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Abstract

In the 21st century our society is becoming more and more dependent on software systems. The
safety of these systems and the quality of our lives is increasingly dependent on the quality of such
systems. A key element in the manufacture and quality assurance process in software engineering
is the testing of software and hardware systems. The construction of efficient combinatorial
covering suites has important applications in the testing of hardware and software. In this paper
we define the general problem, discuss the lower bounds on the size of covering suites, and give
a series of constructions that achieve these bounds asymptotically. These constructions include
the use of finite field theory, extremal set theory, group theory, coding theory, combinatorial
recursive techniques, and other areas of computer science and mathematics. The study of these
combinatorial covering suites is a fascinating example of the interplay between pure mathematics
and the applied problems generated by software and hardware engineers. The wide range of
mathematical techniques used, and the often unexpected applications of combinatorial covering
suites make for a rewarding study.

1. Introduction

Testing is an important but expensive part of the software and hardware develop-
ment process. In order to test a large software or hardware system thoroughly, many
sequences of possible inputs must be tried, and then the expected behavior of the sys-
tem must be verified against the system’s requirements. This is usually a labor-intensive
process that requires a great deal of time and resources. It has often been estimated that
testing consumes at least 50% of the cost of developing a new piece of software. The
testing costs for hardware and safety-critical systems are often higher.

The consequences of inadequate testing can be catastrophic. An extreme example is
the software failure in the Therac-5 radiation therapy machine [27] that is known to have
caused six massive overdoses of radiation to be administered to cancer patients resulting
in deaths and severe injuries. A further example of a catastrophic software failure
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occurred when the Ariane 5 satellite launcher exploded 40 seconds into its maiden
flight. A register overflow failure which occurred simultaneously on one processor and
on its backup [29] caused both processors to shut down, and eventually abort the satellite
mission. The most celebrated hardware bug is the Pentium floating point division bug
[14] which caused an error in the accuracy of a small number of division computations.
This in itself, does not sound like a disaster – but the cost to the Intel corporation was
measured in millions of dollars.

An approach to lowering the cost of software testing was put forward by Cohen,
Dalal, Fredman, and Patton [11] using test suites generated from combinatorial designs.
This approach involves identifying parameters that define the space of possible test
scenarios, then selecting test scenarios in such a way as to cover all the pairwise (or
t-wise) interactions between these parameters and their values. A similar approach
was used earlier in hardware testing by Tang, Chen, and Woo [41,42] and Boroday
and Grunskii [3]. The approach is familiar to statisticians, and has been used in the
design of agricultural experiments since the 1940s [17]. The statistical analysis of such
experiments is facilitated if every interaction is covered precisely the same number of
times, however Cohen et al. point out that in software testing it is often sufficient to
generate test suites so that each interaction is covered at least once rather than insisting
on the more restrictive condition required by the statisticians.

As an example, consider the testing of an internet site that must function correctly
on three operating systems (Windows, Linux, and Solaris), two browsers (Explorer
and Netscape), three printers (Epson, HP, and IBM), and two communication proto-
cols (Token Ring and Ethernet). Although there are 36 = 3 × 2 × 3 × 2 possible test
configurations, the nine tests in Figure 1 cover all the pairwise interactions between
different parameters of the system.

The interactions between operating systems and printers are all covered precisely
once, but some interactions between operating systems and browsers are covered more
than once. For example, Windows and Explorer are tested together twice in the test
suite.

More generally, if a software system has k parameters, each of which must be
tested with ni values (1 ≤ i ≤ k), then the total number of possible test vectors is
the product ∏

i
ni . If we wish to test the interactions of any subset of t parameters,

then the number of test vectors may be as small as the product of the t largest
values ni .

The same argument applies to testing software that computes a function with k
parameters, or a piece of hardware with k input ports. In the context of hardware testing
it is of particular importance to find small sets of binary vectors of length k with the
property that any fixed set of t coordinate places contains all 2t binary strings of length
t . In Figure 2 we illustrate a set of 8 binary vectors of length 4 such that any 3 coordinate
places contain all possible binary strings of length 3.
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Operating System Browser Printer Protocol 

Windows Explorer Epson Token Ring 

Windows Netscape HP Ethernet

Windows Explorer IBM Ethernet

Linux Netscape Epson Token Ring 

Linux Explorer HP Ethernet 

Linux Netscape IBM Token Ring 

Solaris Explorer Epson Ethernet 

Solaris Netscape HP Token Ring 

Solaris Explorer IBM Ethernet

Figure 1. A set of test cases with pairwise coverage.

In the next section we will formalize the problem of finding minimal covering
suites. We then discuss various techniques for constructing good covering suites using
finite fields (in Section 3), extremal set theory (in Section 4), group theory (Section 6),
coding theory (Section 4), algorithmic methods (Sections 5 and 8), and combinatorial
recursive methods (Section 7). We also discuss briefly the results on lower bounds on
the sizes of covering suites in Section 4. Finally in Section 9 we close with an account
of three diverse applications of covering suites including one in an area far removed
from the original motivating problem.

The wide range of methods used, and the variety of applications of these com-
binatorial objects provide evidence of the value of interdisciplinary studies, and the
cross-fertilization that occurs between mathematics and computer science.

0000
0011
0101
0110
1001
1010
1100
1111

Figure 2. A covering suite of strength 3 with four binary parameters.
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2. Covering Suites and Their Properties

Let D1, D2, . . . , Dk be finite sets of cardinalities n1, n2, . . . , nk respectively. A
test suite with N test vectors is an array A = (aij : 1 ≤ i ≤ N , 1 ≤ j ≤ k) where each
member of the array aij ∈ Dj for all i and j . The rows of the array are called test vectors
or test cases or just simply tests. The set Di is the domain of possible values for the
i-th coordinate of the test vector.

We shall say that the test suite A is a t-wise covering suite with parameters
n1, n2, . . . , nk if for any t distinct columns c1, c2, . . . , ct and for any ordered t-tuple T ∈
Dc1 × Dc2 × . . . × Dct there exists at least one row r such that (arc1 , arc2 , . . . , arct ) = T .

We define the covering suite number CSt (n1, n2, . . . , nk) to be the minimum integer
N such that there exists a t-wise covering suite with N test cases for k domains of sizes
n1, n2, . . . , nk . The function is well-defined, since the actual members of the sets D j

are not important; what really matters is the cardinalities of the sets. Unless otherwise
stated, we will assume that D j = {0, 1, . . . , nj − 1}.

If all the domains are the same size, say n, we will denote CSt (n, n, . . . , n) by
CSt (nk) and we also use this standard exponential notation for multi-sets in other
contexts, so that for example, we will use CSt (n2, m3) for CSt (n, n, m, m, m).

