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Abstract In this chapter we outline the importance of facility location decisions
in supply chain design. We begin with a review of classical models in-
cluding the traditional fixed charge facility location problem. We then
summarize more recent research aimed at expanding the context of fa-
cility location decisions to incorporate additional features of a supply
chain including LTL vehicle routing, inventory management, robustness,
and reliability.

1. Introduction

The efficient and effective movement of goods from raw material sites
to processing facilities, component fabrication plants, finished goods as-
sembly plants, distribution centers, retailers and customers is critical
in today's competitive environment. Approximately 10% of the gross
domestic product is devoted to supply-related activities (Simchi-Levi,
Kaminsky, and Simchi-Levi, 2003, p. 5). Within individual industries,
the percentage of the cost of a finished delivered item to the final con-
sumer can easily exceed this value. Supply chain management entails
not only the movement of goods but also decisions about (1) where to
produce, what to produce, and how much to produce at each site, (2)
what quantity of goods to hold in inventory at each stage of the process,
(3) how to share information among parties in the process and finally,
(4) where to locate plants and distribution centers.

Location decisions may be the most critical and most difficult of the
decisions needed to realize an efficient supply chain. Transportation and
inventory decisions can often be changed on relatively short notice in re-
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sponse to changes in the availability of raw materials, labor costs, com-
ponent prices, transportation costs, inventory holding costs, exchange
rates and tax codes. Information sharing decisions are also relatively
flexible and can be altered in response to changes in corporate strategies
and alliances. Thus, transportation, inventory, and information shar-
ing decisions can be readily re-optimized in response to changes in the
underlying conditions of the supply chain. Decisions about production
quantities and locations are, perhaps, less flexible, as many of the costs
of production may be fixed in the short term. Labor costs, for exam-
ple, are often dictated by relatively long-term contracts. Also, plant
capacities must often be taken as fixed in the short term. Nevertheless,
production quantities can often be altered in the intermediate term in
response to changes in material costs and market demands.

Facility location decisions, on the other hand, are often fixed and
difficult to change even in the intermediate term. The location of a
multibillion-dollar automobile assembly plant cannot be changed as a
result of changes in customer demands, transportation costs, or com-
ponent prices. Modern distribution centers with millions of dollars of
material handling equipment are also difficult, if not impossible, to re-
locate except in the long term. Inefficient locations for production and
assembly plants as well as distribution centers will result in excess costs
being incurred throughout the lifetime of the facilities, no matter how
well the production plans, transportation options, inventory manage-
ment, and information sharing decisions are optimized in response to
changing conditions.

However, the long-term conditions under which production plants and
distribution centers will operate is subject to considerable uncertainty at
the time these decisions must be made. Transportation costs, inventory
carrying costs (which are affected by interest rates and insurance costs),
and production costs, for example, are all difficult to predict. Thus, it is
critical that planners recognize the inherent uncertainty associated with
future conditions when making facility location decisions.

Vehicle routing and inventory decisions are generally secondary to fa-
cility location in the sense that facilities are expensive to construct and
difficult to modify, while routing and inventory decisions can be modified
periodically without difficulty. Nevertheless, it has been shown empiri-
cally for both location/routing and location/inventory problems that the
facility location decisions that would be made in isolation are different
from those that would be made taking into account routing or inventory.
Similarly, planners are often reluctant to consider robustness and relia-
bility at design time since disruptions may be only occasional; however,
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large improvements in reliability and robustness can often be attained
with only small increases in the cost of the supply chain network.

In this chapter we review several traditional facility location models,
beginning with the classical fixed charge location model. We then show
how the model can be extended to incorporate additional facets of the
supply chain design problem, including more accurate representations of
the delivery process, inventory management decisions, and robustness
and reliability considerations.

2. The fixed charge facility location problem

The fixed charge facility location problem is a classical location prob-
lem and forms the basis of many of the location models that have been
used in supply chain design. The problem can be stated simply as fol-
lows. We are given a set of customer locations with known demands
and a set of candidate facility locations. If we elect to locate a facility
at a candidate site, we incur a known fixed location cost. There is a
known unit shipment cost between each candidate site and each cus-
tomer location. The problem is to find the locations of the facilities
and the shipment pattern between the facilities and the customers to
minimize the combined facility location and shipment costs subject to a
requirement that all customer demands be met.

