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1. Introduction

The topic about which I will be speaking, algorithmic graph theory, is part of the
interface between combinatorial mathematics and computer science. I will begin by
explaining and motivating the concept of an intersection graph, and I will provide ex-
amples of how they are useful for applications in computation, operations research, and
even molecular biology. We will see graph coloring algorithms being used for schedul-
ing classrooms or airplanes, allocating machines or personnel to jobs, or designing
circuits. Rich mathematical problems also arise in the study of intersection graphs, and
a spectrum of research results, both simple and sophisticated, will be presented. At the
end, I will provide a number of references for further reading.

I would like to start by defining some of my terms. For those of you who are
professional graph theorists, you will just have to sit back and enjoy the view. For those
of you who are not, you will be able to learn something about the subject. We have a
mixed crowd in the audience: university students, high school teachers, interdisciplinary
researchers and professors who are specialists in this area. I am gearing this talk so that
it will be non-technical, so everyone should be able to enjoy something from it. Even
when we move to advanced topics, I will not abandon the novice.

When I talk about a graph, I will be talking about a collection of vertices and edges
connecting them, as illustrated in Figures 1 and 2. Graphs can be used in lots of different
applications, and there are many deep theories that involve using graphs. Consider, for
example, how cities may be connected by roads or flights, or how documents might

* This chapter is based on the Andrew F. Sobczyk Memorial Lecture delivered by the author on Octo-
ber 23, 2003 at Clemson University. For a biographical sketch of Andrew F. Sobczyk, see the website
http://www.math.clemson.edu/history/sobczyk.html
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Figure 1. A graph and a coloring of its vertices.

be connected by similar words and topics. These are regularly modeled by graphs, and
actions on them are carried out by algorithms applied to these graphs. Some of the
terms that we need are:

Coloring a graph — coloring a graph means assigning a color to every vertex,
with the property that two vertices that are adjacent, i.e., connected by an edge,
have different colors. As you can see in the example in Figure 1, we have colored
the vertices white, grey or black. Notice that whenever a pair of vertices are
joined by an edge, they have different colors. For example, a black vertex can
be connected only to grey or white vertices. It is certainly possible to find pairs
that have different colors yet are not connected, but every time we have an edge,
its two end points must be different colors. That is what we mean by coloring.
An independent set or a stable set — a collection of vertices, no two of which
are connected. For example, in Figure 1, the grey vertices are pair-wise not
connected, so they are an independent set. The set of vertices {d, e, f} is also an
independent set.

A clique or a complete subset of vertices — a collection of vertices where every-
thing is connected to each other, i.e., every two vertices in a clique are connected
by an edge. In our example, the vertices of the triangle form a clique of size
three. An edge is also a clique — it is a small one!

The complement of a graph — when we have a graph we can turn it “inside out”
by turning the edges into non-edges and vice-versa, non-edges into edges. In this
way, we obtain what is called the complement of the graph, simply interchanging
the edges and the non-edges. For example, the complement of the graph in
Figure 1 is shown in Figure 3. We denote the complement of G by G.

An orientation of a graph — an orientation of a graph is obtained by giving a di-
rection to each edge, analogous to making all the streets one way. There are many
different ways to do this, since every edge could go either one way or the other.
There are names for a number of special kinds of orientations. Looking at
Figure 2, the first orientation of the pentagon is called cyclic, its edges are

Figure 2. Two oriented graphs. The first is cyclic while the second is acyclic.
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Figure 3. The complement of the graph in Figure 1.

directed consistently around in a circle, in this case clockwise; one can go round
and round cycling around the orientation forever. The opposite of this idea,
when there is no oriented cycle, is called an acyclic orientation. The second
orientation of the pentagon is an acyclic orientation. You cannot go around
and around in circles on this — wherever you start, it keeps heading you in one
direction with no possibility of returning to your starting point.

Another kind of orientation is called a transitive orientation. An orientation
is transitive if every path of length two has a “shortcut” of length one.! In
Figure 4, the first orientation is not transitive because we could go from vertex
d to vertex b and then over to vertex ¢, without having a shortcut. This is not
a transitive orientation. The second orientation is transitive because for every
triple of vertices x, y, z, whenever we have an edge oriented from x to y and
another from y to z, then there is always a shortcut straight from x to z. Not all
graphs have an orientation like this. For example, the pentagon cannot possibly
be oriented in a transitive manner since it is a cycle of odd length.

