
Chapter 10 

Output Power of Laser Resonators 

10.1 Output Power of Stable Resonators 

10.1.1 Linear Resonators 

The differential equations (9.35) and (9.56) describing the amplification of the intensity 
inside the active medium are now used to derive the output power of stable resonators. In 
the resonator model used (Fig. 10.1) it is assumed that both the forward travelling beam 
with intensity Z+(z) and the backward traveling beam with intensity r(z) cover the same area 
of the active medium. The complete overlap of the two counterpropagating beams is 
characteristic for stable resonators. During a round trip the intensity is decreased due to 
diffraction losses (loss factors V,-V.), scattering, and absorption inside the medium (loss 
factor V'), and by output coupling. In steady state operation, these losses are compensated 
by the amplification process characterized by the small-signal gain coefficient go, The next 
assumption we make is that no spatial hole burning is present meaning that at any plane 
inside the medium the intensity Z(z) is given by the sum of the two intensities I+@) and f(z). 
This is a reasonable approach for most lasers since the effect of spatial hole burning on the 
output power is smoothed out by atomic motion (gas lasers), energy migration, or axial 
multimode operation (solid state lasers). Fdermore,  the mode is assumed to exhibit aflat- 
top intensity profile. The incorporation of the real mode structure will be discussed in 
Chapter 11. 
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However, in single axial mode solid state or liquid dye lasers, spatial hole burning has an 
impact on the output power (it is lower by up to 30?h ). In these cases a realistic model for 
the output power requires the incorporation of the interference between the two 
counterpropagating fields resulting in the intensity profile: 

Z(2) = I+@) + I-@) - 24- cos[2kz] (10.1) 

with k being the wave number inside the medium. Without spatial hole burning, the 
differential equations for the intensities according to (9.35) and (9.56) read [4.1,4.3,4.11]: 

I go 

(10.2) 

where go is the small-signal gain coefficient, I, is the saturation intensity, a. is the loss 
coefficient, and Xis equal to 1 .O (0.5) for homogeneous (inhomogeneous) broadening. 

Before we solve these equations to obtain the intensity I+ (L),which is proportional to the 
output power Po, , let us derive an approximate solution by assuming that the intensity sum 
in (10.2) is constant with I+(z)+l(z)=2Z. The mean intensity Znow represents the intensity 
of the beam traveling towards the output coupling mirror. Equation (1 0.2) then yields for 
the factor GVsby which the intensity is amplified in a transit through the medium: 

By using the steady state condition: 

the intensity I is found to be: 

(1 0.3) 

(1 0.4) 

(10.5) 

If the cross sectional area of the beam is A, (=m: in Fig. 1 O.l), the output power is given 
by: 
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(1 0.6) 

with the round trip difiaction loss factor V= V, V,V,V,. This expression for the output power 
of stable resonators can be used to a very good approximation, if the output coupling is low 
(high reflectance, R>O. 7). In this case the sum of the two intensities inside the medium is 
almost constant as a numerically calculated example in Fig. 10.2 indicates. For lower 
reflectances, the z-dependence of the intensities has to be taken into account by solving the 
differential equation (10.2) using the boundary conditions at the mirrors. Unfortunately, the 
solution can only be found numerically due to the homogeneously distributed loss (loss 
coefficient a. ) inside the medium [4.11-4.13]. However, for homogeneously broadened 
lasers @ = I )  it is possible to derive an analytical solution by setting a. equal to zero in (10.2) 
and taking into account the loss by multiplying the intensity at the high reflecting mirror 
with the loss factor V'=exp[-2ao@J. This method provides an analytical expression for the 
output power that is very close to the numerical solution (the difference is less than 0.5%). 
After a lengthy calculation the final expression reads [4.18]: 
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with: v = v1v2v3v4. 
A comparison with (1 0.6) indicates that the z-dependence of the gain leads to a change in 
the fraction. For high reflectances R both equations provide similar output powers. In the 
following we use a simplified version of (1 0.7) by ignoring the diffraction losses. We thus 
consider a resonator that exhibits a loss factor per transit V,. Equation (10.7) then reads: 

