
Chapter 18 

Fourier Transform Resonators 

18.1 Self-Filtering Unstable Resonators 

As was discussed in Sec.7.2.2, unstable resonators exhibit a considerable amount of power 
in the side lobes of the far field, especially if the magnification is low. One way to decrease 
the power fraction in the side lobes is the utilization of variable reflectivity mirrors as output 
couplers, as seen in Sec. 7.7. A different approach to enhance the shape of the far field 
intensity distribution is the spatial filtering of the electric field inside the resonator. If the 
resonator exhibits an intracavity focus point at a certain plane, this plane is conjugate to the 
focal plane generated by the focusing optics outside the resonator. The insertion of a spatial 
filter (e.g. an aperture or a filter with a defined lateral transmission profile) at the intracavity 
focal plane will, therefore, generate the same intensity distribution at the extracavity focal 
plane. In general, the field distribution at the intracavity focal plane is the Fourier transform 
of the field at the resonator mirrors. This type of resonator, therefore, is referred to as the 
Fourier transform resonator or self-filtering resonator [5.22-5.26,5.3 1,5.32]. The schematic 
of a self-filtering unstable resonator (SFUR) is shown in Fig. 18.1. The resonator is confocal 
which means that both mirrors generate a focal spot at the same plane. The basic principle 
of this resonator is the transformation of a rectangular intensity profile into a Gaussian one 
by cutting off the side lobes of the Fourier transform with an aperture. 
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Fig. 18.1 Negative branch confocal 
unstable resonator with self-filtering. 
The aperture shapes the intensity 
profile by filtering the Fourier 
transform and serves as an output 
coupler at the same time (pi: radius 
of curvature of mirror i). 
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The electric field incident on the aperture from the right mirror generates its Fourier 
transform at the aperture after being reflected by mirror 1 (Fig. 18.2). If we assume that the 
intensity distribution of the field traveling towards mirror 1 exhibits a flat-top profile behind 
the aperture, the intensity distribution at the aperture is determined by the Fourier transform 
of a circular aperture with radius a. The first minimum of this intensity distribution is 
located at the radius: 

A P1 r,, = 0.61 - - 
a 2  

(18.1) 

where 2 is the wavelength of the electric field and p, is the radius of curvature of mirror 1. 
The aperture radius a is chosen equal to ro to cut off the side lobes of the Fourier transform: 

a = (18.2) 

The truncation of the Fourier transform generates an intensity profile that can be 
approximated by a Gaussian beam with a beam waist radius of 

I” P1 ws, = 0.43 - - 
a 2  (18.3) 

Fig. 18.2 Radial intensity distributions inside 
a self-filtering unstable resonator (SFUR). a) 
at the aperture, incident from mirror 2, b) 
behind the aperture, incident from mirror 2, c) 
at the aperture, incident from mirror 1, and d) 
at mirror 2. 
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Fig. 183 Radial field distributions in the near field 
and the far field of a self-filtering unstable resonator 
(SFUR). a) at the aperture, b) far field of the 
Gaussian profile, c) far field of the circular aperture. Qo 81 

After reflection from mirror 2, the beam radius of the Gaussian intensity distribution at the 
aperture is given by: 

a P2 

0.43 5c p, 
wet = ___ - = 0.74 M a  (18.4) 

where M= p2/p, is the magnification of the confocal unstable resonator. Unfortunately, the 
approximation of the truncated Airy pattern by a Gaussian profile is too rough. Since the 
Airy pattern exhibits steeper slopes, it is to be expected that the beam radius at the aperture 
is larger than predicted by (18.4). A more accurate treatment of the beam propagation, in 
fact, shows that the magnified intensity distribution at the scraper can be described by a 
Gaussian profile with a beam radius of [5.28]: 

we2 = 0.974 M a  (1 8.5) 

