AL 

with a: beam radius, A: wavelength L: distance in propagation direction 

The meaning of the Fresnel number will be discussed in later sections (see, for instance, Sec. 
2.2). Light can only be described in terms of geometrical optics if we have a beam that is not 
too long or too thin. If the Fresnel number is close to one or lower, the beam propagation 
has to be calculated using diffraction theory. Unfortunately, there is no well defined Fresnel 
number which separates geometrical optics from diffraction theory. For Fresnel numbers N 
greater than twenty, however, geometrical optics can definitely be applied. 

Example: 
A light beam in the green spectral range (/t=500nm) with a diameter of 2 ~ 5 r n m  can 
be described geometrically over a distance of about l m  (N=12.5). 

1.2.1 One-Dimensional Optical Systems 

In the geometrical approximation, light rays propagate along straight lines (in free space) 
and experience a declination if they pass through an optical element like a lens. If the ray 
starts in a plane perpendicular to the z-axis, it is completely determined by its starting points 
xy and the inclination angles a in xdirection and p in y-direction. The z-axis is generally 
chosen such that it coincides with the optical axis. The optical axis is defined by the center 
of symmetry of the first optical element and is perpendicular to this elements' front surface. 
Thus, a ray can be expressed mathematically as a vector: 
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ray 

X 
2 

, v F optical axis 

Fig. 1.2 In geometrical optics light is described by rays propagating along straight lines in free 
space. 

If all optical elements in the propagation direction exhibit rotational symmetry (for example 
a spherical lens) the Cartesian coordinate system can always be chosen such that the ray is 
completely determined by its starting point x and its inclination angle in x-direction a. This 
is due to the fact that the ray propagates only in the x-z-plane. In the following we will 
restrict our discussion to these one-dimensional optical systems. Ray propagation in two- 
dimensional optical systems such as cylinder lenses will be treated in Sec. 1.2.4. 

The problem we have to solve is: How does this vector change as the ray propagates 
through an optical system? As far as the propagation in a medium with index of refraction 
n is concerned, the calculation of this problem is quite straightforward (Fig. 1.3a). For the 
propagation over a distance L a ray starting at point x ,  under a small angle a, will end up at 
point x2 with an inclination angle a2, with: 

x2 = x1  + L.a, 

a2 = a1 

This can be written in form of a matrix equation: 

(1.10) 

For every linear optical element such as a lens or a mirror one can find a matrix M that 
mathematically describes the transformation of a ray while going through this element 
[ 1.6,l. lo]. This matrix M is called the ray transfer matrix. In order to find such a constant 
matrix - constant means that the matrix elements do not depend on the ray parameters - the 
approximation of small angles ahas to be made (as we did in (1 -8)). The ray transfer matrix 
theory is only applicable to the analysis of an optical system if the following relation holds 
for the maximum angle: 

(1.11) sina = tana = a 
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a 

b 

C 

Fig. 1.3 Propagation of light rays. a) free space propagation over a distance L, b) refraction at the 
planar boundary surface between two media with different index of refraction, c) refraction at a 
spherical surface. 

As a rule of thumb the maximum angle should not exceed 15" (a=0.262rad, sina=0.259, 
tanc~0.268). This is not a serious limitation as far as optical resonators are concerned since 
the angle under which the light propagates inside a resonator is rarely greater than a couple 
of degrees. This limitation to small angles is called the paraxial approximation. It generates 
a linear transformation between ray vectors. If a light beam passes from one medium with 
index of refraction n, to another with index of refraction n2, the rays are refracted at the 
interface (Fig. 1.3b). In the paraxial approximation the refraction law, also known as Snell's 
law, reads: 

a, sina, n2 

a, sina, n, 
- a p = -  (1.12) 

Thus, the ray transfer matrix MR for refraction at a planar interface is fully determined since 
the position x of the ray at the surface remains unchanged: 
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(1.13) 1 
A third important optical transition is the refraction at a spherical surface as depicted in 
Fig. 1 .3~ .  The surface geometry is characterized by the radius of curvature p. For a convex 
surface which means that the center of curvature is to the right of the surface and the ray 
is arriving from the left (as shown), the radius of curvature is positive. A negative radius of 
curvature defines a concave surface. Again the ray position at the surface remains fixed and 
Snell's law (1.12) now holds for the angles p, and p,. The angle a, can be calculated by 
using the geometrical relations y=xllp, ul=pl-y, and u2=p2-y. The final result reads: 

(1.14) 

(1.15) 

The ray transfer matrix for refraction at a spherical interface is given by: 

(1.16) 

As to be expected, this ray transfer matrix is transformed into matrix (1.13) if we set the 
radius of curvature p of the surface to infinity. 

So far we have found two fundamental ray transfer matrices to describe ray propagation 
in free space and refraction at a spherical dielectric interface hid@. The knowledge 
of these two matrices is sufficient to describe arbitrary optical systems since ray transfer 
matrices for all optical elements can be derived by using these two hndamental matrices. 
Before we discuss this in more detail the reader should memorize the following rules to 
avoid confusion in later sections: 

1) light rays always propagate from left to right. 
2) convex dielectric surfaces have a positive radius of curvature, concave dielectric 
surfaces a negative radius of curvature. However, this is reversed for mirrors! 
3) Angle orientations are defined mathematically. This means that in Fig.l.3~ a; is 
positive and a2 is negative. 
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\ 

M =. M, M,-,* ... - M3 * M,. M, 

Fig. 1.4 Propagation of a light ray through a series of optical elements. The individual ray matrices 
can be combined to a resulting matrix M. 

If the ray propagates through several optical elements their ray transfer matrices may be 
combined into a single one. This procedure is visualized in Fig. 1.4. The ray starts on the left 
plane having a ray vector v,. This ray vector is transformed into the ray vector v, by the first 
optical element, the second element generates the ray vector v, on the third plane and so 
forth. If we have n optical elements we get n equations: 

and therefore: 

Thus, the resulting ray transfer matrix Mis  obtained by multiplying all individual matrices 
in the opposite order (i.e. right to left) of the ray propagation. In other words, the fust ray 
matrix 'seen' by the ray is on the right side of the matrix product, the last one on the left side. 
Now we have a powerful tool in hand to determine the ray transfer matrices of more 
complicated optical systems. 
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Examples (see also Fig.l.5) 

1) Thin Lens 
In general a spherical lens is determined by its index of refraction n2, the thickness L and 
the curvatures of the front and the back surface. In the thin lens approximation, any change 
in ray position or angle inside the medium is neglected which means that we do not 
propagate the ray between the two surfaces. Thus the ray transfer matrix MTL of a thin lens 
is the product of two transfer matrices for refraction at a spherical interface (1.16). If p,,p2 
denote the radii of curvature of the front and back surface and the lens is surrounded by a 
medium with index of refraction n,, the resulting ray transfer matrix reads: 

1 

1 0  

=[-; 1 

with a focal length f given by: 

(1.18) 

(1.19) 

Note that the curvature pis positive for convex surfaces (center of curvature to the right of 
the interface) and negative for concave surfaces. 