1 -R (1 0.8) P- = A ,  Is 
1 - R + \/rr (l/Vs - Vs) 

Figure 10.3 presents the normalized output power PoJ(AJ& as a function of the small-signal 
gain g,,Q which for most laser materials is proportional to the pump power. Starting at the 
threshold small-signal gain (g,,e),= pn(,RVJ the power increases linearly with the small- 
signal gain and the slope of the curve becomes steeper as the reflectance R of the output 
coupler is decreased. The output power cannot exceed the power POL that is available in the 
medium in the form of inversion, with (Sec. 9.3): 

(1 0.9) 

with: A :  cross sectional area of the medium 
'lercil : excitation efficiency 
ppwnp pump power 

Only if the laser resonator exhibits no losses (Vs=l.O and R-->l.O in (10.8)) and the laser 
beam fills the whole medium (&=A) can all the available power POL be extracted from the 
active medium (broken line in Fig. 10.3). Note that (10.9) holds only for homogeneously 
broadened lasers. For inhomogeneous line broadening, the available power is a function of 
the laser intensity due to the broadening of the homogeneous line width (see Sec. 9.5). 

90 lo 1 
Fig. 10.3 Normalized laser power as a hnction 
of the small-signal gain for different 
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Small-Signal Gain (v,=0.95). 
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The slope of the output power with respect to the electrical pump power is referred to as the 
slope efficiency qs,+ with: 

l - R  ( 1 0.1 0) 
= ‘ L c i t  Y 

1 - R + JZ(llVs - V,) 

where F&’’ is the fill factor. The slope efficiency is a function of the loss, the output 
coupling, and the ratio of the mode volume to the volume of the active medium. This ratio, 
called the fill factor, can be calculated in a first approach by using the beam diameter of the 
highest order mode inside the active medium. If the active medium represents the only 
aperture inside the stable resonator and a high enough number of transverse modes are able 
to oscillate (let us say more than lo), the maximum fill factor of 1.0 is obtained. In 
fundamental mode operation with the Gaussian beam radius w being adapted to the radius 
b of the active medium ( b s I . 3 ~ ) ~  the fill factor typically is around 0.9. 

Unless the resonator exhibits no losses, only a fraction of the maximally available 
power POL can be extracted in the form of a laser beam. This fraction is referred to as the 
extraction efficiency qm, of the resonator: 

D 

The total efficiency of the laser resonator is given by: 

pour - 

Perectr 
?tot = - - ‘1exen ‘1, 

(10.11) 

(1 0.12) 

Example: cw Nd:YAG laser (ZS=2kW/cd)), rod diameter: 1 Omrn (A =O. 785crn3, multimode 
operation ( P I .  0), electrical pump power : 10 kW. The loss factor pertransit and the small- 
signal gain were determined experimentally (see Chapter 23) to be VS=0.95 and g,P-O.O4 
per kW of pump power, According to (10.9), this corresponds to an excitation efficiency of 
6.28%. Using (10.8) the following output powers, extraction efficiencies, and total 
efficiencies are to be expected: 

R 0.6 0.7 0.8 0.9 0.95 

Po, [wl 122 208 255 235 169 
rlem “I 19.5 33.1 40.6 37.5 26.9 
rlm, “1 1.22 2.08 2.55 2.35 1.69 
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Optimum Output Coupling and Maximum Output Power 
If the reflectance of the output coupler is varied at a given small-signal gain or pump power, 
the output power exhibits a maximum at the optimum output coupling. This behavior is easy 
to understand considering the fact that the output power is zero at low reflectances (laser 
threshold is not reached) and at a reflectance of 100% (no power is coupled out of the 
resonator). Thus a maximum of the output power and the extraction efficiency must exist 
for a certain value of the output coupling. Going back to our approximate power formula 
(10.6) we can find the optimum reflectance R ,  and the maximum output power by 
setting the derivative 6Po,/6(lnR) equal to zero. Again, we assume that the losses per transit 
are represented by the loss factor V,= exp[-crog, and we consequently set the diffraction loss 
factor Vequal to 1 .O. By using the approximation Z-RslZnRI, the following expressions are 
obtained [4.15]: 

a) homogeneous line broadening: 

