
Chapter 16 
Resonators with Internal Nonlinear Elements 

16.1 General Aspects 

So far, we assumed that the optical materials inside the resonator exhibit an index of 
refraction that does not depend on the intensity of the incident light. This is a reasonable 
assumption as long as the light intensity is low. However, for high intensities the index of 
retiaction n becomes a function of the incident field E (for symplifying the discussion we 
consider a real, scalar field): 

where x'"' is the m-th order susceptibility of the medium. This expansion of the refractive 
index holds for all optical materials, but for most materials the higher order susceptibilities 
are too small to have a noticeable effect on the electric field. However, some crystals exhibit 
relatively large susceptibilities on the order of m N  for f 2 )  and 10"' m2N2 for xQ! 
These materials, which are referred to as nonlinear materials, are used to generate a variety 
of nonlinear effects. Second order effects (generated by f ' ) )  include frequency doubling, 
sum and difference frequency generation, and parametric amplification, to name a few. 
Among third order effects are frequency tripling, self focusing, and stimulated Brillouin 
scattering. These nonlinear effects become more understandable if we consider the electric 
polarization P for an incident field E : 

p = Pt1)+ pcz)+ Po)+ ... = E~ (x(')E+ xtZ)EZ+ X(')E3+ ...) 
(1 6.2) 

with q=8.854~1@'~ As/(Vm). If two monochromatic fields E,,E, propagating in the z- 
direction are incident on the nonlinear material, with: 

(1 6.3) 
E = El + E2 = E,, sin[kp - olr] + E,, sin[+ - 0 2 r ]  

the second order susceptibility x(*) generates, besides a constant offset, oscillating 
components of the dielectric polarization P" at the frequencies w,, w,, 2w,, 2w2 , w,+w2, 
and o,-o,. In the following we restrict our discussion to those two nonlinear effects that are 
applied in laser resonators and induce a change of the light frequency; intracavity second 
harmonic generation (ICSHG), intracavity sum Erequency generation, and phase conjugation 
via stimulated Brillouin scattering (SBS). 
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16.2 Intracavity Second Harmonic Generation 

16.2.1 Basic Properties of SHG 

We have seen that frequency doubling, also referred to as second harmonic generation, is 
generated by the second order susceptibility. If we consider a vector field E=(E, E,, EJ,  the 
second order dielectric polarization p) can be written as: 

(16.4) 

with ~~=8.85~10~~As/(Vm). For loss-free materials, only 10 of the 18 nonlinearity 
coefficients d,.are independent (Kleinman symmetry relations). Furthermore, depending on 
the symmetry of the crystal, the number of independent coefficients is considerably reduced 
so that for most SHG crystals only two or three independent, nonzero coefficients remain 
(Table 16.1). Incentro-symmetriccrystalsall coefficients equal zero, which means that these 
materials cannot generate second order nonlinear effects, except at the surface. 

Table 16.1 Nonzero nonlinear coefficients d., of some materials [4.142]. 

Material 4, [ 1 0-l2 m/V] fundamental wavelength 3c [pm] 

KDp (m2p04) 

KD*p (KD2p04) 
AD*P (NH, D,PO,) 

LBO (LiB,O,) 
KDA rnZAs04) 

LiNbO, 

BBO (P-Ba.B,O,) 

KTP (KTiOPO,) 

quartz (SiO,) 
GaAs 
Banana (BqNaNb,O,,) 

d,, = d,, = dl, = 0.39*0.1 
d,, = d,, = d,, = 0.4MO. 17 
d,, = d,= d,, = 0.520.08 
d,, = 4, = d,, = 0.52rt0.03 
d,,=d,,=d1,=d2,~( l.lkO.09) 
d3,=0.0&0.006 

d,,=~,=-dg-2.760. 1, d,,=-34.4*2 
d,,=d,=d,,=d,,=*(O. 12*0.06) 
d16=d,,=-~,+2.W0.25) 
d,,=d,,=*(6.5*0.5) 
d2,=d3,=if(5 .W.5), d,,= 13.7 
d,,=0.36*0.05 
d,, = dE= d,, =148-+20 

d,,=d,,=d,,=d,,=-5.5*0.2 

d,,=d3,=d1,=d,,=-13.2, d,,=-18.2 

1.06 
1.06 
0.69 
0.69 
1.06 

1.06 

1.06 

1.06 

1.06 
10.6 
1.06 
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If a field l?') at the fundamental frequency 0, is incident on the crystal, a field lP at the 
second harmonic frequency 0,=20, is generated at the expense of the fundamental wave. 
We consider the propagation in the z-direction only and transform the fields and the electric 
polarizations into the complex notation: 

E(0 = - ' @(Oexp[i(o,r - k ~ ) ]  + CC ) (1 6.5) 
2 

The electric polarization Pacts as a source for both fields l6') , which means that the 
propagation of each wave is described by the wave equation: 

(1 6.7) 

The electric polarization P is generated by the sum field E"'+@). After application of the 
SVE approximation (see Sec. 9.4), the amplitude A" of the second harmonic and the 
amplitude A(') of the fundamental are given by: 

(16.8) 

(16.9) 

where P,@)(W) denotes the component of P,") that oscillates at the frequency o. The 
meaning of these equations becomes clear if we insert the nonlinear polarization for a 
material with the nonzero nonlinear coefficient d,, (e.g. quartz). Ifthe incident fundamental 
wave is linearly polarized in the x-direction, which means A(') is given by (A:", 0, O), the 
second harmonic is also polarized in the x-direction. According to (16.4) and (16.6), the x- 
component of the second order polarization Pf) then reads: 

+ 24x*'1)A~' exp[i(o,t - (k;-k,)z)] + ...) (1 6.1 0) 
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This is a simplified equation, assuming that the coefficient d,, is the same for each term. If 
we insert the terms oscillating at the frequencies 0, and 2 0 ,  into (16.8) and (16.9), 
respectively, the following set of equations is obtained 

(16.11) 

(1 6.12) 

where dk = k2-2k,, These equations reveal that the amplitude of the second harmonic can 
only increase significantly for Ak=O. This condition is referred to as the phase-matching 
condition. If we consider the SHG as a transformation of two photons with energy Awl into 
one photon with energy Ao2, the phase-matching condition is equivalent to the conservation 
of the momentum: 

Bk, + hkl = % (16.13) 

Since the wave number is related to the frequency and the speed of light via k=w/c, this 
relation means that the fundamental wave and the second harmonic must propagate with the 
same speed to avoid destructive interference of the second harmonic along the propagation 
direction (Fig. 16.1): 

field &mi) 
/ polarjzation P 

I I I I 

Fig. 16.1 Destructive interference of the 
?I second harmonic wave for c(20,)< ~(0,). .- . ._ L 

Coordinate in Propagation Direction 
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For efficient SHG it is, therefore, necessary to match the indices of refraction n at the two 
frequencies. In isotropic crystals this condition can never be fulfilled because of normal 
dispersion (n(Zo,)>n(o3) .  In uniaxial crystals, phase matching can be achieved by letting 
the fundamental be an ordinary wave propagating at an angle 8 to the optic axis of the 
crystal while the harmonic is propagating as an extraordinary wave in this direction, or vice 
versa (Type Iphase matching). The refractive index n, of the extraordinary wave is a 
function of the angle 8: 

(1 6.15) 

where n,,(w) is the index of refraction for the ordinary wave and n,(w) =ne(o, 8- d 2 ) .  The 
phase matching angle 8, is defined by n , ( q )  =nc(2o1, Bp) for an ordinary fundamental wave 
and by n,,(20,)=n,(wl, B,$ for an extraordinary fundamental wave. It is also possible to split 
the fundamental wave into an extraordinary wave and an ordinary wave to attain phase 
matching . This type of phase matching is referred to as Type IIphase matching. 

In general the fundamental wave and the second harmonic wave exhibit different 
polarizations and for intracavity SHG a polarizer has to be placed in the resonator to define 
the polarization of the fundamental wave. The reader may refer to [4.141] or [4.142] to get 
more insight into the physical aspects of phase matching and how it affects the differential 
equations (1 6.8) and (16.9). In the following we will assume the ideal case that the phase 
matching condition is met. The effect of a slight phase mismatch on the SHG efficiency 
shall be discussed later. Without lack of generality we use the scalar equations (1 6.1 1) and 
(1 6.12) with an effective nonlinear coefficient dcu to discuss the conversion efficiency for 
SHG. The two equations can be solved analytically. For a nonlinear crystal with index of 
refraction n, the intensities I ,  and I2 ofthe fundamental wave and the second harmonic wave, 
respectively, read as a function of the distance z in the crystal (Fig. 16.2): 

(16.16) 
I,(z) = Z,(O) tanh2 z = Z,(O) tat+] 

(16.16) 

where n is the index of refraction at both the fundamental and the second harmonic 
wavelengths. The conversion efficiency is defined as the fraction of the hdamental  beam 
power that is converted into the second harmonic: 

(16.18) 
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Fig. 16.2 Intensity of the second 
harmonic wave and ofthe fundamental 
wave as a function of the propagation 

1 2 distance z in the nonlinear crystal, 
according to (1 6.16) and ( 16.17). Norm. Distance z/L 

At the characteristic distance z=L, 57% of the fundamental beam power has been converted 
into the second harmonic beam. For common nonlinear crystals an incident intensity of 
I,(O)=l@ W/cd  results in a characteristic distance on the order of 10-20 mm. For low 
conversion efficiencies (<20%), Eq. (16.16) can be approximated by: 

where Mis the figure of merit of the crystal with (Table 16.2): 

