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High Lattice Thermal Conductivity Solids

Donald T. Morelli and Glen A. Slack

The lattice thermal conductivity κ of various classes of crystalline solids is
reviewed, with emphasis on materials with κ > 0.5 Wcm−1K−1. A simple model
for the magnitude of the lattice thermal conductivity at temperatures near the
Debye temperature is presented and compared to experimental data on rocksalt,
zincblende, diamond, and wurtzite structure compounds, graphite, silicon nitride
and related materials, and icosahedral boron compounds. The thermal conduc-
tivity of wide-band-gap Group IV and Group III–V semiconductors is discussed,
and the enhancement of lattice thermal conductivity by isotopic enrichment is
considered.

2.1 Introduction: The Importance of Thermal
Conductivity

A solid’s thermal conductivity is one of its most fundamental and important
physical parameters. Its manipulation and control have impacted an enormous
variety of technical applications, including thermal management of mechan-
ical, electrical, chemical, and nuclear systems; thermal barriers and thermal
insulation materials; more efficient thermoelectric materials; and sensors and
transducers. On a more fundamental level, the study of the underlying physics
of the heat-conduction process has provided a deep and detailed understand-
ing of the nature of lattice vibrations in solids. In this review we focus on
solid electrically insulating materials with high lattice thermal conductivity.
By lattice thermal conductivity we mean heat conduction via vibrations of
the lattice ions in a solid. Our goal is to first provide a simple physical picture
for lattice heat conduction in solids and to then compare this model with
experimental data on the thermal conductivity of several classes of crystal
structures and types of materials. The review is similar in spirit to that of
Slack [1] but incorporates and discusses data and experimental results that
have been obtained since that review. The present work is mainly concerned
with the intrinsic lattice thermal conductivity of solids. Klemens [2] has re-
viewed the influence of various types of defects and impurities on the lattice
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thermal conductivity. The classic monograph of Berman [3] discusses all as-
pects of the thermal conductivity of solids, including metals, polymers, and
amorphous materials. A more recent update on materials advances in the area
of high thermal conductivity has also recently appeared in the literature [4].

The fact that certain materials that are good electrical insulators can pos-
sess high thermal conductivity is frequently met with surprise and puzzlement
by the casual observer. This is easily understood, however, when one realizes
that whereas electrical current in a material is carried solely by charge carriers,
heat may be transported by both charge carriers and vibrations of the lattice
ions. In a good metal like copper, the electron density is large, and nearly all of
the heat conduction occurs via charge carrier transport. This electronic ther-
mal conductivity masks the lattice thermal conductivity, which is present but
small relative to the electronic term. In a material where there are no free elec-
trons to carry heat, the lattice thermal conductivity is the only mode of heat
transport available. Within the family of electrically insulating materials, the
magnitude of the lattice thermal conductivity, κ, can vary over an extremely
wide range. For instance, diamond has a thermal conductivity at room tem-
perature of 30 Wcm−1K−1, much higher than that of any material, including
the best metals. On the other hand, some polymeric materials and amorphous
electrically insulating solids have thermal conductivity at room temperature
as low as 0.001 Wcm−1K−1. We want to understand why certain materials
can possess high lattice thermal conductivity and what physical mechanisms
serve to provide a limit to the lattice thermal conductivity of solids.

The review is organized as follows. In Sect. 2.2 we will introduce simple
models of lattice heat conduction that can be used to predict the magnitude
and temperature dependence of the thermal conductivity. In Sect. 2.3 we
consider some specific classes of materials that possess high thermal conduc-
tivity and compare experimental results with the predictions of this model.
Sect. 2.4 takes a closer look at lattice heat conduction in several technolog-
ically important wide-band-gap semiconductors. In Sect. 2.5 we discuss how
the isotope effect may be used to increase the lattice thermal conductivity
of some materials. Finally, Sect. 2.6 provides a summary and suggests some
future directions of research on high-thermal-conductivity solids.

Of course we must first define what we mean by “high” thermal conductiv-
ity. As mentioned previously, the lattice thermal conductivity of solids near
ambient temperature can span an enormously wide range. “High” thermal
conductivity is thus a relative term; for instance, a polymer with a thermal
conductivity of 0.03 Wcm−1K−1 would, for this class of solids, have a “high”
thermal conductivity. On the other hand, such a value of thermal conductivity
for an inorganic crystalline semiconductor (the thermoelectric material PbTe,
for example) would be considered very “low”. Frequently in the literature
a value of thermal conductivity in excess of 1 Wcm−1K−1 has been chosen,
rather arbitrarily, as the lower limit for a high-thermal-conductivity solid.
Because the main driver in the search for high-thermal-conductivity solids is
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for thermal management of electronics systems, a more suitable metric may be
how the thermal conductivity compares to traditional materials used in these
types of applications. By far the most widely used material for thermal man-
agement in high-volume applications is crystalline alumina, with a thermal
conductivity on the order of 0.5 Wcm−1K−1. We will thus set our lower limit
for “high” thermal conductivity at 0.5 Wcm−1K−1. As we shall see, even with
this more relaxed criterion, the family of high-thermal-conductivity electrical
insulators is still rather small.

2.2 Simple Model of the Magnitude of Lattice Heat
Conduction in Solids

2.2.1 Normal Modes of Vibrations of a Lattice

The concepts central to an understanding of the lattice thermal conductivity
of a solid are captured in the simple model of a linear chain of atoms of mass
M held together by springs of force constant k. If the rest of the atoms are a
distance a apart, the relation between the frequency ω and wavenumber q of
a wave along the chain is given by

ω(q) = 2

√
k

M
| sin(qa/2)|. (2.1)

This relationship between the frequency and wavenumber of a wave is termed
the dispersion curve and is illustrated in Fig. 2.1a for wavenumber ranging
between −π/a and +π/a, which represents the first Brillouin zone for the one-
dimensional chain in reciprocal space. An essential feature of the relationship
between frequency and wavenumber that distinguishes the present case from
that of a continuum elastic wave is the bending over, or “dispersion,” of the
curve near the edge of the Brillouin zone. Because the group velocity of the
wave is given by v = dω/dq, near these extrema the velocity of the wave tends
to zero.

In a linear chain of atoms with two different types of masses, M1 and M2,
alternating along the length of the chain, there are two solutions to the wave
equation, and the resulting ω − q relations are termed the two branches of the
dispersion relation. These are shown in Fig. 2.1(b). The lower branch, called
the acoustic branch because the linear relationship ω = vq for low frequency
is similar to that for a sound wave, is the same as that for the case of a chain
of atoms of a single type, shown in Fig. 2.1(a). This branch corresponds to
two neighboring atoms moving in phase with one another. The upper branch,
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Fig. 2.1. Models of phonon-dispersion curves for solids: (a) one-dimensional case for
single-atom type spaced by distance a, fine line represents continuum case; (b) one-
dimensional case for two atoms with differing masses, showing the occurrence of both
an acoustic (lower curve) and an optic (upper curve) branch; ωD, where the acous-
tic branch meets the zone edge, is the Debye frequency for the acoustic phonons;
(c) three-dimensional lattice with two different atom masses.

called the optic branch, corresponds to the case where two neighboring atoms
are moving out of phase with one another; for low frequencies this branch is
characterized by a vanishing group velocity. Because the group velocity of the
optic branch is small, these modes generally do not participate in the heat
transport process, and most of the energy transport along the chain occurs
via the acoustic branch. This is a basic assumption that we use throughout
this review. There are instances, however, especially at high temperatures,
when this may not be true; these are touched on in Sect. 2.3. Possible heat
conduction by optic phonons is considered in more detail in the review by
Slack [1] and has been treated for the specific case of alkali halide compounds
by Pettersson [5]. Additionally, while the optic branch is generally ineffec-
tive in transporting heat, these modes may “interact” with the heat-carrying
acoustic vibrations and thus can be important in determining the magnitude
of the thermal conductivity.