A strict interpretation of the definition implies that CS0(nk) = 1, since at least
one row is required to cover the empty 0-tuple. It is also straightforward to see that
CS1(nk) = n, since each column of the minimal array must contain a permutation of In .

In the rest of this section, we will establish some elementary properties of covering
suites and the covering suite numbers defined above.

Lemma 2.1 CSt (n1, n2, . . . , nk) ≥ n1n2 . . . nt , and hence nk ≥ CSt (nk) ≥ nt

Proof. Consider the number of test cases required to cover all the combinations of
values in the first t domains. Details are left as an exercise. �

We now show that CSt (nk) is a non-decreasing function of t , n, and k.

Lemma 2.2 For all positive integer parameters, we have:

a) if k < r then CSt (nk) ≤ CSt (nr )
b) if ni ≤ mi for all i then CSt (n1, n2, . . . nk) ≤ CSt (m1, m2, . . . mk)
c) if n < m then CSt (nk) < CSt (mk)
d) if s < t then CSs(nk) ≤ CSt (nk).

Proof. a) Let CSt (nr ) = N and let A be a t-wise covering suite with N test cases for r
domains of size n. Deleting r − k columns from A leaves a t-wise covering test suite
with N test cases for k domains of size n, and thus CSt (nk) ≤ N = CSt (nr ).
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b) Let CSt (m1, m2, . . . , mk) = N and let A be a t-wise covering suite with N test
cases for the k domains of size mi . Replace every entry of A that lies in the set Imi − Ini

by an arbitrary member of Ini to produce a t-wise covering suite with N test cases for
the k domains of size ni , thus CSt (n1, n2, . . . , nk) ≤ N = CSt (m1, m2, . . . , mk).

c) To prove the strict inequality in c), we observe that the symbols in any column
may be permuted independently of each other without affecting the coverage property.
We permute the symbols so that the first row of the larger array is the constant vector
with value m − 1 (the largest member of Im). Now delete this row, and proceed as in
the proof of part b).

d) This follows from the fact that every s-tuple is contained in some t-tuple.
Moreover, the inequality is strict when n > 1 and k ≥ t . �

The following result shows that there is a stronger relationship between the sizes
of covering suites when increasing their strength t.

Lemma 2.3 We have CSt (n1, n2, . . . , nk) ≥ n1CSt−1(n2, n3, . . . , nk) and thus
CSt (nk) ≥ nCSt−1(nk−1).

Proof. Consider the n1 sub-arrays of a t-wise covering array consisting of all rows
where the first column takes a constant value, and delete the first column, see Fig-
ure 3. Each such sub-array must be a (t−1)-wise covering array, which implies the
result. �

The problem of minimizing the number Nof test cases in a t-wise covering test
suite for k domains of size n was apparently first studied by Renyi [35], and many papers
on the subject have appeared since then. Many of these consider the mathematically
equivalent problem of maximizing the number k of domains of size n in a t-wise
covering test suite with a fixed number Nof test cases. This is known as the problem
of finding the size of a largest family of t-independent n-partitions of an N-set. Other
names used in the literature for test suites are covering arrays, (k,t)-universal sets, and
t-surjective arrays.

3. Orthogonal Arrays and Finite Fields

Orthogonal arrays are structures that have been used in the design of experiments
for over 50 years. An orthogonal array of size N with k constraints, n levels, strength t ,
and index λ is an N × k array with entries from In = {0, 1, . . . n − 1} with the property
that: in every N × t submatrix, every 1 × t row vector appears precisely λ = N/nt

times. See Figure 4.

In a fundamental paper, Bush [6] gave constructions for orthogonal arrays of
index 1, and bounds on their parameters. It is clear that an orthogonal array of index
1 is a special case of a covering suite, since in a covering suite each 1 × t row vector
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Figure 3. Proof of Lemma 2.3.

is required to appear at least once. Thus, an orthogonal array is always a minimal
covering suite.

Orthogonal arrays of strength 2 and index 1 have been especially well studied as
they are equivalent to mutually orthogonal Latin squares of order n.

A Latin square of order n is a square array of side n with entries from the set In

with the property that every row and every column contains every member of the set
precisely once. Two Latin squares of order n are said to be mutually orthogonal if for
any ordered pair of elements (x, y} ∈ I 2

n there exists precisely one cell, such that the
first square has the value x in the cell, and the second square has the value y in that
cell. We illustrate two mutually orthogonal Latin squares of order 3 in Figure 5 below.
Notice that all nine pairs of symbols (x, y) occur once in the same cell of the squares.

0000
0111
0222
1021
1102
1210
2012
2120
2201

Figure 4. An orthogonal array of strength 2.
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0 1 2 0 1 2
2 0 1 1 2 0
1 2 0 2 0 1

Figure 5. A pair of mutually orthogonal Latin squares of side 3.

A set of k − 2 Latin squares of order n, each of which is orthogonal to the other,
can be put in one-to-one correspondence with an orthogonal array of size n2 with k
constraints, n levels, strength 2, and index 1, as follows.

We define a row of the array for each of the n2 cells in the Latin squares. The first
column of each row contains the row number of the cell, the second column contains the
column number of the cell, and the j-th column (for j > 2) contains the element in the
cell of the j-2nd Latin square. We illustrate this construction using the two orthogonal
Latin squares of order 3 given above to build the orthogonal array of size 9, with 4
constraints, 3 levels, strength 2, and index 1, given at the beginning of this section
(Figure 4).

It is well-known (see, for example, [12]) that there exists a set of n − 1 mutually
orthogonal Latin squares of order n if and only if there exists a finite projective plane of
order n, and that, moreover, the number of mutually orthogonal Latin squares of order
n is at most n − 1. We will see below that there are many values of n for which this
holds, and they will help us to construct covering suites in many cases. We summarize
this in the following result:

Theorem 3.1 CS2(nk) = n2 for all k ≤ n + 1 if and only if there exists a projective
plane of order n, and CS2(nk) > n2 for all k > n + 1.

Proof. If there exists a projective plane of order n, then there exist n − 1 mutually
orthogonal Latin squares of order n, which implies the existence of an orthogonal array
of strength 2, index 1, n + 1 constraints, and n levels. Hence CS2(nk) ≤ n2 for all
k ≤ n + 1, using the monotonicity results (Lemma 2.2). But, by Lemma 2.1, we have
CS2(nk) ≥ n2, and thus equality holds. On the other hand, if CS2(nk) = n2, then each
pair of symbols must occur together precisely once in each pair of columns, and hence
the covering suite must be an orthogonal array, which in turn implies the existence of
k − 2 mutually orthogonal Latin squares, and hence k ≤ n + 1. �

It is also well known that projective planes exist for all orders n = pα , which are
powers of a single prime p. The construction of projective planes of prime power order
was generalized by Bush [6] who proved the following result.