Specifically, we introduce the following notation:

Inputs and sets.
/ : set of customer locations, indexed by i
J: set of candidate facility locations, indexed by j
hi*, demand at customer location i 6 /
fji fixed cost of locating a facility at candidate site j G J
cij: unit cost of shipping between candidate facility site j G J and cus-

tomer location i G /

Decision variables.
J 1, if we locate at candidate site j G J,

3 ~~ [0 , if not
Yij = fraction of the demand at customer location i G / that is served

by a facility at site j G J
With this notation, the fixed charge facility location problem can be

formulated as follows (Balinski, 1965):

minimize y. fj^j '
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subject to ]PYij = 1 Vz G / (2.2)

Ŷ - - Xj < 0 Vi G /; V j G J (2.3)

X J G { 0 , 1 } V j G J (2.4)

y^ > o Viei;VjeJ (2.5)

The objective function (2.1) minimizes the sum of the fixed facility lo-
cation costs and the transportation or shipment costs. Constraint (2.2)
stipulates that each demand node is fully assigned. Constraint (2.3)
states that a demand node cannot be assigned to a facility unless we
open that facility. Constraint (2.4) is a standard integrality constraint
and constraint (2.5) is a simple non-negativity constraint.

The formulation given above assumes that facilities have unlimited
capacity; the problem is sometimes referred to as the uncapacitated fixed
charge location problem. It is well known that at least one optimal
solution to this problem involves assigning all of the demand at each
customer location i G / fully to the nearest open facility site j G J. In
other words, the assignment variables, 1^-, will naturally take on integer
values in the solution to this problem. Many firms insist on or strongly
prefer such single sourcing solutions as they make the management of
the supply chain considerably simpler. Capacitated versions of the fixed
charge location problem do not exhibit this property; enforcing single
sourcing is significantly more difficult in this case (as discussed below).

A number of solution approaches have been proposed for the uncapac-
itated fixed charge location problem. Simple heuristics typically begin
by constructing a feasible solution by greedily adding or dropping facil-
ities from the solution until no further improvements can be obtained.
Maranzana (1964) proposed a neighborhood search improvement algo-
rithm for the closely related P-median problem (Hakimi, 1964, 1965)
that exploits the ease in finding optimal solutions to 1-median problem:
it partitions the customers by facility and then finds the optimal location
within each partition. If any facility changes, the algorithm repartitions
the customers and continues until no improvement in the solution can be
found. Teitz and Bart (1968) proposed an exchange or "swap" algorithm
for the P-median problem that can also be extended to the fixed charge
location problem. Hansen and Mladenovic (1997) proposed a variable
neighborhood search algorithm for the P-median problem that can also
be used for the fixed charge location problem. Clearly, improvement
heuristics designed for the P-median problem will not perform well for
the fixed charge location problem if the starting number of facilities is
sub-optimal. One way of resolving this limitation is to apply more so-
phisticated heuristics to the problem. Al-Sultan and Al-Fawzan (1999)
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applied tabu search (Glover 1989, 1990; Glover and Laguna, 1997) to the
uncapacitated fixed charge location problem. The algorithm was tested
successfully on small- to moderate-sized problems.

Erlenkotter (1978) proposed the well-known DUALOC procedure to
find optimal solutions to the problem. Galvao (1993) and Daskin (1995)
review the use of Lagrangian relaxation algorithms in solving the un-
capacitated fixed charge location problem. When embedded in branch
and bound, Lagrangian relaxation can be used to solve the fixed charge
location problem optimally (Geoffrion, 1974). The reader interested in
a more comprehensive review of the uncapacitated fixed charge location
problem is referred to either Krarup and Pruzan (1983) or Cornuejols,
Nemhauser, and Wolsey (1990).