2) Plane Dielectric Slab 
We consider a slab of length L with parallel surfhces and an index of refraction n, . The ray 
transfer matrix is found by combining the two matrices MR for refraction at the surfaces 
with the free space propagation matrix Mm : 

(1.20) 
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Interestingly, this is exactly the matrix for free space propagation over an effective distance 
n,L/n,. For a glass plate in air, for instance, this effective distance is smaller than the actual 
physical thickness L of the plate. This means that objects will appear closer to the eye if we 
look through the plate (this is, of course, only true for near objects which are viewed under 
an angle). 

3) Spherical Mirror 
A spherical mirror with radius of curvature p provides the same ray transformation 
properties as a lens except for the fact that the beam propagation direction is reversed. As 
shall be discussed later in more detail, beam reversal needs not to be incorporated into the 
ray matrices if the coordinate system is mirrored together with the beam. In other words, we 
always ride with the ray. Within this approach the ray transfer matrix of a mirror is identical 
to that of a thin lens (1.18) with focal lengthf=p/2: 

(1.21) 

The radius of curvature p is positive for a convex mirror surface which means the mirror 
opens to the left, towards the incoming ray (as shown in Fig. 1 S). It is most important for 
the reader to realize that this sign convention is contrary to the one used for dielectric 
interfaces. Keeping this in mind will save you a lot of calculation time. 

A collection of commonly used ray transfer matrices is presented in Fig. 1.5. It should 
be noted that from a mathematical point of view, ray transfer matrices can only be defined 
for optical elements that have parabolic index profiles (like the thermal lens in Fig. 1.5) or 
parabolic surfaces (like an aberration free lens). Fortunately, near its center of symmetry a 
parabolic surface hardly differs fiom a spherical surface. Since only paraxial rays are 
considered we are limited to the central area of the optical elements. Thus, fiom a practical 
point of view, the ray transfer matrices can also be applied to optics with spherical, 
elliptical, or hyperbolic surfaces and index profiles without introducing noticeable errors. 

The paraxial approximation also implies that the optical systems considered exhibit 
perfect imaging properties. For perfectly aligned optics a point will be imaged to a point 
because aberration is not incorporated into ray transfer matrix theory. For analyzing 
aberrations in optical systems numerical ray tracing algorithms are required (i.e. the 
commercially available optics design software like CODE V, ZEMAX, or OSLO). The 
impetus for computer solutions is that when the paraxial approximation (1.1 1) is no longer 
applicable, the time-efficient solution of the trigonometric functions for a great number of 
rays (on the order of 1,000) requires a numerical approach. 

Astigmatism, however, which is a general feature of two-dimensional optics (cylindrical 
lenses) and is also induced in one-dimensional optical elements by tilt (i.e. a Brewster 
plate), can be analyzed by using 4x4 ray matrices (see Sec. 1.2.4). 
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Fig. 1.6 Imaging with a biconvex focusing lens. 

In order to get more experience and confidence in the utilization of ray transfer matrices the 
reader should first go through the two examples presented below. After this we will proceed 
with a more generalized presentation of ray matrix properties. 

Imaging with a focusing lens 
We are looking for the imaging condition for a focusing lens. The goal is to find the relation 
between the object distance g, the image distance b and the focal length J: Using (1.17) we 
first determine the resulting ray transfer matrix: 

b gb 
l - -  g+b-? 

= [  -; 1-$ j (1.22) 

A ray starting on the left plane with parameters X I ,  aI will intersect the image plane having 
the parameters: 

3 = -- 1 X, + (1-- a1 

2 f  

(1.23) 

(1.24) 



18 Chapter 1 Geometrical Optics 

This result can be easily verified geometrically by using a ray that propagates parallel to the 
optical axis (a,=O), as depicted in Fig. 1.6, and a second ray emerging from the same point 
but going through the center of the lens (a;= -x,/g). Now we have to find a condition so that 
every point x, is imaged onto one point x2. This means that all rays starting at x, have to end 
up at x, regardless of their angle a,. A look at (1.23) indicates that this can only be 
accomplished if 

(1.25) 

This is easily recognized as the imaging condition. 

Simulation of a Spherical Mirror 
While setting up an important optical experiment a student realizes that he does not have 
the spherical mirror needed. All he can find is a plane mirror. Is there a way to simulate a 
spherical mirror with a certain radius of curvature p just by placing a focusing lens at a 
distance L in front of the plane mirror (Fig. 1.7) ? 

Here we are again confronted with the beam reversal problem and we should use this 
example to understand how the reflection of rays is dealt with. The basic idea is that we 
always ride with the ray. We can then mirror the optical system at the mirror plane and 
propagate through the whole system only in the forward direction. This method is shown 
in Fig. 1.7. The lens-mirror assembly with spacing L can be replaced by two lenses 
separated by twice the distance. In both presentations we get the same ray vector at the 
output plane. The ray transfer matrix for a round trip starting at the lens now reads: 

Fig. 1.7 Reflection at mirrors is 
dealt with by mirror imaging the 
optical system at the mirror 
plane. Thus, the lens-mirror 
combination is equivalent to the 
dual lens system. - 2L- 
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A comparison with the matrix of a spherical mirror (1.2 1) indicates that we have to glue the 
lens right onto the plane mirror (L=O) to simulate a mirror curvature of p=$ 

1.2.2 Matrix Elements and Liouville's Theorem 

In order to get a better understanding of ray transfer matrices, we will now discuss the 
meaning of the matrix elements as far as ray transformation is concerned. This approach is 
very helpful for the initial layout of an optical system since each matrix element represents 
a characteristic property of the beam transformation. The most efficient way to visualize the 
meaning of the matrix elements is to set them to zero and analyze the propagation changes 
generated. In order to keep the discussion as general as possible we use the following form 
of the ray transfer matrix M: 

x2 = A?,  + B u1 
or 

u2 = C x ,  + D uY 

a) A=O 
The relationship between input and output ray parameters then reads: 

x2 = B a, 

u2 = C x ,  + D U, 

(1.26) 

(1.27) 

(1.28) 

The position x2 of the ray does not depend on the initial position XI. All rays going through 
the system under an angle a, end up at the same coordinate xI.  This means that a parallel 
beam will be focused (Fig. 1.9a). 

Example: At which distance L are all parallel incoming rays focused by a lens with 
focal lengthf? By multiplying the ray transfer matrices for a thin lens and for free space 
propagation, the matrix elements A,B are found to be: 

Matrix element A goes to zero if we go into the focal plane of the lens (L=J). In this case a 
parallel beam (see Fig. 1.9a), hitting the lens at an angle aI will be focused into the point 
x,=faI. This means that we obtain information on the angular ray distribution by looking 
at the intensity pattern in the focal plane of a focusing lens. We actually see the Fourier 
transform of the incoming beam (see Sec. 2.4). 
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b')B=o 
The output ray parameters are now given by: 

x2 = A x1 

a2 = C xI + D a1 
(1.29) 
(1.30) 

All rays starting at point x ,  under arbitrary angles will be reunified in point x,. Thus setting 
B equal to zero creates an imaging system (Fig. 1.9b), with the lateral magnification A. 