The near field intensity distribution is thus given by a Gaussian beam profile with the center 
core of radius a missing. The d ihc t ion  at the aperture generates small side lobes in the far 
field. The far field amplitude distribution E ( 9  can be calculated by subtracting the far field 
of a circular aperture with radius a from the far field of the Gaussian beam (Fig. 18.3). With 
the assumption that wB,,a, the final result reads: 

(18.6) 
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where J, is the Bessel function of order 1 and 0 is the angle of divergence. Compared to a 
conventional unstable resonator with the same magnification M, the self-filtering decreases 
the side lobes considerably (Fig. 18.4). However, this improvement of the beam quality is 
a result of an increase in the diffraction losses. The loss factor V(=l -loss) of the SFUR due 
to output coupling can be calculated assuming a Gaussian intensity profile with the beam 
radius wE2 given by (18.5). For ( I a E 2 ,  we get: 

'IF a 2  - 2.108 - -  V =  
0.5 R wsz M2 

(1 8.7) 

In addition to the output coupling loss, the truncation of the Airy pattern results in an 
additional loss of 16% per round trip. Thus, the total loss factor per round trip of the SFUR 
is given by: 

(1 8.8) 1.771 

M2 
V,, = 0.84 V = - 

A comparison of the far field properties of conventional and self-filtering unstable 
resonators indicates that at the same round trip loss, both resonators provide a similar power 
content in the side lobes (Fig. 18.4). For conventional unstable resonators with equivalent 
Fresnel numbers Neq around 0.5, the round trip loss factor is higher than the one for the 
SFUR given by (1 8.8). Therefore, the conventional unstable resonators can be operated at 
a higher magnification M'>M, resulting in near field and far field distributions similar to 
those of a SFUR with magnificationM. This leads us to the conclusion that the SFUR is not 
superior to a conventional unstable resonator as far as the beam quality is concerned. 
Furthermore, the loss generated by the truncation of the Fourier transform may considerably 
decrease the output power if a low gain medium is used. However, for lasers that emit at 
small wavelengths (like in excimer lasers), the design of conventional unstable resonators 
with equivalent Fresnel numbers on the order of 0.5 would lead to a small diameter of the 
high reflecting spot on the output coupling mirror (on the order of 0.5mm). High peak 
powers might damage the output coupler and it is, therefore, safer to use a scraper at an 
angle of 45' to couple out the beam. Placing the scraper at the focal plane is just a 
convenient way to realize the output coupling. SFURs have been successfully implemented 
in excimer, CO,, and Nd:YAG lasers [5.27-5.341. In addition to the Gaussian intensity 
distribution in the near field, a second advantageous property of the SFUR is the high 
discrimination against higher order transverse modes. This results in a fast establishment of 
the steady-state fundamental mode, a feature that is of crucial importance for active media 
with a very short population inversion lifetime. However, the disadvantage of the SFUR is 
the dependence of the mode volume on the wavelength. Combination of (18.2) and (18.5) 
yields for the cross sectional area of the beam in the active medium: 

A ,  = ltwi2 = 0.91 M2 A p, (18.9) 
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At short wavelengths, where the SFUR is of particular interest, it is not possible to fill a 
large diameter active medium without choosing a long resonator (Fig. 18.5). However, 
shorter resonator set-ups can be realized with nonconfocal SFURs [5.3 11. 
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Fig. 18.4 Comparison of the radial intensity 
distribution in the near field and the far field 
of unstable resonators with magnification 
M=2. a) conventional unstable, geometric, 
loss factor = O X ,  b) conventional unstable, 
with diffraction and N,,=O.S, loss factor 
=0.55, c) SFUR, loss facto~O.44. Figure d) 
presents the far field for a conventional 
unstable resonator with M=2.5 and Neq=O.S, 
which means that this resonator exhibits a 
total 19ss similar to that of the SFUR in c). 

c)  
SFUR 

d) 