(1 6.19) 

(16.20) 

The experimental values of the conversion efficiency are generally lower than predicted by 
(16.16) (Fig. 16.3). This is to be expected since we assumed a perfect crystal in which the 
phase matching condition is exactly met and a fundamental beam that exhibits a flat-top 
intensity profile. In reality the intensity is nonuniform and the conversion efficiency thus 
drops at the edges of the beam. Furthermore, due to the small spot size at the crystal the 
beam will have a small but finite divergence. For a 1.064pm Gaussian beam, a waist 
diameter of 0.5mm generates a half angle of divergence of 1.3mrad. For most crystals a 
deviation Aeon the order of mrads from the phase matching angle BP will already decrease 
the conversion efficiency by 50%. Only the Fourier components of the fundamental beam 
that lie well within this acceptance angle will experience efficient conversion into the 
second harmonic. Other crystal properties that affect the conversion efficiency are the 
optical homogeneity, the absorption losses, and the temperature range within which the 
phase matching can be realized (typically *l0C). 
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Table 16.2 Relative figure of merit WMmp (MmP = O . O 2 7 ~ l @ ~ ' d / ~ ) ,  and the fundamental beam 
intensity Z,(O) required to convert 57% of the fundamental power into the second harmonic for a 
crystal length of 1 Ommand a fundamental wavelength of 1.06pm, according to (1 6.16). The damage 
threshold represents the incident intensity at which surface damage occurs for a pulse duration of 
15ns and a wavelength of 1.06pm (experimental data) [4.141,4.142]. 

Crystal (Phase Matching Type) &XUKDp Z,(O) [GW/cm*] Damage Threshold [GW/cm2] 

KDP (1) 1 .o 5.642 14.4 
KD*P (I) 1 .o 5.642 0.5 
ADP(1) 1.3 4.340 6.4 
CDA(1) 1.7 4.,340 0.6 
CD*A(I) I .7 3.319 >0.3 
LBO(1) 7.0 0.806 -_ 
BBO(1) 25 0.226 23 
LAP (1) 42 0.134 4 3  
LiNbO, (I) 105 0.054 0.05 
KTP (11) 220 0.026 0.8 
POM(1) 350 0.016 0.06 
Banana (I) 570 0.0 10 <0.003 

0 100 200 300 400 500 

Intensity I,(O) [MW/cm2] 

* KDP 

KD*P 

x KTP 

BBO 

+ CDA 

A CD*A 

Fig. 163 Experimental values of the conversion efficiencies for external frequency doubling of 
Nd:YAG 1.064pm radiation versus the intensity of the fundamental wave at the nonlinear crystal 
[4.141,4.142]. The number at each data point is the crystal length in mm. 
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Fig. 16.4 A circular Gaussian beam with beam radius w 
hasthe same power content as a flat-top intensity 
profile with a radius of w/& and the same peak 
intensity Z,,. 

rlw- 

In most applications of SHG, a Gaussik beam at the fundamental wavelength is incident 
upon the nonlinear crystal. In order to apply the above discussed theoretical description, we 
have to approximate the Gaussian intensity profile by a flat top profile having the same 
power content. In circular symmetry, the power P,of the Gaussian beam with beam radius 
w and peak intensity I, is given by (Fig. 16.4): 

(16.21) 

Thus the radius of the flat-top profile is w/&. For low conversion efficiencies, the intensity 
distribution of the second harmonic is also Gaussian. Neglecting the transverse spreading 
of the beam inside the crystal, we find with (16.19) that: 

12(r)= [ %] It exp[ -4( t) *] : = BZ; exp[ -4( t) '1 (16.22) 
2EOCll 

The beam radius of the second harmonic wave is J 2  times smaller than the beam radius of 
the fundamental wave. Both beams exhibit the same Rayleigh range and are, therefore, 
always in phase during propagation. The power of the second harmonic wave reads, 
according to (16.21) and (16.22): 

2 w 2  P2, = BIO X- 
4 

(1 6.23) 

Thus, the SHG conversion ef€iciency for a Gaussian fundamental beam is a factor of 2 lower 
compared to that of an incident beam with a flat-top intensity profile: 

(1 6.24) 
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This decrease is caused by the lower conversion efficiency at the outer areas of the beam. 
By increasing the fundamental beam intensity this influence of the mode structure becomes 
less pronounced since the wings of the beam are converted more efficiently. If we use the 
correct expression (1 6.16) for the conversion efficiency, the intensity distribution of the 
second harmonic field is not Gaussian anymore and the power reads: 

(16.25) 

Compared to a flat-top input beam with intensity Io, the SHG conversion efficiency is lower 
by a factor y with: 

The SHG conversion efficiency of a Gaussian fundamental beam thus reads: 

(1 6.26) 

(1 6.27) 

For low fundamental beam intensities the factor y is equal to 0.5 and it approaches unity for 
high conversion efficiencies. Figure 16.5 presents y as a function of U'L. 

beam SHG according to (16.26). 

0 * lo '* Fig. 15.5 Correction factor for Gaussian 
Z IL- 
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Fig. 16.6 Resonator model for Intracavity Second Harmonic Generation (ICSHG). 

16.2.2 Efficiency of Intracavity Second Harmonic Generation 

Since the intensity of the beam inside a laser resonator is much higher than the intensity of 
the laser output beam it is reasonable to place the nonlinear crystal inside the resonator to 
generate an output at the doubled frequency. Figure 16.6 depicts the resonator model we will 
use in the following to determine the laser efficiency at the second harmonic wave. The 
fundamental beam is generated by the laser medium and focused onto the nonlinear crystal 
to generate a high intensity. Both mirrors are highly reflecting for the fundamental 
wavelength and the right mirror transmits the second harmonic 100%. This means that the 
conversion efficiency of the nonlinear crystal acts as the output coupling loss of the 
resonator. If P ,  is the fundamental beam power incident on the nonlinear crystal and P20 is 
the power of the second harmonic wave generated, the effect of the nonlinear crystal on the 
findamental beam can be described by a reflectance R with: 

(16.28) 

where qsHG is the conversion efficiency for the round trip. We can now calculate the average 
intensity I of the fundamental beam inside the active medium by using the steady-state 
condition for the round trip: 

(1 6.29) 

where I, is the saturation intensity, g,Pis the small-signal gain and a$is the loss per transit. 
This expression can be written as: 
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(16.30) 

Note that the steady state condition (1 6.29) is only valid for a low small-signal gain and a 
high reflectance R because we neglect the z-dependence of the fimdamental wave intensity 
inside the medium (see Section 10.1.1). This means that (1 6.30) is only applicable for low 
conversion efficiencies and, as a consequence, we cannot only replace the logarithmic term 
by qsHc but also use (16.19) for its calculation. Equation (16.30) then becomes: 

= 2a0Q + 2BZ 
1 + 2zIZs (16.3 1) 

(16.32) 

- 1  2 for single pass SHG (see Fig. 16.6) I 4 for dual pass SHG (see Fig. 16.10b) 
with k = 

h2 A ,  M s 2  

eOcO A2 a; 
Y-- B = -  

where A,, A, is the cross-sectional area of the fundamental beam in the active medium and 
in the nonlinear crystal, respectively, s is the length of the nonlinear crystal, Mits figure of 
merit, A, is the fundamental wavelength, and y is the correction factor according to (1 6.26) 
(y=0.5). After solving (16.3 1) for the intensity Zthe second harmonic output power can be 
determined with: 

P,, = A, 2B I’ (16.33) 

The final result reads: 

A1 Ph = - 8B [,/(2a,l+BZ$ + 8BZ&o@-a,#) - (2a0@+B4$ 
(1 6.34) 

The second harmonic output power can be maximized by adjusting the parameter B of the 
nonlinear crystal. The optimum parameter Bop, is given by: 

2aJ - 
- I, 

and the corresponding maximum output power reads: 

(1 6.35) 

(16.36) 
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A comparison with (1 0.13) indicates that this is exactly the output power we would achieve 
at the fundamental wavelength with optimum output coupling. In other words, if a laser 
resonator provides a maximum output power at the fundamental wavelength the same output 
power is provided at the second harmonic wavelength if the nonlinear crystal parameter B 
is optimized according to (1 6.35). This is, of course, only true if no additional losses occur 
due to absorption in the nonlinear crystal (typical loss coefficients are on the order of 0.01 
per cm) and the active medium does not absorb the doubled frequency. Keep in mind that 
although all the fundamental beam power is converted into the second harmonic, the 
conversion efficiency of the nonlinear crystal may be extremely low. For a cw-laser that 
operates at an optimum output coupling of 5% for the fundamental wavelength, the 
conversion efficiency of the crystal in the optimized SHG resonator is also only 5%. 

Example: Nd:YAG laser (A1=1.064pm, Is=2kW/cm2), rod diameter: 3mm (A,= 7. lmm’), 
rod length: 5 0 m ,  g&=0.4, a,Q=0.02. To achieve optimum laser performance at the 
fundamental wavelength a mirror reflectance of R =O. 8 7 is required (see (1 0.1 5)). According 
to (10.13), the corresponding maximum output power is 34W. Theoretically, this laser rod 
is capable of the same output power at the wavelength A2=0.532pm, provided that the 
nonlinear crystal is optimized according to (16.35). Ifwe use LBO (see Table 16.2 for figure 
of merit M) and focus the intracavity beam to a diameter of 50 pm in the nonlinear crystal 
(A,/A,=3,600), Eqs. (16.32) and (16.34) yield an optimum crystal length of s = 21.2 mm for 
single pass and s=l5 mm for double pass SHG. 

