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Abstract

Arc routing problems (ARPs) arise naturally in several applications where streets require mainte-
nance, or customers located along road must be serviced. The undirected rural postman problem
(URPP) is to determine a least cost tour traversing at least once each edge that requires a service.
When demands are put on the edges and this total demand must be covered by a fleet of identical
vehicles of capacity Q based at a depot, one gets the undirected capacitated arc routing problem
(UCARP). The URPP and UCARP are known to be NP-hard. This chapter reports on recent
exact and heuristic algorithms for the URPP and UCARP.

1. Introduction

Arc routing problems (ARPs) arise naturally in several applications related to
garbage collection, road gritting, mail delivery, network maintenance, snow clearing,
etc. [19, 1, 14]. ARPs are defined over a graph G = (V , E ∪ A), where V is the vertex
set, E is the edge set, and A is the arc set. A graph G is called directed if E is empty,
undirected if A is empty, and mixed if both E and A are non-empty. In this chapter, we
consider only undirected ARPs. The traversal cost (also called length) ci j of an edge
(vi ,v j ) in E is supposed to be non-negative. A tour T , or cycle in G is represented by
a vector of the form (v1,v2, . . . ,vn) where (vi ,vi+1) belongs to E for i = 1, . . . , n − 1
and vn = v1. All graph theoretical terms not defined here can be found in [2].

In the Undirected Chinese Postman Problem, one seeks a minimum cost tour that
traverses all edges of E at least once. In many contexts, however, it is not necessary
to traverse all edges of E , but to service or cover only a subset R ⊆ E of required
edges, traversing if necessary some edges of E\R. A covering tour for R is a tour that
traverses all edges of R at least once. When R is a proper subset of E , the problem of
finding a minimum cost covering tour for R is known as the Undirected Rural Postman



216 Alain Hertz

Problem (URPP). Assume for example that a city’s electric company periodically has
to send electric meter readers to record the consumption of electricity by the different
households for billing purposes. Suppose that the company has already decided who
will read each household’s meter. This means that each meter reader has to traverse
a given subset of city streets. In order to plan the route of each meter reader, it is
convenient and natural to represent the problem as a URPP in which the nodes of the
graph are the street intersections while the edges of the graph are the street segments
between intersections, some of them requiring meter readings.

Extensions of these classical problems are obtained by imposing capacity con-
straints. The Undirected Capacitated Arc Routing Problem (UCARP) is a generaliza-
tion of the URPP in which m identical vehicles are available, each of capacity Q. One
particular vertex is called the depot and each required edge has an integral non-negative
demand. A vehicle route is feasible if it contains the depot and if the total demand on
the edges covered by the vehicle does not exceed the capacity Q. The task is to find
a set of m feasible vehicle routes of minimum cost such that each required edge is
serviced by exactly one vehicle. The number m of vehicles may be given a priori or can
be a decision variable. As an example, consider again the above problem of the city’s
electric company, but assume this time that the subset of streets that each meter reader
has to visit is not fixed in advance. Moreover, assume that no meter reader can work
more than a given number of hours. The problem to be solved is then a UCARP in
which one has to build a route for each meter reader so that all household’s meters are
scanned while no meter reader is assigned a route which exceeds the specified number
of work hours.

The URPP was introduced by Orloff [40] and shown to be NP-hard by Lenstra and
Rinnooy Kan [35]. The UCARP is also NP-hard since the URPP reduces to it whenever
Q is greater than or equal to the total demand on the required edges. Even finding a
0.5 approximation to the UCARP is NP-hard, as shown by Golden and Wong [27].
The purpose of this chapter is to survey some recent algorithmic developments for the
URPP and UCARP. The algorithms described in this chapter should be considered as
skeletons of more specialized algorithms to be designed for real life problems which
typically have additional constraints. For example, it can be imposed that the edges
must be serviced in an order that respects a given precedence relation [15]. Also, real
life problems can have multiple depot locations [17] and time windows or time limits
on the routes [18, 44]. Arc routing applications are described in details in chapters 10,
11 and 12 of the book edited by Dror [14].

In the next section, we give some additional notations, and we describe a re-
duction that will allow us to assume that all vertices are incident to at least one re-
quired edge. We also briefly describe some powerful general solution methods for
integer programming problems. Section 3 contains recent exact methods for the URPP.
Then in Section 4, we describe some recent basic procedures that can be used for
the design of heuristic methods for the URPP and UCARP. Section 5 contains exam-
ples of recent effective algorithms that use the basic procedures of Section 4 as main
ingredients.
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2. Preliminaries

Let VR denote the set of vertices incident to at least one edge in R. The required
subgraph GR(VR ,R) is defined as the partial subgraph of G induced by R. It is obtained
from G by removing all non-required edges as well as all vertices that are not incident to
any required edge. Let Ci (i = 1, . . . , p) be the i-th connected component of GR(VR ,R),
and let Vi ⊆ VR be the set of vertices of Ci . [9] have designed a pre-processing procedure
which converts any URPP instance into another instance for which V = VR , (i.e. each
vertex is incident with at least one required edge). This is done as follows. An edge
(vi ,v j ) is first included in GR(VR ,R) for each vi ,v j in VR , with cost cij equal to the
length of a shortest chain between vi and v j in G. This set of new edges added to
GR(VR ,R) is then reduced by eliminating

(a) all new edges (vi ,v j ) for which ci j = cik + ck j for some vk in VR, and
(b) one of two parallel edges if they have the same cost.