Of course, an actual crystal is not a linear chain of atoms but a
three-dimensional lattice. In this case, if all the atoms of the lattice are
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of the same mass, there are three acoustic branches representing the three
polarization modes (one longitudinal and two transverse) of the crystal. If
there is more than one type of atom per unit cell, the dispersion relation
again will contain optic modes. As in the one-dimensional case, these modes
are typified by high frequency and low group velocity. The dispersion curve for
a three-dimensional lattice containing two different types of atoms is shown
in Fig. 2.1(c). For the more general case of N types of atoms, there will be
three acoustic branches and 3(N − 1) optic branches.

Of fundamental importance in the heat transport in a lattice is the concept
of the Debye frequency, ωD, which is defined here as the maximum vibrational
frequency of a given mode in a crystal. For acoustic modes, this corresponds
to the frequency at the zone boundary as indicated in Fig. 2.1(b) for the one-
dimensional chain. One can define a Debye temperature θa for an acoustic
phonon branch as:

θa =
�ωD

kB
, (2.2)

where � is the Planck constant and kB is the Boltzmann constant. For the
three-dimensional case each acoustic branch will have a Debye temperature
given by Eq. (2.2) with its appropriate value of ωD.

An alternative method of calculating θa is by integrating the acoustic
portion of the phonon density of states g(ω) over the Brillouin zone according
to [6]:

θ2
a =

5�
2

3k2
B

ωD∫
0

ω2g(ω)dω

ωD∫
0

g(ω)dω

. (2.3)

For g(ω) ∼ ω2 these two definitions are equivalent. The Debye temperature
can be thought of as the temperature above which all vibrational modes in a
crystal are excited.

Clearly, given the dispersion relations of real crystals, the Debye temper-
ature for heat transport is determined by where the acoustic branches of the
vibrational spectrum meet the Brillouin zone edge; this will be different from
the Debye temperature determined by other means, such as calculation from
the elastic constants or from the low-temperature specific heat. The impor-
tance of this point has been discussed in detail by Slack [1] and will become
clearer as our discussion continues.

Although the preceding discussion is useful for describing the frequency–
wave vector relationships for phonons, it is insufficient for a discussion of the
thermal conductivity. This is because in the presence of only harmonic inter-
actions there is no means of interaction between different phonons, and in such
a situation the mean free path for lattice vibrations would be infinite. Only by
considering the higher-order anharmonic terms in the ionic interaction energy
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can we account for finite thermal conductivity. These higher-order terms are
characterized by the Grüneisen constant γ. This “constant” is defined as the
rate of change of the vibrational frequency of a given mode with volume:

γ = −d lnωi

d lnV
(2.4)

and is therefore not a constant but a function of q. Again, different vibrational
modes will have different values of γ. Because γ is a measure of the depar-
ture of a crystal from harmonicity, we expect that any model of the thermal
conductivity will include this parameter as well. What we really want are the
γ-values for the acoustic modes at temperatures on the order of the Debye
temperature, which unfortunately are unavailable in most circumstances. The
γ-values determined from thermal expansion data, for instance, average over
all phonon branches, including the optic branches. Thus there is a great deal
of uncertainty in the choice of this parameter for many of the solids we are
considering in this review. Recently some lattice dynamical calculations have
become available that provide mode Grüneisen parameters, and we will use
these in estimating γ-values when appropriate. In other cases γ will be esti-
mated from thermal expansion data.

2.2.2 Normal and Umklapp Phonon-Scattering Processes

Even in a perfect crystal there are interactions of phonons among themselves
that tend to restore the phonon distribution to equilibrium. The interactions
that give rise to thermal resistance involve powers higher than quadratic in the
perturbation Hamiltonian describing the potential energy of a displaced ion
in the lattice. Terms that are cubic in the displacement can be thought of
as arising from three-phonon interactions, while those that are quartic arise
from interactions among four phonons. Let us for simplicity consider only the
cubic anharmonic term involving modes (ω1, q1) and (ω2, q2) interacting and
resulting in mode (ω3, q3). The transition probability for the three-phonon
process giving rise to this term is nonzero only if:

ω1 + ω2 = ω3 and q1 + q2 = q3 + K, (2.5)

where K is equal to zero for a so-called normal phonon process and equal
to a reciprocal lattice vector for a so-called Umklapp process. This latter
process, from the German phrase “to flip over,” represents a situation in
which the net phonon flux is reversed in direction. It can be shown that only
Umklapp processes give rise to thermal resistance, and as a first approximation
one can ignore the existence of normal processes in determining the thermal
conductivity.
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2.2.3 Relaxation-Time Approximation

In the relaxation-time approximation [3], it is assumed that the phonon
distribution is restored to the equilibrium distribution at a rate proportional
to the departure from equilibrium. By assuming a linear dispersion relation,
the thermal conductivity can be expressed as:

κL =
kB

2π2v

(
kBT

�

)3
θD/T∫
0

x4ex

τ−1
C (ex − 1)2

dx, (2.6)

where x = �ω/kBT is dimensionless, ω is the phonon frequency, kB is the
Boltzmann constant, � is the Planck constant, θD is the Debye temperature, v
is the velocity of sound, and τC is the total phonon-scattering relaxation time.
The various processes that scatter phonons are assumed to be independent of
one another and to be described by individual scattering rates τ−1

i such that:

τ−1
c =

∑
i

τ−1
i . (2.7)

In general, the various scattering processes i will depend on both temperature
and phonon frequency. In addition to the intrinsic Umklapp scattering pro-
cess, a wide variety of other types of phonon-scattering mechanisms, including
boundary scattering, point defect scattering, dislocation scattering, and mag-
netic scattering, to name just a few, have been considered in the literature;
these are discussed in more detail in earlier reviews. Some of these scattering
processes will be considered in more detail later.

2.2.4 Callaway Model

While it is indeed true that normal processes themselves do not give rise to
thermal resistance, it is incorrect to assume that they do not influence the
thermal conductivity, because they are capable of redistributing momentum
and energy among phonons that are more likely to undergo a resistive scatter-
ing process. The most widely accepted model describing this process is that
of Callaway [7]. In the Callaway model, the thermal conductivity is composed
of two terms:

κ = κ1 + κ2

with

κ1 =
1
3
CT 3

θ/T∫
0

τc(x)x4ex

(ex − 1)2
dx
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and

κ2 =
1
3
CT 3

[
θ/T∫
0

τc(x)x4ex

τN (x)(ex − 1)2
dx

]2

θL/T∫
0

τc(x)x4ex

τN (x)τR(x)(ex − 1)2
dx

. (2.8)

In these expressions, τR represents the scattering time due to resistive pro-
cesses, τN the scattering time due to normal phonon processes, and τ−1

c =
τ−1
R + τ−1

N represents the combined scattering rate. We shall see that in some
circumstances an adequate description of the thermal conductivity can be ob-
tained using (2.6) while in others it is necessary to take into account normal
phonon-scattering processes.