For high gain or high output coupling, Eq. (16.29) cannot be used for the calculation of the 
second harmonic power. Instead, as was shown in Chapter 10, the differential equation 
(10.1) for the light amplification inside the active medium has to be solved using the 
boundary conditions at the resonator mirrors. In the case of ICSHG, however, it is not 
possible to find a simple analytical expression for-the intracavity intensity I of the 
fundamental wave at the active medium since the mirror reflectance R is a function of the 
intracavity intensity. Furthermore, the correct expression (1 6.16) has to be used both for the 
mirror reflectance R and for the output power P,, of the second harmonic wave: 

R = 1 - tanh2[mq (1 6.37) 

(1 6.3 8) 

Figure 16.7 presents the results of a numerical treatment of this problem. The maximum 
extraction efficiencies at the second harmonic wavelength are plotted versus the optimum 
crystal parameter Bop, for a saturation intensity of 2kW/cm2. The maximum extraction 
efficiencies are the same as those shown in Fig. 10.4. As to be expected, expression (1 6.35) 
for the optimum crystal parameter represents a good approximation for low small-signal 
gains and low losses. The extraction efficiency as a function of the crystal parameter B is 
shown in Fig. 16.8 for different gains and losses. This graph provides the reader with a 
feeling for the allowed deviation of the crystal parameter from the optimum value, 
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0 50 100 150 200 250 300 

Bopt [ cd2/W] 

Fig. 16.7 Maximum extraction efficiencies versus the optimum crystal parameter Bop, for ICSHG 
(numerical calculation, Zs=2kW/cd). The curve parameters are the small-signal gaingotand the loss 
factor per transit Vs=exp[-aopl. The vertical lines represent Bq calculated with (16.35). The 
extraction efficiency is the ratio of the output power at the second harmonic wavelength to the 
power P, available in the active medium in form of inversion with Pa= go@ A, I&ee also Chapter 
10). 

B [ lo6 cm2 /W] 

Fig. 16.8 Extraction efficiency as a function of the crystal parameter B. For each loss factor per 
transit Y,=exp[-t@ , the upper and lower curve holds for a small-signal gaingelof 1.5 and 0.5, 
respectively (Zs=2kW/cm3). 
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16.2.3 Phase Mismatch, LongitudinalModes, and Conversion Effwiency 

Efficient second harmonic generation requires the fundamental and the second harmonic 
fields to be phase-matched, which means that both fields must exhibit the same phase 
velocity or index of refraction in the nonlinear crystal. The conversion efficiency is very 
sensitive to a phase mismatch Akz between the two fields that occurs over a distance z inside 
the crystal. As long as the depletion of the fundamental field is low, the conversion 
efficiency for phase mismatched SHG is given by [4.141]: 

(16.39) 

with: Ak = 2[n(oi) - ~ ( ~ W ~ ) ] C O , / C ~  

For dk=O this expression is equivalent to (16.16). The mismatch of the wave vector can 
be caused by an angular deviation from the phase matching direction or by deviations in the 
temperature or in the fundamental wavelength since the indices of refraction are functions 
of all three parameteys. For a crystal length of lOmm and a fundamental wavelength of 
1.064pm, even a small refractive index difference of 0.0001 decreases the conversion 
efficiency by 26 YO. Table 16.3 presents, for different nonlinear crystals, measured 
deviations in angle, temperature, and wavelength at which the SHG efficiency has dropped 
to one-half of the maximum value. When choosing a nonlinear crystal for ICSHG, these 
acceptance ranges are design parameters that are as important as the figure of merit M. It 
may even be advantageous to trade in the figure of merit for large acceptance ranges since 
the optimum crystal parameter Bop, can still be achieved by increasing the crystal length. 
Note in Table 16.3 that crystals for which a phase matching angle of 90" can be realized 
exhibit a high angular tolerance. In addition to slight phase mismatches, the output power 
at the second harmonic wavelength is also affected by the number m of longitudinal modes 
oscillating in the laser resonator. Assuming a statistical distribution of the phases of the 
axial modes, the conversion efficiency (1 6.39) for second harmonic generation as function 
of the number m of longitudinal modes reads: 

In single mode operation, the conversion efficiency is reduced to half the maximum value. 
This means that in order to attain the maximum output power (16.36), the area of the 
fundamental beam in the nonlinear crystal has to be chosen to be half the area of the 
multimode case. An ICSHG resonator that has been optimized for single longitudinal mode 
operation, may therefore show a drop in the second harmonic output power if several modes 
start oscillating (resonator becomes overcoupled). 
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The major challenge in ICSHG is the realization of stable second harmonic emission with 
a low rms noise. Simultaneous oscillation of several longitudinal modes generates the so- 
called "green problem" [4.148,4.154], an amplitude instability due to longitudinal mode 
coupling caused by sum frequency generation of two different longitudinal modes. This 
chaotic amplitude fluctuation of the second harmonic can be suppressed by single-mode 
operation [4.155], by preventing the formation of standing waves in the resonator 
(unidirectional ring resonator [4.175], twisted mode resonator), by allowing two longitudinal 
modes that are orthogonally polarized (Fig. 16.9), or by using a high number m of 
longitudinal modes (long resonator) [4.153]. In [4.174] an rms stability of better than 0.1% 
was reported for a diode pumped Nd:WO,LBO system with on the order of 100 axial 
modes. In recent years, quiet second harmonic multimode operation has also been reported 
for longitudinal mode numbers below 30, in some cases as low as 3. At present, there is no 
satisfactory explanation why quiet ICSHG operation can occur for a low number of 
longitudinal modes. 

532nm 
outvut lens Nd:YAG 

loo, . . . . ,  . . . . ,  . . . . ,  . . . . ,  

- .  
-0.5 0:o 1:o 1:s 

Time [ms] 

Fig. 16.9 Measured second harmonic intensity of a pulsed, flashlamp pumpedNd:YAG laser with 
ICSHG in type I1 KTP. By inserting a quarter-wave plate, whose principal axes are rotated by 45" 
with respect to the axes of the KTP, sum frequency generation of different longitudinal modes is 
suppressed, resulting in considerably reduced rms noise [S.3 11. 
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Table 16.3 Experimental values of the phase matching angle and the angular, spectral, and 
temperature deviations at which the SHG conversion efficiency has dropped by 50% (A,=l.O64pm, 
crystal length s=lOmm) [4.141,4.142]. 

Crystal (Phase matching type) 8, [degree] A0 [mrad] AT["C] AA [nm] 

KDP (1) 41 2.7 11 5.6 
KDP(I1) 59 5.3 13.2 7.3 
KD*P (11) 
CDA(1) 
CDA(1) 
CD*A(I) 
Banana (11) 
Banana (I) 
KTP (11) 
KTP(1) 
BBO(1) 
LBO(1) 

53.5 
84 
90 
79.3 
76 
90 
25 
90 
23 
90 

5 .O 
12.3 
69 
7.2 
5.4 
43 
15-68 
15 
1.5 
52 

6.7 
2 

5.8 

0.5 
0.5 
25 
25 
55 
4 

3.3-6.4 

5.6 

2.45 

0.56 
0.56 

16.2.4 Resonator Configurations 

In order to realize the optimum crystal parameter B,,,given by (16.32) and (16.35) we can 
play with three parameters: the crystal length s, the figure of merit A4, and the ratio of the 
cross sectional areas A,/',. However, the ranges of the first two parameters are more or less 
limited and the conversion efficiency has to be optimized by utilizing a resonator 
configuration that provides a high ratio A,/A2 . Since we have to limit the angle of 
divergence of the fundamental beam, we are particularly interested in stable resonators that 
exhibit a large Gaussian beam diameter at one resonator mirror, where the active medium 
is placed, and have a small beam waist at the location of the nonlinear crystal. If mirror 1 
is the resonator mirror at which the active medium is to be placed, there are two regions in 
the stability diagram where these Gaussian beam properties can be attained; near the 
stability limit g,g,=I with g,<-I (concentric resonators) and near the axes g,=O with g, 4. 

Resonators in the latter region exhibit an effective length which is equal or slightly 
shorter than the radius of curvature of mirror 1 (Fig. 16.1 Oa). If a concave mirror 2 with a 
relatively large radius of curvature is used, the beam waist is slightly shifted inwards and the 
nonlinear crystal can be placed close to this mirror. In solid state lasers that are end-pumped 
with laser diodes with output powers in the Watt range, the active medium is also placed at 
this side since the diode beam has to be tightly focused in order to reach laser threshold, 
resulting in a high fundamental beam power (Fig. 16.1 1). 

In concentric resonators, the centers of curvatures of both concave mirrors are on 
top of each other and this point is the location of the beam waist. The active medium is 
placed close to the mirror with the larger radius of curvature. Fig. 16.10b presents a 
resonator that is equivalent to a concentric resonator (see also Fig. 16.12). 
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Fig. 16.10 Resonator configurations for ICSHG. 
a) resonator near the axis g,=0. The radius of 
mirror 1 is slightly shorter than the effective 
resonator length. b) concentric resonator with 
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Fig. 16.11 Second harmonic generation in a diode pumped solid state laser. 