Example: We have already derived the imaging condition for a thin lens. Let us now do 
the same for a thick lens (Fig. 1.8) since it is an important optical element in resonator 
physics. All laser media can be described in a first approach as a thick lens due to a 
refractive power induced by the pumping process. We utilize the ray matrix of a thick lens 
presented in Fig. 1.5 and first calculate the ray transfer matrix for the propagation from the 
input to the output plane as shown in Fig. 1.8. The resulting ray transfer matrix reads: 

h2-b n h, 4 - b .  L' + b(1 - -) + g(1 + - 
f nz f f 

1 + -  

h, +g I - -  1 - _  
f f 

. (1.31) 

Fig. 1.8 Imaging by means of a thick lens. Hi denote the principal planes. The focal lengthfis 
measured from the principal planes. h,>O , if the principal plane is located on the right hand side 
of the surface. 
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Setting matrix element B equal to zero yields: 

h b-h,g n, b+g-gb  = L - L- 
f f n2 

which is equivalent to: 

- - I - - = -  ' ' ' with g'=g+h, b'=b-h 
g' b' f 

(1.32) 

We get the same imaging condition as compared to a thin lens if we measure the object and 
image distance from the principal planes H,. Note that h, is negative @, is positive) ! 

c) c=o 
At the output plane the ray parameters read: 

x2 = A x1 + B a, 

a, = D u1 

(1.33) 

(1 $34) 

Parallel rays will still be parallel after passage through the optical system, but their 
inclination angle has changed by a factor of D. If we look through this optical system at a 
distant object, the size of the object is magnified by ID/. All telescopic systems such as the 
Galilean or the astronomical telescope have a zero C-component in their ray transfer matrix. 
D is the angle magnification. 

d) D--0 
At the output plane the ray parameters read: 

xz = A x ,  + B u1 (1.35) 

u* = c x ,  (1.36) 

We see that optical systems having D=O generate a collimated beam from a divergent ray 
pattern. We can take the thin lens of Fig. 1.6 as an example. D=O requires g=f All rays 
starting in the point x, at the front focal plane will be collimated to a parallel beam with an 
angle a, with respect to the z-axis. 
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Figure 1.9 gives an overview of the four cases discussed. The reader should keep the 
properties of the matrix elements in mind since this is very helpful in designing an optical 
system to provide a desired beam transformation. Generally, the optical properties of the 
components (distances, focal lengths, etc.) need to be varied until the corresponding matrix 
element goes to zero. 

1.1 . I., , 

Xz = B U, 

Focusing 

xz = A x, 

Imaging 

Magnifying 
~ ~~ 

a2= c x, 

Collimating 

Fig, 1.9 Transformation of rays by optical systems having one vanishing element in their ray 
transfer matrix. The ray transfer matrix describes the ray propagation from left to right between the 
planes indicated by vertical lines. 
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Phase Space and Liouville's Theorem 

So far we have discussed the propagation of single rays emerging from a light source 
through an optical system. In general the light source will emit over a spatial dimension Ax 
with an angular distribution at each point. An elegant way to visualize the effect of a beam 
propagation on the spatial and angular distribution of the rays is the presentation in phase 
space (Fig. 1.10). Each ray with starting point x and angle u can be represented by a point 
in phase space where the angular coordinate is plotted versus the spatial coordinate. As 
shown in Fig. 1 .lo an extended light source of dimension Ax and angular width Aa is 
described by a rectangular area with height da and width Ax. Propagation through an 
optical system to a new plane now means that each point in this area will be imaged onto 
a new point in phase space. Therefore, the area will move as the light travels down the 
optical system. 

It can be proven mathematically that the volume in a phase space cannot change as the 
physical system develops (Liouville's Theorem [ 1.71). In our application Liouville's 
Theorem holds for light propagation in free space and through parabolic phase elements 
(e.g. aberration free lens or mirror). The area A in phase space must remain constant as long 
as the light propagates within the same medium. Let A, and A, be two areas in phase space 
with: 

REAL SPACE PHASE SPACE 

Fig. 1.10 Phase space 
presentation of a light 
source (upper graphs). The 
area moves in phase space 
as light propagates through 
optical systems. 
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The transformation of the differential is given by the determinant of the matrix m: 

m =  

By using the linear transformation (1.26) this results in: 

d;u,dU, = (AD-BC) cfxldUl 

(1.37) 

(1.38) 

which means that the determinant of the ray transfer matrix must be equal to 1 to fulfill 
Liouville's Theorem A,=A, (the refractive index is constant). 

An example is shown in Fig. 1.1 1. Each point of the extended light source emits rays within 
an angular width Aa,.  In phase space this source is represented by a rectangular area that 
has the width h,, and height Aa,. The angular width remains constant as the rays propagate 
in free space, but the spatial extent of the beam increases from Ax, to Ax, at the lens. In 
contrast to the light source the angular width at the lens is different for each point. The 
points P, and P2 emit with zero divergence, whereas points in the center emit within the full 
angular width. In phase space the intermediate field at z, is thus represented by a 
parallelogram. If the field is imaged by the lens, all beams starting from point Q, of the 
source are collimated into Q2. Each point of the image now emits within the angular width 
Aa,. The image is again represented by a rectangular area in phase space with the same area 
as the source: 

A~,Au,  = Ax,Au, (1.39) 

Note that this equation holds only for imaging! In the intermediate region z,, the area in 
phase space is the same as that of the source or the image, but it cannot be written as a 
product of a spatial and an angular width since the area is not rectangular. The more general 
form of (1.39) is known as Abbe's sine law: 

AxI n, sinAu, = Ax2 % sinAu, (1.40) 
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REAL SPACE 

I X  R 

PHASE SPACE 

Fig. 1.1 1 Imaging by means of a focusing 
lens and the corresponding phase space 
presentation. 

In the general case that light propagates from one plane ( index n,) to another (index n2) and 
the ray propagation is described by the ray transfer matrix M, the following relation always 
holds: 

nl det M = AD-BC = - 
n2 

(1.41) 

The condition on the determinant also arises since energy conservative optical systems are 
reversible. An optical system can only exist if (1.41) holds for its ray transfer matrix. Thus 
it is not possible to build an optical funnel which transforms a large diameter divergent 
beam into a collimated thin ray . The product of beam size and beam divergence is a 
constant in imaging and is called beam parameter product h A d 4  (product of the beam 
radius and the half angle of divergence). This product cannot be changed by any optical 
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element without decreasing the power content of the beam (e.g. by using an aperture), if the 
light is completely incoherent. For coherent light, it is possible to convert any field 
distribution into a fundamental mode without loss of power by inserting suitable phase 
plates [1.18,1.20]. As will be discussed in detail in Sec.2.6.3, the beam parameter product 
is a direct measure for the beam quality, since a small focal spot size and a high depth of 
field can only be attained for small beam parameter products. 