2.2.5 Thermal Conductivity Near the Debye Temperature

We see that a comprehensive model for the lattice thermal conductivity of
a solid requires not only knowledge of the phonon spectrum and Grüneisen
parameters, but also an understanding of various types of phonon-scattering
rates and their temperature and frequency dependencies. Now we will concern
ourselves only with an understanding of the intrinsic thermal conductivity of
a solid in a temperature range where only interactions among the phonons
themselves via anharmonic Umklapp processes are important. Various early
estimates of the lattice thermal conductivity of a solid in this regime have been
discussed by Slack [1] and Berman [3], and can be considered for our purposes
as approximate expressions for the thermal conductivity at temperatures not
too far removed from the Debye temperature of the solid. These estimates all
take the form

κ = A · Maθ3
aδ

γ2T
, (2.9)

where Ma is the atomic mass of the atom, δ3 is the volume per atom, and A is
a constant. Leibfried and Schlömann [8] give the constant as A = 5.72 × 10−8

for δ in Angstroms and Ma in atomic mass units. Julian [9] pointed out an
error in their calculation and determined the following value for A:

A =
2.43 · 10−8

1 − 0.514/γ + 0.228/γ2 . (2.10)

Slack [1] put γ ≈ 2 in this expression and used A = 3.04 × 10−8. The
γ-dependence of A is slight and we will allow this parameter to assume its
value appropriate to the value of γ used to calculate the thermal conductivity.

2.2.6 Extension to More Complex Crystal Structures and Criteria
for High Thermal Conductivity

Equation (2.9) is valid for structures containing only one atom per primitive
unit cell. Using a simple counting scheme, Slack [1] extended the model to
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crystals with n atoms per unit cell:

κ = A · Maθ3
aδn1/3

γ2T
. (2.11)

By using the Debye temperature appropriate for the acoustic modes only, this
equation is a quantitative statement of our basic assumption that the optic
modes in crystals with n > 1 do not contribute to the heat transport process.

In many circumstances, especially in considering new materials and crystal
structures, the phonon-dispersion relations used to calculate θa are not avail-
able either experimentally or theoretically. In these cases, the acoustic-mode
Debye temperature can be determined from the “traditional” definition of the
Debye temperature θ (namely that determined from the elastic constants or
specific heat) by using [10]

θa = θn−1/3. (2.12)
With increasing n, the size of the unit cell (that is, the lattice constant a)
in real space increases. This means that the Brillouin zone boundary (see
Fig. 2.1) moves inward, thus cutting off phonon frequencies at smaller values
as n increases. The “traditional” Debye temperature θ depends on the atomic
mass and the bond strength but is independent of n. Thus Eq. (2.11) can be
rewritten to display the explicit n-dependence of the thermal conductivity as:

κ = A · Mθ3δ

γ2Tn2/3 . (2.13)

On the basis of Eq. (2.13) we may now list the necessary criteria for an
electrically insulating solid to possess high thermal conductivity:

• high Debye temperature,
• small Grüneisen parameter, and
• small n (simple crystal structure).

2.3 Materials with High Lattice Thermal Conductivity

2.3.1 Rocksalt, Diamond, and Zincblende Crystal Structures

We can test the validity of this simple model for thermal conductivity by
comparing it to experimental data. Let us begin by considering classes of
solids with common values of n. The only nonmetallic crystals with n = 1 are
the rare gas crystals, which crystallize in the simple cubic structure. These
crystals, however, all have Debye temperatures less than 100 K, and as a result,
have κ < 0.5 Wcm−1K−1 and will not be considered further.

The families of crystals with n = 2 include the rocksalt, diamond, and
zincblende structure compounds. The main members of these three families
that we will consider here are shown in Tables 2.1 and 2.2, respectively, along
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Table 2.1. Calculated and experimental room-temperature thermal conductiv-
ity of several rocksalt (n = 2) compounds. θa = high-temperature Debye temper-
ature of the acoustic phonon branch; γ = high-temperature Grüneisen constant;
δ3 = volume per atom; M = average atomic mass; κcalc = calculated thermal con-
ductivity from equation (2.13); κexp = measured thermal conductivity.

Compound θa γ δ M κcalc κexp

(K) (Å) (amu) (Wcm−1K−1) (Wcm−1K−1)

LiH 615 1.28 2.04 3.97 0.159 0.15
LiF 500 1.5 2.00 12.97 0.194 0.176
NaF 395 1.5 2.31 21.00 0.179 0.184
NaCl 220 1.56 2.81 29.22 0.048 0.071
NaBr 150 1.5 2.98 51.45 0.031 0.028
NaI 100 1.56 3.23 74.95 0.013 0.018
KF 235 1.52 2.66 2.05 0.058
KCl 172 1.45 3.14 37.27 0.038 0.071
KBr 117 1.45 3.30 59.50 0.020 0.034
KI 87 1.45 3.52 68.00 0.010 0.026
RbCl 124 1.45 3.27 60.46 0.024 0.028
RbBr 105 1.45 3.42 82.69 0.021 0.038
RbI 84 1.41 3.66 106.10 0.015 0.023
MgO 600 1.44 2.11 20.00 0.596 0.6
CaO 450 1.57 2.4 28.04 0.332 0.27
SrO 270 1.52 2.57 51.81 0.152 0.12
BaO 183 1.5 2.7 76.66 0.076 0.023
PbS 115 2 2.97 119.60 0.017 0.029
PbSe 100 1.5 3.06 143.08 0.035 0.020
PbTe 105 1.45 3.23 167.4 0.040 0.025

with the parameters needed to calculate their thermal conductivities using
Eq. (2.13).

Let us consider the rocksalt compounds first; see Table 2.1. Here the Debye
temperatures for acoustic phonons have been determined either from Eq. (2.2)
or (2.3); in cases where both the phonon density of states and the phonon-
dispersion relations are available, the calculated Debye temperatures using
these two methods differ by less than 10 percent. For the Grüneisen param-
eters we use the data collected by Slack [1]. It should be noted that there is
remarkably little variation in the γs for these rocksalts, with the majority of
them lying in the range 1.5–1.9.

Figure 2.2 is a plot of the measured thermal conductivity at room tem-
perature as a function of the calculated thermal conductivity. We see that,
with data spanning a range of two orders of magnitude, Eq. (2.13) actu-
ally gives a very good description of the thermal conductivity of the rocksalt
compounds. The tendency for the measured thermal-conductivity values to
exceed the calculated ones has been attributed to a contribution from op-
tic phonons. According to the criterion introduced earlier, only one rocksalt
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Table 2.2. Calculated and experimental room-temperature thermal conduc-
tivity of several zincblende and diamond structure (n = 2) compounds. θa =
high-temperature Debye temperature of the acoustic phonon branch; γ = high-
temperature Grüneisen constant; δ3 = volume per atom; M = average atomic mass;
κcalc = calculated thermal conductivity from Eq. (2.13); κexp = measured thermal
conductivity.