To illustrate, consider the graph G shown in Figure 1(a), where edges of R are
shown in bold lines and numbers correspond to edge costs. The new instance with
V = VR is represented in Figure 1(b).

From now on we will assume that the URPP is defined on a graph G = (V ,E) to
which the pre-processing procedure has already been applied.

To understand the developments of Section 3, the reader has to be familiar with
basic concepts in Integer Programming. If needed, a good introduction to this topic
can be found in [45]. We briefly describe here below the cutting plane algorithm and
the Branch & Cut methodology which are currently the most powerful exact solution
approaches for arc routing problems.

Most arc routing problems can be formulated in the form

{
Minimize

∑
e∈E

cexe

subject to x ∈ S

where S is a set of feasible solutions. The convex hull conv(S) of the vectors in S is
a polyhedron with integral extreme points. Since any polyhedron can be described by
a set of linear inequalities, one can theoretically solve the above problem by Linear

Figure 1. Illustration of the pre-processing procedure.
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Programming (LP). Unfortunately, a complete linear description of conv(S) typically
contains a number of inequalities which is exponential in the size of the original prob-
lem. To circumvent this problem, one can start the optimization process with a small
subset of known inequalities and compute the optimal LP solution subject to these
constraints. One can then try to identify an inequality that is valid for conv(S) but vio-
lated by the current LP solution. Such an inequality is called a cutting plane, because,
geometrically speaking, it “cuts off ” the current LP solution. If such a cutting plane
is found, then it is added to the current LP and the process is repeated. Otherwise,
the current LP solution is the optimal solution of the original problem. This kind of
procedure is called the cutting plane algorithm. It originated in the pioneering work of
Dantzig, Fulkerson and Johnson [12] on the Symmetric Traveling Salesman Problem.

The problem consisting in either finding a cutting plane, or proving that no such
inequality exists is known as the separation problem. An algorithm that solves it is
called an exact separation algorithm. The separation problem can however be NP-hard
for some classes of inequalities. In such a case, one has to resort to a heuristic separation
algorithm that may fail to find a violated inequality in the considered class, even if one
exists.

The cutting plane algorithm stops when no more valid inequality can be found.
This however does not mean that no such inequality exists. It may be that a violated
inequality belongs to an unknown class of inequalities, or that it belongs to a known
class for which we have used, without success, a heuristic separation problem. When the
cutting plane algorithm fails to solve a given instance, one can choose among several
options. One option is to feed the current LP solution into a classical Branch & Bound
algorithm for integer programs. A more powerful option is to use the so-called Branch
& Cut method (see for example [42]). A Branch & Cut is much like a Branch & Bound
method except for the fact that valid inequalities may be added at any node of the
branching tree. This leads to stronger linear relaxations at any node, which normally
leads in turn to a considerable reduction in the number of nodes, in comparison with
standard Branch & Bound.

3. Exact Algorithms for the URPP

A connected graph is said to be Eulerian if each vertex has an even degree. It is
well known that finding a tour in an Eulerian graph that traverses each edge exactly once
is an easy problem that can be solved, for example, by means of the O(|E |) algorithm
described by Edmonds and Johnson [16]. Hence, the URPP is equivalent to determining
a least cost set of additional edges that, along with the required edges, makes up an
Eulerian subgraph. Let xe denote the number of copies of edge e that must be added
to R in order to obtain an Eulerian graph, and let G(x) denote the resulting Eulerian
graph.

For a subset W ⊆ V of vertices, we denote δ(W) the set of edges of E with one
endpoint in W and the other in V \W. If W contains only one vertex v, we simply write
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δ(v) instead of δ({v}). [9] have proposed the following integer programming formula-
tion for the URPP:

Minimize
∑
e∈E

cexe

subject to

|R ∩ δ(vi )| +
∑

e∈δ(vi )

xe = 2zi (vi ∈V ) (1)

∑
e∈δ(W )

xe ≥ 2 (W =
⋃
k∈P

Vk, P ⊂ {1, . . . , p}, P �= Ø) (2)

xe ≥ 0 and integer (e ∈ E) (3)

zi ≥ 0 and integer (vi ∈ V ) (4)

Constraints (1) stipulate that each vertex in G(x) must have an even degree. Indeed,
the left-hand side of the equality is the total number of edges incident to vi in G(x),
while the right-hand side is an even integer.

Constraints (2) enforce the solution to be connected. To understand this point,
remember first that GR(V,R) contains p connected components with vertex sets
V1, . . . , Vp. Now, let P be a non-empty proper subset of {1, . . . , p} and consider the
vertex set W = ⋃

k∈P Vk . Notice that no required edge has one endpoint in W and
the other one outside W . In order to service not only the required edges with both
endpoints in W , but also those with both endpoints in V \W, a tour must traverse the
frontier between W and V \W at least twice. Hence

∑
e∈δ(W )

xe must be at least equal to 2.

The associated polyhedron was not examined in detail by [9]. This was done
in [10] who proposed the following formulation that avoids variables zi and where
δR(W ) = R ∩ δ(W).