2. Motivation: Interval Graphs
2.1. An Example

Let us look now at the motivation for one of the problems I will discuss. Suppose
we have some lectures that are supposed to be scheduled at the university, meeting at
certain hours of the day. Lecture a starts at 09:00 in the morning and finishes at 10:15;
lecture b starts at 10:00 and goes until 12:00 and so forth. We can depict this on the
real line by intervals, as in Figure 5. Some of these intervals intersect, for example,
lectures a and b intersect from 10:00 until 10:15, the period of time when they are both
in session. There is a point in time, in fact, where four lectures are “active” at the same
time.

We are particularly interested in the intersection of intervals. The classical model
that we are going to be studying is called an inferval graph or the intersection graph
of a collection of intervals. For each of the lectures, we draw a vertex of the interval
graph, and we join a pair of vertices by an edge if their intervals intersect. In our

! Formally, if there are oriented edges x — y and y — z, then there must be an oriented edge x — z.
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Figure 4. A graph with two orientations. The first is not transitive while the second is transitive.

example, lectures a and b intersect, so we put an edge between vertex a and vertex b,
see Figure 6(a). The same can be done for lectures b and ¢ since they intersect, and so
forth. Attime 13:15, illustrated by the vertical cut, we have ¢, d, e and f all intersecting
at the same time, and sure enough, they have edges between them in the graph. They
even form a clique, a complete subset of vertices, because they pair-wise intersect with
each other. Some of the intervals are disjoint. For example, lecture a is disjoint from
lecture d, so there is no edge between vertices a and d.

Formally, a graph is an interval graph if it is the intersection graph of some col-
lection of intervals? on the real line.

Those pairs of intervals that do not intersect are called disjoint. It is not surprising
that if you were to consider a graph whose edges correspond to the pairs of intervals that
are disjoint from one another, you would get the complement of the intersection graph,
which we call the disjointness graph. It also happens that since these are intervals on
the line, when two intervals are disjoint, one of them is before the other. In this case,
we can assign an orientation on the (disjointness) edge to show which interval is earlier
and which is later. See Figure 6(b). Mathematically, this orientation is a partial order,
and as a graph it is a transitive orientation. If there happens to be a student here from
Professor Jamison’s Discrete Math course earlier today, where he taught about Hasse
diagrams, she will notice that Figure 6(b) is a Hasse diagram for our example.

2.2. Good News and Bad News

What can we say about intersecting objects? There is both good and bad news. Inter-
section can be regarded as a good thing, for example, when there is something important
in common between the intersecting objects — you can then share this commonality,
which we visualize mathematically as covering problems. For example, suppose [ want
to make an announcement over the loudspeaker system in the whole university for ev-
eryone to hear. If I pick a good time to make this public announcement, all the classes
that are in session (intersecting) at that particular time will hear the announcement.
This might be a good instance of intersection.

2 The intervals may be either closed intervals which include their endpoints, or open intervals which do not.
In this example, the intervals are closed.
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Lecture a }—{

Lecture b —— 3

Lecture ¢ }%—{

Lecture d }—F{
Lecture e }—H

Lecture f H—{

8am 9am 10am 1lam 12pm 13pm 14pm 15pm 16pm 17pm

Figure 5. An interval representation.

Intersection can also be a bad thing, such as when intersecting intervals indicate a
conflict or competition, and the resource cannot be shared. In our example of scheduling
university lectures, we cannot put two lectures in the same classroom if they are meeting
at the same time, thus, they would need different classes. Problems such as these, where
the intervals cannot share the same resource, we visualize mathematically as coloring
problems and maximum independent set problems.

2.3. Interval Graphs and their Applications

As mentioned earlier, not every graph can be an interval graph. The problem
of characterizing which graphs could be interval graphs goes back to the Hungarian
mathematician Gyorgy Hajos in 1957, and independently to the American biologist,
Seymour Benzer in 1959. Hajds posed the question in the context of overlapping time
intervals, whereas Benzer was looking at the linear structure of genetic material, what
we call genes today. Specifically, Benzer asked whether the sub-elements could be
arranged in a linear arrangement. Their original statements of the problem are quoted
in [1] page 171. I will have more to say about the biological application later.

We have already seen the application of scheduling rooms for lectures. Of course,
the intervals could also represent meetings at the Congress where we may need to
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Figure 6. (a) The interval graph of the interval representation in Figure 5 and (b) a transitive orientation of
its complement.
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allocate TV crews to each of the meetings. Or there could be applications in which
jobs are to be processed according to a given time schedule, with concurrent jobs
needing different machines. Similarly, there could be taxicabs that have to shuttle
people according to a fixed schedule of trips. The assignment problem common to all
these applications, classrooms to courses, machines to jobs, taxis to trips, and so on, is
to obtain a feasible solution — one in which no two courses may meet in the same room
at the same time, and every machine or taxi does one job at a time.