Element/ θa γ δ M κcalc κexp

Compound (K) (Å) (amu) (Wcm−1K−1) (Wcm−1K−1)

C 1450 0.75 1.78 12.01 16.4 30
Si 395 1.06 2.71 28.08 1.71 1.66
Ge 235 1.06 2.82 72.59 0.97 0.65
BN 1200 0.7 1.81 12.41 11.05 7.6
BP 670 0.75 2.27 20.89 3.59 3.5
BAs 404 0.75 2.39 42.87 1.70
AlP 381 0.75 2.73 28.98 1.10
AlAs 270 0.66 2.83 50.95 0.89 0.98
AlSb 210 0.6 3.07 74.37 0.77 0.56
GaP 275 0.75 2.73 50.35 0.72 1.00
GaAs 220 0.75 2.83 72.32 0.55 0.45
GaSb 165 0.75 3.05 95.73 0.33 0.4
InP 220 0.6 2.94 72.90 0.83 0.93
InAs 165 0.57 3.03 94.87 0.51 0.3
InSb 135 0.56 3.24 118.29 0.38 0.2
ZnS 230 0.75 2.71 48.72 0.40 0.27
ZnSe 190 0.75 2.84 72.17 0.35 0.19
ZnTe 155 0.97 3.05 96.49 0.17 0.18
CdSe 130 0.6 3.06 95.68 0.23
CdTe 120 0.52 3.23 120.00 0.296 0.075

structure compound, MgO, can be categorized as a high-thermal-conductivity
compound, with κ ≈ 0.6 Wcm−1K−1 at room temperature.

We turn next to the zincblende and diamond structure compounds; see
Table 2.2. One very striking feature of these compounds is that the Grüneisen
parameters tend to be much lower than those of the rocksalt structure com-
pounds: in the zincblende and diamond structures the phonons are more har-
monic. In fact, for some members of this family, e.g., silicon, some of the
mode Grüneisen parameters are negative [11]. Recent lattice dynamics cal-
culations of the mode Grüneisen parameters for diamond, silicon, and boron
nitride have been carried out [11, 12, 13]; see Fig. 2.3. Here we clearly see
that the longitudinal modes tend to have Grüneisen parameters near unity,
and the transverse modes have smaller, and even negative, γs. Of course the
important parameter is the average value of the square of γ, and this is indi-
cated in the figures. We see that the resulting average γs for these zincblende
and diamond structure compounds as derived from lattice dynamics calcula-
tions are consistent with those presented in Table 2.2, which in most cases
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Fig. 2.2. Room-temperature thermal conductivity for the rocksalt compounds of
Table 2.1 plotted against the thermal conductivity calculated from Eq. (2.13).

were derived from high-temperature thermal expansion data [1]. The necessity
of a low γ for high-thermal conductivity is a recurring theme in this re-
view. We see in Fig. 2.4 a very well-behaved relationship between measured
and calculated room-temperature lattice thermal conductivities, spanning a
range from 0.18 Wcm−1K−1 for ZnTe to >30 Wcm−1K−1 for isotopically en-
riched diamond. Twelve members of this family of materials have or are
expected to have thermal conductivity at room temperature in excess of
0.5 Wcm−1K−1 with several (diamond, BN, BP, Si, BAs, AlP, and GaP) ex-
ceeding 1 Wcm−1K−1. A more detailed description of the thermal conductivity
of diamond is the subject of Chapter 7 in this book.

2.3.2 Wurtzite Crystal Structure

For the n = 4 wurtzite structure compounds CdS, ZnO, GaN, BeO, AlN, and
SiC (Table 2.3 and Fig. 2.5) we again find excellent agreement between the
calculated and measured room-temperature thermal conductivities, except
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Fig. 2.3. Longitudinal (thin lines) and transverse (bold lines) mode Grüneisen
parameters for (a) silicon, (b) diamond, and (c) boron nitride, with the average
value 〈γ2

i 〉 as indicated.

for the case of BeO, where the measured thermal conductivity exceeds the
calculated value by about a factor of four. We note, however, that the value of
γ = 1.3, which was derived from thermal expansion data [14], is significantly
larger than that used for the other wurtzite compounds. Using a similar value
of γ = 0.75 for BeO, in fact, improves greatly the agreement between the
model and experiment. Further measurements or calculations of the Grüneisen
parameter for BeO would be desirable. We note further that all of these com-
pounds except CdS can be categorized as possessing high thermal conductivity
according to our criterion. These crystals are undergoing significant develop-
ment for their potentially useful electronic and optical properties; thus the
last decade has seen a dramatic improvement in the availability and quality
of single crystals of these wurtzites. Because of their technological potential,
we will discuss the thermal conductivity of some of these crystals in more
detail in Sect. 2.4.
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Fig. 2.4. Room-temperature thermal conductivity for the zincblende compounds
of Table 2.2 plotted against the thermal conductivity calculated from Eq. (2.13).

Table 2.3. Calculated and experimental room-temperature thermal conduc-
tivity of several wurtzite (n = 4) compounds. θa = high-temperature Debye
temperature of the acoustic phonon branch; γ = high-temperature Grüneisen
constant; δ3 = volume per atom; M = average atomic mass; κcalc = calculated
thermal conductivity from equation (2.13); κexp = measured thermal conductiv-
ity.

Compound θa γ δ M κcalc κexp

(K) (Å) (amu) (Wcm−1K−1) (Wcm−1K−1)

SiC 740 0.75 2.18 20.0 4.45 4.9
AlN 620 0.7 2.18 20.49 3.03 3.5
GaN 390 0.7 2.25 41.87 1.59 2.1
ZnO 303 0.75 2.29 40.69 0.65 0.6
BeO 809 1.38/0.75 1.90 12.51 0.90/3.17 3.7
CdS 135 0.75 2.92 72.23 0.13 0.16

2.3.3 Silicon Nitride and Related Structures

Up to now we have discussed structures containing only two or four atoms
per primitive unit cell. We will now consider briefly a few compounds with
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Fig. 2.5. Room-temperature thermal conductivity for the wurtzite compounds of
Table 2.3 plotted against the thermal conductivity calculated from Eq. (2.13).

n > 4 that are potentially high-thermal-conductivity materials. One example
is Si3N4. This compound assumes two crystal structures, known as the α
and β phases, and is characterized by extreme hardness and toughness aris-
ing from predominantly covalent bonding [15]. Thus one might expect this
compound to exhibit high thermal conductivity even though the crystal struc-
ture is not simple. Watari et al. [16] have reported the fabrication of hot-
pressed, polycrystalline Si3N4 samples with thermal conductivity as high as
1.55 Wcm−1K−1.

The α- and β-phases of Si3N4 are both hexagonal with n = 28 and n = 14,
respectively [17]. Recently a third high-pressure phase, called γ-Si3N4, has
been reported [18]. This phase crystallizes in the cubic spinel MgAl2O4 struc-
ture with n = 14. There are no thermal conductivity data on this structural
modification in the literature. From recently published calculated phonon-
dispersion curves [19] and thermal expansion data [20] one can estimate the
average Debye temperature for these three structural modifications. Little
information is available regarding the Grüneisen parameters of these com-
pounds. He et al. [21] calculated γ = 1.1 for β-Si3N4. This value was derived
from compressibility and bulk modulus data. Bruls et al. [22] report a high
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temperature γ = 0.63 for β-Si3N4, not too different from the value γ = 0.72
reported by Slack and Huseby [23]. In order to obtain an upper limit for
the calculated thermal conductivity we will assume the smaller value of γ
for both the α- and β-phases. We will use the value γ = 1.2 determined for
the γ-phase [20], noting that this value is consistent with γ = 1.4 for the
isostructural compound MgAl2O4 [24].