Maximum output power: 

2 

pout,- = A,  I, aoQ [E - 1] (10.13) 

1 

Maximum extraction efficiency: 
qem - g,p 

Optimum output coupling: InR, = -2a& [p - 11 
a04 

(10.14) 

(10.15) 

Although (1 0.6) is only an approximate expression for the output power, the extreme values 
given by (1 0.13)-( 10.1 5) can, to a very good approximation, be used to optimize the power 
performance of a laser system. This can be easily verified in Fig. 10.4 in which the correct 
extreme values (found by solving numerically the differential equation (10.2)) are shown 
i4.131. Even for lasers with high srnall-signal gain (g0133) and high loss (a@O.l), which 
require a low reflectance for optimum performance, the difference between the exact 
extreme values and the ones given by (1 0.14) and (1 0.15) is negligible. Note that the graph 
presented in Fig. 10.4 assumes a fill factor of p A J A = l .  0. The optimum parameters for a 
given laser are represented by the intersecting point of the two curves with constant small- 
signal gain and constant loss. Again, we find that an extraction efficiciency of 100% is only 
attainable if the laser exhibits no loss (ao&O) and the output coupling is close to zero. As 
the loss is increased, the extraction efficiency decreases rapidly and the optimum mirror 
reflectance is shifted to lower values (Fig. 10.5). Figure 10.5 clearly indicates how 
sensitively the output power reacts to slight increases of the losses. A loss of 5% per transit 
in a low-gain laser with g@. 4 results in a reduction of the extraction efficiency by a factor 
of 2! Half the available power POL gets lost through spontaneous emission. 
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Fig. 10.4 Diagram for the determination of the optimum reflectance R, and the maximum 
extraction efficiency ,qm,- of homogeneously broadened lasers using the small-signal gain goland 
the loss per transit c0P'-ZnVS (fill factor p 1 . O )  r4.131. 
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Fig. 10.5 Extraction efficiency as a hnction of the output coupling reflectance for a small-signal 
gain of goPZn2 and different losses per transit. The curve parameter is the loss factor per transit V,. 
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The losses have a less dramatic impact on the output power if the small-signal gain of the 
laser is high. This is why at the same average pump power, lasers provide a higher average 
output power in pulsed operation than in cw operation. For a repetition ratefand a pulse 
width At, the small-signal gain is higher by the factor 1/cfdt) as compared to cw operation 
at the same average pump power. According to Fig. 10.4, the exlraction efficiency is 
increased leading to a higher average output power. Futhermore, the extraction efficiency 
becomes less sensitive to changes in output coupling as Fig. 10.6 indicates. The realization 
of the optimum output coupling is thus much less critical than in a low-gain laser. Figures 
10.7 and 10.8 present experimental examples for output power and output energies as a 
function of the output coupling. In Fig. 10.8 the theoretical curve according to (10.7) is 
shown too. This example indicates that the expression (10.7) can be used to calculate the 
output power of a stable resonator if the small-signal gain, the losses, and the fill factor of 
the resonator are known. The experimental determination of the gain and the loss is easy to 
accomplish as will be discussed in Chapter 23. The determination of the fill factor, however, 
is more difficult if only a small number of transverse modes is considered. 