Note that the combination of the flat mirror and the focusing lens exhibits the same imaging 
properties as a concave mirror but provides a higher fill factor in the active medium. The 
use of the dichroic beamsplitter prevents the second harmonic field from entering the active 
medium and being partially absorbed. Since the second harmonic generation occurs in both 
propagation directions, the fundamental field and the second harmonic field must be in 
phase at both endfaces of the nonlinear crystal. Due to the dispersion of air, the propagation 
from the crystal to mirror 2 and back generates a phase shift between the two fields which, 
depending on the propagation distance and the phase shift induced by the HR mirror, may 
lead to destructive interference of the second harmonic. This phase shift of 27.4"per cm of 
propagation distance has to be compensated by slightly translating mirror 1 until the second 
harmonic power is maximized [4.146]. 
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Experimental examples of ICSHG in neodymium doped YAG and Vanadate lasers are 
presented in Figs. 16.12 to 16.14. These three systems represent the state of the art of second 
harmonic generation for diode pumped and flashlamp pumpedNd:YAG lasers. An overview 
of the performance of solid state lasers with ICSHG is given in Table 16.4. In general, the 
second harmonic power can be as high as q=60-70% with respect to the power attained 
when the laser is operated at the fundamental wavelength (with optimum output coupling). 
In some instances, conversion efficiencies as high as 90% have been reported. 

Table 16.4 Intracavity SHG of different solid state lasers. P,,is the power at the second harmonic 
wavelength, r ]  is the ratio of P,, to the power achieved at the fundamental wavelength, P,,,,, is the 
electrical pump power to the flashlamps, and Pop, is the optical power incident on the active 
medium. 

Material h,[nm] crystal mode of operation q[%] Pz0 Ref. 

Nd:YAG 
Nd:YAG 
NdYAG 
Nd:YAG 
NdYAG 
Nd:YAG 
Nd:YAG 
Nd:YAG 
Nd:YAG 
Nd:YAG 
Nd:YAG 
Nd:YAG 
NdYAG 
Nd:YAG 

Nd:WO, 
Nd:WO, 
N d W O ,  
Nd:WO, 
N d W O ,  
Nd:WO, 
Nd:WO, 

Nd:YLF 
Nd:LSB 
Nd:LiLuF 

532 
532 
532 
532 
532 
532 
532 
532 
532 
532 
532 
473 
473 
473 

532 
532 
532 
532 
532 
532 
532 

NdYAG 532 KTP ~~-flashlat11p,P,~=4.9kW - 25W [4.162] 
KTP cw-flashlamp,Q-switch, P,,,,,=4kW 53 21.5W [4.152] 
KTP cw-flashlamp, Q-switch, Pel,=8.5kW 21 53W [S.17] 
KTP cw-flashlamp, Q-switch, Pe,,=8kW - 
KTP cw-laser diode, Q-switch, P0,=2.2W 50 
KTP cw-laser diode, Pw=l 1W 48 
KTP cw-laser diode, Pw=15.3W 
KTP cw-laser diode, Pw=14W 
KTP 
LBO cw-laser diode, Q-switch, PoP,=19W 84 
LBO cw-laser diode, Q-switch, P,=4OW 67 
LBO cw-laser diode, Q-switch, P,,=800W 90 

cw-laser diode, modelocked, P0,,=55W 56.6 

KnbO, cw-laser diode, Pw=279mW 9.5 
LBO cw-laser diode, P0,=22.7W 39.4 
BiBO cw-laser diode, Pw=21 W 61 

KTP cw-laser diode, P,,=900m W 27.6 
KTP cw-laserdiode, P,=l.2W 
KTP cw-laserdiode, P w 4 W  
KTP cw-laserdiode, Pw=12.6W 46 
LBO cw-laserdiode, P&=19.5W 65 
LBO cw-laser diode, P0,,=2OW 
LBO cw-laserdiode, PoPt=30W 

97w 14.161 j 
340mW [4.157] 
1.05W [4.163] 
3.5W [4.166] 
3.1 W [4.175] 
3.0W [4.158] 
3.2W [4.188] 
4W [4.167] 
138W [4.184] 
43mW [4.173] 
1.3W [4.182] 
2.8W [4.190] 

105mW [4.17 11 
250mW [4.185] 
1.05W [4.172] 
3.2W [4.179] 
6.1 W [4.174] 
8.5W [S.18] 
8.9W [4.187] 

523.5 LBO cw-laserdiode, P,=lOW 24 0.9W [4.164] 
53 1 KTP cw-laserdiode, Pw=2.05W 55 522mW [4.165] 
455 LBO cw-laser diode, Pw=l .8W 5.7 42mW [4.186] 

Cr:LiSAF 428-444 KnbO, cw-laser diode, Pw=680mW 6.8 13mW [4.170] 
Cr**:forsterite 613-655 PPLN cw-1064nm YAG, P0,=6.8W 18.4 45mW [4.189] 
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Fig. 16.12 ICSHG in a diode pumped Nd:WO, laser. The LBO crystal is held at a temperature of 
150°C to achieve non-critical phase matching (Type I). The maximum second harmonic output 
power is 6.1 W at an optical pump power from the laser diodes of 20 W. The resonator length is lm, 
allowing a large number of axial modes (-100) to oscillate. The axial multimode operation results 
in a high stability and a low RMS noise (<0.04%). Without frequency doubling, the output power 
at the hndamental wavelength is 9.4W [4.174] (Millennia V, courtesy of Spectra-Physics, 
Mountain View, CA, 1996). A shorter version of this resonator, released in 2000, provides green 
output powers in excess of 12W at about twice the pump power (Millennia X). 

Nd:wo, - 
h 

Astiamtic 
/ 

v Temperature-ControIled Optical 
EtillOfl D i d  

Fig. 16.13 ICSHG in a diode-pumped Nd:WO, ring laser. An output power at 532nm in excess 
of 18W is obtained in single mode operation with an rms noise of less than 0.03% (18W Verdi, 
courtesy of Coherent,Santa Clara, CA, 2004). 
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d:YAG AOM 

/ I 

J 53 W @ 5 3 2 m  

Fig. 16.14 Cw flashlamp pumpedNd:YAG laser with ICSHG providing a maximumaverageoutput 
power of 53W at the second harmonic wavelength of 532m for an electrical pump power of 8.5kW 
(4.25 kW per rod). Pulse duration: SOOns, pulse repetition rate: 5 W ,  AOM: acousto-optic 
modulator [S. 171 (courtesy of Laser- und Medizin Technologie Berlin gGmbH, Berlin, Germany). 

16.3 Intracavity Third Harmonic Generation 

16.3.1 General Properties of Third Harmonic Generation 

In general, tripling the frequency of the hdamental wave can be accomplished directly by 
a one step, third order nonlinear process, in which three fundamental photons are combined 
into one photon with three times the energy. However, the nonlinear coefficients for this 
direct process are relatively small, resulting in very low conversion efficiencies in the sub- 
percent range for typical fundamental beam intensities of hundreds of MW per cm2. A more 
efficient way to generated the tripled frequency is the doubling of a portion of the 
fundamental and subsequent sum frequency generation (SFG) of the two resulting fields 
(Fig. 16.15). This process is mainly used for frequency tripling of pulsed infrared solid state 
lasers [4.191-4.193,4.203-4.2051. In order to achieve 100% conversion efficiency, 67% of 
the findmental power has to be converted to the second harmonic since this results in an 
equal number of fundamental and second harmonic photons in the SFG crystal. Figure 16.16 
shows calculated conversion efficiencies as a function of the total input intensity on the SFG 
crystal (type I1 KDP, 1064nm fundamental) for different ratios M of second harmonic to 
fundamental power, assuming a flat-top in intensity profile. A mismatch of green and 
infrared photon numbers will result in back-conversion and complete suppression of the 
third harmonic at certain input intensities. However, with matched photon numbers, it is 
possible to attain 100% conversion efficiency. 
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Nonlinear cryStat 1 Nonlinear crystal 2 

Fig. 16.15 Third harmonic generation via sum frequency generation of the fundamental and the 
doubled wavelength. 100% conversion occurs, if 67% of the fundamental power is converted into 
the second harmonic in the doubling crystal. 

100, 
. )r( * 6?% ' 1 

Fig.16.16 Tripling efficiency of a 9mm thick 
phase-matched KDP type I1 crystal as a 
function of the total input intensity for various 
percentages M of second harmonic power 
content in the input [4.191] (8 Optics 
Communications, 1980). 