Example (Fig. 1.12): 
A beam with diameter d and angle of divergence Aa is focused by means of a biconvex 
lens. Since the incoming rays are not all parallel to the optical axis they are not combined 
in one spot in the focal plane. We can easily calculate the resulting focus diameter by 
applying the phase space concept. In plane 1, the beam is characterized by a rectangle in 
phase space with area dda. In the focal plane only rays with an angle a smaller than d 2 f  
can be detected (we assume that the beam diameter on the lens is also 4. This means that 
the rectangular area in phase space has increased its height from Aa to d/f: According to 
(1.41) the area in phase space remains constant. This yields for the spot diameters in the 
focal plane: 

(1.42) 

Let us also look at the depth of field zo in the focal plane. We define the depth of field as the 
distance from the focal plane at which the beam diameter has increased by a factor of 2: 

s + zo- d = 2s ---- -# z o - -  -!f 
f d (1.43) 

Fig. 1.12 Focusing of a beam with angular divergence Aa by a lens. The right hand graph shows 
the effect of the propagation from plane 1 to plane 2 in phase space. 
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The ratio of the focal spot area to the depth of field zo is a constant of the beam since it is 
proportional to the beam parameter product, or the phase space area: 

(1.44) 

Since the beam parameter product dAd4 is constant, the depth of field decreases 
quadratically with the spot size. This fact clearly indicates that the beam parameter product 
&Ad4 needs to be as small as possible to attain good focusability. However, as we will 
see in Chapter 2, there is a general lower bound for the beam parameter product BPP or the 
area A in phase space, determined by the wavelength A: 

L\xAa A BPP = - 2 -  
4 X 

(1.45) 

In the green spectral range (A=500nm), the minimum beam parameter product is 0.16mm 
mrad. The beam parameter products of lasers are close to this diffraction-limit. 
Conventional light sources, however, exhibit beam parameter products that are several 
orders of magnitude higher. Table 1.1 presents typical beam parameter products of different 
light sources. 

Table 1.1 Beam parameter products of light sources. 

light source wavelength [nm] beam parameter product [mm mrad] 

200mW Nd:W04 laser (quadrupled) 
20 W NdYV04 laser (tripled) 
20 W argon laser 
100 mW laser diode 
100 W cw Yb fiber laser 
10 kW CO, laser 
1 kW Yb:YAG disk laser 
1 kW Nd:YAG rod laser 
superbright LED (2 mw) 
40 W fiber-coupled diode bar 
conventional LED (2 mW) 
flashlight (1 W) 

266 
355 
488 
808 
1,030 
10,600 
1,030 
1,064 
830-870 
808 
630-670 
400-800 

0.09 
0.13 
0.16 
0.26 
0.35 
10 
10 
15 
30 
50 
200 
1,000 
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mirror 

Fig. 1.13 Bouncing between two mirrors 

propagation in a periodic lens guide. After 
propagating a distance containing N 
repetitions of the base unit cell described 

I 
I 1 0 ~ C ~ Q l  . ,, . .. * * .  .. .. .. .. * .  8 . 8  

I 
I 8 I can be described as a straightforward 

I I I 
I 1 

I 8 I by the ray matrixM, the resulting matrix is 
.. - r  

I -M-IM M i M 

Sylvester's Theorem 

A ray transfer matrix for periodic optical systems was derived by Tovar amd Casperson 
[ 1.171, based on Sylvester's formula [ 1.121. This theorem is especially useful for the 
treatmentof optical resonators since the  back and forth bouncing of a ray can be 
equivalently described as a straightforward propagation in a periodic lens guide (Fig. 1.13). 
For the symmetric resonator shown, the transit fiom one mirror to the other is the basic 
optical element, described by the ray matrix M. In order to determine the ray parameters 
after N subsequent travels, the N-th power of the fimdamental ray matrix M has to be 
calculated. If we again take the general form of the ray transfer matrix M and restrict 
ourselves to matrices with determinant AD-BC=l, the N-th power of M reads: 

(1.46) 

A+D with: COSO = - 
2 and M=(: 3 

Fig. 1.14 An optical element with the optical 
axis, o.a., tilted by an angle E about the front 
nodal vertex point P, and shifted by A 
perpendicularly to the z-direction (A>O, E<O). "1 
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1.2.3 Misaligned Optical Elements 

The matrices discussed so far hold for aligned optical elements. This means that the optical 
axis a of each element coincides with the reference axis z. The ray a, which represents the 
optical axis and intersects the surfaces of the optical element at the two vertex points P,,P,. 
This special ray is not affected by the element, it is neither shifted nor deflected. For a 
singlet, the spherical interface (see Fig. IS), the optical axis is degenerated. Each ray 
crossing the center of curvature, is optical axis; for the spherical lens the connecting line of 
the two centers of curvature is the optical axis. For a bifocal spherical interface the optical 
axis is defined by the ray, which is perpendicular to both center-lines of curvature. For a 
sequence of misaligned optical elements the axis depends on the misalignment parameters 
and will be calculated in this section. The optical axis of a resonator is defined by the ray, 
which is reproduced after one roundtrip. 

Perfect alignment is impossible to achieve in reality, especially for a sequence of 
elements. In this section the influence of a shift and a tilt on the ray propagation will be 
briefly discussed. We assume an element which is tilted by an angle E about the front vertex 
point P, and shifted by A, as shown in Fig. 1.14. The paraxial approximation holds with 

<< 1. For larger angles, the situation becomes more complicated because trigonometric 
functions are involved. 

The misalignment of a single element is of no interest since the reference axis z can 
always be chosen along the optical axis of the element, and the ray transfer matrix of the 
aligned system still applies. However, for a sequence of optical elements with different 
alignments, the following relations become useful [ 1.131. A ray r, is incident on the optical 
system with: 

(1.47) 

This vector transforms in the misaligned system to: 

(1.48) r’, = r, - s 

with s being the misalignment vector: 

= [:) (1.49) 

The ray transfer matrix of the optical element transforms r’, into r;: 

rI2 = M rll (1 SO) 
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This vector can be transformed back into the z-system by taking into account the 
propagation of vectors over the distance L between the reference planes: 

rz = + MFs s = Mr, - (M-MFs) s (1.51) 

If the resulting misalignment vector is introduced: 

sM = (M-Mm) s 

the ray vector behind a misaligned optical element reads: 

rz = M r ,  - sM 

(1.52) 

(1.53) 

The misalignment vector can be calculated for any element by using the matrices shown in 
Fig. 1.5: 

Plane slab of length L: 

0 1  

h2 nl 

f n2 

i f f  

A- + EL(- - 

-A hi 
- - E- 

nl EL(- -1) 
n2 

Example 1: 
Let us consider a symmetric optical resonator with an internal lens as shown in Fig. 1.15. 
If all elements are aligned, the optical axis of the resonator, defined by the line going 
through both centers of curvature P,,P2 of the mirrors, coincides with the optical axis of the 
lens which is defined by the two focal points. Which ray represents the optical axis when 
the lens is shifted by A? 
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Fig. 1.15 A symmetric resonator with a shifted lens. 