Fig. 18.5 Measured near field intensity distribution of 
a XeCl laser with SFUR (/2=308nm, a=0.3mm). The 
output energy is 120mJ at a pulse duration of 90ns 
(FWHM) [5.28] (0 IEEE 1987). .l .J'. -I -I Radial 4 Distance , . ,li r lmml 
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18.2 Stable Fourier Transform Resonators 

The concept of self-filtering can also be applied to stable resonators. In contrast to the 
SFUR, the spatial filter is only used to put a constraint on the Fourier transform and output 
coupling is accomplished by means of a conventional partially reflecting mirror. The design 
of a stable Fourier transform resonator is determined by the fact that the field at the active 
medium or at the output coupling mirror is the Fourier transform of the field at the spatial 
filter. Therefore, we need appropriate intracavity transformation optics that provide a 
Fourier transformation between two planes. In general, such transformation optics are 
described by a ray transfer matrix of the following form: 

MFT = [: 3 ( 1 8.1 0) 

The two simplest optical systems that provide an optical Fourier transformation between the 
input and the output plane are depicted in Fig. 18.6. Based on these two set-ups we can 
design Fourier transform resonators by placing the spatial filter at the input plane and the 
active medium at the output plane. The two resonator mirrors have to be added in such a 
manner that the fields at both planes represent self-consistent solutions for a resonator round 
trip. With design b), the use of flat mirrors at both the input and output plane results in a 
resonator that is equivalent to a confocal resonator (g,=g,=O) (Fig.18.7a). A true confocal 
resonator is obtained with design a) by replacing the two lenses with resonator mirrors that 
provide the same imaging properties @=fi which means that the mirror distance is equal 
to the curvature of both mirrors (Fig. 18.7b). We already discussed the Fourier transform 
properties of the confocal resonator in Sec. 6.3 using circular apertures as spatial filters. 

I lens f I 

input plane output plane 

Fig. 18.6 Optical systems that provide the Fourier transform F(E) of the input field Eat the output 
plane. 
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Fig. 18.7 Stable Fourier transform resonators. a) equivalent confocal (g,=g,=O), b) confocal 
(g,=g,=O), c) concentric (g,g,=l and g,<O), d) vanishing g-parameter of mirror 1 (&=O). 

Whereas in Fig. 18.7a) and b) the fields on the two resonator mirrors are related to each 
other via a Fourier transform, the resonator in Fig. 18.7~) generates the Fourier transform 
of the field at the aperture at the left face of the active medium. The curvature of the right 
mirror is chosen so that this plane is imaged onto itself. The equivalent g-parameters of this 
resonator are given by: 

(18.1 1) 

Thus the resonator is concentric. The resonator in Fig. 18.7d) does not exactly reproduce the 
field distribution at the left face of the active medium. However, this Fourier transform 
resonator will also work provided that the Fresnel number of the right resonator segment 
b2/(2AA)is high enough (greater than 30). In this case the propagation of the field to the right 
mirror and back can be described by geometric optics since the spread of the field due to 
diffraction is negligible. 
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All four resonators are equivalent as far as the Fourier transformation and the optimization 
of the resonator set-up are concerned. Ifwe assume that the spatial filter supports a Gaussian 
beam with a beam radius w, at mirror 1, the beam radius in the active medium is given by: 

(18.12) 

where 8 is the half angle of divergence of the Gaussian beam. For the confocal resonator in 
Fig. 18.7b), the focal lengthfhas to be replaced by the mirror curvature p in (1 8.12) and all 
equations derived below. Let us first make the assumption that we can use a circular 
aperture to generate the Gaussian beam (which means that diffraction losses at the aperture 
are negligible). We saw in Chapter 1 1.2 that the maximum output power in fundamental 
mode operation is attained if the radii of intracavity apertures are about 1.3 times larger than 
the Gaussian beam radii. Equation. (18.12), therefore, can be written as: 

a - (1'3)2 0.54 (18.13) - - -  
f X  7t 

where a is the aperture radius and b is the radius of the active medium. This gives us a first 
idea of how to choose the aperture dimensions to attain a near diffraction limited beam. An 
exact treatment of the field propagation using diffraction integrals reveals that the intensity 
distribution of the fundamental mode is in fact almost Gaussian, and optimum performance 
in fundamental mode operation is obtained for E5.361: 