The necessary parameters for all three Si3N4 phases are collected in
Table 2.4, along with the calculated thermal conductivities. We have also
included results for MgAl2O4 that serve to verify the validity of Eq. (2.13)
for these more complex crystal structures. We see that the calculated thermal
conductivity for the α- and β-phases both exceed 1 Wcm−1K−1. The calcu-
lated value for β-Si3N4 suggests that even higher thermal conductivity than
that measured by Watari et al. may be obtained in pure β-Si3N4 material.
Reliable data on the Grüneisen parameters of these compounds would be very
useful to verify the model for these compounds.

Ge3N4 also forms in the same α, β, and γ crystal structures [17, 25]. There
are no experimental data on the thermal conductivity of these compounds; one
would expect, however, in analogy to the Group IV semiconductors Si and Ge,
that the heavier average mass of the germanium compounds will produce lower
thermal conductivity than the silicon-based isostructures. From the available
theoretical phonon-dispersion curves for the β-phase [26] and using the same
value of γ as for β-Si3N4, we can make an estimate for the thermal conductivity
of this compound; see Table 2.4.

Also very exciting from the point of view of high thermal conductivity
are the predicted compounds C3N4 from the same α, β, and γ structural
modifications [27, 28, 29] as well as a defective zincblende structure [30] and

Table 2.4. Calculated and experimental room-temperature thermal conductivity
of several phases of Si3N4 and related compounds. n = number of atoms
in the primitive unit cell; θa = Debye temperature of the acoustic phonon
branch; γ = high-temperature Grüneisen constant; δ3 = volume per atom;
M = average atomic mass; κcalc = calculated thermal conductivity from equa-
tion (2.13); κexp = measured thermal conductivity.

Compound n θa γ δ M κcalc κexp

(K) (Å) (amu) (Wcm−1K−1) (Wcm−1K−1)

α-Si3N4 28 337 0.7 2.19 20.03 1.32
β-Si3N4 14 485 0.7 2.18 20.03 2.61 1.55
γ-Si3N4 14 480 1.2 2.02 20.03 0.8
γ-MgAl2O4 14 352 1.4 2.11 20.33 0.24 0.24
β-Ge3N4 14 243 0.63 2.31 39.11 0.65
β-C3N4 14 ∼650 0.7 1.91 13.15 3.5
Be2SiO4 42 316 1.02 2.06 15.73 0.35
Zn2SiO4 42 236 0.52 2.318 31.83 1.29
Zn2GeO4 42 186 0.31 2.367 28.19 2.17
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even a CN phase [31]. Several of these compounds, originally proposed by Co-
hen [32], are predicted to have bulk moduli rivaling that of diamond. Of course,
many of the features favoring high hardness, such as short bond lengths and
strong covalent bond character, give rise to high thermal conductivity. Thus
it is likely, given the results on Si3N4 and the smaller mass of the carbon
atom, that at least some of the C-N phases, if they exist, may possess ther-
mal conductivities at least as high as their Si-based counterparts. Since the
predictions of their existence, there have been numerous attempts [33, 34,
35, 36, 37] to synthesize various structural modifications of C3N4 and related
phases, though it is debatable whether any has been demonstrated unequivo-
cally [38]. We can make a rough estimate of the thermal conductivity of these
compounds, although we do not have the luxury of lattice dynamical calcu-
lations of the phonon dispersion and phonon density of states. Rather, we
make an estimate of the high-temperature Debye temperature from the theo-
retical bulk and shear moduli [39] using the method of Ravindran et al. [40].
The results are shown in Table 2.4. The predicted thermal conductivity of
β-C3N4 exceeds that of β-Si3N4; if reasonably large crystals of the carbon
nitrides become available it would be very interesting to study their thermal
conductivity.

Be2SiO4 (phenacite) and Zn2SiO4 (willemite) also possess the β-Si3N4
structural modification but with two of the silicon atoms replaced by Be and
Zn, respectively [41]. As with silicon nitride itself, these and other phenacites
are typified by Grüneisen parameters on the order of or, in some cases, much
less than, unity. Thus they could be potentially high-thermal-conductivity
materials even though they have fairly large n = 42. From thermal expan-
sion data the high-temperature limits of θ and γ have been determined [23]
and θa calculated from Eq. (2.12). The estimated room-temperature ther-
mal conductivity of these and related compounds are displayed in Table 2.5.
Zn2SiO4 and Zn2GeO4 both display calculated thermal conductivity in ex-
cess of 1 Wcm−1K−1; the case of Zn2GeO4, is very interesting because this
compound has both a large n and large M . Again we see high thermal con-
ductivity arising from a very small Grüneisen parameter; this suggests that
looking for compounds with similarly low γ is another route for discovering
high-thermal-conductivity materials. The tendency for a crystal to possess a
low γ may be related to the openness of the structure [23]. This openness

Table 2.5. Calculated and experimental room-temperature thermal conductiv-
ity of some boron-containing compounds. Parameters are defined in Table 2.4.

Compound n θa γ δ M κcalc κexp

(K) (Å) (amu) (Wcm−1K−1) (Wcm−1K−1)

B12As2 14 390 0.75 2.10 19.97 1.10 1.2
B12P2 14 481 0.75 2.06 13.69 1.38 0.38
B12O2 14 520 0.75 2.05 11.55 1.47



54 Donald T. Morelli and Glen A. Slack

allows more freedom of movement for the transverse phonon modes, and it is
these modes that generally possess lower Grüneisen parameters [13]. Further
detailed experimental and theoretical studies on the Grüneisen parameters
and thermal conductivity of the phenacites and related structures would be
very desirable to determine whether these compounds in fact possess small γ
and large κ.

2.3.4 Icosahedral Boron Compounds

The element boron occurs in an α-structure, consisting of B12 icosahedra
linked together with covalent bonds, and a β-structure consisting of B84
units [42]. Several boron-rich compounds also form as variations of the icosahe-
dral B12 units [43]. From the point of view of high thermal conductivity, some
of the most interesting of these are the compounds B12As2, B12P2, and B12O2.
These compounds all have n = 14. The last of these, sometimes referred to
as boron suboxide, was recently reported [44] to have a hardness exceeding
that of cubic BN. Slack et al. [45] measured the thermal conductivity of a sin-
gle crystal of B12As2 and an impure oligocrystalline B12P2 sample. Table 2.5
presents the necessary parameters to calculate the thermal conductivity. For
B12As2 and B12P2, θa was calculated using Eq. (2.12) from θ-values estimated
from the specific heat and elastic constants of similar boron compounds [45,
46, 47]; their γ-values were taken equal to that of β-boron [1]. We see that the
model reproduces quite well the thermal conductivity of B12As2. As mentioned
by Slack et al., the B12P2 they measured was neither a single crystal nor a
very pure specimen, and examination of the temperature dependence of the
thermal conductivity would suggest that its thermal conductivity at room
temperature is partially limited by extrinsic scattering processes. It is likely
that pure crystals of B12P2 and boron suboxide will have room-temperature
thermal conductivity exceeding 1 Wcm−1K−1.