In multimode operation the fill factor can, to a good approximation, be calculated by 
using the cross sectional area of the aperture (see Fig 10.8). If the aperture with radius a is 
located close to the active medium with radius b, the fill factor is given by: 

(1 0.16) y = -  nu2 
nb2 

For TEM,, mode lasers that have the active medium as the limiting aperture, the fill factor 
is typically around 0.50, meaning that 50% of the multimode power can be extracted in 
fhdamental mode operation. For diode end-pumped TEM, solid state lasers, the fill factor 
is typically between 0.6 and 0.75, depending on the ratio mode dimaeter to pump spot 
diameter (typically 0.7-0.9) and aberrations of the thermal lens. 
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Fig. 10.6 Numerically 
calculated extraction 
eEciency as a function of the 
mirror reflectance R for high 
small-signal gains. The 
horizontal and vertical lines 
mark the analytical values 
given by (1 0.14) and (1 0.15). 
Loss factor per transit 
V,=O. 95. 
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Fig. 10.7 Measured output energy per pulse of Nd:YAG lasers as a function of the pump energy 
E,, and the output coupling reflectance R [S. 111. The lines represent interpolations. 
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Fig. 10.8 Measured output power of a Nd:YAG laser as a function of the output coupling 
reflectance. The solid line represents (10.7) with Vs=0.955, V,=V,=0.995, V,=V,=l.O @,=-, 
p2=5m, L-lm, g,PI.O, aperture radius a=2.8rnrn, rod radius b=3.I7mrn). 
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b) inhomogeneous line broadening: 

Maximum output power: = A, Is IMP 
a& + h@ 

( 1 0.1 7) 

Optimumoutputcoupling: [ao@ - = (goP)2[uo4 + -,I (1 0.18) 

Note that the output power (1 0.17) is always positive since (1 0.18) implies that a,~+lnfi  is 
greater than zero. The output power refers to the power of one single axial mode, and the 
small-signal gain is generated only by those inverted atoms whose resonance frequencies 
lie within the homogeneous linewidth around the axial mode fiequency. In order to obtain 
the total output power the contributions of the other axial modes have to be added. Also 
keep in mind that we based our optimization on (10.6) which is valid for high mirror 
reflectances only. 

10.1.2 Folded Resonators without Beam Overlap 

For active media with a large cross section it is sometimes advantageous to fold the 
resonator by means of high reflecting mirrors or roof prisms as depicted in Fig. 10.9. 
Folding the resonator N times will decrease the beam diameter by a factor l/(N+l) resulting 
in an enhancement of the beam quality without decreasing the fill factor. Both the small- 
signalgainandthe loss arenowhigherbyafactorofN+l. Byusing(10.14) and(10.15)for 
homogeneously broadened lasers and assuming a fill factor of 1 .O, we get for the maximum 
extraction efficiency and the optimum mirror reflectance: 

(1 0.19) 

hR;Z = -2(N+l)c~,P E - 1 1  
(1 0.20) 

The extraction efficiency does not depend on the number Nof folds, and the optimum mirror 
reflectance is given by the (N+l)th power of the optimum mirror reflectance for the 
unfolded resonator: 

(1 0.21) 
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active medium R 

Fig. 10.9 Folded resonators with N=l 
(top) and N=2. 

10.1.3 Folded Resonators with Beam Overlap 

If the folding is realized such that the different beams are not paralle., they will overlap in 
certain areas of the active medium. A typical example of such a folding scheme is the tightly 
folded resonator (TFR) shown in Fig. 10.10 and the slab laser depicted in Fig. 10.1 1. In 
order to calculate the output power we first have to determine the influence of the 
overlapped areas on the extraction efficiency. If the whole beam area is overlapped, the 
output power will, of course, be decreased by a factor of 2 since the same gain saturation is 
present for half the laser intensity. As the ratio of the overlapped beam volume to the total 
beam volume is increased, the normalized extraction efficiency, therefore, will decrease 
from 100% to 50%. It can be shown numerically that the output power decreases nearly 
linearly with the ratio of the overlapped mode volume V, to the total mode volume V, (Fig. 
10.12) c4.19-4.211. The output power will thus be lower by a factor y, with: 

(1 0.22) 

A second correction factor yz takes the increase of the beam cross section from A, to Ab*, 
due to refiaction, into account: 

yz = AJA,  (10.23) 

Finally, we have to incorporate the longer optical path length 4, (zig-zag) into the 
expression for the output power. Both the small-signal gain and the loss have to be 
multiplied by: 

Y l  = wr (1 0.24) 

with P being the side length of the active medium. 
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Fig. 10.10 Tightly folded resonators W R )  
with one and three reflections at the bottom 
surface of the active medium. 