The optical axis is defined by the ray which travels back and forth along the same path, 
which means that the optical axis must be perpendicular to both mirror surfaces. The ray 
representing the optical axis on mirror 1 thus reads: 

The propagation of this ray to mirror 2 is given by: 

rl = MFJL/2) ro 

r2 = MTL ri - sTL 

r3 = MALI21 rz 

where M,, is the ray transfer matrix for the thick lens. The combination of these three 
equations together with the fact that r, must be equal to r,(with a different sign of the angle 
ao) yields the displacement and the tilt of the optical axis: 

h b 

I - - + -  
2P P 

Y a0 = 
L 2f p - $ + 2 f  

ro = 

For plane mirrors with p -+OD, r ,  is equal to A and a, equals zero, as it should be. The above 
relation indicates that the sensitivity of aresonator to lens shifting depends on the particular 
configuration. 
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0 z 

Fig. 1.16 The optical axis I of a misaligned optical system. P, are the vertex points of the optical 
elements. The arrows indicate the direction of the vectors, not their moduli. iii are the axes of the 
single elements. 

The Optical Axis of Misaligned Systems 
Two optical elements MI, M2 with geometrical lengths L,, L, and optical axes a,, a2 are 
shifted and tilted against each other as shown in Fig. 1.16. The misalignment again is 
characterized by the vectors of (1.49), which now reads: 

s = a2 - a, (1.54) 

The element MI is aligned with respect to the z-axis, which determines the vector a, to be: 

=1 = (:) 
and a2 = s. In the a,-reference system the output ray is related to the input ray according to 
(1.53): 

rout = M$q rs - w 2  - MFSJ s (1.55) 

If r, is the ray, which represents the optical axis a of the complete system, the following 
relations must hold: 

and (1 S 5 )  delivers an equation to determine the optical axis azg of the misaligned system 
at the position z=O: 



Ray Transfer Matrices 

If the ray vectors r,,,, r,, are transformed into the a-system, according to 

the simple matrix law can again be applied for the ray-vectors: 

rim = M@, rlln 

33 

(1.56) 

(1.57) 

which can be proved easily from (1.55) and (1 S6). This procedure can be continued for 
more elements. Any sequence of misaligned optical elements has a resulting optical axis. 
If the ray vectors are transformed into this reference system, the normal matrix laws hold. 

Example 2: 
As an example the resulting optical axis of a misaligned three-lens system as shown in Fig. 
1.17 will be calculated. The matrix M, of the first optical element includes the two lenses 
on the left and the two distances L. The focal lengths of all three lenses are the same and 
equal to f. Then the two matrices read: 

( l - L / j y  - L/f L(2-LN 

4 = [  (-2K + L / f )  1 -Llf ) 4 =[-;/f;) 

The free-space matrices and the misalignment vector are 

1 , misaligned three-leis system. 
I 
n z 
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With (1.56) the vector a of the optical axis z = 0 is obtained: 

Misalignment Matrices 
The matrix of an optical element can be defined in such a way that the misalignment is 
included. Then 4x4-matrices are required, which is not very convenient. It becomes more 
dificult for two-dimensional rays, where 8x8 matrices now appear [ 1.193. 

1.2.4 Two-Dimensional Optical Systems 

In previous sections, we have restricted the calculation of ray propagation to one dimension, 
the x-z plane. This is sufficient as long as the radiation field and the optical elements exhibit 
rotational symmetry. In general, laser beams can be astigmatic (e.g. laser diodes) and 
parabolical optical elements can have different radii of curvature in x and y-directions as 
shown in Fig. 1.18. In this case, it is necessary to track all ray parameters. An arbitrary ray, 
starting at a x-y plane, is described by a four-dimensional ray vector (Fig. 1.18): 

(1.58) 

with r,,  y, being two-dimensional vectors. Thus, we need a 4x4 matrix to describe the 
propagation from plane 1 to plane 2: Bz 

---- ---- 
X 

a 

Fig. 1.18 A ray is 
generally described by 
four parameters (a). All 
four parameters have to 
be tracked when the ray 
passes through two- 
dimensional optics such 
as cylinder lenses (b,c). 

b C 
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(1.59) 

By defining the sub-matrices A,B,C,Ll this can be rewritten in an already familiar form: 

(1.60) 

The multiplication of matrices, whose elements are are again matrices is carried out the 
same way as for normal matrices. Relation (1.60) is a very convenient way to express ray 
transformations in two-dimensional optics since all relations that hold in one dimension can 
be generalized by using submatrices as matrix elements. An optical system is now described 
by a 4x4 matrix with 16 elements, but there are constraints to this matrix as was shown by 
Nemes [1.15,1.16]. The first is the determinant relation (1.41), which now reads: 

(1.61) 

with I being the identity matrix and Dr is the transposed matrix of D with: 

The two other constraints are: 

AB' = B A ~  (1.62) 

CD' = DCT (1.63) 

These three conditions reduce the number of independent elements to ten. This means that 
in the most genera! case of parabolic optical elements ten parameters are required for a 
complete description. The number of elements is further reduced if the optical system 
exhibits symmetry with respect to the coordinate system. For rotational symmetry,only four 
independent elements exist in general. If the refractive indices before and after the element 
are the same, only three independent elements remain. 
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For optical elements having mirror symmetry with respect to the x-axis or y-axis, the 4x4 
ray transfer matrix can be easily derived by treating the x- and y-directions separately. In this 
case the sub-matricesA,B,C,Zl are diagonal and we thus have only six independent elements 
(for equal refractive indices), In the following we list the matrices for common optics: 

MEs = 

a) ProDapation in isotroDic, homoreneous medium over eeometrical distance L 

O l O L  
0 0 1 0  

= 

b) Aliened bifocal sDherica1 interface (see Ea. 1.16) 

0 0 0) 

0 1 0 0  

-D, 0 1 0 

I I 

(1.65) 

c) Alipned bifocal thin lens 
It has the refractive powers D, in x-direction and D, in ydirection. Special cases are the 
cylinder lenses with D, or D, equal to zero. 

“I i 
Y9Py 

&l; Pj4 

(1.66) 

Fig.l.19 Aligned bifocal thick lens. 
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dl Alimed bifocal thick lens (Fie. 1.191 
The principal axes of both bifocal transitions are parallel to the x,y-axes. In the two- 
dimensional case, no principal planes exit. The system is characterized by seven 
independent parameters: n1/n2, nz/n3, px,, pyl, px2, py2,and L.witha=(nJn,-1) and b=(nJn,-l). 

MB, = 

0 

"1 

PY1 "2 

"1 aL 1 +- 
P X I  "2 

0 1 +- 0 -J? 

0 -L 

aL 

"3 Px2"z 

n1 b L n  -+- -+- -+-- 
Pyz Py l  "3 Py2 n3 P y 2 n  

0 

(1.67) 

el Free soace orooaeation with different IenPths in x and v 
This special element consists of four aligned cylinder lenses to generate different 
propagation distances L,=L and L,,=L+Sf, in x- and y-direction, respectively. 

11 0 Lx 0 

0 1  O L Y  

0 0 1  0 
MFSA = 

\ o o o  1 

(1.68) 

rayin ir~- )/s ray,, 

w=-Bl % 

I I 
I- 

I 
I 

Fig. 1.20 Cylindrical telescope 
system with different propagation 
distances in x- and y-direction. 