Minimize
∑
e∈E

cexe

subject to

∑
e∈δ(v)

xe = |δR(v)| (mod 2) (v ∈ V ) (5)

∑
e∈δ(W )

xe ≥ 2 (W =
⋃
k∈P

Vk, P ⊂ {1, . . . , p}, P �= Ø) (2)

xe ≥ 0 and integer (e ∈ E) (3)

The convex hull of feasible solutions to (2), (3), (5) is an unbounded polyhedron.
The main difficulty with this formulation lies with the non-linear degree constraints (5).
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Another approach has recently been proposed by Ghiani and Laporte [24]. They use
the same formulation as Corberán and Sanchis, but they noted that only a small set of
variables may be greater than 1 in an optimal solution of the RPP and, furthermore,
these variables can take at most a value of 2. Then, by duplicating these latter variables,
Ghiani and Laporte formulate the URPP using only 0/1 variables. More precisely, they
base their developments on dominance relations which are equalities or inequalities
that reduce the set of feasible solutions to a smaller set which surely contains an optimal
solution. Hence, a dominance relation is satisfied by at least one optimal solution of the
problem but not necessarily by all feasible solutions. While some of these domination
relations are difficult to prove, they are easy to formulate. For example, [9] have proved
the following domination relation.

Domination relation 1
Every optimal solution of the URPP satisfies the following relations:

xe ≤ 1 if e ∈ R

xe ≤ 2 if e ∈ E \R

This domination relation indicates that given any optimal solution x∗ of the URPP, all
edges appear at most twice in G(x∗). This means that one can restrict our attention to
those feasible solutions obtained by adding at most one copy of each required edge,
and at most two copies of each non-required one. The following second domination
relation was proved by Corberán and Sanchis [10].

Domination relation 2
Every optimal solution of the URPP satisfies the following relation:

xe ≤ 1 if e is an edge linking two vertices in the same connected component of GR

The above domination relation not only states (as the first one) that it is not nec-
essary to add more that one copy of each required edge (i.e., xe ≤ 1 if e ∈ R), but also
that it is not necessary to add more than one copy of each non-required edge linking
two vertices in the same connected component of GR . Another domination relation is
given in [24].

Domination relation 3
Let G∗ be an auxiliary graph having a vertex wi for each connected component Ci of
GR and, for each pair of components Ci and Cj , an edge (wi ,wj ) corresponding to a
least cost edge between Ci and Cj . Every optimal solution of the URPP satisfies the
following relation:

xe ≤ 1 if e does not belong to a minimum spanning tree on G∗.

Let E2 denote the set of edges belonging to a minimum spanning tree on G∗,
and let E1 = E \E2. The above relation, combined with domination relation 1 proves
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that given any optimal solution x∗ of the URPP, the graph G(x∗) is obtained from
GR by adding at most one copy of each edge in E1, and at most two copies of each
edge in E2. In summary, every optimal solution of the URPP satisfies the following
relations:

xe ≤ 1 if e ∈ E1

xe ≤ 2 if e ∈ E2

Ghiani and Laporte propose to replace each edge e ∈ E2 by two parallel edges

e′ and e′′. Doing this, they replace variable xe that can take values 0, 1 and 2 by
two binary variables xe′ and xe′′ . Let E ′ and E ′′ be the set of edges e′ and e′′

and let E∗ = E1 ∪ E ′ ∪ E ′′. The URPP can now be formulated as a binary integer
program:

Minimize
∑
e∈E∗

cexe

subject to

∑
e∈δ(v)

xe = |δR(v)| (mod 2) (v ∈ V ) (5)

∑
e∈δ(W )

xe ≥ 2 (W =
⋃
k∈P

Vk, P ⊂ {1, . . . , p}, P �= Ø) (2)

xe = 0 or 1 (e ∈ E∗) (6)

The convex hull of feasible solutions to (2), (5), (6) is a polytope (i.e., a bounded
polyhedron). The cocircuits inequalities, defined by Barahona and Grötschel [3] and
described here below, are valid inequalities for this new formulation, while they are
not valid for the unbounded polyhedron induced by the previous formulations. These
inequalities can be written as follows:

∑
e∈δ(v)\F

xe ≥
∑
e∈F

xe − |F | + 1 (v ∈ V, F ⊆ δ(v), |δR(v)| + |F | is odd) (7)

To understand these inequalities, consider any vertex v and any subset F ⊆δ(v) of
edges incident to v, and assume first that there is at least one edge e ∈ F with xe = 0
(i.e., no copy of e is added to GR(V ,R) to obtain G(x)). Then

∑
e∈F xe − |F | + 1 ≤ 0

and constraints (7) are useless in that case since we already know from constraints
(6) that

∑
e∈δ(v)\F xe must be greater than or equal to zero. So suppose now that G(x)

contains a copy of each edge e ∈ F . Then vertex v is incident in G(x) to |δR(v)|
required edges and to |F | copies of edges added to GR(V ,R). If |δR(v)| + |F | is odd
then at least one additional edge in δ(v)\F must be added to GR(V ,R) in order to get the
desired Eulerian graph G(x). This is exactly what is required by constraints (7) since, in
that case,

∑
e∈F xe − |F | + 1 = 1. Ghiani and Laporte have shown that the non-linear
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constraints (5) can be replaced by the linear constraints (7), and they therefore propose
the following binary linear formulation to the URPP:

Minimize
∑
e∈E∗

cexe

subject to

∑
e∈δ(v)\F

xe ≥
∑
e∈F

xe − |F | + 1 (v ∈ V, F ⊆ δ (v), |δR(v)| + |F | is odd) (7)

∑
e∈δ(W )

xe ≥ 2 (W =
⋃
k∈P

Vk, P ⊂ {1, . . . , p}, P �= Ø) (2)

xe = 0 or 1 (e ∈ E∗) (6)

All constraints in the above formulation are linear, and this makes the use of Branch
& Cut algorithms easier (see Section 2). Cocircuit inequalities (7) can be generalized
to any non-empty subset W of V :

∑
e∈δ(W )\F

xe ≥
∑
e∈F

xe − |F | + 1 (F ⊆ δ(W ), |δR(W )| + |F | is odd) (8)

If δR(W ) is odd and F is empty, constraints (8) reduce to the following R-odd
inequalities used by Corberán and Sanchis [10]:

∑
e∈δ(W )

xe ≥ 1 (W ⊂ V, |δR(W )| is odd) (9)

If δR(W ) is even and F contains one edge, constraints (8) reduce to the following
R-even inequalities defined by Ghiani and Laporte [24]:

∑
e∈δ(W )\{e∗}

xe ≥ xe∗ (W �= Ø, W ⊂ V , |δR(W )| is even, e* ∈ δ(W )) (10)

These R-even inequalities (10) can be explained as follows. Notice first that they are
useless when xe∗ = 0 since we already know from constraints (6) that

∑
e∈δ(W )\{e∗} xe ≥

0. So let W be any non-empty proper subset of V such that |δR(W )| is even, and let
e∗ be any edge in δ(W ) with xe∗ = 1 (if any). Since G(x) is required to be Eulerian,
the number of edges in G(x) having one endpoint in W and the other outside W
must be even. These edges that traverse the frontier between W and V\W in G(x)
are those in δR(W ) as well as the edges e ∈ δ(W ) with value xe = 1. Since |δR(W )|
is supposed to be even and xe∗ = 1, we can impose

∑
e∈δ(W ) xe = ∑

e∈δ(W )\{e∗} xe + 1
to also be even, which means that

∑
e∈δ(W )\{e∗} xe must be greater than or equal to

1 = xe∗ .



Recent Trends in Arc Routing 223

Several researchers have implemented cutting plane and Branch & Cut algorithms
for the URPP, based on the above formulations. It turns out that cutting planes of type
(9) and (10) are easier to generate than the more general ones of type (7) or (8). Ghiani
and Laporte have implemented a Branch & Cut algorithm for the URPP, based on con-
nectivity inequalities (2), on R-odd inequalities (9) and on R-even inequalities (10).
The separation problem (see Section 2) for connectivity inequalities is solved by means
of a heuristic proposed by Fischetti, Salazar and Toth [21]. To separate R-odd inequal-
ities, they use a heuristic inspired by a procedure developed by Grötschel and Win
[28]. The exact separation algorithm of [41] could be used to identify violated R-even
inequalities, but [24] have developed a faster heuristic procedure that detects several vi-
olations at a time. They report very good computational results on a set of 200 instances,
corresponding to three classes of random graphs generated as in [31]. Except for 6 in-
stances, the other 194 instances involving up to 350 vertices were solved to optimality in
a reasonable amount of time. These results outperform those reported by Christofides,
et al. [9], [10] and [36] who solved much smaller randomly generated instances
(|V | ≤84).

4. Basic Procedures for the URPP and the UCARP

Up to recently, the best known constructive heuristic for the URPP was due to [22].
This method works along the lines of Christofides’s algorithm [8] for the undirected
traveling salesman problem, and can be described as follows.

Frederickson’s Algorithm

Step 1. Construct a minimum spanning tree S over G∗ (see domination relation 3
in Section 3 for the definition of G∗).

Step 2. Determine a minimum cost matching M (with respect to shortest chain
costs) on the odd-degree vertices of the graph induced by R ∪ S.

Step 3. Determine an Eulerian tour in the graph induced by R ∪ S ∪ M .

As Christofides’s algorithm for the undirected traveling salesman, the above algo-
rithm has a worst case ratio of 3/2. Indeed, let C∗ be the optimal value of the URPP
and let CR , CS and CM denote the total cost of the edges in R, S and M , respectively.
It is not difficult to show that CR + CS ≤ C∗ and CM ≤ C∗/2, and this implies that
CR + CS + CM ≤ 3C∗/2.

Two recent articles [31, 30] contain a description of some basic algorithmic proce-
dures for the design of heuristic methods in an arc routing context. All these procedures
are briefly described and illustrated in this section. In what follows, SCvw denotes the
shortest chain linking vertex v to vertex w while Lvw is the length of this chain. The
first procedures, called POSTPONE and REVERSE, modify the order in which edges are
serviced or traversed without being serviced.
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Procedure POSTPONE

INPUT : a covering tour T with a given orientation and a starting point v on T .
OUTPUT : another covering tour.

Whenever a required edge e appears several times on T , delay service of e until
its last occurrence on T , considering v as starting vertex on T .