One natural extension of the problem is to consider capacitated facil-
ities. If we let bj be the maximum demand that can be assigned to a
facility at candidate site j G J, formulation (2.1) - (2.5) can be extended
to incorporate facility capacities by including the following additional
constraint:

J 2 h i Y i j - b 3 X j < 0 ^ J ^ J (2.6)
iei

Constraint (2.6) limits the total assigned demand at facility j G J to
a maximum of bj. From the perspective of the integer programming
problem, this constraint obviates the need for constraint (2.3) since any
solution that satisfies (2.5) and (2.6) will also satisfy (2.3). However,
the linear programming relaxation of (2.1) - (2.6) is often tighter if con-
straint (2.3) is included in the problem.

For fixed values of the facility location variables, Xj, the optimal
values of the assignment variables can be found by solving a traditional
transportation problem. The embedded transportation problem is most
easily recognized if we replace hiYij by Z^-, the quantity shipped from
distribution center j to customer i. The transportation problem for fixed
facility locations is then

minimize ^^2<cijZij (2-7)
jeJ iei

subject to 2_^ Z^ = hi \/i G / (2-8)

< bjXj V j G J (2.9)

Z^ > 0 Vz G/ ;Vj G J (2.10)

where we denote the fixed (known) values of the location variables by Xj.

£
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The solution to the transportation problem (2.7)-(2.10) may involve
fractional assignments of customers to facilities. This means that the
solution to the problem with the addition of constraint (2.6) will not
automatically satisfy the single sourcing condition, as does the solution
to the uncapacitated fixed charge location problem in the absence of this
constraint. To restore the single sourcing condition, we can replace the
fractional definition of the assignment variables by a binary one:

{1, if demands at customer site i G / are served by a facility
at candidate site j G J,

0, if not.

The problem becomes considerably more difficult to solve since there
are now far more integer variables. For given facility sites, even if we
ignore the requirement that each demand node is served exactly once, the
resulting problems become knapsack problems, which can only be solved
optimally in pseudo-polynomial time (as opposed to the transportation
problem, which can be solved in polynomial time).

Daskin and Jones (1993) observed that, in many practical contexts,
the number of customers is significantly greater than the number of dis-
tribution centers that will be sited. As such, each customer represents a
small fraction of the total capacity of the distribution center to which it
is assigned. Also, if the single sourcing requirement is relaxed, the num-
ber of multiply sourced customers is less than or equal to the number of
distribution centers minus one. Thus, relatively few customers will be
multiply sourced in most contexts. They further noted that warehouse
capacities, when measured in terms of annual throughput as is commonly
done, are rarely known with great precision, as they depend on many
factors, including the number of inventory turns at the warehouse. (We
return to the issue of inventory turns below when we outline an inte-
grated location/inventory model.) They therefore proposed a procedure
for addressing the single sourcing problem that involves (1) ignoring the
single sourcing constraint and solving the transportation problem, (2)
using duality to find alternate optima to the transportation problem
that require fewer customers to be multiply sourced, and (3) allowing
small violations of the capacity constraints to identify solutions that sat-
isfy the single sourcing requirement. In a practical context involving a
large national retailer with over 300 stores and about a dozen distribu-
tion centers, they found that this approach was perfectly satisfactory
from a managerial perspective.

In a classic paper, Geoffrion and Graves (1974) extend the traditional
fixed charge facility location problem to include shipments from plants
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to distribution centers and multiple commodities. They introduce the
following additional notation:

Inputs and sets.

K: set of plant locations, indexed by k
L: set of commodities, indexed by /
Dn: demand for commodity / G L at customer i G /
Siki supply of commodity I G L at plant k G K
V_A, Vji minimum and maximum annual throughput allowed at distri-

bution center j G J
Vj: variable unit cost of throughput at candidate site j G J
cikji*- unit cost of producing and shipping commodity I G L between

plant k G K, candidate facility site j G J and customer location
i e i

Decision variables:.