In addition to these compounds, there are many other structures in the
B-C-N triangle that exhibit hard or superhard behavior [48, 49], and it is
possible that at least some of these may be high-thermal-conductivity mate-
rials. This is a rich field that currently is largely unexplored from the point
of view of thermal transport and is deserving of further experimental and
theoretical scrutiny.

2.3.5 Graphite and Related Materials

The form of carbon known as graphite is a hexagonal structure, n = 4,
consisting of carbon atoms linked together in hexagons [50]. The C-C dis-
tance within the planes is 1.42 Å, nearly the same as that in benzene; the
interplanar distance, on the other hand, is 3.40 Å. These differences reflect
the very different nature of the bonding within a plane and between planes in
graphite, with the former essentially a covalent sp2-bonding arrangement and
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the latter a weak Van der Waals type of bonding. The thermal conductivity
of graphite has been extremely well studied both experimentally and theoret-
ically; for a more complete discussion the reader is referred to the review [51]
and monograph [52] by Kelly, which include discussions of the influence of
defects and various types of quasi-crystalline forms of this material. Here we
only briefly consider graphite in its most perfect form, namely single crystals
or highly oriented polycrystalline pyrolytic graphite.

Up to now, we have largely ignored the effects of anisotropy because for
the crystals we have considered these effects are either absent or quite small.
In graphite, however, the highly anisotropic nature of bonding manifests itself
as an enormous anisotropy in the conduction of heat. Because of the crystal
symmetry there are only two principle conductivities: that in the plane and
that perpendicular to the plane, or along the so-called c-axis. Figure 2.6 shows
composite curves of in-plane and c-axis thermal conductivity of graphite; these
represent an average of many measurements that have been done over the last
half century [53, 54, 55, 56, 57].

In the context of the simple model we have considered in this review, the
anisotropy is due to the large difference in Debye temperature for phonon
transport in the plane versus along the c-axis. These Debye temperatures can
be estimated from a fit to the specific heat assuming a combination of “in-
plane” and “out-of-plane” vibrations [58] and applying Eq. (2.12) to determine
the Debye temperature of the acoustic modes.

Because of the strong intraplanar covalent bonding, we will assume for
in-plane transport a Grüneisen parameter similar to that of diamond, while
for out-of-plane transport we take γ = 2. The calculated thermal conductivity
from Eq. (2.13) is shown in Table 2.6, and again we see that the simple model
can account reasonably well for the magnitude of κ both perpendicular and
parallel to the basal plane in graphite. A more complete theory of the thermal
conductivity of graphite is based on the lattice dynamics models of in-plane
and out-of-plane phonon modes (Komatsu [58]; Krumhansl and Brooks [61])
and the contribution of each of these to the basal plane and c-axis thermal
conductivities. Extrinsic scattering mechanisms may also play an important
role. The reader is referred to the book by Kelly [51] for further details.

Table 2.6. Thermal conductivity of graphite and BN in the basal plane (xy) and
perpendicular to the c-axis (z).

Compound n θa γ δ M κcalc κexp

(K) (Å) (amu) (Wcm−1K−1) (Wcm−1K−1)

Graphite-xy 4 1562 0.75 2.05 12.01 27 10–20
Graphite-z 4 818 2 2.05 12.01 0.5 0.06
BN-xy 4 1442 0.75 2.05 12.40 22 2–3
BN-z 4 755 2 2.05 12.4 0.4 ∼0.02
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Fig. 2.6. Thermal conductivity of highly oriented graphite parallel (upper curve)
and perpendicular (lower curve) to the basal plane.

Analogous to graphite, there exists a hexagonal form of boron nitride [62].
Measurements of the thermal conductivity have been made on sintered
compacts with crystallite sizes on the order of 1000 Å or less [63]. We see
(Table 2.7) again a reasonable agreement with the model using parameters de-
rived in a similar fashion to those of graphite. Again, as in the case of graphite,
a more complete theory of thermal conductivity in this hexagonal structural
modification would take into account the details of the lattice dynamics of
this structure.

Recently, many other forms of carbon, including fibers, sheets, C60,
graphene sheets, and nanotubes, have been demonstrated or predicted. Some
of these have or are expected to have high thermal conductivity. Chapter 8 of
this volume is devoted to the thermal conductivity of carbon nanotubes and
the reader is referred to it for further information.
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2.4 Thermal Conductivity of Wide-Band-Gap
Semiconductors: Silicon Carbide, Aluminum Nitride,
and Gallium Nitride

We have seen that among the select group of materials with high thermal
conductivity are the Group IV and Group III–V wide-band-gap semiconduc-
tors SiC, AlN, and GaN. Because of their wide gap, high-saturation electron
velocities, and high thermal conductivity, these and related compounds have
undergone significant development over the last decade for optoelectronic,
high-frequency, high-temperature, and high-power device applications [64].
There has thus been an increase in availability of high-quality single crystals.
Because of the importance of the thermal conductivity for many of these appli-
cations, we will look at these compounds in a little more detail in this section.
Our emphasis is on the thermal conductivity of nearly defect-free single crys-
tals and the influence of low levels of defects and impurities; Chapters 5 and
6 address the interesting and important subject of polycrystalline ceramics of
SiC and AlN.

SiC was the earliest of this trio to undergo development as a substrate and
active material for electronics applications. Much earlier, however, Slack [65]
presented the first, and for many years the only, detailed characterization of
the thermal conductivity of SiC single crystals and provided the first iden-
tification of this compound as a high-thermal-conductivity material. Slack
noted that electrically active impurities had a noticeably stronger effect on
the thermal conductivity than neutral impurities. Burgemeister et al. [66]
studied several n- and p-type single crystals in the region around room tem-
perature and showed that the thermal conductivity displayed a strong de-
pendence on carrier concentration. Morelli et al. [67] studied several single
crystals of different electron concentrations as a function of temperature.
These results showed that samples with higher electron concentrations not
only had lower thermal conductivity, but assumed a quadratic, as opposed
to a T3, temperature dependence at low temperature, an effect they ascribed
to scattering of phonons by electrons in an impurity band. Müller et al. [68]
measured the thermal conductivity of a single crystal from room temperature
up to 2300 K. Some of these data are summarized in Fig. 2.7.

The data on SiC afford an example of how the relaxation-time approxi-
mation and the Debye model may be used to understand the magnitude and
temperature dependence of the thermal conductivity. Theoretical fits of the
lattice thermal conductivity may be performed using the standard expres-
sion (2.6). The phonon-scattering relaxation rate τ−1

C can be written as:

τ−1
C =

v

L
+ Aω4 + Bω2T exp

(
−θD

3T

)
(2.14)

where the first term on the right-hand side represents scattering of the crystal
boundaries with an effective crystal diameter L; the second term describes any
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Fig. 2.7. Thermal conductivity of various single crystals of SiC. R66: pure crystal
Slack [65]; #1 and #2: crystals [67] with electron concentrations of 3.5 × 1016 and
2.9 × 1018 cm−3, respectively.

point-defect scattering that may be present in the crystal; and the third term
represents intrinsic phonon-phonon Umklapp scattering. The data in Fig. 2.7
for the purest sample of SiC can be fit with this expression using a Debye
temperature of θD = 800 K.