Procedure REVERSE

INPUT : a covering tour T with a given orientation and a starting point v on T .
OUTPUT : another covering tour.

Step 1. Determine a vertex w on T such that the path linking v to w on T is as
long as possible, while the path linking w to v contains all edges in R. Let
P denote the path on T from v to w and P ′ the path from w to v.

Step 2. If P ′ contains an edge (x ,w) entering w which is traversed but not serviced,
then the first edges on P ′ up to (x ,w) induce a circuit C . Reverse the
orientation of C and go to Step 1.

The next procedure, called SHORTEN, is based on the simple observation that
if a tour T contains a chain P of traversed (but not serviced) edges, then T can
eventually be shortened by replacing P by a shortest chain linking the endpoints
of P .

Procedure SHORTEN

INPUT : a covering tour T
OUTPUT : a possibly shorter covering tour.

Step 1. Choose an orientation for T and let v be any vertex on T .
Step 2. Apply POSTPONE and REVERSE

Step 3. Let w be the first vertex on T preceeding a required edge. If Lvw is shorter
than the length of P , then replace P by SCvw.

Step 4. Repeatedly apply steps 2 and 3, considering the two possible orientations
of T , and each possible starting vertex v on T , until no improvement can
be obtained.

As an illustration, consider the graph depicted in Figure 2(a) containing 4 re-
quired edges shown in bold lines. An oriented tour T = (c,d,e, f,b,a,e,g,d ,c) is rep-
resented in Figure 2(b) with v = c as starting vertex. Since the required edge (c,d)
appears twice on T , POSTPONE makes it first traversed and then serviced, as shown
on Figure 2(c). Then, REVERSE determines P = (c,d,e) and P ′ = (e, f,b,a,e,g,d,c),
and since P ′ contains a non-serviced edge (a,e) entering e, the orientation of the cir-
cuit (e, f,b,a,e) is reversed, yielding the new tour represented in Figure 2(d). The first
part P = (c,d ,e,a) of this tour is shortened into (c,a), yielding the tour depicted in
Figure 2(e).
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Figure 2. Illustration of procedures POSTPONE, REVERSE and SHORTEN.

The next procedure, called SWITCH, also modifies the order in which required edges
are visited on a given tour. It is illustrated in Figure 3.

Procedure SWITCH

INPUT : a covering tour T
OUTPUT : another covering tour.

Step 1. Select a vertex v appearing several times on T .
Step 2. Reverse all minimal cycles starting and ending at v on T .

Given a covering tour T and given a non-required edge (v,w), procedure ADD

builds a new tour covering R ∪ (v,w). On the contrary, given a required edge (v,w) in
R, procedure DROP builds a new tour covering R\(v,w).

Procedure ADD

INPUT : a covering tour T and an edge (v,w) /∈R
OUTPUT : a covering tour for R ∪ (v,w)

Figure 3. Illustration of procedure SWITCH.
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Step 1. If neither v nor w appear on T , then determine a vertex z on T minimizing
Lzv + Lwz , and add the circuit SCzv∪ (v,w) ∪ SCwz on T . Otherwise, if
one of v and w (say v), or both of them appear on T , but not consecutively,
then add the circuit (v,w,v) on T .

Step 2. Set R: = R ∪ (v,w) and attempt to shorten T by means of SHORTEN.

Procedure DROP

INPUT : a covering tour T and an edge (v,w) in R
OUTPUT : a covering tour for R\(v,w).

Step 1. Set R: = R\(v,w).
Step 2. Attempt to shorten T by means of SHORTEN.

The last two procedures, called PASTE and CUT can be used in a UCARP context.
PASTE merges two routes into a single tour, possibly infeasible for the UCARP.

Procedure PASTE

INPUT : two routes T1 = (depot, v1,v2, . . . , vr , depot) and T2 = (depot, w1,w2, . . . ,
ws , depot).

OUTPUT : a single route T containing all required edges of R1 and R2.

If (vr , depot) and (depot, w1) are non-serviced edges on T1 and T2, respectively,
then set T = (depot, v1, . . . , vr ,w1, . . . , ws , depot), else set T = (depot, v1, . . . , vr ,
depot, w1, . . . , ws , depot).

CUT decomposes a non-feasible route into a set of feasible routes (i.e., the total
demand on each route does not exceed the capacity Q of each vehicle).

Procedure CUT

INPUT : A route T starting and ending at the depot, and covering R.
OUTPUT : a set of feasible vehicle routes covering R.

Step 0. Label the vertices on T so that T = (depot, v1, v2, . . . ,vt , depot).
Step 1. Let D denote the total demand on T . If D ≤ Q then STOP : T is a feasible

vehicle route.
Step 2. Determine the largest index s such that (vs−1,vs) is a serviced edge, and the

total demand on the path (depot, v1, . . . , vs) from the depot to vs does not
exceed Q. Determine the smallest index r such that (vr−1,vr ) is a serviced
edge and the total demand on the path (vr , . . . , vt , depot) from vr to the
depot does not exceed Q(�D/Q� − 1). If r > s then set r = s.