INPUT INTENSITY ( w + 2 w )  (OW/ctn*) 

The presented calculations are numerical solutions to two sets of differential equations, one 
describing the doubling process, and the subsequent one for sum fiequency generation. In 
both equations flat-top intensity distributions both in space and time are assumed r4.1911. 
Assuming perfect phase matching and no losses, the equations for the doubling process read: 

(16.41) 

(16.42) 

where dz is the effective nonlinear coefficient for SHG, n, is the refractive index of the 
crystal and A is the fundamental wavelength. The fundamental field A ,  and the second 
hamoNc field A, at the end of the SHG crystal serve as input fields for the second set of 
equations describing the sum fiequency generation: 
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(1 6.43) 

(1 6.44) 

(16.45) 

where d3 is the effective nonlinear coefficient for SFG (see Table 16.5), n3 is the refractive 
index of the crystal and A3 is the field of the third harmonic. The differential equations 
(16.41-16.45) can also be used to generate a numerical model that simulate third harmonic 
generation for more realistic beams that include focusing as well as a transverse and 
temporal intensity distribution. In practice, most frequency-tripled solid state lasers are Q- 
switched or mode-locked Nd:YAG or Nd:WO, lasers in fundamental mode operation, 
exhibiting output pulses with near-Gaussian temporal pulse shapes. In this case, matching 
the fundamental and the second harmonic photon numbers can only be partially realized, 
resulting in tripling conversion efficiencies that remain well below 100% . 
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Fig. 16.17 Calculated conversion efficiencies in the SHG crystal (20mm long LBO type I, 
d2=0.83pmN) and the SFG crystal (20mm long LBO type 11, d,=0.66 p d )  as a function of the 
total input energy at 1064nm for different spatial and temporal intensity distributions. a) flat-top in 
spce in time, b) flat-top in space, Gaussian in time, c) Gaussian in space, flat-top in time, d) 
Gaussian in space and time. Pulse duration: Sons, IR beam diameter in SHG crystal: 140 pm, IR 
beam diameter in SFG crystal: 70 pm. Equations (16.41-45) were solved numerically. 
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While the beam center may exhibit the perfect balance of IR and green photons, the wings 
of the pulse will experience a much lower conversion efficiency. Increasing the input 
intensity does not necessarily lead to an enhancement of the over efficiency, because the 
increased conversion in the wings of the pulse is off-set by a decreased conversion in the 
beam center. This may result in an intensity dip in the center of the UV beam. An example 
is shown in Fig. 16.17, in which calculated IR to UV conversion efficiencies are shown for 
50ns long input pulses at 1064nm using type I LEO and type I1 LBO, the crystals most 
commonly used for third harmonic generation [4.195,4.198,4.203], as the SHG and SFG 
crystal, respectively. For an intensity profile that is flat-top in time and space, a maximum 
W conversion of close to 100% is obtained at a pulse energy at which the doubling 
efficiency is 67%. Introducing a Gaussian intensity distribution in time or space leads to a 
substantial decrease of the maximum conversion efficiency. For a Gaussian beam with 
Gaussian-shaped temporal pulses, the maximum tripliig efficiency that can be attained is 
about 43%, with a similar value for the doubling efficiency. 

However, this maximum possible conversion efficiency can only be obtained for a 
perfect spatial and temporal overlap between the fundamental and the second harmonic 
intensities. Inside commonly used SFG crystals, the two beams will propagate at a slight 
angle, referred to as the walk-off angle. This results in a decreased effective interaction 
length inside the crystal. If the walk-off angle is not too large, walk-off compensation 
schemes like the one shown in Fig. 16.18 can be applied to improve the tripling efficiency 
[4.196,4.199]. Measured IR to UV conversion efficiencies of up to 40% have been reported 
for extra-cavity frequency tripled Nd:WO, lasers with walk-off compensation [4.125, 
4.2031. 

The choice of the SFG crystal is a balance of finding a high nonlinear coefficient and 
a large acceptance angle, combined with a small walk-off angle (Table 16.5). At present, the 
majority of ultraviolet solid state lasers use LBO as the type II SFG crystal, because the 
relatively large acceptance angle allows spot sizes of the fundamental beam of 100 microns 
or less inside the crystal. In addition, the relatively small walk-off angle makes 
compensation schemes easier to implement. 

SHG lens SFG 
1064nm 

Fig. 16.18 Walk-off compensation scheme, using a focusing lens to cross the IR and the green beam 
near the center of the SFG crystal. In order for this scheme to work, the two beams need to be 
slightly separated in front of the lens. In this case, the walk-off in the SHG crystal is used to 
generate the separation. 
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Table 16.5 Nonlinear coefficients, acceptance angles and walk-off angles of different nonlinear 
crystals for 355nm generation via sum frequency generation (1064nm + 532nm) [4.208] 

crystal nonlinear coefficient acceptance angle x length walk-off angle 
d, [PmNl [mrad cm] [mrad] 

LBO, type11 
type I 

CLBO, type I1 
type I 

CBO, type11 
type 1 

BBO, type11 
type I 

0.66 
0.90 
0.93 
0.62 
1.15 
0.9 1 
1.2 
1.72 

5 .o 

1.2 
0.8 

1.9 
0.6 
0.4 

_-_ 

_-__ 

9.3 
18.3 
37.3 
37.1 
16.2 
17.5 
77.7 
72.1 

Figure 16.1 9 depicts calculated IR to UV conversion efficiencies (1 0 6 4 m  to 355nm) for 
extra-cavity third harmonic generation as a function of the beam diameter in the type I1 LBO 
SFG crystal for a Gaussian beam with 20kW peak power. Parameter of the curves is the 
beam diameter in the doubling crystal (non-critically phase matched type I LBO). A plane- 
wave approximation is used (no beam spreading due to diffraction) and walk-off is not 
included in the numerical model. This graph indicates that for Q-switched or modelocked 
IR lasers, which typically exhibit peak powers between 5 and 50 kW, spot diameters on the 
order of 100-200 pm are required in both crystals to attain the maximum conversion 
efficiency of about 43%. 
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Fig. 16.19 Calculated 1064nm to 
355nm conversion efficiency for a 
Gaussian beam with 1mJ pulse 
energy and 50ns pulse duration 
(Gaussian pulse, l/ez full width) as a 
function of the 1064nm beam 
diameter in the SFG crystal (20mm 
long type I1 LBO, d,=0.66 pmN). 
Curve parameter is the 1064nm beam 
diameter in the doubler cyrstal 
(20mm long LBO, d,=0.83 pmN). 
Equations ( 1  6.4 1)-( 16.45) were 
applied to each of 100 x 100 points 
in time and space, using a Gaussian 
input field distribution. No walk-off 
included in the model. 
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16.3.2 Properties of Intracavity Third Harmonic Generation 

Similar to intracavity second harmonic generation, the two nonlinear crystals can be placed 
inside the resonator to make use of the high intra-cavity intensity of the fundamental. The 
major advantage of this technique is that, compared to the extra-cavity arrangement, the 
beam diameters in the nonlinear crystals can be increased considerably, typically by a factor 
of five for Q-switched systems. As a result, it is not necessary to use walk-off compensation 
schemes to attain high conversion efficiencies since the walk off (typically 50- 100 microns) 
is one order of magnitude smaller than the beam size. Lifetime of the SFG crystal is also 
enhanced due to the lower UV power density. In addition, the pulse-to-pulse stability is 
improved since resonator output coupling is a function of the fundamental beam intensity. 
Similar to a standard resonator, a change in output coupling generates only small changes 
in output power if the resonator is operated near the optimum output coupling. Thus, a 
variation of the fundamental beam intensity, due to pump power variations or Q-switch 
jitter, has a much lower effect on the W output as compared to extra-cavity systems. A 
typical Q-switched infrared solid state laser resonator with intracavity third harmonic 
generation is shown in Fig. 16.20. An intra-cavity beam splitter and a prism are used to 
extract and separate the residual green and the UV beam. Alternative output coupling 
techniques include transmission through one of the infrared HR mirrors [4.202,4.205], and 
Wavelength separation using intracavity prisms [4.202] or a Brewster-cut SFG crystal 
[4.200]. 

Fig. 16.20 Schematic of a Q-switched solid state laser with intracavity harmonic generation (after 
[4.2 lo]). The resonator for the fundamental wavelength is formed by the three 1064nm HR mirrors 
(marked in black). After a double pass through the SHG crystal, the generated green power is mixed 
with the fundamental in the SFG crystal. Output coupling of the resonator is provided by the 
nonlinear conversion to the green and the W. 
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In an ideal arrangement, the green power is completely depleted in the SFG crystal rind the 
third harmonic power is equal to the power the resonator would provide at the fundamental 
wavelength with optimum output coupling (see Sec. 16.2.2). For flat-intensity profiles, this 
can be accomplished by properly choosing the fundamental beam diameters in the nonlinear 
crystals as well as optimizing the crystal lengths. Let us use a simplified model to 
understand the key issues of this optimization. After the dual pass in the SHG crystal, the 
green power is given by: 

(16.46) 

where PIR is the hdamental power entering the SHG crystal and qsHG is the dual pass 
conversion efficiency . If we assume that the green power is completely depleted in the SFG 
crystal, the third harmonic power must'be given by (remember that each green photon is 
added to an infrared photon with half the energy!): 

(1 6.47) 

The combination of the two nonlinear crystals acts as an output coupler for the fundamental 
wavelength resonator with a reflectivity: 

(1 6.48) 

Maximum W power is obtained if the reflectivity R is equal to the optimum reflectivity of 
the resonator when operated at the fundamental wavelength (see Eq. (10.15)). The optimum 
SHG efficiency is thus given by: 

( 1  6.49) 

Typically, solid state lasers in Q-switched operation exhibit optimum reflectivities between 
50% and 90%, which translates into optimum SHG efficiencies between 33% and 7%. 
Therefore, optimized intracavity third harmonic generation requires considerably lower 
green conversion than the 67% needed in the extra-cavity scheme. Once the optimum 
conversion is realized by choosing the correct beam size and SHG crystal length, the SFG 
conversion efficiency can be maximized separately by changing the focusing into the SFG 
crystal and the crystal length. Theoretically, this results in a third harmonic power that is 
equal to the maximum output power at the fundamental wavelength. A calculated example 
for a Q-switched, diode pumped Nd:WO, laser is shown in Fig.16.21. Graph a) shows the 
performance for beam diameters in the nonlinear crystals that are close to optimal. At a 
repetition rate of 2 3 k H ~ ,  30W of 355nm power is obtained with 22% IR to green conversion 
and 1 W of residual green power. 
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Fig. 16.21 Calculated third harmonic power, green 
power in front and after the SFG crystal and 
intracavity IR power in front of the SHG crystal for 
a Q-switched diode-pumped Nd:WO, laser, with a 
resonator similar to the one shown in the previous 
figure. Pump power at 808nm: 50W, small-signal 
gain: gJ=3.85, loss pertransit aol=O.O1, SHG crystal: 
LBO, d2=0.83pmN, length: 15mm, SFG crystal: 
LBO, d3=0.66pmN. IR beam diameter in SHGISFG 
crystals: a)125pm/60pm, b)500pm/lOOpm, 
c)500pm/ 500pm. Flat-top spatial intensity profile, 

o no walk-off. The IR resonator has a length of OSm, 
an optimum reflectivity of 68.9% and a maximum IR 
output power of 32W at 5OkHz (34.2W in cw). 