3. Coloring Interval Graphs

The solution to this problem, in graph theoretic terms, is to find a coloring of the
vertices of the interval graph. Each color could be thought of as being a different room,
and each course needs to have a room: if two classes conflict, they have to get two
different rooms, say, the brown one and the red one. We may be interested in a feasible
coloring or a minimum coloring — a coloring that gives the fewest number of possible
classrooms.

Those who are familiar with algorithms know that some problems are hard and
some of them are not so hard, and that the graph coloring problem “in general”” happens
to be one of those hard problems. If I am given a graph with a thousand vertices with
the task of finding a minimum feasible coloring, i.e., a coloring with the smallest
possible number of colors, I will have to spend a lot of computing time to find an
optimal solution. It could take several weeks or months. The coloring problem is an NP-
complete problem, which means that, in general, it is a difficult, computationally hard
problem, potentially needing an exponentially long period of time to solve optimally.

However, there is good news in that we are not talking about any kind of graph.
We are talking about interval graphs, and interval graphs have special properties. We
can take advantage of these properties in order to color them efficiently. I am going to
show you how to do this on an example.

Suppose we have a set of intervals, as in Figure 7. You might be given the intervals
as pairs of endpoints, [1, 6], [2, 4], [3, 11] and so forth, or in some other format like a
sorted list of the endpoints shown in Figure 8. Figure 7 also shows the interval graph.
Now we can go ahead and try to color it. The coloring algorithm uses the nice diagram
of the intervals in Figure 8, where the intervals are sorted by their left endpoints, and
this is the order in which they are processed. The coloring algorithm sweeps across
from left to right assigning colors in what we call a “greedy manner”. Interval a is the
first to start — we will give it a color, solid “black”. We come to b and give it the color
“dashes”, and now we come to ¢ and give it the color “dots”. Continuing across the
diagram, notice “dashes” has finished. Now we have a little bit of time and d starts.
I can give it “dashes” again. Next “black” becomes free so I give the next interval, e,
the color “black”. Now I am at a trouble spot because “dots”, “dashes” and “black”
are all busy. So I have to open up a new color called “brown” and assign that color
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a=[1,6] a O b
b=1[24]

c=[3,11]

d=1[59]

e=[7,14]

f=112]

g = [10,16]

h=[13,15] h & Vg

Figure 7. A set of intervals and the corresponding (colored) interval graph.

to interval f. I continue coloring from left to right and finally finish at the end. This
greedy method gives us a coloring using 4 colors.

Is it the best we can do? Mathematicians would ask that question. Can you “prove”
that this is the best we can do? Can we show that the greedy method gives the smallest
possible number of colors? The answer to these questions is “yes”.

Since this is a mathematics lecture, we must have a proof. Indeed, the greedy
method of coloring is optimal, and here is a very simple proof. Let k be the number of
colors that the algorithm used. Now let’s look at the point P, as we sweep across the
intervals, when color & was used for the first time. In our example, k =4 and P = §
(the point when we had to open up the color “brown”.) When we look at the point P,
we observe that all the colors 1 through £ — 1 were busy, which is why we had to open
up the last color k. How many intervals (lectures) are alive and running at that point P?

.............................................

Figure 8. A sorted list of endpoints of the intervals in Figure 7.
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The answer is k. I am forced to use & colors, and in the interval graph, they form a
clique of size k. Formally, (1) the intervals crossing point P demonstrate that there is a
k-clique in the interval graph — which means that at least £ colors are required in any
possible coloring, and (2) the greedy algorithm succeeded in coloring the graph using
k colors. Therefore, the solution is optimal. Q.E.D.

It would be nice if all theorems had simple short proofs like this. Luckily, all the
ones in this lecture will.

Interval graphs have become quite important because of their many applications.
They started off in genetics and in scheduling, as we mentioned earlier. They have
applications in what is called seriation, in archeology and in artificial intelligence and
temporal reasoning. They have applications in mobile radio frequency assignment,
computer storage and VLSI design. For those who are interested in reading more in
this area, several good books are available and referenced at the end.

4. Characterizing Interval Graphs

What are the properties of interval graphs that may allow one to recognize them?
What is their mathematical structure? I told you that not all graphs are interval graphs,
which you may have believed. Now I am going to show you that this is true. There are
two properties which together characterize interval graphs; one is the chordal graph
property and the other is the co-TRO property.

A graph is chordal if every cycle of length greater than or equal to four has a chord.
A chord means a diagonal, an edge that connects two vertices that are not consecutive
on the cycle. For example, the hexagon shown in Figure 9 is a cycle without a chord.
In an interval graph, it should not be allowed. In fact, it is forbidden.