For each index q such that r ≤ q ≤ s, let vq* denote the first endpoint
of a required edge after vq on T , and let δq denote the length of the
chain linking vq to vq* on T . Select the vertex vq minimizing L(vq ) =
Lvq , depot + Ldepot, vq∗−δq .
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Step 3. Let Pvq (Pvq∗) denote the paths on T from the depot to vq (vq*). Con-
struct the feasible vehicle route made of Pvq ∪ SCvq ,depot, replace Pvq∗ by
SCdepot,vq

∗ on T and return to Step 1.

The main idea of the above algorithm is to try to decompose the non-feasible route
T into �D/Q� feasible vehicle routes, where �D/Q� is a trivial lower bound on the
number of vehicles needed to satisfy the demand on T . If such a decomposition exists,
then the demand covered by the first vehicle must be large enough so that the residual
demand for the �D/Q� −1 other vehicles does not exceed Q(�D/Q� −1) units: this
constraint defines the above vertex vr . The first vehicle can however not service more
than Q units, and this defines the above vertex vs . If r > s, this means that it is not
possible to satisfy the demand with �D/Q� vehicle routes, and the strategy described
above is to cover as many required edges as possible with the first vehicle. Otherwise,
the first vehicle satisfies the demand up to a vertex vq on the path linking vr to vs , and
the process is then repeated on the tour T ′obtained from T by replacing the path (depot,
v1,. . . ,vq*) by a shortest path from the depot to vq*. The choice for vq is made so that
the length of T ′ plus the length of the first vehicle route is minimized.

Procedure CUT is illustrated in Figure 4. The numbers in square boxes are de-
mands on required edges. The numbers on the dashed lines or on the edges are shortest
chain lengths. In this example, Q = 11 and D = 24. The procedure first computes
Q(�D/Q� − 1) = 22, which implies that the first vehicle route must include at least
the first required edge (i.e., r = 2). Since the first vehicle cannot include more than
the three first required edges without having a weight exceeding Q, we have s = 5.
Now, v2* = v3, v3* = v3, v4* = v4 and v5* = v6, and since L(v2) = 10, L(v3) = 12,
L(v4) = 8 and L(v5) = 11, vertex v4 is selected. The first vehicle route is there-
fore equal to (depot,v1,v2,v3,v4,depot) and the procedure is reapplied on the tour (de-
pot, v4, v5, . . . , v10, depot) with a total demand D = 17. We now have s = 7 and r = 9,
which means that the four remaining required edges cannot be serviced by two vehi-
cles. We therefore set s = r = 7, which means that the second vehicle route is equal to
(depot, v4, v5, v6, v7, depot) and the procedure is repeated on T = (depot, v8 ,v9 ,v10,

depot) with D = 12. Since s = r = 9, the third vehicle route is equal to (de-
pot, v8, v9, depot) and the residual tour T = (depot, v9, v10, depot) is now feasible and
corresponds to the fourth vehicle route.

Notice that procedure CUT does not necessarily produce a solution with a min-
imum number of vehicle routes. Indeed, in the above example, the initial route

Figure 4. Illustration of procedure CUT.
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T has been decomposed into four vehicle routes while there exists a solution with three
vehicle routes (depot, v1, . . . , v5, depot), (depot, v6, . . . , v9, depot) and (depot, v9, v10,
depot).

5. Recent Heuristic Algorithms for the URPP and the UCARP

The procedures described in the previous section can be used as basic tools for the
design of constructive algorithms for the URPP. As an example, a solution to the URPP
can easily be obtained by means of the following very simple algorithm designed by
[31].

Algorithm Construct-URPP

Step 1. Choose a required edge (vi ,v j ) and set T = (vi ,v j ,vi ).
Step 2. If T contains all required edges then stop; else chose a required edge which

is not yet in T and add it to T by means of procedure ADD.

Post-optimization procedures can be designed on the basis of procedures DROP,
ADD and SHORTEN. As an example, an algorithm similar to the 2-opt procedure [11]
for the undirected traveling salesman problem can be designed for the URPP as shown
below.

Algorithm 2-opt-URPP

Step 1. Choose an orientation of the given tour T and select two arcs (vi ,v j ) and
(vr ,vs) on T . Build a new tour T ′ by replacing these two arcs by the shortest
chains SPir and SP js , and by reversing the orientation of the path linking
v j to vr on T .

Step 2. Let R′ be the set of required edges appearing on T ′. Apply SHORTEN

to determine a possibly shorter tour T ′′ that also covers R′. If R �= R′

then add the missing required edges on T ′′ by means of procedure
ADD.

Step 3. If the resulting tour T ′′ has a lower cost than T , then set T equal to T ′′.
Step 4. Repeat steps 1, 2 and 3 with the two possible orientations of T and with all

possible choices for (vi ,v j ) and (vr ,vs), until no additional improvement
can be obtained.

[31] propose to use a post-optimization procedure, called DROP-ADD, similar to
the Unstringing-Stringing (US) algorithm for the undirected traveling salesman prob-
lem [23]. DROP-ADD tries to improve a given tour by removing a required edge and
reinserting it by means of DROP and ADD, respectively.

Algorithm DROP-ADD

Step 1. Choose a required edge e, and build a tour T ′ covering R\{e} by means
of DROP.
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Step 2. If edge e is not traversed on T ′, then add e to T ′ by means of ADD.
Step 3. If the resulting tour T ′ has a lower cost than T , then set T equal to T ′.
Step 4. Repeat steps 1, 2 and 3 with all possible choices for e, until no additional

improvement can be obtained.