(18.14) 

Unfortunately, the Gaussian beam only provides a fill factor in the active medium of less 
than 0.9, which means that at least 10% of the available power cannot be extracted. In order 
to realize a fill factor close to 1 .O it is necessary to generate a flat-top intensity profile with 
radius b at the active medium (with a planar wave front). In order to generate this 
homogeneous filling of the active medium, the radial field distribution at mirror 1 must be 
the Airy pattern (see Sec. 2.2.2): 

(18.15) 

where E ,  is the electric field amplitude at the active medium and r is the radial coordinate 
at mirror 1. 
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Fig. 18.8 A spatial filter which supports the Airy 
pattern in a Fourier transform resonator (A=lpm, 
f=300mm, b=3mm). The black areas absorb the 
electric field, the white areas exhibit 100% 
transmission. This filter is placed in front ofthe high 
reflecting mirror 1. 

To a good approximation, the Airy pattern exhibits zero intensity at the radii: 

.fk rm = m 0.61 - , m = 1,2,3,... 
b (18.16) 

An appropriate spatial filter to generate a flat-top beam profile in the active medium, 
therefore, should absorb or deflect the electric field in the vicinity of the zero intensity lines 
of the Airy pattern. In practice, it is sufficient to take only the first couple of rings into 
consideration (Fig. 18.8). The widths of the rings have to be optimized to efficiently 
discriminate against unwanted transverse modes without generating losses that are to high 
for the fundamental mode. Such a spatial filter can be produced via photoedging using a 
focused laser beam with a flat-top near field beam profile. This technique was successfully 
applied in [5.37] to generate a dimaction limited output beam in a Q-switch Nd:YAG laser 
using a m n f i i  resonator (Fig. 18.9). Other examples of stable Fourier transform resonators 
can be found in [5.38-5.401. 

The reader should keep in mind that stable Fourier transform resonators are extremely 
sensitive to variations in the distances between the optical elements. This is the result of 
their location on the stability limits in the g-diagram. As was presented in Sec. 6.3 for the 
confocal resonator, a tight length tolerance of less than *OS% must be maintained to 
prevent a decrease of output power by more than 10%. Ifthe active medium exhibits thermal 
lensing, the corresponding refractive power has to be compensated by the resonator design. 
Therefore, a similarly tight tolerance has to be kept on the pump power going into the active 
medium which means that the output power cannot be varied. Furthermore, the gain 
saturation inside the active medium will modify the mode structure. For the confocal 
Fourier transform resonators (Fig. 18.7a,b), the field distribution at mirror 2 is not the exact 
Fourier transform of the field distribution at the spatial filter. The losses generated by the 
filter, therefore, will slightly rise as the small-signal gain of the active medium is increased. 
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Fig. 18.9. Measured radial intensity profiles in the near field a) and in the far field b) of aNd:YAG 
Q-switch laser (h=l.O64pm) with a confocal Fourier transform resonator. (rod diameter: 0.25", 
focal lengths: L,=12.5cm, L2=-5cm, L3=100cm). The spatial filter consists of eleven rings of 80pm 
width that correspond to the nodal lines of the Airy pattern. The output energy per pulse is 200ml 
at a pulse duration of 60ns and a repetition rate of lOHz (electrical input energy per pulse: 255, 
pump pulse duration: 200ps). The repetition rate could be varied between 5Hz and 1 O H z  with minor 
variations in the distance between the lenses L, and L, . Without the spatial filter an output energy 
of 210mJ and a full angle of divergence of about 3mrad was measured (Fig. c) [5.37] (8 OSA 
1993). 