Theorem 3.2 Let n = pα be a prime power with n > t . Then CSt (nk) = nt for all
k ≤ n + 1. Moreover, if n ≥ 4 is a power of 2, then CS3(nk) = n3 for all k ≤ n + 2.

Proof. Let F = {0, 1, . . .} be the set of elements in a field of order n, with 0 be-
ing the zero element of the field. We index the columns of the orthogonal array by
members of F ∪ {∞}, and the rows of the array are indexed by t-tuples
(β0, β1, . . . , βt−1) ∈ Ft .
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The array is then defined by the following table:

Column Row Array Entry

∞ ),...,,( 110 −t 0

0 ),...,,( 110 −t 1−t

0≠x ),...,,( 110 −t ∑
−

=

1

0

t

j

j
j x

β

β

β
βββ

βββ

βββ

Figure 6. Construction of orthogonal arrays of strength t .

Let T = (x0, x1, . . . , xt−1) be a t-tuple of distinct columns, and let B =
(b0, b1, . . . , bt−1) be an arbitrary member of Ft . To complete the proof of the first
part of the theorem we need to show that B occurs as some row of the sub-matrix
whose columns are indexed by T . If T contains neither ∞ nor 0, then we need to
solve the following t equations for the t unknown quantities β j , which index the row
containing B.

t−1∑
j=0

β j xi
j = bi with 0 ≤ i < t.

Now the coefficient matrix has the form of a Vandermonde matrix [43], and thus
is invertible. Hence the system of equations has a unique solution. If T contains either
∞, or 0, or both, then we have a system of t − 1 or t − 2 equations that also have a
Vandermonde coefficient matrix, and thus are uniquely solvable.

In the case where t = 3 and n is a power of two, we index the columns of the matrix
by F ∪ {∞0, ∞1} and we construct the array as follows:

Column Row Array Entry 

0∞ ),,( 210 0

1∞ ),,( 210 1

0 ),,( 210 2

0≠x ),,( 210
2

210 xx ++ βββ

β

β

ββββ

βββ

βββ

βββ

Figure 7. Construction of orthogonal arrays of strength 3 over fields of characteristic 2.
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The proof of this construction is similar, with the exception of the case in which
we consider three columns indexed by two distinct non-zero field members, say x and
y, and the column indexed by ∞1. In this case we have to solve the following equations
for β0, β1, and β2.

β0 + β1x + β2x2 = b0

β0 + β1 y + β2 y2 = b1

β1 = b2

which reduces to the following pair of equations in β0 and β2:

β0 + β2x2 = b0 − b2x

β0 + β2 y2 = b1 − b2 y

Now these equations have a unique solution if and only if x2 − y2 �= 0. In most fields
this quantity may be zero for distinct values x and y, but in fields of characteristic 2,
x2 − y2 = (x − y)2 �= 0. �

Remark 3.3 In the construction for arrays of strength 2, one can order the rows and
columns so that the first q rows have the form (0, x, x, . . . , x) one for every member
x of the field. This can be done by putting the 0 column on the left, and placing
all rows where β1 = 0 at the top of the array. (An example is shown in Figure 4.)
Deleting these rows and the first column leaves us with an array with q2 − q rows,
and q columns with the property that any ordered pair of distinct members of the field
is contained in some row of any pair of columns. These structures are known in the
literature as ordered designs (see Section IV.30 in [12]).We will use this construction in
Section 7.

Bush [5] also gave the following product construction, which generalizes Mac-
Neish’s product construction for mutually orthogonal Latin squares.

Theorem 3.4 If there exist orthogonal arrays with k constraints, ni levels (for i = 1, 2),
strength t , and index 1, then there exists an orthogonal array with k constraints, n1n2

levels, strength t , and index 1.

Proof. The construction is a straightforward product construction, indexing the rows
of the new array by ordered pairs of indices of the input arrays, and using the Cartesian
product of the symbol sets used as the symbol set of the new array. If the two input arrays
are A[i, j] and B[m, j] then the resulting array C[(i, m), j] is defined by C[(i, m), j] =
(A[i, j], B[m, j]). The details are left as an exercise. �

Theorems 3.2 and 3.4 have the following consequences for covering suites:

Corollary 3.5 If n = ∏
qj where the qj are powers of distinct primes, then CSt (nk) =

nt , for any k ≤ 1 + max(t, min q j ).
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There is a great deal of literature on the existence of sets of mutually orthogonal
Latin squares; see [12] for an extensive list of references and numerical results. These
results all have implications for the sizes C S2(nk) of optimal pairwise covering suites
with k ≤ n + 1. We quote two of the most famous of these results – the disproof of
Euler’s conjecture and the Chowla, Erdös, Straus Theorem. We will use these results
in Section 7.

Theorem 3.6 (Bose, Parker, and Shrikhande [4]): For any positive integer n other than
2 or 6, there exists a pair of mutually orthogonal Latin squares of side n, and thus
CS2(n4) = n2 for all n /∈ {2, 6}.

Euler originally conjectured (on the basis of Corollary 3.5) that no pair of mutually
orthogonal Latin squares of side n exists for all n ≡ 2(mod4). A proof of the non-
existence of a pair of squares of side 6 was published in 1900, but Parker eventually
found a pair of squares of side 10, and soon after, in 1960, the conjecture was totally
discredited by Theorem 3.6.

Theorem 3.7 (Chowla, Erdös, Straus [10]) The number of mutually orthogonal Latin
squares of side n goes to infinity with n, and for sufficiently large n, that number is at
least n0.0675.

In other words, if we fix k, then for all sufficiently large n, CS2(nk) = n2. For small
values of k much better results than that provided by Theorem 3.7 are known. For
example CS2(n4) = n2 for all n > 6. (Theorem 3.6), and CS2(n5) = n2 for all n > 10
(see [12]).

One other result that belongs in this section is a construction due to Stevens, Ling,
and Mendelsohn [39]. They give a construction for near optimal covering suites using
affine geometries over finite fields. It is one of the few constructions in the literature
for covering suites where not all the domains are of the same size.

Theorem 3.8 Let n = pα be a prime power then CS2((n + 1)1, (n − 1)n+1) ≤ n2 − 1.

The testing problem discussed in Section 1 is an application of the constructions
described in this section. In that problem we wanted to test the pairwise interactions of
a system with four parameters, two of cardinality 2, and two of cardinality 3. Now from
Lemma 2.1 we have CS2(32, 22) ≥ 9. From the construction in Theorem 3.1 (illustrated
in Figure 4) we have CS2(34) ≤ 9, and hence by the monotonicity results in Lemma 2.2,
we can construct the test suite given in Figure 1, which illustrates that CS2(32, 22) ≤ 9.
Thus the test suite in Figure 1 is optimal.