Let’s see why it should be forbidden. If I were to try to construct an interval
representation for the cycle, what would happen? I would have to start somewhere by
drawing an interval, and then I would have to draw the interval of its neighbor, which
intersects it, and then continue to its neighbor, which intersects the second one but not
the first one, and so forth, as illustrated in Figure 9. The fourth has to be disjoint from

Figure 9. A cycle without a chord.
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the second but hit the third, and the fifth has to hit the fourth but not the third. Finally,
the sixth has to hit the fifth and not the fourth, yet somehow must close the loop and
intersect the first. This cannot be done because we must draw intervals on a line. Thus,
it is impossible to get an interval representation for this or any chordless cycle. It is a
forbidden configuration. 4 chordless cycle cannot be part of an interval graph.

The second property of interval graphs is the transitive orientation property of the
complement or co-TRO. Recall that the edges of the complement of an interval graph
represent disjoint intervals. Since in a pair of disjoint intervals, one appears totally
before the other, we may orient the associated edge in the disjointness graph from the
later to the earlier. It is easy to verify that such an orientation is transitive: if @ is before
b, and b is before c, then a is before c. Now here is the punch line, a characterization
theorem of Gilmore and Hoffman [10] from 1964.

Theorem 1 A graph G is an interval graph if and only if G is chordal and its comple-
ment G is transitively orientable.

Additional characterizations of interval graphs can be found in the books [1, 2, 3].
Next, we will illustrate the use of some of these properties to reason about time intervals
in solving the Berge Mystery Story.

5. The Berge Mystery Story

Some of you who have read my first book, Algorithmic Graph Theory and Perfect
Graphs, know the Berge mystery story. For those who don’t, here it is:

Six professors had been to the library on the day that the rare tractate was stolen. Each had
entered once, stayed for some time and then left. If two were in the library at the same time,
then at least one of them saw the other. Detectives questioned the professors and gathered the
following testimony: Abe said that he saw Burt and Eddie in the library; Burt said that he saw
Abe and Ida; Charlotte claimed to have seen Desmond and Ida; Desmond said that he saw
Abe and Ida; Eddie testified to seeing Burt and Charlotte; Ida said that she saw Charlotte and
Eddie. One of the professors lied!! Who was it?

Let’s pause for a moment while you try to solve the mystery. Being the interrogator,
you begin, by collecting the data from the testimony written in the story: Abe saw Burt
and Eddie, Burt saw Abe and Ida, etc. Figure 10(a) shows this data with an arrow
pointing from X to Y if X “claims” to have seen Y. Graph theorists will surely start
attacking this using graph theory. How can we use it to solve the mystery?

Remember that the story said each professor came into the library, was there for
an interval of time, during that interval of time he saw some other people. If he saw
somebody, that means their intervals intersected. So that provides some data about the
intersection, and we can construct an intersection graph G, as in Figure 10(b). This
graph “should be” an interval graph if all the testimony was truthful and complete.
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Figure 10. The testimony graphs.

However, we know that there is a lie here. Why? Because looking at the intersection
graph G, we see a chordless cycle of length four which is an impossibility. This is
supposed to be an interval graph, so we know something is wrong.

Notice in Figure 10(a), that some pairs have arrows going in both directions, for
example, Burt saw Abe and Abe saw Burt, and other pairs are just one way. That
gives us some further information. Some of the edges in the intersection graph are
more confident edges than others. A bold black edge in Figure 10(b) indicates a double
arrow in Figure 10(a), and it is pretty confident because B saw A and A saw B, so, if at
least one of them is telling the truth, the edge really exists. Similarly, for I and C. But
all the one-way arrows are possibly true and possibly false. How shall we argue? Well,
if we have a 4-cycle, one of those four professors is the liar. I do not know which one,
so I will list all the cycles and see who is common. ABID is a cycle of length 4 without
a chord; so is ADIE. There is one more — AECD — that is also a 4-cycle, with no chord.
What can we deduce? We can deduce that the liar is one of these on a 4-cycle. That tells
us Burt is not a liar. Why? Burt is one of my candidates in the first cycle, but he is not
a candidate in the second, so he is telling the truth. The same goes for Ida; she is not
down in the third cycle, so she is also telling the truth. Charlotte is not in the first cycle,
so she is ok. The same for Eddie, so he is ok. Four out of the six professors are now
known to be telling the truth. Now it is only down to Abe and Desmond. What were to
happen if Abe is the liar? If Abe is the liar, then ABID still remains a cycle because of
the testimony of Burt, who is truthful. That is, suppose Abe is the liar, then Burt, Ida
and Desmond would be truth tellers and ABID would still be a chordless cycle, which
is a contradiction. Therefore, Abe is not the liar. The only professor left is Desmond.
Desmond is the liar.

Was Desmond Stupid or Just Ignorant?