[31] have generated 92 URPP instances to test the performance of these two post-
optimization procedures. These 92 instances correspond to three classes of randomly
generated graphs. First class graphs are obtained by randomly generating points in the
plane; class 2 graphs are grid graphs generated to represent the topography of cities,
while class 3 contains grid graphs with vertex degrees equal to 4. Computational ex-
periments show that Frederickson’s algorithm is always very quick but rarely optimal.
Percentage gaps with respect to best known solutions can be as large as 10%, partic-
ularly in the case of larger instances or when the number of connected components in
GR is large. Applying DROP-ADD after Frederickson’s algorithm typically generates a
significant improvement within a very short computing time. However, much better re-
sults are obtained if 2-opt-URPP is used instead of DROP-ADD, but computing times are
then more significant. The combination of Frederickson’s algorithm with 2-opt-URPP
has produced 92 solutions which are now proved to be optimal using the Branch & Cut
algorithm of [24].

Local search techniques are iterative procedures that aim to find a solution s
minimizing an objective function f over a set S of feasible solutions. The iterative
process starts from an initial solution in S, and given any solution s, the next solution is
chosen in the neighbourhood N (s) ⊆ S. Typically, a neighbour s ′ in N (s) is obtained
from s by performing a local change on it. Simulated Annealing [34] and Tabu Search
[25] are famous local search techniques that appear to be quite successful when applied
to a broad range of practical problem.

[30] have designed an adaptation of Tabu Search, called CARPET, for the solution of
the UCARP. Tests on benchmark problems have shown that CARPET is a highly efficient
heuristic. The algorithm works with two objective functions: f (s), the total travel
cost, and a penalized objective function f ′(s) = f (s) + αE(s), where α is a positive
parameter and E(s) is the total excess weight of all routes in a possibly infeasible
solution s. CARPET performs a search over neighbor solutions, by moving at each
iteration from the current solution to its best non-tabu neighbor, even if this causes
a deterioration in the objective function. A neighbor solution is obtained by moving
a required edge from its current route to another one, using procedures DROP and
ADD.

Recently, [39] have designed a new local search technique called Variable Neigh-
borhood Search (VNS). The basic idea of VNS is to consider several neighborhoods
for exploring the solution space, thus reducing the risk of becoming trapped in a lo-
cal optimum. Several variants of VNS are described in [29]. We describe here the
simplest one which performs several descents with different neighborhoods until a
local optimum for all considered neighborhoods is reached. This particular variant
of VNS is called Variable neighborhood descent (VND). Let N1, N2, . . . , NK denote
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a set of K neighborhood structures (i.e., Ni (s) contains the solution that can be ob-
tained by performing a local change on s according to the i-th type). VND works as
follows.

Variable Neighbourhood Descent

Step 1. Choose an initial solution s in S.

Step 2. Set i: = 1 and sbest : = s.
Step 3. Perform a descent from s,using neighborhood Ni , and let s ′ be the resulting

solution. If f (s ′) < f (s) then set s: = s′. Set i: = i + 1. If i ≤ K then repeat
Step 3.

Step 4. If f (s) < f (sbest ) then go to Step 2; else stop.

[32] have designed an adaptation of VND to the undirected CARP, called VND-
CARP. The search space S contains all solutions made of a set of vehicle routes covering
all required edges and satisfying the vehicle capacity constraints. The objective function
to be minimized on S is the total travel cost. The first neighborhood N1(s) contains
solutions obtained from s by moving a required edge (v,w) from its current route T1 to
another one T2. Route T2 either contains only the depot (i.e., a new route is created),
or a required edge with an endpoint distant from v or w by at most α, where α is the
average length of an edge in the network. The addition of (v,w) into T2 is performed
only if there is sufficient residual capacity on T2 to integrate (v,w). The insertion of
(v,w) into T2 and the removal of (v,w) from T1 are performed using procedures ADD

and DROP described in the previous section.

A neighbor in Ni (s) (i > 1) is obtained by modifying i routes in s as follows. First,
a set of i routes in s are merged into a single tour using procedure PASTE, and procedure
SWITCH is applied on it to modify the order in which the required edges are visited.
Then, procedure CUT divides this tour into feasible routes which are possibly shortened
by means of SHORTEN.

As an illustration, consider the solution depicted in Figure 5(a) with three routes
T1 = (depot,a,b,c,d ,depot), T2 = (depot,b,e, f ,b,depot) and T3 = (depot,g,h,depot).
The capacity Q of the vehicles is equal to 2, and each required edge has a
unit demand. Routes T1 and T2 are first merged into a tour T = (depot,a,b,c,d,
depot,b,e, f ,b,depot) shown in Figure 5(b). Then, SWITCH modifies T into
T ′ = (depot,d ,c,b, f ,e,b,a,depot,b,depot) represented in Figure 5(c). Procedure
CUT divides T ′ into two feasible routes T ′

1 = (depot,d,c,b, f ,e,b,depot) and
T ′

2 = (depot,b,a,depot,b,depot) depicted in Figure 5(d). Finally, these two routes
are shortened into T ′′

1 = (depot,d ,c, f ,e,b,depot) and T ′′
2 = (depot,b,a,depot) using

SHORTEN. Routes T ′′
1 and T ′′

2 together with the third non-modified route T3 in s
constitute a neighbor of s in N2(s) shown in Figure 5(e).