Repetition Rate [kHz] 

According to (1 6.49) and ( 10.1 5), the optimum green conversion for this laser is about 2 1 %, 
and the maximum IR power at 23Wz would be 3 1 W. This example clearly indicates, that 
in order to maximize the UV power, the beam diameters inside the crystals have to be 
chosen similar to those used in extra-cavity sum frequency generation. This is easy to 
understand because for an optimum output coupling of 50%, the intracavity IR power is 
only twice as high as the extra-cavity power. For common nonlinear crystals, the major 
advantages of intracavity third harmonic generation, i.e. increased crystal lifetime and 
insensitivity to walk-off, cannot be realized when the resonator is designed for maximum 
third harmonic power. For this reason, commercial intracavity third harmonic lasers are 
under-coupled with beam diameters inside the nonlinear crystalsthat are several times larger 
than the ones providing optimum coupling (see Fig. 16.21~). This results in IR to UV 
efficiencies that are close to the extra-cavity case (up to 50%), but with improved pulse-to- 
pulse stability, especially at high repetition rates (> 1 OOkHz). However, despite this superior 
performance, intracavity third harmonic generation is less common in solid state UV lasers, 
because of technical problems that are generated by the coupling of the fundamental and the 
harmonic intensities and the degradation of optical components due to UV irradiation. 
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16.4 Resonators with Phase-Conjugate Mirrors 

16.4.1 General Properties of a Phase-Conjugate Mirror 

Compared to a conventional mirror, the imaging properties of a phase conjugating mirror 
are quite different [4.232,4.242], Whereas a conventional mirror reflects light rays 
according to the reflection law of geometrical optics, rays hitting a phase-conjugate mirror 
( P o  are simply reversed, independent of the angle of incidence (Fig. 16.22a). If a 
spherical wave is incident on the PCM, with: 

EO E(r,t) = - exp[-iot] exp[i(kr+4)] 
r 

(16.50) 

where r is the distance from the origin and 4 is an arbitrary phase shift, the reflected wave 
converges back into its origin: 

EJr,t) = C - EO exp[-iwt] exp[-i(kr+@)] (16.51) 
r 

where C is the amplitude reflectance ofthe PCM. The term phase conjugation now becomes 
obvious since the reflected wave is obtained by replacing the spatial phase term with its 
complex conjugate. If a plane wave experiences a phase distortion 4 by passing through a 
medium, the PCM exactly reverses the phase and after the second transit through the 
medium the plane wave front is restored (Fig. 16.22b). Thus we can use a PCM to 
compensate the phase distortions induced by the active medium. The main application of 
PCMs is the compensation of thermal lensing in solid state laser materials (Fig. 16.23). 

conventional mirror phase-conjugate mirror 

aberrator aberrator 

Fig. 16.22 Properties of a conventional mirror and a phase-conjugate mirror [S.19]. 
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Fig. 16.23 Utilization of PCMs in laser systems. a) oscillator with phase-conjugate resonator 
mirror; b) PCM for compensating the phase distortions induced by the amplifiers. 

Phase conjugation is present in all nonlinear optical processes since an intensity dependence 
of the index of refraction is sufficient to conjugate the phase. Phase conjugation has been 
extensively studied for three wave mixing, four wave mixing and stimulated scattering 
[4.232]. The most commonly used physical mechanism to realize PCMs is stimulated 
Brillouin scattering in gases and fluids. Before we discuss the physics of stimulated 
Brillouin scattering and the properties of PCMs based on this effect, let us fvst investigate 
how the characteristics of an optical resonator are affected by a phase-conjugate mirror. 

16.4.2 Optical Resonators with a Phase-Conjugate Mirror 

The basic properties of phase conjugate resonators can be evaluated by applying the ray 
transfer matrix formalism [4.213,4.216,4.222,4.223, 4.2321. If a Gaussian beam with a 
radius of curvature R and a beam radius w is incident on the PCM, its q-parameter q, reads: 

1 - 1  . r t  
41 R 7cw2 

- I -  - - -  
(16.52) 

After reflection by the PCM the Gaussian beam must exhibit a conjugate phase, which 
means that the q-parameter q1 of the reversed beam is given by: 

1 . a .  - -  1 - - - - - I -  

42 R 7tw2 (16.53) 
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Since the ABCD law q,=(Aq, +B)I(Cq, +D) must hold, the ray transfer matrix of the PCM 

is found to be: 

(16.54) 

This is the well-known ray transfer matrix of a mirror with radius of curvature R. Therefore, 
a conventional mirror will act as a PCM, but only for incident fields whose phase curvatures 
match the curvature of the mirror. For a true PCM, phase conjugation takes place for 
arbitrary phase curvatures since the radius of curvature R of the PCM is induced by the field 
itself. 

Using the Gaussian ABCD law for a resonator round trip, starting either on the PCM 
or the second, conventional mirror, one can derive the self-consistent Gaussian beams. For 
a resonator round trip, the Gaussian beams that are self-reproducing exhibit, like in 
conventional resonators, a wavetiont that matches the radius of curvature p, of mirror 1, 
However, there is no constraint on the beam radius w, and an infinite number of Gaussian 
beams thus exist that represent eigensolutions of the phase-conjugate resonator (Fig. 16.24). 
For a Gaussian beam with radius w, on mirror 1, the following relations hold: 

conventional mirror 

-- - - = -  

L 

Fig. 16.24 Gaussian beams that exhibit a constant phase on mirror 1 are eigensolutions for the 
round trip in the resonator with an ideal phase-conjugate mirror 2. 
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Rayleigh range (16.55) 

beamwaistradius : wo = (16.56) 

distance of waist 

from mirror 1 z = zo /nw;/(Az(J - 1 (16.57) 

Using these relations, the radius of curvature R on the PCM and the beam radius w2 can be 
easily obtained. The phase conjugation generates a freedom of stability constraints. 
Regardless of the mirror spacing and the curvature of mirror 1 we can always find self 
consistent Gaussian beams and the resonator will never become unstable. Another class of 
eigensolutions for the phase conjugate resonator can be found by applying the self- 
consistent field analysis to two round trips. It follows that electric fields exhibiting arbitrary 
amplitude and phase distributions on mirror 1 are exactly reproduced after two round trips, 
a result that can be easily verified by tracking a spherical wave through the resonator. 

Which field distribution establishes itself in a real phase conjugate resonator depends 
onthe physical process used for phase conjugation(e.g. the reflectance depends on the beam 
quality) and the size of apertures that are generally placed inside the PCR to control the 
transverse mode spectrum. It was shown both theoretically and experimentally that by using 
an apodized aperture with a Gaussian transmission (i.e. imposing a Gaussian reflectivity 
profile on the PCM, or generating a radial gain profile) only one self-consistent Gaussian 
beam is found r4.2321. Furthermore, the nonlinear nature of phase conjugation leads to 
transverse mode discrimination. 

Fig. 16.25 A Gaussian beam is reflected by a real 
PCM. The beam radius w is reduced by a factor p. 
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Since the slopes of a beam incident on the PCM contain less power per unit area than its 
center, the reflectance of a PCM based on a nonlinear optical process is lower in the 
periphery of the beam. In addition to the reversal of the wavefront, a second characteristic 
of a real PCM, therefore, is the reduction of the beam diameter. For a Gaussian beam with 
beam radius w at the PCM (Fig. 16.29, it is reasonable to assume that the reflected beam 
is still Gaussian, with a beam radius that is reduced by a factor p (with 0+1) 
[4.2 12,4.223]. The factor p is an empirical parameter that depends on the physical properties 
of the PCM and the intensity of the incident beam. The additional constraint on the beam 
size selects one well-defined Gaussian beam as the fundamental eigenmode of the phase 
conjugate resonator. Although the combination of wavefront reversal and beam size 
reduction is definitely a model too idealized to describe the properties of a real phase 
conjugate mirror, this description was found to be useful to theoretically predict the beam 
propagation inside phase-conjugate resonators (see Fig. 16.25). 