If Desmond had studied algorithmic graph theory, he would have known that his
testimony to the police would not hold up. He could have said that he saw everyone, in
which case, no matter what the truthful professors said, the graph would be an interval
graph. His (false) interval would have simply spanned the whole day, and all the data
would be consistent. Of course, the detectives would probably still not believe him.
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6. Many Other Families of Intersection Graphs

We have seen a number of applications of interval graphs, and we will see one
more a little bit later. However, I now want to talk about other kinds of intersections —
not just of intervals — to give an indication of the breadth of research that goes on in this
area. There is a mathematician named Victor Klee, who happened to have been Robert
Jameson’s thesis advisor. In a paper in the American Mathematics Monthly in 1969,
Klee wrote a little article that was titled “What are the intersection graphs of arcs in
a circle?” [21]. At that point in time, we already had Gilmore and Hoffman’s theorem
characterizing interval graphs and several other theorems of Lekkerkerker and Boland,
Fulkerson and Gross, Ghouila-Houri and Berge (see [1]). Klee came along and said,
Okay, you 've got intervals on a line, what about arcs going along a circle? Figure 11
shows a model of arcs on a circle, together with its intersection graph. It is built in a
similar way as an interval graph, except that here you have arcs of a circle instead of
intervals of a line. Unlike interval graphs, circular arc intersection graphs may have
chordless cycles. Klee wanted to know: Can you find a mathematical characterization
for these circular arc graphs?

In fact, I believe that Klee’s paper was really an implicit challenge to consider a
whole variety of problems on many kinds of intersection graphs. Since then, dozens of
researchers have begun investigating intersection graphs of boxes in the plane, paths in
atree, chords of a circle, spheres in 3-space, trapezoids, parallelograms, curves of func-
tions, and many other geometrical and topological bodies. They try to recognize them,
color them, find maximum cliques and independent sets in them. (I once heard someone
I know mention in a lecture, “A person could make a whole career on algorithms for
intersection graphs!” Then I realized, that person was probably me.)

Circular arc graphs have become another important family of graphs. Renu Laskar
and I worked on domination problems and circular arc graphs during my second visit
to Clemson in 1989, and published a joint paper [14].

On my first visit to Clemson, which was in 1981, I started talking to Robert Jamison

about an application that comes up on a tree network, which I will now describe.

(@) (b)
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Figure 11. (a) Circular arc representation. (b) Circular arc graph.



52 Martin Charles Golumbic

Figure 12. A representation of paths in a tree.

Figure 12 shows a picture of a tree, the black tree, which you may want to think of as
a communication network connecting different places. We have pairs of points on the
tree that have to be connected with paths — green paths, red paths and purple paths.
They must satisfy the property that if two of these paths overlap, even a little bit, this
intersection implies that they conflict and we cannot assign the same resource to them
at the same time. I am interested in the intersection graph of these paths. Figure 13
gives names to these paths and shows their intersection graph. As before, if two paths
intersect, you connect the two numbers by an edge, and if they are disjoint, you do
not. Coloring this graph is the same as assigning different colors to these paths; if they
intersect, they get different colors. I can interpret each color to mean a time slot when
the path has exclusive use of the network. This way there is the red time slot, the purple

(@) (b)
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Figure 13. (a) Vertex Intersection Graph (VPT) and (b) Edge Intesection Graph (EPT), both of the paths
shown on Figure 12.



Algorithmic Graph Theory and Its Applications 53

Table 1. Six graph problems and their complexity on VPT

graphs and EPT graphs.

Graph Problem VPT graphs EPT graphs
recognition polynomial NP-complete [12]
maximum independent set polynomial polynomial [25]
maximum clique polynomial polynomial [11]
minimum coloring polynomial NP-complete [11]
3/2 approximation coloring polynomial polynomial [25]
minimum clique cover polynomial NP-complete [11]

time slot, etc. All the red guys can use the network at the same time; all the purple
guys can use it together some time later; brown guys use it at yet a different time. We
might be interested to find (/) a maximum independent set, which would be the largest
number of paths to be used simultaneously, or (if) a minimum coloring, which would
be a schedule of time periods for all of the paths.

I began investigating the intersection graphs of paths and trees, and immediately
had to look at two kinds of intersections — one was sharing a vertex and one was sharing
an edge. This gave rise to two classes of graphs, which we call vertex intersection graphs
of paths of a tree (VPT graphs) and edge intersection graphs of paths of a tree (EPT
graphs), quickly observing that they are different classes — VPT graphs are chordal and
perfect, the EPT graphs are not.