Hertz and Mittaz have performed a comparison between CARPET, VND-CARP

and the following well known heuristics for the UCARP : CONSTRUCT-STRIKE
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Figure 5. Illustration of neighbourhood N2.

[7], PATH-SCANNING [26], AUGMENT-MERGE [27], MODIFIED-CONSTRUCT-STRIKE [43]
and MODIFIED-PATH-SCANNING [43]. Three sets of test problems have been con-
sidered. The first set contains 23 problems described in [13] with 7 ≤ |V | ≤ 27
and 11 ≤ |E | ≤ 55, all edges requiring a service (i.e. R = E). The second set contains
34 instances supplied by Benavent [5] with 24 ≤ |V | ≤ 50, 34 ≤ |E | ≤ 97 and R = E .
The third set of instances was generated by Hertz, Laporte and Mittaz [30] in order
to evaluate the performance of CARPET. It contains 270 larger instances having 20,
40 or 60 vertices with edge densities in [0.1,0.3], [0.4,0.6] or [0.7,0.9] and |R|/|E | in
[0.1,0.3], [0.4,0.6] or [0.8,1.0]. The largest instance contains 1562 required edges.

A lower bound on the optimal value was computed for each instance. This lower
bound is the maximum of the three lower bounds CPA, LB2′ and NDLB′ described in
the literature. The first, CPA, was proposed by Belenguer and Benavent [4] and is based
on a cutting plane procedure. The second and third, LB2′ and NDLB′, are modified
versions of LB2 [6] and NDLB [33] respectively. In LB2′ and NDLB′, a lower bound
on the number of vehicles required to serve a subset R of edges is computed by means
of the lower bounding procedure LR proposed by Martello and Toth [37] for the bin
packing problem, instead of �D/Q� (where D is the total demand on R).

Average results are reported in tables 1 and 2 with the following information:

� Average deviation: average ratio (in %) of the heuristic solution value over the
best known solution value.



232 Alain Hertz

Table 1. Computational results on DeArmon instances

PS AM CS MCS MPS CARPET VND

Average deviation 7.26 5.71 14.03 4.02 4.45 0.17 0.17
Worst deviation 22.27 25.11 43.01 40.83 23.58 2.59 1.94
Number of proven optima 2 3 2 11 5 18 18

� Worst deviation: largest ratio (in %) of the heuristic solution value over the best
known solution value;

� Number of proven optima: number of times the heuristic has produced a solution
value equal to the lower bound.

PS, AM, CS, MCS, MPS and VND are abbreviations for PATH-SCANNING,
AUGMENT-MERGE, CONSTRUCT-STRIKE, MODIFIED-CONSTRUCT-STRIKE, MODIFIED-
PATH-SCANNING and VND-CARP.

It clearly appears in Table 1 that the tested heuristics can be divided into three
groups. CONSTRUCT-STRIKE, PATH-SCANNING and AUGMENT-MERGE are constructive
algorithms that are not very robust: their average deviation from the best known solu-
tion value is larger than 5%, and their worst deviation is larger than 20%. The second
group contains MODIFIED-CONSTRUCT-STRIKE and MODIFIED-PATH-SCANNING; while
better average deviations can be observed, the worst deviation from the best known
solution value is still larger than 20%. The third group contains algorithms CARPET and
VND-CARP that are able to generate proven optima for 18 out of 23 instances.

It can be observed in Table 2 that VND-CARP is slightly better than CARPET both
in quality and in computing time. Notice that VND-CARP has found 220 proven optima
out of 324 instances. As a conclusion to these experiments, it can be observed that the
most powerful heuristic methods for the solution of the UCARP all employ on the basic
tools described in Section 4.

6. Conclusion and Future Developments

In the field of exact methods, Branch & Cut has known a formidable growth
and considerable success on many combinatorial problems. Recent advances made by

Table 2. Computational results on Benavent and Hertz-Laporte-Mittaz instances

Benavent instances Hertz-Laporte-Mittaz instances

CARPET VND CARPET VND

Average deviation 0.93 0.54 0.71 0.54
Worst deviation 5.14 2.89 8.89 9.16
Number of proven optima 17 17 158 185
Computing times in seconds 34 21 350 42



Recent Trends in Arc Routing 233

Corberán and Sanchis [10], Letchford [36] and Ghiani and Laporte [24] indicate that
this method also holds much potential for arc routing problems.

In the area of heuristics, basic simple procedures such as POSTPONE, REVERSE,
SHORTEN, DROP, ADD, SWITCH, PASTE and CUT have been designed for the URPP and
UCARP [31]. These tools can easily be adapted to the directed case [38]. Powerful
local search methods have been developed for the UCARP, one being a Tabu Search
[30], and the other one a Variable Neighborhood Descent [32].

Future developments will consist in designing similar heuristic and Branch &
Cut algorithms for the solution of more realistic arc routing problems, including those
defined on directed and mixed graphs, as well as problems incorporating a wider variety
of practical constraints.
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Associées aux Arcs, PhD Dissertation, Department of Mathematics, Ecole Polytechnique
Fédérale de Lausanne, (1999).
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