{1, if demands at customer site i G / are served by a facility
at candidate site j G J,

0, if not
Zikji = quantity of commodity / G L shipped between plant k G K,

candidate facility site j G J and customer location i G /

With this notation, Geoffrion and Graves formulate the following ex-
tension of the fixed charge location problem:

( \

\ 1 r- T A r~ T ' if-TUr-TSAr-TA/^T

minimize
jeJ jeJ xleL iei ' leLkeKjeJ

(2.11)

subject to 2_\ Z_J ^ikji < Sik Vk G K;VI G L (2.12)

iei jeJ

V^ ?„ .. — Hi V \/l a T '\/ i a T'\/i a T
7 ZJlfaqi — LJl'iliq V I vZ -LJ, V J vZ U , V I \Z -L

keK

(2.13)

V i e / (2.14)

DnYi:J < VjXj Vj G J (2.15)
iei leL

X J G { 0 , 1 } VjeJ (2.16)

Yij G {0,1} V?: G / ; Vj G J (2.17)
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VkeK;VleL (2.18)

The objective function (2.11) minimizes the sum of the fixed distribution
center (DC) location costs, the variable DC costs and the transporta-
tion costs from the plants through the DCs to the customers. Con-
straint (2.12) states that the total amount of commodity I G L shipped
from plant k G K cannot exceed the capacity of the plant to produce
that commodity. Constraint (2.13) says that the amount of commodity
/ G L shipped to customer i G / via DC j G J must equal the amount
of that commodity produced at all plants that is destined for that cus-
tomer and shipped via that DC. This constraint stipulates that demand
must be satisfied at each customer node for each commodity and also
serves as a linking constraint between the flow variables (Zikji) and the
assignment variables (Yij). Constraint (2.14) is the now-familiar single
sourcing constraint. Constraint (2.15) imposes lower and upper bounds
on the throughput processed at each distribution center that is used.
This also serves as a linking constraint (e.g., it replaces constraint (2.3))
between the location variables (Xj) and the customer assignment vari-
ables (Vij). Alternatively, it can be thought of as an extension of the
capacity constraint (2.6) above.

In addition to the constraints above, Geoffrion and Graves allow for
linear constraints on the location and assignment variables. These can
include constraints on the minimum and maximum number of distribu-
tion centers to be opened, relationships between the feasible open DCs,
more detailed capacity constraints if different commodities use different
amounts of a DCs resources, and certain customer service constraints.
The authors apply Benders decomposition (Benders, 1962) to the prob-
lem after noting that, if the location and assignment variables are fixed,
the remaining problem breaks down into \L\ transportation problems,
one for each commodity.

Geoffrion and Graves highlight eight different forms of analysis that
were performed for a large food company using the model, arguing, as do
Geoffrion and Powers (1980), that the value of a model such as (2.11) —
(2.18) extends far beyond the mere solution of a single instance of the
problem to include a range of sensitivity and what-if analyses.

3* Integrated location/routing models

An important limitation of the fixed charge location model, and even
the multi-echelon, multi-commodity extension of Geoffrion and Graves,
is the assumption that full truckload quantities are shipped from a dis-
tribution center to a customer. In many contexts, shipments are made in
less-than-truckload (LTL) quantities from a facility to customers along
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a multiple-stop route. In the case of full truckload quantities, the cost
of delivery is independent of the other deliveries made, whereas in the
case of LTL quantities, the cost of delivery depends on the other cus-
tomers on the route and the sequence in which customers are visited.
Eilon, Watson-Gandy and Christofides (1971) were among the first to
highlight the error introduced by approximating LTL shipments by full
truckloads. During the past three decades, a sizeable body of literature
has developed on integrated location/routing models.

Integrated location/routing problems combine three components of
supply chain design: facility location, customer allocation to facilities
and vehicle routing. Many different location/routing problems have been
described in the literature, and they tend to be very difficult to solve
since they merge two NP-hard problems: facility location and vehicle
routing. Laporte (1988) reviews early work on location/routing prob-
lems; he summarizes the different types of formulations, solution algo-
rithms and computational results of work published prior to 1988. More
recently, Min, Jayaraman, and Srivastava (1998) develop a hierarchical
taxonomy and classification scheme that they use to review the existing
location/routing literature. They categorize papers in terms of problem
characteristics and solution methodology. One means of classification is
the number of layers of facilities. Typically, three-layer problems include
flows from plants to distribution centers to customers, while two-layer
problems focus on flows from distribution centers to customers.