Fig. 10.11 Beam propagation in a solid state slab. The endfaces are cut at the Brewster angle 
[S.11]. 
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Fig. 10.12 Numerically calculated 
decrease of the extraction efficiency 
due to the beam overlap. The hatched 
areas ma-k the double pass areas. The 
decrease of the output power is almost 
linear with the overlapped mode 
volume [4.20] ((0 AIP 1988). 
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Incorporation of these three correction factors into Eq. (10.8) yields the general expression 
for the output power of folded resonators with a zig-zag path: 

(12.25) 

a) Tightly Folded Resonator 
Let us consider a slab with cross sectional area A, length P, and index of refraction n. For 
complete beam overlap, which means that (N+Z)a=Pcosaholds as shown in Fig. 10.10, the 
three correction factors as a function of the number of reflections N at the bottom surface 
read: 

y l = l - - -  1 2N-1 
2 2N+1 

A yz = - sinp 
4 

y 3 = - -  N+1 sinp 
2 N 1  

with: sinalsinp = n 

The expression for the output power then reads: 

(1 0.26) 

(10.27) 

(10.28) 

(1 0.29) 

For a high number of reflections N the product of the two first terms goes to 1 .O. We then 
get the same slope efficiency as compared to a linear resonator whose beam penetrates the 
medium through the side face with cross section A, but the laser threshold is reduced by the 
factor l/yp The lower laser threshold results in a higher extraction efficiency. This is shown 
in Fig. 10.13 in which extraction efficiencies for different reflection numbers N are 
compared. For high numbers N the maximum extraction efficiency is higher as compared 
to the linear resonator. 
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Fig. 10.13 Numerically calculated extraction efficiencies for tightly folded resonators with 
complete beam overlap as a function ofthe output coupling reflectance. A round trip diffraction loss 
factor Yof 0.95 was used (Y,=Y3=d.95, Y,=Y,=l.O, see Fig. 10.10). The differential equation 
(10.2) was solved. 

b) Slab Resonator 
The endfaces of the slab with index of refraction n and side length 4 are cut at the Brewster 
angle a=atun(n) (Figs. 10.1 1 and 10.14). If a, denotes the width of the incoming beam and 
a is the width of the slab, the three correction factors read: 

1 1 

2 (8a/ao)cos2a - 1 
y l = l - -  

yz = tana 

1 
Y3 = ~ 

sin(2a) 

(10.30) 

(10.31) 

(10.32) 

Fig. 10.14 Beam propagation inside 
a slab active medium. The hatched 
areas indicate the areas of beam 
overlap. 

\ 
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Fig. 10.15 Qualitative comparison of the output power of a Nd:YAG Brewster slab resonator and 
a linear Nd:YAG rod resonator for minimum and complete beam overlap in the slab (same side 
length, gain, loss, and cross sectional area of the active medium in both geometries) [4.20] (@ AIP 
1988). 