4. Lower Bounds and Asymptotics

Weak lower bounds on the function CSt (nk) can be derived from non-existence
theorems for orthogonal arrays. Two examples are presented below.
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Theorem 4.1 (Bush:) An orthogonal array with k constraints, n levels, strength t , and
index 1 exists only if:

k ≤
⎧⎨
⎩

n + t − 1 if n ≡ 0(mod2) and t ≤ n
n + t − 2 if n ≡ 1(mod2) and 3 ≤ t ≤ n

t + 1 if t ≥ n

⎫⎬
⎭

This implies that CSt (nk) > nt for all k greater than the bounds given in Theorem 4.1.

Some tighter bounds on the existence of sets of mutually orthogonal Latin square
due to Metsch [29] are very complicated to state (see II.2.23 in [12]) but have
the following implications on the size of covering suites when n ≡ 1, 2(mod4) and
n < 100.

Corollary to Metsch’s Theorem: CS2(nk) > n2

(i) for all k > n − 4, when n = 14, 21, 22,
(ii) for all k > n − 5, when

n = 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, and
(iii) for all k > n − 6, when n = 86, 93, 94.

These lower bounds are of little use in that they do not tell us how fast CSt (nk)
grows as a function of k. The only case where tight lower bounds have been proved
is when n = t = 2. This result has been rediscovered several times (see Rényi[35],
Katona[24], Kleitman and Spencer[25], and Chandra, Kou, Markowsky, and Zaks [7]
for examples).

Theorem 4.2 For all k > 1 we have CS2(2k) = N where N is the smallest integer such
that

k ≤
(

N − 1
�N/2�

)

So we have the following table of exact values for CS2(2k) = N :

The proof of these lower bounds uses Sperner’s lemma (see [22] for example) when
N is even and the Erdös-Ko-Rado theorem [14] when N is odd.

k 2-3 4 5-10 11-15 16-35 36-56 57-126 

N 4 5 6 7 8 9 10 

Figure 8. The precise values of N = CS2(2k ).
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The test suites that reach this bound may be constructed by taking the first test case
to be the all 0 vector. The columns of the remaining N − 1 rows each contain precisely
�N/2� ones, and each column is constructed by choosing a different �N/2�-subset of
the rows.

For example, when n = t = 2 and k = 15 we deduce that N = 7, and the optimal
test suite is:

00000 00000 00000
11111 11111 00000
11111 10000 11110
11100 01110 11101
10011 01101 11011
01010 11011 10111
00101 10111 01111

Figure 9. An optimal pairwise covering suite for 15 binary parameters.

Gargano, Körner, and Vaccaro [20] established the following asymptotic results
for the case of pairwise covering suites:

Theorem 4.3

lim
k→∞

CS2(nk)/ log k = n/2

Theorem 4.3 was considerably strengthened in a subsequent paper [19] by the same
authors.

Let E be a set of ordered pairs E ⊂ I 2
n . We can define CSE (nk) to be the minimum

number of rows in an array with k columns over In , with the property that every pair
of columns contains each of the members of E in at least one of its rows. Theorem 4.3
deals with the case in which E = I 2

n but the result was strengthened in [19] and shown
to hold for any subset E that contains a perfect matching. The implications of this
result on the size of test suites is that one doesn’t gain a great deal by excluding some
of the pairwise interactions between parameters from consideration when constructing
the test suites.

Stevens, Moura, and Mendelsohn [39] have also proved some other lower bounds
on the sizes of covering suites with t = 2. Many of their results are too complicated to
state here, but their improvements on Theorem 4.1 are easy to state, and provide useful
information on small parameter sets.

Theorem 4.4 If k ≥ n + 2, and n ≥ 3 then CS2(nk) ≥ n2 + 3 with the only exception
being CS2(35) = 11.
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We turn our attention now to lower bounds when t = 3. Kleitman and Spencer
[25] proved that CS3(2k) ≥ 3.212 . . . log k(1 + o(1)). I am not aware of any analogous
results for t > 3.

The best asymptotic results on upper bounds for the covering suite numbers appear
to come from coding theoretical constructions (e. g. Sloane [38]), and other deep results
in probability theory and group theory.

A series of recent papers in the theoretical computer science community have been
concerned with the de-randomization of randomized algorithms. As a by-product of
this work, Naor and Naor [31], and Naor, Schulman and Srinvasan [32] have obtained
results on binary covering suites (n = 2). Azar, Motwani, and Naor [1] have generalized
these methods to apply to larger values of n. The best asymptotic upper bound given
in these papers is:

Theorem 4.5 [32]: CSt (2n) ≤ 2t t O(log t) log n

5. Greedy Covering Suites and Probabalistic Constructions

The first method that comes to a computer scientist’s mind is to try to use a
greedy algorithm to construct covering suites. The analysis of this algorithm gives a
surprisingly good upper bound, but unfortunately, it is not a practical algorithm for the
construction of good covering suites, since it has exponential complexity. The algorithm
is as follows.

Let us define the t-deficiency Dt (A) of a test suite A with k domains of size n to
be the number of t-tuples of domain values not contained in any test case. Thus the
deficiency of a covering suite is 0, whereas the deficiency of an empty set of test cases
is

D(φ) =
(

k
t

)
nt

The greedy algorithm for the construction of a covering suite is to start with the empty
test suite, A0 = φ, and at each stage to add a test case that decreases the deficiency by
as much as possible. If AS is the test suite after the choice of S test cases, then we will
show that

Dt (AS) ≤ Dt (AS−1)(1 − n−t ) (1)

Thus Dt (AS) ≤ Dt (φ)(1 − n−t )S . Let S be the smallest integer such that Dt (AS) < 1
then S = ∣∣− log(Dt (φ)/ log(1 − n−t )

∣∣ if we approximate log(1 − n−t ) by −n−t we
see that AS is a covering suite when S ≈ nt (log

( k
t

) + t log n) and hence we have:
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Theorem 5.1 For all positive integers t, k, v, we have:

CSt (n
k) ≤ nt (log

(
k
t

)
+ t log n)

Proof. To establish equation (1) let us consider the incidence matrix with nk rows – one
for each possible test case – and

( k
t

)
nt columns – one for each t-tuple to be covered

(see Figure 10). Each row of the matrix contains
( k

t

)
ones, and each column contains

nk−t ones. Let m = Dt (Ai ) − Dt (Ai−1) be the maximum number of ones in a row of
the submatrix indexed by the deficient columns (i.e., the columns of t-tuples not yet
covered by the array Ai−1). Counting the number of ones in this submatrix in two ways
(ones per row times number of rows, and ones per column times number of columns)
we obtain the inequality mnk ≥ Dt (Ai−1)nk−t , which implies equation (1). �

The major problem with this construction is that in order to compute the next
test case, one must consider all nk − S possible test cases in order to choose one that
decreases the deficiency as much as possible.