An example of a three-layer location/routing problem is the formula-
tion of Perl (1983) and Perl and Daskin (1985); their model extends the
model of Geoffrion and Graves to include multiple stop tours serving the
customer nodes but it is limited to a single commodity. Perl defines the
following additional notation:
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Inputs and sets.
P: set of points = / U J
diji distance between node i G P and node j G P
Vji variable cost per unit processed by a facility at candidate facility site

tji maximum throughput for a facility at candidate facility site j £ J
S: set of supply points (analogous to plants in the Geoffrion and Graves

model), indexed by s
csji unit cost of shipping from supply point s G S to candidate facility

site j G J
K: set of candidate vehicles, indexed by k
(jfc: capacity of vehicle k G K
T&: maximum allowable length of a route served by vehicle k G K
a^: cost per unit distance for delivery on route k G K

Decision variables.

{1, if vehicle k G K goes directly from point i G P to point
jeP,

0, if not
Wsj = quantity shipped from supply source s G S to facility site j G J

With this notation (and the notation defined previously), Perl (1983)
formulates the following integrated location/routing problem:

minimize ] P fjXj + ^ ^ cvW*J + Yl vi 5Z hiYv 11, !L, diJZiJk

(2.19)

subject to ^2 Yl Ziik = 1 V i G / (2.20)
keKjeP

2 ^ ^ a k VkeK (2.21)

VkeK (2.22)

\ \ \ 7 7 *> 1
/ ^ / J / j ^ijk i— L

iev j^v keK

J2 Zuk - J2 z^ = °
jeP jeP

^212 z^k ̂ l
jeJ iei

V subsets
such that

Vz G P;V

VkeK

V CP
JcV

keK

(2.23)

(2.24)

(2.25)
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(2.27)

G K
(2.28)

(2.29)

(2.30)

eK
(2.31)

W5j > 0 VsG S; Vj G J (2.32)

The objective function (2.19) minimizes the sum of the fixed facility lo-
cation costs, the shipment costs from the supply points (plants) to the
facilities, the variable facility throughput costs and the routing costs
to the customers. Constraint (2.20) requires each customer to be on
exactly one route. Constraint (2.21) imposes a capacity restriction for
each vehicle, while constraint (2.22) limits the length of each route. Con-
straint (2.23) requires each route to be connected to a facility. The con-
straint requires that there be at least one route that goes from any set
V (a proper subset of the points P that contains the set of candidate
facility sites) to its complement V, thereby precluding routes that only
visit customer nodes. Constraint (2.24) states that any route entering
node i G P also must exit that same node. Constraint (2.25) states that
a route can operate out of only one facility. Constraint (2.26) defines the
flow into a facility from the supply points in terms of the total demand
that is served by the facility. Constraint (2.27) restricts the through-
put at each facility to the maximum allowed at that site and links the
flow variables and the facility location variables. Thus, if a facility is
not opened, there can be no flow through the facility, which in turn (by
constraint (2.26)) precludes any customers from being assigned to the
facility. Constraint (2.28) states that if route k G K leaves customer
node i G / and also leaves facility j G J, then customer i G / must
be assigned to facility j G J. This constraint links the vehicle routing
variables (Zijk) and the assignment variables (Yij). Constraints (2.29)-
(2.32) are standard integrality and non-negativity constraints.

Even for small problem instances, the formulation above is a difficult
mixed integer linear programming problem. Perl solves the problem us-
ing a three-phased heuristic. The first phase finds minimum cost routes.
The second phase determines which facilities to open and how to allo-
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cate the routes from phase one to the selected facilities. The third phase
attempts to improve the solution by moving customers between facilities
and re-solving the routing problem with the set of open facilities fixed.
The algorithm iterates between the second and third phases until the im-
provement at any iteration is less than some specified value. Wu, Low,
and Bai (2002) propose a similar two-phase heuristic for the problem
and test it on problems with up to 150 nodes.