Insertion into (10.25) yields: 

l-R [g,P-uo~-sin(2or)~ln@~] 
1 -R+@( lW,- V,) 

1 

with A,: cross sectional area of the incident beam (10.33) 

Again, we get a reduction of the laser threshold due to the longer optical path (factor sinta). 
If the width of the incident beam is much smaller than the slab width (fundamental mode 
operation), we get minimal beam overlap resulting in a factor y , close to one. Compared to 
a linear resonator with active medium with length Q (same slab but without zig-zag), the 
slope is higher by 1/(2cos24 due to the increased mode volume inside the slab. For 
complete beam overlap, the slope is the same as for the linear resonator, but the laser 
threshold is still reduced by sinta. In any case, the slab configuration provides a higher 
output power as compared to a linear resonator (Fig. 10.15) [4.19-4.211. 
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10.1.4 Ring Resonators 

Ring resonators are used to prevent spatial hole burning in the active medium. By using an 
optical isolator inside the resonator, the laser light is forced to travel in one direction only 
(Fig. 10.16). The missing counterpropagating beam prevents the formation of standing 
waves. With only one travelling wave, the amplification of the light in the active medium 
is described by a differential equation that is different from (10.2) for the linear resonator: 

(10.34) 

Again, we can solve this equation analytically if we concentrate the losses a0l of the 
medium at one endface of the active medium. Starting at the output coupling mirror with 
intensity I(O), the intensity I(L) after one round trip must obey the stationary condition: 

(10.35) 

with V,=exp[ -a&] and V,-V4 being difiaction loss factors per transit (=1 -loss), as depicted 

in Fig. 10.16. By using this boundary condition, the solution of (10.34) yields the output 
power: 

P,, = A ,  I(L) (1 -R) (10.36) 

Fig. 10.16 Model of a ring resonator used for the calculation of the output power. The optical 
isolator generating the unidirectional beam propagation is not shown. Diffraction losses at the 
apertures are characterized by the loss factors V,-V,, and the loss of the medium is taken into 
account at the end of the medium by the loss factor V,. 
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The fmal result reads: 
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(10.37) 

with: Y = Y,v~v,v, 

Compared to the Corresponding expression for the linear resonator (10.7), we find an 
increased laser threshold due to the unidirectionality (the light is only amplified once per 
round trip). However, the maximum extraction efficiencies attainable are similar for both 
resonator schemes since the impact of the higher threshold on the output power can be 
compensated by increasing the mirror reflectance R. Figure 10.17 compares maximum 
extraction efficiencies v=,~,- and optimum output coupling transmittances T0,,,=I-R, for 
linear resonators and ring resonators (see also Fig. 10.4). These graphs were generated by 
numerically solving the differential equation (10.2) and (10.34) with the corresponding 
boundary conditions. Compared to a linear resonator, optimized ring resonators require a 
lower output coupling to provide a similar output power for a given small-signal gain. 
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Fig. 10.17 Numerically calculated 
maximum extraction efficiencies and 
corresponding optimum mirror 
transmittances for homogeneously 
broadened lasers. The curve para-meters 
are the small-signal gain gJ and the loss 
per transit a,!. a) ring resonator, b) 

Optimum Transmission linear resonator. 
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10.2 Output Power of Unstable Resonators 

In unstable resonators the differential equation (10.2) cannot be applied without 
modifications since the two counterpropagating beams do not overlap completely. 
Depending on the resonator geometry and the position of the active medium inside the 
resonator, an outer area exists in which the gain is only saturated by the back travelling wave 
(see hatched area in Fig. 10.18). Only in the central area of the medium (marked by I) is the 
inversion depleted in a similar way as in stable resonators, whereas the periphery of the 
active medium acts as an amplifier for the outcoupled field. Furthermore, the propagation 
of the diverging wave leads to a longitudinal intensity profile that is different fiom the one 
for stable resonators shown in Fig. 10.2. The intensity at the high reflecting mirror, for 
instance, is lower than the intensity at the output coupler although the light is being 
amplified by the active medium. 