The question of the influence of the electrical state of the sample on
the thermal conductivity is important for the development of semi-insulating
substrates for high-power electronic devices. Currently three-inch-diameter
SiC substrates are commercially available and four-inch substrates have been
demonstrated in the laboratory. Semi-insulating substrates are fabricated
either by introducing vanadium during the growth process [69], thereby pro-
viding a deep level that traps free carriers, or by reducing as much as possible
the presence of nitrogen during growth while providing “native” defects that
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can trap any remaining carriers [70]. In either case, to the extent that free
carriers are eliminated, any reduction in the thermal conductivity below the
“intrinsic” conductivity will be due to the presence of the trapping species.
Studies of the thermal conductivity of silicon carbide containing these deep-
level impurities would be very revealing in this regard.

Though not nearly as intense as the development of SiC substrates, GaN
substrate development has accelerated dramatically over the last few years.
As of this writing, two-inch wafers have been demonstrated and are becom-
ing commercially available. Until recently, the only thermal-conductivity
data available were those of Sichel and Pankove [71]. More recently, Pollak
and coworkers have studied the local thermal conductivity of epitaxial lay-
ers of GaN using a scanning thermal microscopy technique. They found
that the thermal conductivity of these layers depends strongly on the dis-
location density, ranging from values as low as 1.3 Wcm−1K−1 for high-
dislocation density films to greater than 2 Wcm−1K−1 for regions on films
containing two orders of magnitude fewer dislocations [72]. Further stud-
ies by Pollak’s group on n-type GaN layers showed [73] that the thermal
conductivity also decreased strongly with increasing electronic concentra-
tion in the range 1017–1019 cm−3. Slack et al. [74] recently reported the
temperature-dependent thermal conductivity on a high-quality single crys-
tal of GaN; these results are shown in Fig. 2.8 along with the earlier re-
sults of Sichel and Pankove. This single crystal had a room-temperature
thermal conductivity of 2.1 Wcm−1K−1 and the temperature dependence
could be fit with Eq. (2.6) using a Debye temperature of approximately 525 K.
The large difference in the conductivities between this sample and that of
Sichel and Pankove was attributed to the presence of oxygen in the latter
sample.

The suggestion by Slack et al. that the difference in conductivities of
these two GaN samples is due to the presence of oxygen was based on the
well-documented studies of the thermal conductivity of the isostructural com-
pound AlN. Although substrate development for this wide-band-gap semi-
conductor is still in its nascent stage [75], some information on the thermal
conductivity is available in the literature. Slack et al. [76] studied several sin-
gle crystals and found large differences in thermal conductivity that seemed
to depend on oxygen content. A sample that was nearly free of impurities
and defects had a room-temperature thermal conductivity of 3.5 Wcm−1K−1,
while those containing measurable quantities of oxygen impurity had a lower
conductivity characterized by a depression or dip in the curve as a func-
tion of temperature. Some of these results, along with more recent results of
Slack et al [74] on a sample containing about 1000 ppm oxygen, are shown in
Fig. 2.9.

In order to gain a deeper understanding of the influence of oxygen on
the thermal conductivity of AlN, it is useful to understand the kinetics of
oxygen impurities in this compound. Oxygen in the aluminum nitride lattice
has its origin in small amounts of Al2O3 dissolved in the AlN grains. At high
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Fig. 2.8. Thermal conductivity of GaN as a function of temperature. Open points:
data of Slack et al. [74]; lower dotted line: results of Sichel and Pankove [71]. Dashed
line shows low-temperature boundary limit, assuming a crystal dimension of 500
microns.

temperatures, dissolution of Al2O3 occurs according to the reaction:

Al2O3 −→ 2Al + 3ON + VAl, (2.15)

where the subscripts N and Al, respectively, indicate that the O atoms occupy
the nitrogen site and the vacancy occurs on the aluminum site. Thus, the
presence of oxygen in the AlN lattice is always accompanied by the presence of
vacancies, with the oxygen-vacancy ratio of 3:1. This is because the Al/O ratio
in Al2O3 is 2:3 and the Al/N ratio in aluminum nitride is 1:1. The presence
of an impurity (in this case oxygen) or a defect (in this case the vacancy)
in an otherwise perfect aluminum nitride lattice will cause a reduction in
thermal conductivity. This reduction has been well studied [2] and arises due
to differences in the mass and size of the impurity or defect. These differences
cause a scattering of the heat-carrying lattice vibrations; the scattering rate for
this process is proportional to the square of the difference in mass between the
host atom and the impurity. The mass difference between oxygen and nitrogen
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Fig. 2.9. Thermal conductivity of single-crystal AlN. “Pure AlN” is the calculated
result for a crystal containing no impurities; samples W-201, R-162, and B-21 are
single crystals with varying amounts of oxygen concentrations; see text. A ceramic
sample is shown for comparison.

is not large; thus, the direct effect of oxygen on the thermal conductivity of the
aluminum nitride is small. On the other hand, the fractional mass difference
between a vacancy and aluminum is 100 percent, and this gives rise to a
very large scattering rate. Thus, the lowering of the thermal conductivity by
oxygen in AlN is really due to the presence of the vacancy on the aluminum
site, which inexorably accompanies the less malevolent oxygen. The influence
of oxygen is well described by the additive resistivity approximation [76]:

Wtotal = Wpure + ∆W1 (2.16)

were Wtotal is the measured thermal resistivity (=1/κtotal), Wpure is the
thermal resistivity of a pure AlN crystal (Wpure = 0.3 K cm W−1), and ∆W is
the increase in resistivity due to the presence of oxygen and is proportional
to the oxygen concentration. For an oxygen concentration α by weight, the
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data of Fig. 2.3 yield ∆W = 110α at room temperature. Thus, to obtain high
thermal conductivity (>0.5 Wcm−1K−1), the oxygen concentration in AlN
must be below about 1.5 percent. The influence of oxygen on the thermal con-
ductivity of AlN is particularly important for the commercial manufacture of
ceramic polycrystalline substrates of this material, as these ceramics are sin-
tered using an oxide binder [77]. The thermal conductivity of AlN ceramics is
discussed in detail in Chapter 5.

2.5 Isotope Effect in High Lattice Thermal Conductivity
Materials

Since the early work of Pomeranchuk [78], it has been known that isotopes,
due to their mass difference, can scatter phonons and decrease thermal con-
ductivity. This effect was discussed also by Slack [79]. Geballe and Hull [80]
provided unequivocal evidence for the influence of isotopes on the thermal
conductivity with their experiments on natural abundance and isotopically
purified germanium.

With the ready availability of isotopically purified source materials, the
isotope effect has undergone reexamination over the last decade. Isotopically
purified diamond [81, 82, 83, 84] displays a room-temperature isotope effect
on the order of 40 percent. More recently, Asen-Palmer et al. [59] carried out
a very thorough investigation of the isotope effect in germanium and showed
that an isotopically purified sample had a 30 percent larger κ than natural
abundance Ge. Very recently, Ruf et al. [85] reported an isotope effect in
silicon of 60 percent at 300 K, although the same authors [86] subsequently
downgraded the magnitude to 10 percent.