MY 
I 
I 
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1.2.5 Rotation and Misalignment 

Ifthe optical element is rotated by an angle Bas shown for the cylinder lens in Fig. 1.21, the 
original ray transfer matrix Mhas to be transformed into an angle dependent transfer matrix 
M(9 to describe the ray propagation through the element. In the following, the 
transformation rule for ray matrices under rotation is derived. 

We know that the optical element can still be described by the initial ray matrix M 
if we use the rotated coordinate axes as the reference coordinate system (indicated by 
asterisks). Ray propagation can then be written as: 

The initial coordinate axes are related to the rotated ones (for ccw rotation) via: 

Y‘ -sin0 cos0 

(1.69) 

(1.70) 

This matrix equation also holds for the angles L L , ~  since they are defined through x,y- 
coordinates. Thus the transformation rule for the ray vector reads: 

-k 
X 

cos0 sin0 0 0 

-sine case o o 
0 0 Cose sine 

o o -sine case 

$ 

:= R 

X Fig. 1 
cylinder 
rotated 
(right). 

(1.71) 

2 1  Aligned 
lens (left) and 
cylinder lens 
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sin0 cose 0 0 
- - Y1 

a1 o o case -sine 

0 0 sin0 cose j  

39 

(1.72) 

By multiplying (1.69) withR' from the left and using the relation RR-'=I we obtain: 

(1.73) 

This is already what we are looking for! The ray transfer matrix M(9 for optics rotated in 
ccw direction thus reads: 

(1.74) 

Example : Stokes Lens Pair (Fig. 1.22) 
The Stokes Lens Pair consists of a negative and a positive cylinder lens with equal 
refiactive power D [ 1.81. The lenses can be rotated by an angle 8 in opposite directions 
around the z-axis. We will show in the following that this element is equivalent to a 
combination of a spherical lens and a cylindrical lens under 45", both with varying refractive 
power. Let us fust consider the negative lens which is rotated counterclockwise. By using 
(1.66) and (1.74) we obtain: 

M-, = 
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Fig. 1.22 A Stokes lens pair as an example 
of a rotated optics. This lens pair is used in 
ophthalmic devices (phoropters, refractors) to 
measure cylinder errors (astigmatism) of 
human eyes. 

f 1  0 0 0) ‘‘1 D > O  
0 1 

Dcos’0 Dsin0cos0 1 0 = I  (1.75) 

The matrix M+cyL for the positive cylinder lens can be found by replacing D with -D and 
8 with - 8 in . The resulting matrix for the combined lens pair is given by: 

(1.76) 

Now we compare the Stokes Lens Pair with a system consisting of a negative cylinder lens 
rotated by 45” with refractive power -D* (D*>O) combined with a positive spherical lens 
with refractive power D*/2. Matrix (1.71) can be used to determine the ray transfer matrix 
of the cylinder lens MC,(45”)The ray transfer matrix of the equivalent system is: 
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MEQ" = 

41 

' 1 0 o o " 1  0 00' 1 0 00' 

D' 1 0  

D' 0 0 1  

0 1 0 0  0 1 0 0  0 1 0 0  

0 1 0  - - l o  = 0 - D' 
2 2 2  2 

D' D' 0 1  - - 0 1  D' 0 -- 

D' D' -- 

- 

(1.77) 

This is equivalent to (1.76) if D* equals 2Dsin(2@. A Stokes lens pair can thus be made 
equivalent to 45"-cylinder lenses with refractive powers D* between -2D and +2D. By 
adding a second lens pair rotated at 45" with respect to the first one, both pairs together can 
be made equivalent to any angle cylinder lens with any power between h2D. 

Example: The Phase Space Beam Analyzer 
The Phase Space Beam Analyzer is a fascinating optical system which enables one to record 
the phase space presentation of a one-dimensional light source (Fig. 1.23) [ 1.1 1 ,l. 14,1.2 11. 
A small slit in plane 1 generates a line source so that only rays with y=O can enter the 
system. The second slit, which is preferably located close to the spherical lens (c=O), selects 
only rays with zero inclination in y-direction. This means that the whole setup is only 
sensitive to rays having ray vectors v=(x, ct.,O,O). The basic principle of the device is that on 
plane 4 the y-coordinate depends only on the angle a whereas in the x-direction we see the 
image of the first slit. Imaging of the slit is accomplished by the spherical lens and the 
quadrupole lens (a Stokes lens pair with B--45") translates the angle ainto a shift in the y- 
direction. 

I c - b +  

Fig. 1.23 The Phase Space Beam Analyzer. 
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By multiplying all ray transfer matrices between plane 1 and 4, the resulting matrix reads: 

0 1  0 b-f, 

0 0  1 0 
= 

0 1 0 0  O l O j ,  

' 0  -1!f10 0 0 1 0  I 
fo 

I!& 0 1/P fdf . f 
; S = - (b- f )  

b -. 
with P = - =-lo 0 l l f ,  fdf O I  

(1.78) 

Since only rays with v=(x,O, GO) can reach the observation plane, (1.78) yields for the ray 
coordinates in plane 4: 

x4 = - P x ,  , y4 = - S a ,  (1.79) 

In plane 4 we observe the phase space presentation of the horizontal line source in plane 1, 
scaled by the factor P and S. In order to visualize the phase space presentation for different 
parts of the light source, the phase space analyzer has to be rotated around the z-axis. 

Meridional Rays and Skew Rays 
If the ray is propagating in a plane that contains the z-axis, it is called a meridional ray. By 
rotating the reference frame, the four-dimensional meridional ray can be transformed into 
a two-dimensional ray. With y,=O and p2=0, the transformation (1.71) then yields: 

This can be accomplished by chosing the angle of rotation 8 as: 

- e = L = L  Y a  

Xl P, 

If this condition holds the ray is a meridional ray, if not (i.e. y,/x,*a,/p,) it is a skew ray as 
shown in Fig. 1.24. 
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0 
Fig.1.24 Meridional (left) and skew rays (right) in a step-index fiber. The meridional ray propagates 
in a plane that contains the symmetry axis of the fiber. The skew ray is propagating around the axis. 

Misalignment of Two-Dimensional Optical Elements 
Misalignment of two-dimensional elements can be described in the same way as for one- 
dimensional elements in Sec. 1.2.3. Equations (1.50)-( 1.53) also hold for four-dimensional 
vectors and matrices. The misalignment vector now reads: 

The tilt introduced in Sec. 1.2.3 was assumed to be very small. For large tilt angles the 
trigonometric functions have to be considered. We define a tilt as a rotation by an angle 8 
around the x-axis as shown for the lens in Fig. 1.25. The projection of the lens onto the x-y 
plane now is an ellipse with the smaller axis along the y-axis. The plane defined by the small 
ellipse axis and the z-axis is called the tangentialplane, the plane defined by the z-axis and 
the large ellipse axis is the sagittal plane. In the following we restrict the discussion to 
optical elements that exhibit mirror symmetry in x- and ydirection. We are thus dealing 
with the ray transfer matrix: 
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Since all submatrices are diagonal we can treat ray propagation separately for the two 
planes. The ray matrices of the most common tilted optics can be derived by using the 
matrix of a tilted spherical dielectric interface (Fig. 1.26). If 8, denotes the angle of 
incidence of the optical axis with respect to the surface normal (this is also the tilt angle) and 
O2 is the corresponding angle of refraction, the ray transfer matrix for the tangential plane 
(y-z plane) reads: 

case, 
case I 

0 - 

n,cos0, - n,cose, n,cose, 

n2p cos0,cose2 n,cose, 

and for the sagittal plane (x-z plane) we get: 

with 
sine, - n, 

sine, n, 
- - -  

(1.80) 