Godbole, Skipper, and Sunley [21] use probabilistic arguments to show that a
randomly chosen array, in which each symbol is selected with equal probability, has
a positive probability of being a covering suite if the number of rows is large enough.
Their result is stated below in Theorem 5.2:

kn

Dt (Ai=1)

m

1...111111111

tn
t

k

Figure 10. Proof of Equation (1).
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Theorem 5.2 As k → ∞,

CSt (n
k) ≤ (t − 1) log k

log(nt/(nt − 1))
{1 + o(1)}

Both Sloane[38] and Godbole et. al. [21] also prove the following stronger result due
to Roux [36] for the case in which t = 3 and n = 2. The bound is stronger because the
construction considers only the selection of columns with an equal number of zeros
and ones, rather than selecting at random each entry in the matrix with a probability
of 1/2.

Theorem 5.3 As k → ∞,

CS3(2k) ≤ 7.56444 · · · log k{1 + o(1)}

6. Algebraic Constructions

Two papers by Chateauneuf, Colbourn and Kreher [9] and Chateauneuf and Kreher
[8] illustrate methods of using algebraic techniques to construct covering suites.

Let S be an N × k array over the set In . Let � be a subgroup of the group of all
permutations of the symbols in In , and let m = |�|. For g ∈ �, we define the image Sg
of S to be the array whose entries are the images of the corresponding members of S
under the action of the permutation g. We further define the image S� of S under � to
be the m N × k array consisting of the rows of Sg for all g ∈ �.

For example, let � = {(0)(1)(2), (012), (021)} be the cyclic group of permutations
of I3, and let

S =
000
012
021

Then S� has nine rows, the first three being the image of S under (0)(1)(2), the
identity permutation; the next three are the image of S under (012); and the last three
are the image of S under (021).

S� =

000
012
021
111
120
102
222
201
210
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The array S is called a starter array with respect to � if every n × t subarray
contains at least one representative of each orbit of � acting on ordered t-tuples from
In .

In the previous example, there are three orbits of ordered pairs under � — the orbit
of 00, which contains the pairs {00, 11, 22}, the orbit of 01, which contains the pairs
{01, 12, 20} and the orbit of 02, which contains the pairs {02, 10, 21}. The array S is
a starter array with respect to � since every 3 × 2 subarray contains a representative
of each orbit of ordered pairs, and thus S� is a CS2(33).

Note that we may also reduce the number of rows in S� by deleting a copy of any
row that is repeated.

For example, with t = n = 3, and � is the symmetric group of all six permutations
of I3, there are five orbits of ordered triples, namely the orbits of 000, 001, 010, 011,
and 012. The array

S =

0000
0012
0101
0110
0122

contains representatives of each of the five orbits in each of the four 3×5 subarrays.
Taking the image of S under the symmetric group and removing the duplicate images
of the first row generates an array with 27 rows, which establishes that CS3(34) = 27
(c.f., Theorem 3.2).

The main constructions given in [9] involve the use of the projective general linear
group PGL(q) defined as a group of permutations of the projective line GF(q) ∪ {∞},
where q is a prime power and GF(q) is the Galois field of order q. The projective linear
group consists of all permutations of GF(q) ∪ {∞} in the set

PGL(q) =
{

x �→ ax + b

cx + d
: a, b, c, d ∈ GF(q), ad − bc �= 0

}

where we define 1/0 = ∞, 1/∞ = 0,∞ + 1 = 1 − ∞ = 1 × ∞ = ∞, and
∞/∞ = 1.

The size of the group is q3 − q . The action of this group on the projective line is
sharply 3-transitive, meaning that there is a unique member of the group that takes any
ordered triple of distinct elements to any other ordered triple of distinct elements. This
means that if an array S over GF(q) ∪ {∞} has the property that any N × 3 subarray
contains the five rows with patterns (xxx), (xxy), (xyx), (xyy), and (xyz), then the image
of S with duplicates removed is a covering suite of strength 3.
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0 1 2 3 4 5 

0 0 1 2 2 1 0 

1 1 0 1 2 2 0 

2 2 1 0 1 2 0 

3 2 2 1 0 1 0 

4 1 2 2 1 0 0 

Figure 11. A starter array for PGL(3).

Chateauneuf et al. [9] then give an ingenious construction of an array with
2n − 1 rows and 2n columns over In with the property that every (2n − 1) × 3 sub-
array contains representatives of the four non-constant orbits of triples (xxy), (xyx),
(xyy), and (xyz). Taking the image of this array under PGL(q), where q = n − 1,
together with the n constant rows of length, 2n gives a covering suite of strength
3. A special case of their construction of the starter array is given by indexing
the rows by I2n−1, the columns by I2n , and setting S[i, 2n − 1] = 0 and S[i, j] =
min{|i − j | , 2n − 1 − |i − j |} for all i, j ∈ I2n−1. This array S has the property that
for any two columns j1 and j2 there is precisely one row i , such that S[i, j1] = S[i, j2]
and, furthermore, all other entries in that row are different from the common value.
The exact value of i is given by solving the equation 2i = j1 + j2(mod2n − 1) or
i = j1 in the special case that j2 = 2n − 1. We give an example of this construction in
Figure 11.

This property also ensures that given any three columns, there are precisely three
rows in which not all of the entries in the row are distinct. Thus, so long as 2n − 1 > 3,
we have a representative of the orbit of (xyz) in some row. Hence, we have the
following:

Theorem 6.1 Let qbe a prime power, then

CS3((q + 1)2(q+1)) ≤ (2q + 1)(q3 − q) + q + 1

A consequence of this result is that CS3(36) = 33. The theorem provides the upper
bound; the lower bound is a consequence of Lemma 2.3 and the result that CS2(35) = 11,
see [38].

There is another algebraic starter construction in [9] which establishes that
CS3(48) ≤ 88.
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7. Recursive Constructions

A recursive construction for a covering suite is a method for constructing a covering
suite from one or more covering suites with smaller parameter sets. We begin with an
efficient recursive construction for pairwise covering suites. This construction was
probably known to Cohen et al. [11] – since the array they construct to show that
CS2(313) ≤ 15 has the form of the construction. However, it first appeared in full detail
in Williams’ paper [45].

Theorem 7.1 If q is prime power, then
CS2(qkq + 1) ≤ CS2(qk) + q2 − q .

Proof. Let A be a pair-wise covering test suite with k columns and N = CS2(qk) rows
with entries from Iq .