In the following we will discuss this model in more detail [4.223]. According to Fig. 
16.25, the q-parameters of the Gaussian beam with wavelength A before and after reflection 
by the PCM are given by: 

(16.58) 

(1 6.59) 

If the PCM is used as a resonator mirror, the q-parameter q2 must transfer into qr after one 
round trip. For a general resonator, the ray transfer matrix M for the round trip, starting at 
the PCM (but not incorporating it), is given by (Fig. 16.25): 

PCM thermal lens 
n 

lens 

(16.60) 

mirror 2 

i; 
A B  

M-’(C A)= 

Fig. 16.26 Phase-conjugate resonator with round trip ray transfer matrix M, starting at the PCM. 
Arbitrary ABCD-type optical elements can be placed inside the resonator. 
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Application of the ABCD-law: 

4, + B 

c4, + A 
4, = 

- 1 

-- 
d I t  

i o  
$ 1  - 

I I  - - -__L 

- i 

57 1 

(16.61) 

yields for the wavefiont curvature R and the beam radius w of the self-consistent Gaussian 
beam at the PCM (going in): 

B 
A 

R = -  

w =  J$ 
(16.62) 

(1 6.63) 

With the knowledge of the Gaussian beam parameter at the PCM, the beam diameter at any 
plane inside the resonator can be calculated by using the well-known propagation law of 
Gaussian beams. Let us assume that the ray transfer matrix for the transit from the PCM to 
the considered plane is given by: 

M * = [  A *  B *  ] 
C' D' 

The beam radius w * at this plane then reads: 

w * ~  = (A *@)' - 24 *B *- p2w2 + [ - + [ 21' 
R 

(16.64) 

Fig. 16.27 Phase-conjugate resonator with an active medium exhibiting a variable refractive power 
D. The PCM is attached to the active medium. The broken, vertical lines indicate the principal 
planes of the lens. Mirror 2 is a flat output coupler. 
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In a preferred arrangement, the PCM is placed as close as possible to the lens medium as 
depicted in Fig. 16.27. For convenience we treat the active medium as a thin lens attached 
to the PCM. Starting at the PCM, the ray transfer matrix for the round trip reads: 

M = ( 1-2dD 
2d ] -2D(1 -do) 1 -2dD 

Equations (1 6.62) and (1 6.63) yield for the parameters of the Gaussian beam: 

(1 6.65) 

(1 6.66) 
(1 6.67) 

Application of (16.64) withA *=I-dD and B*=d, yields for the beam radius w * at the output 
coupling mirror: 

(1 6.68) 

The beam radii w and w* at the mirrors remain constant as the refractive power D of the 
lens is varied. In the thin lens approximation used, this means that the mode volume of the 
Gaussian beam in the active medium is constant as well. Regardless of the refractive power, 
the PCR is always stable. This can also be demonstrated by calculating the g-parameters of 
the equivalent lens resonator. The combination of the PCM and the variable lens is 
equivalent to a conventional mirror with radius of curvature: 

p = (f i D)-’ (1 6.69) 

Thus the equivalent g-parameters of the two mirrors (mirror 1 is the PCM-lens combination) 
are given by: 

1 = - 
2 

g;  = 1 - d(l/R + D) 

8,’ = 1 

(16.70) 

(16.71) 

The equivalent resonator is semi-confocal and remains at the same location in the stability 
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diagram. Unfortunately, this resonator scheme only provides a relatively small Gaussian 
beam radii in the active medium (for d=lm and A=lpm, the beam radii are on the order of 
lmm). Larger Gaussian beam radii can be attained by separating the active medium from 
the PCM and incorporating a negative lens into the resonator (see Fig. 16.35). The 
separation may lead to a dependence of the Gaussian beam radii on the refractive power. 
However, the resonator always remains stable since the equivalent resonator remains in a 
stable zone. This can be shown for a general resonator set-up by using the ray transfer 
matrix (16.60) for a round trip. As was shown in Sec. 1.3, the ray transfer matrix for a 
resonator round trip starting at mirror 1 reads: 

(16.72) 

where g,', g,' are the equivalent g-parameters, and L' is the equivalent length. The round 
trip matrix for the phase-conjugate resonator depicted in Fig. 16.26 is given by (using 
(16.54),(16.60), and (16.62): 

(16.73) 

A comparison with (16.72) leads to the generalized stability condition for phase conjugate 
resonators: 

(16.74) 

The first operation of a phase-conjugate resonator was reported in 1979 using a pulsed ruby 
laser and four-wave-mixing in a cell containing CS, [4.213 1. The CS, cell, which acts as the 
PCM, was pumped by two counterpropagating waves generated by a second ruby laser. 
Phase-conjugate resonators were also implemented in dye lasers and argon lasers using four 
wave-mixing or self-pumped photorefractive crystals [4.234]. In recent years, solid state 
lasers, excimer lasers, and dye lasers with intracavity stimulated Brillouin scattering (SBS) 
as the phase-conjugate process have been successfully operated [4.234-4.237,4.244-4.2731 
(Fig. 16.28). 

Average output powers of tens of Watts have been demonstrated using Nd:YAG lasers 
utilizing SBS in liquids (CCl,, Acetone, CS,) and gases (CH,, SF,). An average output 
power of 27 W and 50W have been reported for Nd :YAG and Nd:YALO laser oscillators, 
respectively, both with a phase-conjugate mirror using SBS in SF, [4.262,5.268,4.272]. 
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HR mirror oumut couuler 
n SBS cell activemedium n 

Fig. 16.28 A phase-conjugate resonator employing a SBS cell. Laser oscillation first occurs 
between the two conventional mirrors until the SBS threshold is exceeded. 

The advantage of SBS is its self-pumping nature; no additional pump waves are required 
to initiate phase-conjugation. Unfortunately, the PCMs based on SBS exhibit a high 
threshold power on the order of 10 kW, which means that the phase-conjugate resonators 
can only be operated in a Q-switch mode with typical pulse lengths on the order of 10- 
loons. Lower threshold powers are possible by using multiple SBS cells or tapered fibers 
[4.274]. 

16.4.3 Phase-Conjugate Resonators using SBS 

Brillouin scattering is caused by the interaction of the incident field with the periodic 
density variations generated by a sound wave (Fig.16.29). For a monochromatic field with 
wavelength A,, incident at an angle 8 with respect to the propagation direction of the sound 
wave, maximum scattering is observed if the fields scattered at the different density maxima 
interfere constructively (Bragg condition): 

2 A sin0 = a, (16.75) 

where A is the wavelength of the sound wave. 

sound wave 
wavelength A J 

I 

Brillouin scattered 
Fig. 16.29 Brillouin scattering of light 
by a sound wave. 
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Since the sound wave propagates with a speed v, the fiequency of the scattered light is 
shifted by the Brillouin shift Av, with respect to the incident frequency v, due to the 
Doppler effect: 

A v ~  = f v,, 2 1 sin0 
C (16.76) 

where c is the speed of light in the medium and the upper sign holds for sound waves 
propagating towards the incoming wave vector. Since the speed of sound Vis on the order 
of 100 m / s  in gases and 1,000 m / s  in liquids, the relative frequency shift v/v, is very small 
( 1 06-1 05) .  The sound waves are a manifestation of the thermal energy in the medium which 
means that all propagation directions and wavelengths down to a cut-off wavelength are 
present. Therefore, the incident electric field is scattered under all angles and the frequency 
is broadened and shifted according to (16.67). This scattering process is referred to as 
spontaneous Brillouin scattering. 

If the intensity of the incident light is sufficiently high, the sound wave that scatters light 
is produced by the light itself (stimulated BriIIouin scattering (SBS)). The physical process 
involved is electrostriction, the variation in volume due to an applied electric field. For SBS, 
the frequency of the scattered light is always reduced so that only the negative sign in 
(16.76) applies. If I, denotes the intensity incident upon the SBS medium and I O w k  the 
scattered intensity, the following coupled equations hold for the change of the intensities 
along the propagation distance z in the medium (assuming plane waves, a stationary sound 
wave, and pulse durations greater than the decay time of the sound wave): 

- -  &out - -g I I + a I,, 
B in out & 

(16.77) 

(16.78) 

with g, : gain coefficient [cm/GWJ 
a : absorption loss coefficient [l/cm] 

The gain coefficient, a characteristic of the medium (Table 16.6), is proportional to the 
frwluency shift d v, and thus maximum for backscattering (e=x). If we assume that the 
reflectivity generated by Brillouin scattering is low and the medium is loss-free, the incident 
intensity can be considered as being constant inside the medium. Equation (I 6.78) then 
yields for the reflected intensity: 

(16.79) 

where s is the interaction length within which stimulated Brillouin scattering occurs. 
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Since the reflected wave is amplified with the gain factor G and the gain coefficient is 
maximum for backscattering, the incident wave with frequency v,, is reversed and exhibits 
the frequency: 

VB = vo ( 1 - 2 3  (16.80) 

Although the gain factor, according to (16.79), seems to be a function of the incident 
intensity, the reflectance of a real SBS cell depends on the power Pin of the input beam since 
the beam is focused into the cell. This becomes understandable if we consider an incident 
beam with a radius w and a beam propagation factor hf focused into the SBS medium to 
a spot radius w, (Fig. 16.30). If the incident power is not too high, efficient scattering can 
only occur within an interaction length s that is x times larger than the Rayleigh range z, 
(Fig. 16.33) [4.255]: 

2 
=w0 

k0 M2 
s = x -  

(1 6.81) 

where the factor x depends slightly on the intensity. By using the relation Z, = P,,,/(mv~) and 

inserting (16.81) into (16.79), the reflectance R of the SBS cell reads: 

(16.82) 

The pump power required to attain a reflectivity of the SBS cell in the percent range is 
defined as the threshold pump power, with: 

(16.83) 

where the ratio C/x was determined experimentally to be on the order of 10 [ S. 191. 

lens SBS cell 

I I 
Y 

f 
* Fig. 16.30 Focusing of a laser beam 

SBS cell. 
into a 
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Keep in mind that the term "threshold" is physically not correct since SBS is also present 
at low pump powers, but with negligible efficiency. Typical threshold powers are in the 
range of 10-100kW which means that pulsed lasers are needed to reach noticeable 
reflectances. If a pulse duration of 3011s is used, the threshold pump power of lOOkW 
corresponds to a beam energy of 3mJ. Note that the threshold becomes higher for higher 
order transverse modes. If the SBS cell is used as a resonator mirror, it can provide 
transverse mode discrimination such that the fundamental mode exhibits the lowest loss. 
The threshold defined by (16.83) holds only for cw-irradiation. If the pulse duration of the 
incident beam is on the same order of magnitude as the phonon lifetime zB, the threshold 
pump power can be several times higher. Table 16.6 lists gain coefficients, phonon lifetimes 
and threshold powers (1 6.83) for different SBS media Measured reflectances for different 
SBS media are presented in Fig. 16.31. 