(1.81) 

Fig. 1.26 The spherical dielectric 
interface, tilted by an angle 0, around 
the x-axis. 
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The 4x4 ray transfer matrix for the spherical interface tilted around the x-axis is given by: 

case, 
cose3 

0 

n,cos8, - n2cos8, n2cos8, 

MsI,mr = 

cose2 
case, 0 

(1.83) 
n2cos0, - n,cos8, n,cos0, 

1 0 0 0 

0 
cose2 
cose , 0 0 

- n1 0 
n,cose, - n2cos8, 

0 
n2 P n2 

n2cos0, - n,cos0, n,cos8, 
0 0 -  

5 p  cose,cose2 n2cose2 

(1.82) 

The knowledge of this ray matrix enables us to derive the 4x4 ray transfer matrix for two 
important tilted optical elements used in laser resonators: the tilted thin lens, and the tilted 
slab (Fig. 1.27). 

Tilted Thin Lens 
The lens with index of refraction n, is surrounded by a medium with index n, and tilted by 
an angle 8, around the x-axis as shown in Fig. 1.27. In order to simplify the discussion we 
assume that both interfaces have the same radii of curvature Ipl 1, Ip,l. The ray transfer matrix 
in the y-direction (tangential plane) is obtained by multiplying two matrices (1 30)  for a 
tilted spherical interface: 

T 
fn ,n~r  = 

Fig. 1.27 Tilted thin lens and 
tilted slab (oa: optical axis). 
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with S,, 0, being the angles of incidence and S2, 8,the angles of refraction of the optical axis. 
Since both curvatures are equal and the lens has no thickness, the relations 0,= 8,and S2= S, 
hold. Insertion into (1.83) yields: 

- 
~ B m v s r r r  Slab - 

T 
MTL,TILT = 

1 o Ln,/n, 0 

o 1 o L(nl/n2)? 

0 0 1  0 

1 
cose , 

1 

n2cos0, 

nlcosO , - 1  

0 

[:-;I 1 (1.84) 

The ray transfer matrix for the sagittal plane (x-z plane) can be found in a similar way by 
using the product of two ray transfer matrices (1.8 1): 

1 

(1 3’5) 

Tilted Slab 
We can use the ray matrices for the spherical interface with infinite radius of curvature and 
combine two of those with the ray transfer matrix for free space propagation. In the 
tangential and the sagittal plane we get: 

(1.86) 

(1.87) 

In the sagittal plane, we obtain the ray transfer matrix of the aligned slab, whereas the tilt 
decreases the effective length of the slab in the tangential plane. For a slab inserted at the 

(1.88) 
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1.2.6 The ABCD Law for the Radius of Curvature 

The knowledge about ray matrices we have acquired enables us to send rays into optical 
systems and calculate the coordinates and the angles at which they will emerge. In some 
applications, however, it is more interesting to find a relation among radii of curvature of 
spherical waves. In geometrical optics a spherical wave is defined by rays having a virtual 
source at the center of curvature (Fig. 1.28). After passage through the optics the wavefiont 
will still be spherical, but with a changed radius of curvature R. This occurs since all optical 
elements are assumed to have parabolic surfaces or index profiles. The relationship between 
the two curvatures is called the ABCD law. For the derivation we first consider the case of 
one-dimensional optics and express the radius of curvature R, of the incident wave in terms 
of the ray parameters of the surface normals (for small angles a): 

R ,  = xl/al 
(1.89) 

Accordingly, at the other side of the optical system with ray transfer matrix Mthe radius of 
curvature is R,=xJa;. We find the relationship between the two curvatures by dividing the 
two equations for the ray parameters: 

which yields the ABCD law: 

A R , + B  

C R , + D  
R, = (I .90) 

Note that the radius of curvature is positive for a divergent wave (center of curvature is to 
the left of the wavefront) and negative for a convergent wave. 

/ 
Fig. 1.28 Definition of a spherical wavefront. The radius of curvature is changed after passage 
through the optical system. 
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Example: Using the ray matrix for a thin lens (1.18), the ABCD law (1.90) yields 

This is equivalent to the imaging condition since the object distance is R, and the image 
distance is -R,. 

Similar to the determinant relation (1 .41), the ABCD law can be extended to the case of 
arbitrary two-dimensional optical systems. The two-dimensional ABCD law can be written 
as (the superscript -I denotes the inverse matrix): 

R, = (A R,  + B)(C R, + D)-’ (1.91) 

with A,B,C,D being the 2x2 submatrices according to (1.60), and the curvature matrix is 
given by: 

= [:; y (1.92) 

If the wavefront exhibits symmetry along the x- and y-direction, the curvature matrix is 
diagonal and R ,  R, denote the radii of curvature along the x-axis and y-axis respectively. 
If (1.92) is not diagonal, the coordinate frame has to be rotated around the z-axis to find the 
new x,y-frame in which the wavefront becomes symmetric. This procedure is equivalent 
to finding the eigenvalues and eigenvectors of the curvature matrix (1.92). The eigenvalues 
give the radii of curvature R*, and R*w along the x*- and y*-axis of the new symmetric 
coordinate system with: 

(1.93) 

(1.94) 

and the eigenvectors e*x, e*, represent the new coordinate axes expressed in the initial 
coordinate frame: 
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1 

ey = 

49 

(1.95) 

(1.96) 

Example: We want to calculate the change in spherical wave curvature that is induced by 
a cylindrical lens rotated clockwise by an angle of 45" with respect to the y-axis. Without 
rotation the lens focuses in the x-direction with arefiactive power D (DN) (see the positive 
lens in Fig. 1.21). We assume that the incident spherical wave has the same curvature with 
respect to x- and y-axis and its curvat&e matrix is thus given by: 

The submatrices for the rotated cylinder lens are: 

Insertion into the ABCD law (1.91) yields for the new curvature matrix (with 845"): 

- lul l2 RD12 4.1 1- l  . R2 = [: :I[ RDl2 

-RDl2 + 1 

- -L[ 1-RDl2 -m12 ] = ["- ") 
R ,  Rw 1-RD -RDl2 1 - RDl2 

With (1.93) - (1.96) we get: 

As expected the new coordinate fiame is rotated by -45" with respect to the old one and we 
obtain the imaging condition 1lR - 1lR; = D in the x*-direction. 
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1.2.7 Eigensolutions and Eigenvalues 

As mentioned in the introductory remarks on optical resonators we are mainly interested in 
light intensity distributions on the resonator mirrors that reproduce themselves after each 
round trip in the resonator. In terms of ray propagation we are looking for spherical 
wavefionts whose radii of curvature are not affected by the resonator round trip. 