After discussing this at Clemson, Robert and I began working together on EPT
graphs, a collaboration of several years resulting in our first two joint papers [11, 12].
We showed a number of mathematical results for EPT graphs, and proved several
computational complexity results. Looking at the algorithmic problems — recognition,
maximum independent set, maximum clique, minimum coloring, 3/2 approximation
(Shannon) coloring, and minimum clique cover — all six problems are polynomial for
vertex intersection (VPT graphs), but have a real mixture of complexities for edge
intersection (EPT graphs), see Table 1. More recent extensions of EPT graphs have
been presented in [15, 20].

There are still other intersection problems you could look at on trees. Here is an
interesting theorem that some may know. If we consider an intersection graph of subtrees
of a tree, not just paths but arbitrary subtrees, there is a well known characterization
attributed to Buneman, Gavril, and Wallace discovered independently by each of them
in the early 1970, see [1].

Theorem 2 A4 graph G is the vertex intersection graph of subtrees of a tree if and only
if it is a chordal graph.

Here is another Clemson connection. If you were to look at subtrees not of just
any old tree, but of a special tree, namely, a star, you would get the following theorem
of Fred McMorris and Doug Shier [23] from 1983.
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Table 2. Graph classes involving trees.

Type of Interaction Objects Host Graph Class

vertex intersection subtrees tree chordal graphs

vertex intersection subtrees star split graphs

edge intersection subtrees star all graphs

vertex intersection paths path interval graphs

vertex intersection paths tree path graphs or VPT graphs
edge intersection paths tree EPT graphs

containment intervals line permutation graphs
containment paths tree ? (open question)
containment subtrees star comparability graphs

Theorem 3 A4 graph G is a vertex intersection graph of distinct subtrees of a star if
and only if both G and its complement G are chordal.

Notice how well the two theorems go together: If the host tree is any tree, you
get chordal, and if it is a star, you get chordal N co-chordal, which are also known as
split graphs. In the case of edge intersection, the chordal graphs are again precisely the
edge intersection graphs of subtrees of a tree, however, every possible graph can be
represented as the edge intersection graph of subtrees of a star. Table 2 summarizes
various intersection families on trees. Some of them may be recognizable to you; for
those that are not, a full treatment can be found in Chapter 11 of [4].

7. Tolerance Graphs

The grandfather of all intersection graph families is the family of interval graphs.
Where do we go next? One direction has been to measure the size of the intersection and
define a new class called the interval tolerance graphs, first introduced by Golumbic
and Monma [16] in 1982. It is also the topic of the new book [4] by Golumbic and
Trenk. We also go into trapezoid graphs and other kinds of intersection graphs.

Even though I am not going to be discussing tolerance graphs in detail, I will
briefly state what they are and in what directions of research they have taken us. In
particular, there is one related class of graphs (NeST) that I will mention since it, too,
has a Clemson connection.

An undirected graph G = (V, E) is a tolerance graph if there exists a collection
T = {1, },er of closed intervals on the real line and an assignment of positive numbers
t = {t,}ver such that

vw € E & |, N 1,| > min{t, t,}.
Here |[,| denotes the length of the interval I,. The positive number ¢, is called

the folerance of v, and the pair (Z, ¢) is called an interval tolerance representation
of G. Notice that interval graphs are just a special case of tolerance graphs, where
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each tolerance ¢, equals some sufficiently small € > 0. A tolerance graph is said to be
bounded if it has a tolerance representation in which ¢, < |,| forallv € V.

The definition of tolerance graphs was motivated by the idea that a small, or
“tolerable” amount of overlap, between two intervals may be ignored, and hence not
produce an edge. Since a tolerance is associated to each interval, we put an edge between
a pair of vertices when at least one of them (the one with the smaller tolerance) is
“bothered” by the size of the intersection.

Let’s look again at the scheduling problem in Figure 5. In that example, the chief
university officer of classroom scheduling needs four rooms to assign to the six lectures.
But what would happen if she had only three rooms available? In that case, would one
of the lectures c, d, e or f have to be cancelled? Probably so. However, suppose some
of the professors were a bit more tolerant, then an assignment might be possible.

Consider, in our example, if the tolerances (in minutes) were:
ty, =10, =5,t. = 65,1, = 10,1, = 20, ¢ty = 60.

Then according to the definition, lectures ¢ and f would no longer conflict, since
[I. N 17| <60 =min{z., tr}. Notice, however, that lectures e and f remain in conflict,
since Professor e is too intolerant to ignore the intersection. The tolerance graph for
these values would therefore only erase the edge ¢/ in Figure 6, but this is enough to
admit a 3-coloring.