Construct a new array B with N rows and kq + 1 columns by taking each column
Ai of Aq times and bordering it with an additional column of zeroes. The additional
q2 − q rows are constructed by taking the last rows from the orthogonal array C
constructed in the proof of Theorem 3.2 and Remark 3.3, taking the first column once,
and the remaining q columns k times each (see Figure 12). �

Corollary 7.2 If q is prime power, and d is any positive integer, then
CS2(qqd + qd−1 + ··· + q + 1) ≤ dq2 − (d − 1)q .

Proof. The result follows from Theorem 3.2 when d = 1, and by induction on d using
Theorem 7.1. �

A1 A2 …   Ak

0 000000  ……0 
0 111111 …….1
0 q-1 q-1 ……q-1 

C1 C2

0
0

0 qA1          qA2                                     qAk

0
0

C1 C2 C2 C2

Figure 12. Construction for Theorem 7.1.
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This result implies a good constructive upper bound on the size of pairwise covering
test suites.

Theorem 7.3 There is an absolute constant C such that CS2(nk) ≤ Cn2 log k for all
positive integers k and n.

Proof. By Bertrand’s postulate (proved by Chebyshev in 1851) there is a prime p,
between n and 2n. In fact, for n > 115, there is always a prime between n and 1.1n
(see [23]). Let d be the smallest integer such that k ≤ 1 + p + p2 + · · · + pd .

This implies that 1 + p + p2 + · · · + pd−1 < k, and hence that d = O(log k).
Now applying Corollary 7.2 and the monotonicity result, Lemma 2.2, we have:

CS2(nk) ≤ CS2(p1 + p + ··· + pd
) ≤ dp2 = O(n2 log k) thus proving the theorem. �

Another recursive construction, which has been rediscovered many times is the
following result, which gives a method of squaring the number k of parameters in a
covering suite of strength t while multiplying the number of test cases by a factor
dependent only on t and n, but independent of k. This factor is related to the Turan
numbers T (t, n)(see [44]) that are defined to be the number of edges in the Turan graph.
The Turan graph is the complete n-partite graph with t vertices, having b parts of size
a + 1, and n − b parts of size a = �t/n� where b = t − na. Turan’s theorem (1941)
states that among all t-vertex graphs with no n + 1 cliques, the Turan graph is the one
with the most edges.

Note that when n ≥ t , T (t, n) = t(t − 1)/2, and that when n = 2, we have
T (t, 2) = ⌊

t2/4
⌋

.

Theorem 7.4 If CSt (nk) = N and there exist T (t, n) −1 mutually orthogonal Latin
squares of side k (or equivalently CS2(kT (t,n) + 1) = k2) then CSt (nk2

) ≤ N (T (t, n)
+ 1).

Before proving this result, we note that this generalizes Tang and Chen’s result [41],
since they require k to be a prime. It generalizes and strengthens the result of Chateuneuf
et al. [9] by removing the divisibility conditions on k, and producing smaller arrays in
the cases where n < t .

Proof. Let A be a t-wise covering test suite with k columns, N rows, entries from In ,
and let Ai be the i-th column of A. Let B = B[i, j] be an orthogonal array of strength
2 with T (t, n) + 1 columns and entries from {1, 2, . . . , k}. We will construct a block
array C with k2 columns and T (t, n) + 1 rows. Each element in C will be a column of
A. Let AB[ j,i] be the block in the i-th row and j-th column of C (see Figure 13).

Now consider T, an arbitrary t-tuple of members of In . Let C ′ be a submatrix
of C induced by an arbitrary choice of t columns. We wish to show that T is a row
of C ′.
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                k 

  N A1 A2 Ak

     T(t,n)+1

     B[i,j]            k2

k2

           C[i,j] = AB[j,i]                      T(t,n)+1

Figure 13. The construction for Theorem 7.4.

The columns of C ′ correspond to t rows of B. Let B ′ be the submatrix of B induced
by those t rows. We wish to find a column in B ′ with distinct values whenever T has
distinct values in the corresponding coordinates, since this would guarantee that T is a
row in C ′ using the properties of the base array A.

Since B is an orthogonal array, whenever B[i, j] = B[k, j] then B[i, m] �=
B[k, m] for every column m �= j . This means that any pair of distinct values in T
eliminates at most one column of B ′. By Turan’s theorem, the number of pairs of dis-
tinct values in T is at most T (t, n), and hence at least one column in B ′ contains distinct
values whenever T contains distinct values. This completes the proof. �

The result has several immediate corollaries.

Corollary 7.5 (Boroday [1]): CS3(2k2
) ≤ 3CS3(2k).

Proof. The result follows from Theorem 7.4 since T (3, 2) = 2 and CS2(k3) = k2 for all
k, by Corollary 3.5. �

Using the disproof of Euler’s conjecture we can derive:

Corollary 7.6 For all k > 2, k �= 6, n > 2 we have CS3(nk2
) ≤ 4CS3(nk).

Proof. This result also follows from Theorem 7.4 since T (3, n) = 3 for all n > 2, and
CS2(k4) = k2 for all k > 2, k �= 6, by Theorem 3.6. �

We also derive one more corollary using the result of Chowla, Erdös, and Strauss:
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Corollary 7.7 For all positive integers t and n, and all sufficiently large integers k, we
have CSt (nk2

) ≤ (T (t, n) + 1)CSt (nk).

We give one more recursive result that shows how to double the number of columns
in 3-wise and 4-wise covering suites. The result for t = 3 and n = 2 was first proved
by Roux [36]. The result for t = 3 appears in [9], although our proof is different. To
the best of my knowledge, the result for t = 4 is new.

A tool used in the construction is a partition of the edge set of the complete directed
graph on n vertices, such that each part contains a spanning set of directed cycles –
i.e., each vertex occurs precisely once as the head of an arc and once as the tail of an
arc. The simplest such partition is given by the following construction:

Fj = {(i, i + j(mod n)) : i ∈ In}, j = 1, 2, . . . , n − 1

It is clear from the construction that each vertex appears precisely once as the head of
an arc in Fj , and precisely once as the tail of some arc. To show that each arc in the
complete directed graph occurs in precisely one of the sets Fj , consider the arc (x, y)
and note that it occurs in the set Fy−x .

We now proceed to use this construction as an ingredient in the following doubling
constructions for strength 3 and 4 covering suites.

Theorem 7.8 For all positive integers n and k,

a) CS3(n2k) ≤ CS3(nk) + (n − 1)CS2(nk)
b) CS4(n2k) ≤ CS4(nk) + (n − 1)CS3(nk) + CS2((n2)k)

Proof. a) Let A be a 3-wise covering suite with k columns and CS3(nk) rows over the
symbol set In . Construct a new array by taking each column of A twice and adding
(n − 1)CS2(nk) rows constructed as follows. Let B be a pairwise covering suite with k
columns and CS2(nk) rows over the symbol set In . Take n − 1 copies of B, and replace
the i-th symbol in the j-th copy with the i-th member (an ordered pair) of Fj . A worked
example of this construction is given below.