The magnitude of the isotope effect in these materials is at first surpris-
ing because a simple estimate using the standard Debye theory of lattice
thermal conductivity [3] (Eq. 2.6) yields increases in all cases of 5 percent
or less. A more thorough and complete understanding of the isotope effect
in these materials must recognize the importance of normal phonon-phonon
scattering processes [87, 88, 89] within the context of the Callaway model. In
the case of diamond it has been argued [87, 88, 89] that including the effect
of normal phonon-scattering processes can explain the experimental result,
although assuming infinitely rapid normal processes can only qualitatively fit
the data [82].

Recently an extension of the Callaway model was provided by Asen-Palmer
et al. [59], who successfully modeled the lattice thermal conductivity of
Ge by not only using the Callaway formalism but also by considering the
explicit mode dependence of the thermal conductivity and summing over one
longitudinal (κL) and two degenerate transverse (κT ) phonon branches:

κ = κL + 2κT , (2.17)
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where
κL = κL1 + κL2. (2.18)

The partial conductivities κL1 and κL2 are the usual Debye-Callaway terms
given by:

κL1 =
1
3
CLT 3

θL/T∫
0

τL
C (x)x4ex

(ex − 1)2
dx, (2.19)

κL2 =
1
3
CLT 3

[
θL/T∫

0

τL
C (x)x4ex

τN (x)(ex − 1)2
dx

]2

θL/T∫
0

τL
C (x)x4ex

τL
N (x)τL

R(x)(ex − 1)2
dx

, (2.20)

and similarly, for the transverse phonons,

κT1 =
1
3
CT T 3

θT /T∫
0

τT
C (x)x4ex

(ex − 1)2
dx, (2.21)

κT2 =
1
3
CT T 3

[
θT /T∫

0

τT
C (x)x4ex

τT
N (x)(ex − 1)2

dx

]2

θT /T∫
0

τT
C (x)x4ex

τT
N (x)τT

R (x)(ex − 1)2
dx

. (2.22)

In these expressions, (τN )−1 is the scattering rate for normal phonon pro-
cesses; (τR)−1 is the sum of all resistive scattering processes; and (τC)−1 =
(τN )−1 + (τR)−1, with superscripts L and T denoting longitudinal and trans-
verse phonons, respectively. The quantities θL and θT are Debye temperatures
appropriate for the longitudinal and transverse phonon branches, respectively,
and

CL(T ) =
k4

B

2π2�3vL(T )
(2.23)

and
x =

�ω

kBT
. (2.24)

Here ω is the phonon frequency and vL(T ) are the longitudinal (transverse)
acoustic phonon velocities, respectively.

The temperature dependence and the magnitude of the lattice thermal
conductivity are determined by the temperature and frequency dependence
of the scattering rates comprising (τN )−1 and (τR)−1, their coefficients,
and the Debye temperatures and phonon velocities. The resistive scattering
rate includes contributions from Umklapp processes, isotope scattering, and
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Table 2.7. Percentage Increase in Room-Temperature Thermal
Conductivity due to the Isotope Effect in Some Group IV and
Group III–V semiconductors.

Element/ ∆κ/κ∗ ∆κ/κ∗∗ ∆κ/κ∗∗∗

Compound (%) (%) (%)

Ge 30 28 30
Si 12 60
C 23 35–45
SiC 36
GaN 5
BN 125
∗ Model [59].
∗∗ Model [60].
∗∗∗ Experimental results.

boundary scattering. Using the isotope scattering rate of Klemens [90] and
appropriately adjusting the coefficients of the normal and Umklapp phonon-
scattering rates, Asen-Palmer et al. [59] were able to quantitatively fit their
experimental results over the entire temperature range of 10–300 K.

Recently, Morelli et al. [60] extended and modified this approach to model
the isotope effect in diamond, silicon, germanium, silicon carbide, gallium
nitride, and boron nitride. As mentioned previously, experimental data exist
for the cases of diamond, silicon, and germanium. The model was able to
account for the magnitude of the isotope effect all these semiconductors.
Table 2.7 displays the measured and predicted isotope effect in these Group
IV and Group III–V semiconductors at room temperature. Particularly note-
worthy is the predicted magnitude of the isotope effect in boron nitride. This
has its origin in the light atom masses and the natural abundance distribu-
tion of boron isotopes. Although boron nitride single crystals are extremely
difficult to fabricate, it would be very desirable to study the isotope effect in
this wide-band-gap semiconductor.

2.6 Summary

The intrinsic lattice thermal conductivity of crystalline solids near the Debye
temperature can be understood on the basis of a simple model based on infor-
mation that can be obtained from the crystal structure and lattice dynamics
or phonon dispersion. The measured thermal conductivity of simple crystal
structures such as rocksalt, zincblende, diamond, and wurtzite agree quite
well with the predictions of the model. The model can be extended to other
crystal structures to predict the thermal conductivity of new materials.
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Several materials have been discussed that can be categorized as having
high thermal conductivity. These include most of the simple zincblende,
diamond, and wurtzite structure compounds. Various compounds possessing
the hexagonal Si3N4 structure have been found or are predicted on the basis
of this model to have high thermal conductivity, as have several compounds
based on icosahedral boron structures. High lattice thermal conductivity com-
pounds may be discovered in structures within the B-C-N or B-Si-N triangles
and in similar triangles with oxygen substituted for nitrogen. This predicted
high thermal conductivity would arise due to the strong covalent bonding and
potentially low Grüneisen parameters of these structural modifications. The
isotope effect may be used to increase the thermal conductivity of several
wide-band-gap semiconductors, especially those containing boron.
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[31] M. Côté and M. L. Cohen, Phys. Rev. B 55, 5684 (1997).
[32] M. L. Cohen, Phys. Rev. B 32, 7988 (1985).
[33] C. Niu, Y. Z. Lu, and C. M. Lieber, Science 261, 334 (1993).
[34] K. M. Liu, M. L. Cohen, E. E. Haller, W. L. Hansen, A. Y. Liu, and I. C. Wu,

Phys. Rev. B 49, 5034 (1994).
[35] H. W. Song, F. Z. Cui, X. M. He, W. Z. Li, and H. D. Li, J. Phys. Cond.

Matter 6, 6125 (1994).
[36] T.-Y. Yen and C.-P. Chou, Solid St. Comm. 95, 281 (1995).
[37] Y. Chen, L. Guo, and E. Wang, Phil. Mag. Lett. 75, 155 (1997).
[38] P. Ball, Nature 403, 871 (2000).
[39] www.dirac.ms.virginia.edu/∼emb3t/eos/html/final.html
[40] P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and

O. Eriksson, J. Appl. Phys. 84, 4891 (1998).
[41] R. W. G. Wyckoff, Crystal Structures (Interscience, New York, 1948), Vol. 3,

p. 133.
[42] R. W. G. Wyckoff, Crystal Structures (Interscience, New York, 1948), Vol. 1,

p. 19.
[43] J. L. Hoard and R. E. Hughes, in The Chemistry of Boron and Its Compounds,

ed. E. L. Muetterties (Wiley, New York, 1967), Chapter II.
[44] D. He, Y. Zhao, L. Daemen, J. Qian, T. D. Shen, and T. W. Zerda, Appl.

Phys. Lett. 81, 643 (2002).
[45] G. A. Slack, D. W. Oliver, and F. H. Horn, Phys. Rev. B 4, 1714 (1971).
[46] G. A. Slack, Phys. Rev. 139, A507 (1965).
[47] E. F. Steigmeier, Appl. Phys. Lett. 3, 6 (1963).
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