Tolerance graphs generalize both interval graphs and another family known as
permutation graphs. Golumbic and Monma [16] proved in 1982 that every bounded
tolerance graph is a cocomparability graph, and Golumbic, Monma and Trotter [17]
later showed in 1984 that tolerance graphs are perfect and are contained in the class of
weakly chordal graphs. Coloring bounded tolerance graphs in polynomial time is an im-
mediate consequence of their being cocomparability graphs. Narasimhan and Manber
[24] used this fact in 1992 (as a subroutine) to find the chromatic number of any (un-
bounded) tolerance graph in polynomial time, but not the coloring itself. Then, in 2002,
Golumbic and Siani [19] gave an O(gn + n logn) algorithm for coloring a tolerance
graph, given the tolerance representation with ¢ vertices having unbounded tolerance.
For details and all the references, see Golumbic and Trenk [4]. The complexity of
recognizing tolerance graphs and bounded tolerance graphs remain open questions.

A several “variations on the theme of tolerance” in graphs have been defined and
studied over the past years. By substituting a different “host” set instead of the real line,
and then specifying the type of subsets of that host to consider instead of intervals, along
with a way to measure the size of the intersection of two subsets, we obtain other classes
of tolerance-type graphs, such as neighborhood subtree tolerance (NeST) graphs (see
Section 8 below), tolerance graphs of paths on a tree or tolerance competition graphs.
By changing the function min for a different binary function ¢ (for example, max, sum,
product, etc.), we obtain a class that will be called ¢-folerance graphs. By replacing
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the measure of the length of an interval by some other measure p of the intersection
of the two subsets (for example, cardinality in the case of discrete sets, or number of
branching nodes or maximum degree in the case of subtrees of trees), we could obtain
yet other variations of tolerance graphs. When we restrict the tolerances to be 1 or oo, we
obtain the class of interval probe graphs. By allowing a separate leftside tolerance and
rightside tolerance for each interval, various bitolerance graph models can be obtained.
For example, Langley [22] in 1993 showed that the bounded bitolerance graphs are
equivalent to the class of trapezoid graphs. Directed graph analogues to several of these
models have also been defined and studied. For further study of tolerance graphs and
related topics, we refer the reader to Golumbic and Trenk [4].

8. Neighborhood Subtree Tolerance (NeST) Graphs

On my third visit to Clemson, also in 1989, Lin Dearing told me about a class of
graphs that generalized tolerance graphs, called neighborhood subtree tolerance (NeST)
graphs. This generalization consists of representing each vertex v € V(G) ofa graph G
by a subtree 7, of a (host) tree embedded in the plane, where each subtree 7, has a center
¢, and a radius r, and consists of all points of the host tree that are within a distance of
ry from c,. The size of a neighborhood subtree is twice its radius, or its diameter. The
size of the intersection of two subtrees 7, and T, is the Euclidean length of a longest
path in the intersection, namely, the diameter of the subtree 7, N T,. Bibelnieks and
Dearing [9] investigated various properties of NeST graphs. They proved that bounded
NeST graphs are equivalent to proper NeST graphs, and a number of other results. You
can see their result in one of the boxes in Figure 14.

I bring this to your attention because it is typical of the research done on the
relationships between graph classes. We have all these classes, some of which are
arranged in a containment hierarchy and others are equivalent, shown in the same
box of the figure. Figure 14 is an example of an incomplete hierarchy since some of
the relationships are unknown. Interval graphs and trees are the low families on this
diagram. They are contained in the classes above them, which are in turn contained in
the ones above them, etc. The fact that NeST is contained in weakly chordal graphs is
another Clemson result from [9].

You see in Figure 14 a number of question marks. Those are the open questions
still to be answered. So as long as the relationships between several graph classes in
the hierarchy are not known yet (this is page 222 of [4]), we remain challenged as
researchers.

9. Interval Probe Graphs

Lastly, I want to tell you about another class of graphs called the interval probe
graphs. They came about from studying interval graphs, where some of the adja-
cency information was missing. This is a topic that is of recent interest, motivated by
computational biology applications. The definition of an interval probe graph is a graph
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Figure 14. The NeST Hierarchy (reprinted from [4]).

whose vertices are partitioned into two sets: the probes P and non-probes N, where N
is an independent set, and there must exist a(n interval) completion, by adding some
extra edges between nodes in N so that this augmented graph is an interval graph.
The names probe and non-probe come from the biological application. Partitioned into
these two sets, the edges between pairs of P nodes and between P and N nodes are
totally known, but there is nothing known about the connections between pairs of N
nodes. Is it possible to fill in some of these missing edges in order to get an interval
representation?

That is the mathematical formulation of it. You can ask, “What kinds of graphs do
you have in this class?” Figure 15(a) shows an example of an interval probe graph and
a representation for it; The black vertices are probes and the white vertices are non—
probes. Figure 15(b) gives an example of a graph that is not interval probe, no matter
how the vertices may be partitioned. I will let you prove this on your own, but if you
get stuck, then you can find many examples and proofs in Chapter 4 of the Tolerance
Graphs book [4].