To verify that this construction yields a 3-wise covering suite, we need to verify
that three types of triples are covered by some row of the array: triples with three
elements in distinct columns of the original array A, triples with two equal symbols in
columns that came from the same column of A, and triples with two unequal symbols
in columns that came from the same column in A. The first and second types of triples
are covered due to the original structure of A, and the third type of triple is covered by
the construction of the additional rows from B.

The construction and proof for b) is similar. Let A, B, and C be 4-wise, 3-wise,
and pairwise covering suites with the parameters given in the statement of the result.
Take each column of A twice, take n − 1 copies of B and replace the i-th symbol in
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0012 00 00 11 22
0000 00 00 00 00

0021 00 00 22 11
…

2212 22 22 11 22
2220 22 22 22 00

Figure 14. The doubling process in the construction of Theorem 7.5.

the j-th copy with the i-th member of Fj , then take a copy of C , and replace the i-th
symbol with the i-th member of In × In in some arbitrary ordering of the members of
this Cartesian product. �

Example 7.6 We now illustrate the use of Theorem 7.5 to show that:

CS3(38) ≤ 45 = 27 + 9 + 9

The first 27 rows of the array come from doubling each column of the array constructed
in Theorem 3.2, which shows that CS3(34) = 27.

The next 9 rows come from substituting the members of F1 = {01, 12, 20} for the
three symbols in Figure 4, which is a minimal CS2(34), see Figure 15.

The final 9 rows come from substituting the members of F2 = {02, 10, 21} in the
same array. �

Results similar to those of Theorem 7.5 are probably true for higher values of t ,
but the number of cases in the proof detracts from the aesthetics of such results.

8. Heuristics

In this section, we discuss how the techniques presented in the previous sections
can be used and extended by heuristic methods to solve practical problems in the
generation of covering suites.

0000 01 01 01 01
0111 01 12 12 12
0222 01 20 20 20
1021 12 01 20 12
1102 12 12 01 20
1210 12 20 12 01
2012 20 01 12 20
2120 20 12 20 01
2201 20 20 01 12

Figure 15. The substitution process in the construction of Theorem 7.5.
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The most common problem, and the one on which we have focused so far, is that
of generating a minimal set of test cases guaranteeing t-wise coverage of k parameters
with domains of sizes n1, n2, . . . , nk . The practical issues of limited time and space
require that we should find a polynomial time algorithm to solve this problem. Lei and
Tai [26] prove that the determination of CS2(nk) is NP-complete using a reduction to
the vertex cover problem. Seroussi and Bshouty [37] prove that the determination of
CSt (2k) is NP-complete using a reduction to graph 3-coloring. Thus, it seems unlikely
that we will find a polynomial time algorithm for constructing minimal covering suites
in the general case.

Another interesting and practical problem is that of finding a test suite with minimal
deficiency, given a fixed budget for executing a maximum of N test cases. This problem
is theoretically equivalent to the problem of finding a minimal test suite, so it, too, is
NP-complete.

Yet a third problem is that of finding a minimal test suite with a fixed relative
deficiency, where the relative deficiency is defined as the deficiency divided by the total
number of t-subsets to be covered. In the case where all domains are the same size, the
relative deficiency RDt of a test suite A is defined as:

RDt (A) = Dt (A)

nt

(
k
t

)

A surprising result from Roux’s thesis [36] states that for any t and any ε > 0, there is a
constant N (t, ε), independent of k, such that there exists a test suite A with N (t, ε) test
cases for k binary parameters with relative deficiency ε = RDt (A). Sloane’s paper [38]
quotes the result that N (3,0.001) ≤ 68. Unfortunately, the arguments are probabilistic,
and they do not give a deterministic algorithm for finding such a test suite.

Lei and Tai [26] also discuss the practical issue of extending a given test suite.
Assuming that a pairwise covering test suite for k parameters is already given, what is
the best way to add a single column, and perhaps additional rows, in order to extend this
suite for the additional parameter? They give an optimal algorithm for adding new rows
once a single column has been added to the initial test suite. However, their algorithms
for adding a new column are either exponential or sub-optimal.

Our heuristics for solving these problems are a combination of the constructive
and recursive methods given in sections 3 and 7, probabilistic algorithms inspired by
Roux’s techniques, and a greedy heuristic for the completion of partial test suites. We
also use the monotonicity results when the domain sizes are inappropriate for the finite
field methods of Section 3.

Roux’s technique is particularly appropriate in the case of a fixed testing budget N .
To apply the technique, we generate k random sets of columns of length N , with each
symbol appearing either �N/ni� or �N/ni� times in the column. We then select one
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column from each of these sets in such a way as to minimize the deficiency of the array
that we generate. We use a greedy heuristic for the minimization, since the selection of
columns is reducible to the problem of finding a maximal clique in a graph.

Our heuristic for the completion of a partial test suite is different from that given
by Cohen, Dalal, Fredman, and Patton in [11]. Assume that we are given a partial test
suite, and we are required to add a new test case. We first find the set of t columns with
the largest number of missing t-tuples, and select one of the missing tuples as the values
in those columns. We then rank all the remaining (column, value) pairs by computing t
values, (p0, p1, . . . pt−1)—which we call the potential vector. The first of these values
p0 is the amount by which the inclusion of the ranked value in the ranked column in the
partial test case would decrease the deficiency. In other words, p0 counts the number
of t-tuples containing the value in the column and t − 1 other values that have already
been fixed in the partial test case under construction. In general, pi counts the total
number of missing t-tuples containing that value in that column as well as t − 1 − i
values that have already been fixed, and i undecided values in the other columns. We
then choose the (column, value) pair with the lexicographically maximum potential
vector. If several pairs achieve the same maximum potential vector, we break the tie by
a random choice among those pairs that achieve the maximum.

For small values of t, k, and n, Nurmela [33] has used the method of tabu search ef-
fectively to find small covering suites, and some of the smallest known suites according
to the tables in [9] are due to this technique.

9. Applications

In the introduction we discussed the application of covering suites to the testing
of a software or hardware interface with k parameters. In this section we discuss three
other applications of covering suites: two in the area of software and hardware testing,
and one in the seemingly unrelated area of search algorithms.