Table 16.6 Gain coefficient g,, phonon lifetime tg, and threshold power P,h, according to (16.83), 
of different SBS media (A,,=Ipm, h f = I ,  C/x=lO) [4.232,4.242,4.266,S.l9,S.20]. 
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Fig. 16.31 Measured energy reflectance of two different SBS media t4.2661. The beam of a single 
longitudinal mode Q-switched Nd:YAG laser in fimdamental mode operation was focused into the 
cells using a focal length of F120mm. The minimum spot diameter in the cells was 100pm, the 
duration ofthe laser pulses was 25ns (FWHM), and the linewidth was 1OOMHz. The threshold input 
powers are: SF,: 440kW, CS,: 14kW. The solid l ies  are theoretical curves calculated with the 
model described in [4.255]. 
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5 10 15 20 

5, lmJl 

Fig. 16.32 Measured energy reflectance of CS, for a small coherence length of the incident 
Nd:YAG laser beam [4.266]. The same laser as in Fig. 16.3 1 was used, but with operation in 
longitudinal multirnode. Compare this graph with the lower left graph of the previous picture to see 
the influence of the coherence length on the SBS reflectance. The solid line is the theoretical 
reflectance for single longitudinal mode operation, calculated with the model described in [4.255]. 

An important requirement for efficient SBS is a coherence length of the incident beam that 
is much greater than the interaction lengths in the SBS cell (Fig. 16.32). This is necessary 
since the sound wave grating is generated by the interference of the incident and the 
reflected light wave. To accomplish this, the beam can either be focused tighter into the SBS 
cell or the coherence length can be increased with interference filters. 

HR mirror SBS cell Nd:YAG rod niitniit rniinlPt 
n , 61 inm 

r-- ---r--- --- 

neutral-density 
filter 

apeme 

Fig. 16.33 A pulsed Nd:YAG laser with a SBS cell containing SF, at a pressure of 20 bar. The 
system uses an auxiliary resonator to reach the SBS threshold. An average output power of IOW 
in a near diffraction limited beam was obtained (pump pulse duration: 0.2rns, pump energy per 
pulse: 425, L,,,=I.Sm, LS,,=1.2rn) [4.252] (0 OSA 1992). 
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If the SBS cell is to replace a conventional mirror in a laser resonator it is necessary to use 
an auxiliary resonator to reach and exceed the threshold of the SBS cell. The necessary 
intracavity powers on the order of lOkW can be attained by either placing a Q-switch into 
the auxiliary resonator [4.211,4.218,4.244], or by using the Q-switching properties of the 
SBS cell itself [4.215,4.237,4.250,4.268,4.272]. An SBS Nd:YAG laser using the latter 
technique is depicted in Fig. 16.33 c4.2521. The laser rod is pumped in a pulsed mode with 
a pump pulse duration of 0.2ms and a pump energy of 425. At a repetition rate of 45Hz this 
phase-conjugate laser resonator provides a near diffraction limited output beam with an 
average output power of 1OW. Between two and three pulses with a FWHM duration of 
30ns were observed per pump pulse. Compared to a conventional resonator in multimode 
operation with the same pumping conditions, the efficiency was 65%. The neutral-density 
filter is needed to prevent stable laser oscillation in the auxiliary resonator (the filter can be 
removed if a partially reflecting rear mirror is used) . By using a pump cavity that generated 
a peaked radial gain profile in the Nd:YAG rod, fundamental mode operation was also 
observed without the mode-control aperture. 

In order to achieve efficient operation of a SBS laser resonator it is crucial to meet 
two design criteria. The optical length LsBs of the SBS resonator and the optical length LA,  
of the auxiliary resonator have to be matched so that both resonators share axial mode 
frequencies. This ensures a smooth transition when the laser oscillation switches from the 
auxiliary resonator to the SBS resonator. Furthermore, the Brillouin shift should be 
multiples of the frequency spacing between the axial modes of the SBS resonator. This leads 
to the following two design equations: 

, n = 1,2,3,... AvE = n - CO 

2LSES 

, m = 2,3,4, ... AvB = m - CO 

2JLJx 

(1 6.84) 

(16.85) 

where co is the speed of light in vacuum. For SF, at 20 bar, the Brillouin shift is 250MHz. 
The shortest resonator (n=l ,m=2) exhibits the effective lengths LAuX=l.2m and Lm,=0.6m. 
In addition, there is experimental evidence that the transverse mode structure of the two 
resonators should be matched too. This can be accomplished by an appropriate choice of the 
curvature of the high reflecting mirror. In addition, the auxiliary resonator must be stable 
over the whole refractive power range of the active medium, since the thermal lens is not 
compensated until the SBS cell becomes reflective. 

At present, Nd:YAG lasers employing SBS resonator mirrors provide average output 
powers in excess of 50W in a near diffraction-limited output beam [4.272]. In order to 
achieve a high efficiency in fimdamental mode operation it is necessary to adapt the 
Gaussian beam diameter to the diameter of the active medium. Although SBS oscillators 
have to be chosen long to meet the design criteria (16.84) and (16.85), the Gaussian beam 
fills only a fraction of the active volume. By inserting a negative lens into the resonator, 
Gaussian beam diameters in excess of 5mm can be realized in the active medium as the 
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measured and the calculated beam diameters in Fig. 16.34 illustrate [4.267]. The resonator 
set-up depicted meets (16.84) and (16.85) with n=2 and m=3 and a Brillouin shift of 
250MHz (SF, at 20 bar). Note that the measured beam diameters in the medium are larger 
than predicted by the Gaussian beam propagation model described in (16.58)-(16.64), a 
discrepancy that cannot be explained satisfactorily by gain saturation. 

Figure 16.35 presents results reported for a flashlamp-pumped phase-conjugate 
Nd:YAG laser oscillator using SF, at 20 bar as the SBS medium. This laser provides a 
maximum average output power of 27W in TEM,, mode operation [4.262,4.268]. Figure 
16.35a shows one of the resonator designs used including the calculated fundamental mode 
beam diameter using the Gaussian beam propagation model (Eqs. (16.58)-(16.64)) in the 
limit p-->1. By using a slightly modified resonator scheme, a maximum output power of 
27W was achieved at an electrical pump power of 3.9kW and a repetition rate of 50Hz, 
corresponding to a total efficiency of 0.7% (Fig. 16.35b). 
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Fig. 16.34 Measured and calculated beam diameters for different phase-conjugate resonators using 
SF, at 20 bar as the SBS medium. The different configurations differ in the position of the -200mm 
lens L3. The upper graph depicts configuration 5. The beam diameters of the SBS resonator were 
calculated with (16.64) in the limit p->1 (pump power: 3WW, focal length of the rod: 84cm) 
[4.267]. 
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The modulation of the temporal intensity profile of one laser pulse is due to the Brillouin 
shift of 250 MHz resulting in periodic spikes with a spacing of 4ns (Fig. 16.35~). A 
measurement of the beam quality using a moving knife edge (see Sec. 24.1) yielded a beam 
propagation factor of M2=1 .2 over the whole output power range. 
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Fig. 1635 A pulsed, phase-conjugate NdYAG rod laser using SBS in SF,. (rod diameter: 4mm, 
rod length: 79mm, refractive power of rod: 1.1 diopter per kW of pump power, pump pulse 
duration: 1 Sms, pump energy: 77J, repetition rates: 1 0-SO&). a) one of the resonator set-ups used 
showing calculated beam diameters, b) measured average output power as a function of the pump 
power, c) temporal emission profile of one laser pulse at a pump power of 2.8kW [4.262,4.268] (0 
IEEE 1998). 
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Higher output powers in the multi- 1 OOW range have already been realized by using the SBS 
cell in amplifier chains [4.259,4.2634265,4.273]. The Gaussian beam of a low power Q- 
switch oscillator with average output powers in the Watt range is used to generate high 
powers via amplification in one, two or more amplifier rods. In this arrangement the SBS 
cell is used to compensate for phase distortions induced by the amplifiers. The set-up 
depicted in Fig. 16.36 provides average output powers between 20 W and 21 5 W with beam 
propagation factors between 1.7 and 2.8 t4.264). 
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Fig. 16.36 Pulsed Nd:YAG laser with two amplifiers and an SBS cell containing CS,. The upper 
graphs show the laser set-up including a schematic of the Q-switch oscillator (FR Faraday rotator, 
P: polarizer, A: aperture, L: lens, h/4: quarter wave plate, 1212: half-wave plate, rod dimensions: 
6"x3/8"). The oscillator, with Cr4+:YAG as a passive Q-switch, provides 20 Q-switch pulses per 
pump pulse with an average output power of 3W (pump pulse duration: 0.5ms, pump pulse 
repetition rate: lOOHz, laser pulse duration: 200ns). The lower graphs present the average output 
power and the beam parameter product (waist radius w x half angle of divergence 8,86.5% power 
content) as a function of the total electrical pump power [4.264](0 SPIE 1996). 
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