I will tell you a little bit about how this problem comes about in the study of genetic
DNA sequences. Biologists want to be able to know the whole structure of the DNA
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Figure 15. An example of an interval probe graph and a non-interval probe graph.

of some gene, which can be regarded as a long string of about a million letters. The
Human Genome Project was to be able to identify the sequence of those strings in
people. The biologists worked together with other scientists and mathematicians and
computer scientists and so on, and here is one method that they use. They take the gene
and they place it in a beaker with an enzyme, and then dump it out on the floor where
it breaks into a bunch of pieces. These fragments are called gene fragments. Now they
will take the same gene and put in a different enzyme, stir it and shake it and then dump
it on the floor where it breaks up in a different way. They do it again and again with a
bunch of different enzymes.

Now we can think of the problem as reconstructing several puzzles, each one
having different pieces, but giving the same completed string. One could argue, “Ah,
I have a string that says ABBABBABBA and someone else has a similar string BAB-
BACCADDA and they would actually overlap nicely.” By cooperating maybe we could
put the puzzle back together, by recombining overlapping fragments to find the correct
ordering, that is, if we are able to do all this pattern matching.

Imagine, instead, there is some experiment where you take this little piece of
fragment and you can actually test somehow magically, (however a biologist tests
magically), how it intersects with the other fragments. This gives you some intersection
data. Those that are tested will be the probes. In the interval probe model, for every
probe fragment we test, we know exactly whom he intersects, and for the unlucky
fragments that we do not test, we know nothing regarding the overlap information
between them. They are the non-probes. This is the intersection data that we get from
the biologist. Now the interval probe question is: can we somehow fill-in the missing
data between the pairs of non-probes so that we can get a representation consistent with
that data?

Here is a slightly different version of the same problem — played as a recognition
game. Doug has an interval graph H whose edges are a secret known only to him.
A volunteer from the audience chooses a subset N of vertices, and Doug draws you
a graph G by secretly erasing from H all the edges between pairs of vertices in N,
making N into an independent set. My game #1 is, if we give you the graph G and the
independent set N, can you fill-in some edges between pairs from N and rebuild an
interval graph (not necessarily H)?
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This problem can be shown to be solvable in time proportional to #? in a method
that was found by Julie Johnson and Jerry Spinrad, published in SODA 2001. The
following year there was a faster algorithm by Ross McConnell and Jerry Spinrad that
solved the problem in time O(m logn), published in SODA 2002. Here n and m are
the number of vertices and edges, respectively.

There is a second version of the game, which I call the unpartitioned version: this
time we give you G, but we do not tell you which vertices are in N. My game #2
requires both choosing an appropriate independent set and filling in edges to complete
it to an interval graph. So far, the complexity of this problem is still an open question.
That would be recognizing unpartitioned interval probe graphs.

10. The Interval Graph Sandwich Problem

Interval problems with missing edges, in fact, are much closer to the problem
Seymour Benzer originally addressed. He asked the question of reconstructing an
interval model even when the probe data was only partially known. Back then, they
could not answer his question, so instead he asked the ‘simpler’ interval graph question:
“Suppose I had all of the intersection data, then can you test consistency and give me
an interval representation?” It was not until much later, in 1993, that Ron Shamir and
I gave an answer to the computational complexity of Benzer’s real question.

You are given a partially specified graph, i.e., among all possible pairs of vertices,
some of the pairs are definitely edges, some of them are definitely non-edges, and the
remaining are unknown. Can you fill-in some of the unknowns, so that the result will
be an interval graph? This problem we call the interval sandwich problem and it is a
computationally hard problem, being NP-complete [18].

For further reading on sandwich problems, see [13], Chapter 4 of [4] and its
references.

11. Conclusion

The goal of this talk has been to give you a feeling for the area of algorithmic
graph theory, how it is relevant to applied mathematics and computer science, what
applications it can solve, and why people do research in this area.

In the world of mathematics, sometimes I feel like a dweller, a permanent resident;
at other times as a visitor or a tourist. As a mathematical resident, I am familiar with my
surroundings. I do not get lost in proofs. I know how to get around. Yet, sometimes as a
dweller, you can become jaded, lose track of what things are important as things become
too routine. This is why I like different applications that stimulate different kinds of
problems. The mathematical tourist, on the other hand, may get lost and may not know
the formal language, but for him everything is new and exciting and interesting. [ hope
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that my lecture today has given both the mathematical resident and the mathematical
tourist some insight into the excitement and enjoyment of doing applied research in
graph theory and algorithms.
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