9.1. Reducing State Machine Models

It is common in both the hardware and software domains to specify the behavior
of a unit to be tested by a state machine or transition system. A full account of this area
may be found in [34]. The states represent the possible states for a software unit (e.g.,
the screen currently displayed, and the fields and actions currently active or disabled).
The transitions between states are arcs labeled by the input stimulus from the user that
cause the unit to change state. A great deal of research activity has been devoted to
the analysis of these state machine models, but most of this effort is stymied by the
so-called state explosion problem. The size of the state machine grows exponentially,
even when the unit under test has a relatively simple structure.

In [16] Farchi, Hartman, and Pinter describe the use of a state machine exploration
tool to generate test cases for the testing of implementations of software standards. In
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this context, a test case is not merely a k-tuple of input values, but it is a sequence of
input stimuli, each of which is a tuple of input values. In graph theoretical terms, it is
a path or walk through the arcs of the graph of the state machine.

The test generation tool described in [16] is built on the basis of the Murϕ model
checker [13]. The Murϕ system builds a labeled directed graph to describe all possible
behaviors of the system under test. The number of arcs leaving any particular state is
equal to the number of possible stimuli which the tester can apply to the system at that
state. Since the graph describes all possible behaviors, the number of arcs leaving any
state is equal to the cardinality of the Cartesian product of the domains of all the input
parameters. If instead of building an arc for each member of the Cartesian product, we
use a covering suite subset of those arcs, we obtain a much smaller state machine. The
new state machine does not describe all possible behaviors of the system under test,
but it provides a good sample of the full set of behaviors. In model checking it is vital
to describe the entire state machine, but in the context of test generation it is sufficient
to sample the behavior of the system under test.

An example of the use of this technique is provided by the model we used to test
the file system described in [16]. The model of the file system contains two users who
interact with the system by sending requests to read, write, open, or close a file. The
open and close commands do not have parameters, but the read and write commands
each have five parameters in the model, two with domains of size 4, two of size 3, and
one binary parameter. The states of the model may be divided into three classes, states
where neither user may issue a read or write command, states where only one of the
users may issue a read or write command, and states where both users may issue these
commands.

In the full Cartesian product model, each state of the second class has 288 =
4 × 4 × 3 × 3 × 2 “read” arcs leaving it, and the same number of “write” arcs. States
of the third class have twice that many arcs leaving them since both users can perform
both reads and writes. We can create a covering suite with only 16 rows which will
cover all pairwise interactions between the parameters of the read and write commands.
This reduces the number of arcs leaving a state of the third class from 1152 = 288 × 4
to 64 = 16 × 4.

The resulting state machine has fewer reachable states, and thus does not describe
the full range of file system behavior, but it is adequate for generating a comprehensive
test suite which ensures compliance to the software standard.

9.2. Path Coverage Using Covering Suites

A further application of covering arrays in the context of state machine models is
their use as a means of achieving a reduced form of path coverage of the model.

When a state machine model is used to generate test cases for an application, the
most common criteria for generating the test suite is the achievement of a coverage
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goal. A suite of test cases that passes once through every state is said to achieve state
coverage. In graph theory terms, this resembles a path partition of the underlying
directed graph. In conformance testing it is common practice to generate an Euler tour
of the transition system to guarantee transition coverage. A stronger form of coverage
requires the coverage of all paths of length two or greater.

We have used covering suites to define a test generation strategy that gives a
moderate sized test suite with interesting path coverage properties. Recall that in the
state machine, each arc is labeled by the stimulus that causes the unit under test to
change state. We can view test cases with k transitions as sequences of arc labels, and if
we select sequences of arc labels from a covering suite of strength 2, we achieve a level
of coverage guaranteeing that all pairs of transition types are tested at all distances of
up to k apart.

In the file system example discussed in the previous section we may wish to gen-
erate a series of test cases each containing 10 read commands, alternating between the
two users. Having reduced the number of possible read commands to 16, we are still
faced with the prospect that there are 1610 possible test cases with 10 steps. Again
we can restrict ourselves to a set of sequences of length 10 taken from a pairwise
covering suite, and with these 256 test cases we guarantee that all of the pairwise inter-
actions between the various read commands have been tested together in the same test
sequence.

9.3. Blind Dyslectic Synchronized Robots on a Line

A final application of covering suites, in a completely different area was pointed
out to us by S. Gal.

Lim and Alpern [27] have studied the minimax rendezvous time problem for k
distinguishable robots on a line. The robots are initially placed at the points 1, 2, . . . ,
k in some permutation. The robots are dyslectic in the sense that they do not have
a common notion of the positive direction on the line. The robots cannot see each
other and they only become aware of each other’s presence by the sense of touch. The
minimax rendezvous time is the minimum over all strategies of the maximum over all
possible starting configurations of the time by which they can all get together. All the
robots move at the same speed and are synchronized to start their rendezvous strategy
together.

Gal[18] has exhibited a simple strategy where, in the first phase, the robots at
positions 1 and k identify the fact that they are at the extreme positions, and then, in
a second phase proceed toward the center, gathering all their colleagues, who remain
passive in the second phase. In Gal’s algorithm the first phase takes 2(1 + ⌈

log2 k
⌉

)
steps, and the second phase takes �k/2� steps. We propose a variant on Gal’s algorithm,
which decreases the number of steps required in the first phase.
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We provide each robot with a binary sequence of length N = CS2(2k). The se-
quence for the k-th robot is the k-th column of an optimal covering suite. The robot
interprets a 0 as an instruction to move half a unit to its left, then half a unit right;
a 1 is interpreted as a move half right then half left. Since the robots do not have a
common sense of direction, in order to guarantee that each internal robot meets both
its neighbors, the pair of robots must execute the four patterns 00, 01, 10, and 11.
After precisely N time units, all the internal robots have met both their neighbors, and
thus the end robots can be sure that they are on the ends, and begin the second phase.
Theorem 4.2 guarantees that N < 1 + ⌈

log2 k
⌉

.

Further Reading

In this section we give a series of urls for web based resources relevant to the subjects discussed
in this paper.

Thomas Huckle has a very interesting collection of software bugs at http://wwwzenger.
informatik.tu-muenchen.de/persons/huckle/bugse.html

Peter Cameron’s “Design Resources on the Web”: http://www.maths.qmw.ac.uk/∼pjc/design/
resources.html

Neal Sloane’s library of orthogonal arrays is at : http://www.research.att.com/∼njas/oadir/
index.html

The Handbook of Combinatorial Designs [12] has its own web page which is regularly updated
with new results: http://www.emba.uvm.edu/∼dinitz/hcd.html

Telecordia’s web-based service for the generation of test cases is at: http://aetgweb.
argreenhouse.com/

Harry Robinson’s Model-based testing website has many interesting resources:
http://www.geocities.com/model based testing/

A search at http://citeseer.nj.nec.com with the keyword “derandomization” yields a wealth of
material on the asymptotic results quoted in Section 4.
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