Like the three-layer formulation of Perl, two-layer location/routing
formulations (e.g., Laporte, Nobert and Pelletier, 1983; Laporte, No-
bert and Arpin, 1986; and Laporte, Nobert and Taillefer, 1988) usually
are based on integer linear programming formulations for the vehicle
routing problem (VRP). Flow formulations of the VRP often are clas-
sified according to the number of indices of the flow variable: X{j = 1
if a vehicle uses arc (i,j) or X^ — 1 if vehicle k uses arc (z, j). The
size and structure of these formulations make them difficult to solve us-
ing standard integer programming or network optimization techniques.
Motivated by the successful implementation of exact algorithms for set-
partitioning-based routing models, Berger (1997) formulates a two-layer
location/routing problem that closely resembles the classical fixed charge
facility location problem. Unlike other location/routing problems, she
formulates the routes in terms of paths, where a delivery vehicle may not
be required to return to the distribution center after the final delivery
is made. The model is appropriate in situations where the deliveries are
made by a contract carrier or where the commodities to be delivered are
perishable. In the latter case, the time to return from the last customer
to the distribution center is much less important than the time from the
facility to the last customer. Berger defines the following notation:

Inputs and sets.
Pji set of feasible paths from candidate distribution center j G J
Cjk0- cost of serving the path k G Pj
aJ

ik: 1 if delivery path k G Pj visits customer i G /; 0 if not

Decision variables.
J 1, if path k G Pj is operated out of distribution center j G J,

jk~ [0, if not.

Note that there can be any number of restrictions on the feasible paths
in set Pj] in fact, the more restrictive the conditions imposed on Pj
are, the smaller the cardinality of Pj is. Restricting the total length of
the paths, Berger formulates the following integrated location/routing
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model:
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G

minimize

subject to ^ y ^ ajfĉ fc = 1 Vz G / (2.34)

(2.35)
(2.36)
(2.37)

The objective function (2.33) minimizes the sum of the facility location
costs and the vehicle routing costs. Constraint (2.34) requires each de-
mand node to be on one route. Constraint (2.35) states that a route can
be assigned only to an open facility. Constraints (2.36) and (2.37) are
standard integrality constraints.

Although the similarity between this location/routing model and the
classical fixed charge location model (2.1)-(2.5) is striking, this model
is much more difficult to solve for two reasons. First, the linear pro-
gramming relaxation provides a weak lower bound. The linear pro-
gramming relaxation typically has solutions in which the path vari-
ables are assigned very small fractional values and the location vari-
ables are assigned fractional variables large enough only to satisfy con-
straints (2.35). To strengthen the linear programming relaxation signif-
icantly, constraints (2.35) can be replaced by the following constraints:

< 0 V i G / ; V j G J (2.38)

Consider a customer node i G / that is served (in part) using routes
that emanate from facility j G J. The first term of (2.38) is the sum
of all route assignment variables that serve that customer and that are
assigned to that facility. (In the linear programming relaxation, these
assignment variables may be fractional). Thus, this sum can be thought
of as the fraction of demand node i G / that is served out of facility
j G J. The constraint requires the location variable to be no smaller
than the largest of these sums for customers assigned (in part) to routes
emanating from the facility.

Second, there is an exponential number of feasible paths associated
with any candidate facility, so complete enumeration of all possible
columns of the problem is prohibitive. Instead, Berger develops a branch-
and-price algorithm, which uses column generation to solve the lin-
ear programs at each node of the branch-and-bound tree. The pricing
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problem for the model decomposes into a set of independent resource-
constrained shortest path problems.