Fortunately, we can take the special beam propagation into account by modifying the 
differentialequation(l0.2) [4.9,4.14,4.16,4.18]. Foraconfocal unstableresonator as shown 
in Fig. 10.18 the equations read: 

21+ - a0 I +  - - - dz' = + [  go 

dz 1 + (I' + ryzs  ] z+zo (10.38) 

r 1 

dl- dz = - jl + ( I +  go + I-)/Is - uo]z-  
(1 0.39) 

The numerical solution of these equations provides the intensities as a function of z. 
However, in the outer area marked by 11, the intensity T also depends on the radial 
coordinate. This radial dependency has to be incorporated numerically by subdividing the 
medium into a sequence of disks with each disk having radial points at which the intensity 
is calculated. 

a 

Ma 

4 :  1 I I 

Z L  0 -?i 

Fig. 10.18 Beam propagation in a confocal unstable resonator. 
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If the intensity I(z,r) at z=O is known as a function of the radius r, the output power PM, 
extraction efficiency qe, and the loss factor V(due to output coupling) can be determined 
using the following relations (for a circular medium with radius Mu): 

Ma 

P, = 2x 1 z-(o,~) rdi 

- pout 
tlexir - 

V =  

a 

xM2a2 Zs g,,Q 

xa21 -(o,o) 
xu2z-(0,0) + P, 

(10.40) 

(10.41) 

(1 0.42) 

Since the amplification in the outer area is radially dependent, the output coupling loss is 
increased as the small-signal gain of the medium is increased. As shown in Fig. 10.19, the 
loss factor equals the geometrical loss factor I /@ only at the laser threshold and 
immediately decreases as the gain is increased. This is caused by the lower gain saturation 
in the periphery of the active medium which in turn leads to a higher intensity in the outer 
areas of the outcoupled beam profile. Remember that the loss factor V is caused by the 
output coupling and'it therefore corresponds to the mirror reflectance in a stable resonator. 
The change in output coupling implies that the output power does not increase linearly with 
the input power, a well-known behavior of unstable laser resonators. The reader may argue 
that the geometrical model used is too rough since it neglects the true mode structure. 
However, in Chapter 11 we will incorporate diffraction into our output power model and 
obtain very similar results. 

Fig. 10.19 Loss factor as a function of the small-signal gain calculated with Eq. (10.38)-(10.42) for 
a confocal unstable resonator with magnification M=2. The radial intensity profiles f(0,r) at the 
plane of the output coupler are shown on the right side for two different small-signal gains. 
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The problem we are interested in is, of course, how the unstable resonator compares to the 
stable resonator as far as the maximum extraction efficiency is concerned. For a given 
unstable resonator with loss factor Vwe can calculate the output power of a stable resonator 
with mirror reflectance R= V using the same active medium. A comparison of the output 
power will then reveal any influence of the special beam propagation in unstable resonators 
on the extraction efficiency. Some examples are shown in Fig. 10.20. We see that both 
resonator geometries provide similar extraction efficiencies as long as the area with one 
intensity (hatched area in Fig. 10.18) is kept small [4.16,4.18]. The preferred geometry 
would be to position the medium close to the high reflecting mirror. As soon as the medium 
is moved closer to the output coupler, the amplifier region becomes larger resulting in a 
decrease of the output power. However, as far as the maximum extraction efficiency is 
Concerned, the location of the active medium does not really matter and both resonator 
schemes provide a similar performance. Thus we can apply (10.8) also to unstable 
resonators if we replace the mirror reflectance R with the loss factor V: 

with 

Keep in mind that the loss factor V is a function of the small-signal gain! 

A ,  = x ~ ’ a ’  (fill factor of one) 

1.0 
V5=0.95 

,i 
MAGNIFICATION M 

I! 

t 
V 
Z 
w u 

0. 

W 

z 
I- u 
E! 

a 
E 
X 
W 

Vs=0.95 

- unstable 

2 3 4 
MAGNIFICATION M 

(1 0.43) 

Fig. 10.20 Calculated extraction efficiency of confocal unstable resonators as a function of the 
magnification for different small-signal gains and different locations of the active medium. The 
broken line represents the extraction efficiency of a stable resonator exhibiting the same output 
coupling. 