IfMdenotes the general ray transfer matrix of an optical system, we can always find 
self-reproducing spherical waves with radius of curvature R by applying the ABCD law 
(1.90) with R,=R, =R: 

A R + B  
C R + D  

R =  (1.97) 

There are generally two solutions to this equation and these two self-reproducing wave 
curvatures R,,R, are linked to the two eigenvectors v,v, and eigenvalues p&, of the ray 
transfer matrix M defined by: 

pa,bva,b = (1.98) 

The effect of the optical system on rays defined by eigenvectors is a multiplication of both 
the coordinate x and the angle a by a factor of ,!A . The absolute value of the eigenvalue is 
therefore called the magnification of the optical system. All rays defining a self-reproducing 
spherical wavefiont according to (1.97) are automatically eigenvectors of the ray transfer 
matrix, since: 

(1.99) 

For every 2x2 ray transfer matrix M with CZO the eigenvalues and corresponding 
reproducing radii of curvature are given by: 

p a = - +  A + D  dw Ra = A - D  + /- (1.100) 

(1.101) 
2 c  2 

(1.102) 
A - D  - d m  

2 c  (1.103) 
p b = - -  A + D  dw Rb = 

2 

An incident beam with diameter d and radius of curvature Ro,6 will emerge from the optical 
system without a change in curvature but with a diameter Ipabld. 
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Fig. 1.29 Self-reproducing 
spherical waves in a Galilean 
Telescope. 

Example: Galilean Telescope 
The Galilean Telescope comprises a focusing lens with focal lengthf, and a negative lens 
with focal length -fi @O) which are spaced such that they have a common focal point (Fig. 
1.29). The ray transfer matrix for the whole system reads: 

Equations (1.100- 1.103) yield for the eigensolutions: 

R,  = 00 
fi cc, = - fi 

The eigensolution given by the first row is probably familiar to all readers: aplane wave will 
reemerge with a plane wavefront, but the beam diameter has increased by fi/fi. There is, 
however, a second spherical wavefront that reproduces its radius of curvature. This 
eigensolution of the telescope is often referred to as the convergent wave and its beam 
diameter has decreased by fi’. 
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1.3 Optical Resonators and Ray Transfer Matrices 

An optical resonator usually consists of two spherical mirrors with radius of curvatures p,p2 
separated by a distance L (Fig. 1.30). It is customary to replace each mirror by two lenses 
with focal lengthf;=p, and locate the reference planes in between. This technique generally 
simplifies the ray transfer matrix (A=D) and allows for an easier memorizing of the 
matrices. The reference planes are the mirror surfaces, which means a plane wave in this 
representation is actually a spherical wave having the curvature of the mirror in real space. 
The ray transfer matrix for the round trip inside an arbitrary optical resonator starting at 
mirror 1 is given by: 

(1.104) 

; .i=1,2 L gi = 1 - - 
Pi 

with 

The parameters g, and g, are called the g-parameters of the optical resonator. Note that the 
radius of curvature is positive for a concave mirror (focusing mirror) and negative for a 
convex mirror! According to (1.104), the imaging properties of two-mirror resonators are 
fully defined by the g-parameters and the mirror spacing L. We can further simplify the ray 
transfer matrix MREs by introducing the equivalent G-Parameter G=2g,g2-l: 

I I I 
I L L  +L+ 

I Fig. 1.30 A round trip in an optical 
resonator can be described as a transit 
in an equivalent lens waveguide. Each 

with focal lengthf;=p,. 

00 00 00 
I I 

I 
I 

f2 I f* f, I f, 
v I mirror has been replaced by a lens pair 

fl If1 

MRFS 
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(1.105) 

We can now use this matrix to find eigensolutions of the resonator. We are looking for 
spherical wavefronts starting on mirror 1 which reproduce themselves after one round trip. 
Application of (1 . 1 00)-( 1.103) yields for the eigenvalues and the corresponding self- 
reproducing wave curvatures: 

(1.106) 
(1.107) 

( 1 .108) 
(1.109) 

Note that R, and R,refer to the dotted planes in Fig. 1.30. According to these eigensolutions 
we can distinguish between three different types of optical resonators: 

1) IGI>l, equivalent to Ig,g,l>l 
We can find two spherical waves with real values for the radii of curvature R,, reproducing 
themselves inside the resonator. If the beam dianieter on mirror 1 is d, the spherical wave 
with radius of curvature R, increases its diameter by lpal every round trip (Fig. 1.3 la). This 
eigensolution is called the divergent wave. The second eigensolution, the convergent wave 
leads to a decrease of the beam diameter by lpbl per round trip. Resonators having these ray 
propagation properties are called unstable resonators. 

2) 161=1, equivalent to Ig,g,l=l 
Both radii of curvature R, and R, are infinite and both eigenvalues are equal to 1. This 
means that a plane wavefront is coming back planar after the round trip without change in 
diameter. These resonators are referred to as the resonators on the stability boundaries. 
The plane-plane resonator in Fig. 1.3 1 b is one example of such a resonator. 

3) IG1-4, equivalent to Ig,g,l<l 
The radii of curvature and the eigenvalues are all complex numbers. This is a very puzzling 
result since we do not know what to make of complex curvatures. We can only interpret it 
in such a way that in geometrical optics no eigensolutions can be found in this type of 
resonator. We shall see in Section 2 that eigensolutions exist, but they can only be calculated 
by applying dihction theory. These resonators are called stable resonators. 
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g2 

Fig. 1.31 The three types of optical 
resonators with spherical mirrors. a) 
unstable resonator, b) plane-plane 
resonator as an example of a resonator on 
the stability boundaries, c) stable resonator 
having no eigensolutions in geometrical 
optics. 

There is a different and more commonly used approach to define the three resonator types. 
It is the tracking of rays launched into the resonator parallel to the optical axis as a fimction 
of the number of round trips. Using Sylvester's Theorem (1.46) the ray coordinate after N 
round trips reads: 

x ~ + ~  = (G ~in[NiP] - ~in[(N-l)@]) xI (1.110) 

with cosip = G 

The ray stays confined within the resonator if [GI $1 holds. For IGl>l, cosa has to be 
replaced by the hyperbolic fhction, which means that x, increases exponentially with the 
number of round trips. The ray leaves the system. This makes it more understandable why 
resonators with IGI<I are called stable. 

Optical resonators with two mirrors can be visualized in a diagram where the g- 
parameters represent the coordinate axes (Fig. 1.32). This diagram is referred to as the g- 
diagram or, more often, as the stability diagram. A resonator defined by the g-parameters 
g, and g, is represented by a point in the stability diagram. Unfortunately, this representation 
is not unambiguous because the mirror spacing is not included. 
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A special class of resonators are the confocal resonators with both mirrors having a common 
focal point. The confocal condition reads: 

g, + g2 = 2g,g, (1.111) 

Examples: 
p,=lm, pz=lm, L=lm rs g,=o.o, gz=o.o confocal 
p1=2m, pz-, L=0.5m + g,=0.5, gz=l.O stable 
p,=-0.5m,p2=1.5m, L=0.5m + g,=2.0, g,=0.66 unstable, confocal 

Fig. 132 The stability diagram of optical resonators with two spherical mirrors. 