The development and the use of location/routing models have been
more limited than both facility location and vehicle routing models. In
our view, the reason is that it is difficult to combine, in a meaningful way,
facility location decisions, which typically are strategic and long term,
and vehicle routing decisions, which typically are tactical and short term.
The literature includes several papers that attempt to accommodate the
fact that the set of customers to be served on a route may change daily,
while the location of a distribution center may remain fixed for years.
One approach is to define a large number of customers and to intro-
duce a probability that each customer will require service on any day.
Jaillet (1985, 1988) introduces this concept in the context of the proba-
bilistic traveling salesman problem. Jaillet and Odoni (1988) provide an
overview of this work and related probabilistic vehicle routing problems.
The idea is extended to location/routing problems in Berman, Jaillet
and Simchi-Levi (1995). Including different customer scenarios, how-
ever, increases the difficulty of the problem, so this literature tends to
locate a single distribution center. In our view, the problem of approxi-
mating LTL vehicle tours in facility location problems without incurring
the cost of solving an embedded vehicle routing or traveling salesman
problem remains an open challenge worthy of additional research.

4. Integrated location/inventory models

The fixed charge location problem ignores the inventory impacts of
facility location decisions; it deals only with the tradeoff between facility
costs, which increase with the number of facilities located (call it TV), and
the average travel cost, which decreases approximately as the square root
of N. Inventory costs increase approximately as the square root of N.
As such, they introduce another force that tends to drive down the opti-
mal number of facilities to locate. Baumol and Wolfe (1958) recognized
the contribution of inventory to distribution costs over forty years ago
when they stated, "standard inventory analysis suggests that, optimally,
important inventory components will vary approximately as the square
root of the number of shipments going through the warehouse" (p. 255).
If the total number of shipments is fixed, the number through any ware-
house is approximately equal to the total divided by N. According to
Baumol and Wolfe, the cost at each warehouse is then proportional to
the square root of this quantity. When the cost per warehouse is multi-
plied by iV, we see that the total distribution cost varies approximately
with the square root of N. This argument treats the cost of holding
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working or cycle stock; Eppen (1979) argued that safety stock costs also
increase as the square root of N (assuming equal variance of demand at
each customer and independence of customer demands).

While the contribution of inventory to distribution costs has been
recognized for many years, only recently have we been able to solve the
non-linear models that result from incorporating inventory decisions in
facility location models. Shen (2000) and Shen, Coullard, and Daskin
(2003) introduced a location model with risk pooling (LMRP). The
model minimizes the sum of fixed facility location costs, direct trans-
portation costs to the customers (which are assumed to be linear in
the quantity shipped), working and safety stock inventory costs at the
distribution centers and shipment costs from a plant to the distribu-
tion center (which may include a fixed cost per shipment). The last
two quantities — the inventory costs at the distribution centers and the
shipment costs of goods to the distribution centers — depend on the al-
location of customers to the distribution centers. Shen introduces the
following additional notation:

Inputs and sets.
/ii, of: mean and variance of the demand per unit time at customer

iei
Ciji a term that captures the annualized unit cost of supplying customer

iel from facility j G J as well as the variable shipping cost from
the supplier to facility j G J

Pji a term that captures the fixed order costs at facility j G J as well as
the fixed transport costs per shipment from the supplier to facility
j G J and the working inventory carrying cost at facility j G J

ujji a term that captures the lead time of shipments from the supplier
to facility j G J as well as the safety stock holding cost

With this notation, Shen formulates the LMRP as follows:
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The first term of the objective function (2.39) represents the fixed facility
location costs. The second term captures the cost of shipping from the
facilities to the customers as well as the variable shipment costs from
the supplier to the facilities. The third term represents the working
inventory carrying costs which include any fixed (per shipment) costs of
shipping from the supplier to the facilities. The final term represents
the safety stock costs at the facilities. Note that the objective function
is identical to that of the fixed charge location problem (2.1) with the
addition of two non-linear terms, the first of which captures economies of
scale regarding fixed ordering and shipping costs and the second of which
captures the risk pooling associated with safety stocks. Also note that
the constraints of the LMRP are identical to those of the fixed charge
location problem.

Shen (2000) and Shen, Coullard, and Daskin (2003) recast this model
as a set covering problem where the sets contain customers to be served
by facility j £ J. As in Berger's location/routing model, the number
of possible sets is exponentially large. Thus, they propose solving the
problem using column generation. The pricing problems are non-linear
integer programs, but their structure allows for a low-order polynomial
solution algorithm. Shen assumes that the variance of demand is pro-
portional to the mean. If demands are Poisson, this assumption is exact
and not an approximation. With this assumption, he is able to collapse
the final two terms in the objective function into one term. The result-
ing pricing problems can then be solved in O(|/|log|/|) time for each
candidate facility and in O(| J| | / | log |/|) time for all candidate facilities
at each iteration of the column generation algorithm. Shu, Teo, and
Shen (2004) show that the pricing problem with two square root terms
(i.e., without assuming that the variance-to-mean ratio is constant for all
customers) can be solved in O(|/|2 log |/|) time. Daskin, Coullard, and
Shen (2002) develop a Lagrangian relaxation algorithm for this model
and found it to be slightly faster than the column generation method.

One of the important qualitative findings from Shen's model is that, as
inventory costs increase as a percentage of the total cost, the number of
facilities located by the LMRP is significantly smaller than the number
that would have been sited by the uncapacitated fixed charge location
model, which ignores the risk pooling effects of inventory management.
Shen and Daskin (2003) extend the model above to account for customer
service considerations. As customer service increases in importance, the
number of facilities used in the optimal solution grows, eventually ap-
proaching and even exceeding the number used in the uncapacitated
fixed charge model.
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Several joint location/inventory models appeared in the literature
prior to Shen's work. Barahona and Jensen (1998) solve a location prob-
lem with a fixed cost for stocking a given product at a DC. Erlebacher
and Meller (2000) use various heuristic techniques to solve a joint lo-
cation/inventory problem with a highly non-linear objective function.
Teo, Ou, and Goh (2001) present a y/2-approximation algorithm for
the problem of choosing DCs to minimize location and inventory costs,
ignoring transportation costs. Nozick and Turnquist (2001a,b) present
models that, like Shen's model, incorporate inventory considerations into
the fixed charge location problem; however, they assume that inventory
costs are linear, rather than concave, and DC-customer allocations are
made based only on distance, not inventory.

Ozsen, Daskin, and Coullard (2003) have extended the LMRP to in-
corporate capacities at the facilities. Capacities are modeled in terms of
the maximum (plausible) inventory accumulation during a cycle between
order receipts. This model is considerably harder to solve than is its un-
capacitated cousin. However, it highlights an important new dimension
in supply chain operations that is not captured by the traditional capac-
itated fixed charge location model. In the traditional model, capacity
is typically measured in terms of throughput per unit time. However,
this value can change as the number of inventory turns per unit time
changes. Thus, the measure of capacity in the traditional model is often
suspect. Also, using the traditional model, there are only two ways to
deal with capacity constraints as demand increases: build more facilities
or reallocate customers to more remote facilities that have excess capac-
ity. In the capacitated version of the LMRP, a third option is available,
namely ordering more frequently in smaller quantities. By incorporat-
ing this extra dimension of choice, the capacitated LMRP is more likely
to reflect actual managerial options than is the traditional fixed charge
location model.

To some extent, merging inventory management with facility location
decisions suffers from the same conceptual problems as merging vehi-
cle routing with location. Inventory decisions, as argued above, can be
revised much more frequently than can facility location decisions. Nev-
ertheless, there are three important reasons for research to continue in
the area of integrated inventory/location modeling. First, early results
suggest that the location decisions that are made when inventory is con-
sidered can be radically different from those that would be made by a
procedure that fails to account for inventory. Second, as indicated above,
the capacitated LMRP better models actual facility capacities than does
the traditional fixed charge location model, as it introduces the option
of ordering more often to accommodate increases in demand. Third,
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we can solve fairly large instances of the integrated location/inventory
model outlined above. In particular, the Lagrangian approach can often
solve problems with 600 customers and 600 candidate facility sites in a
matter of minutes on today's desktop computers.

5. Planning under uncertainty

Long-term strategic decisions like those involving facility locations are
always made in an uncertain environment. During the time when de-
sign decisions are in effect, costs and demands may change drastically.
However, classical facility location models like the fixed charge location
problem treat data as though they were known and deterministic, even
though ignoring data uncertainty can result in highly sub-optimal solu-
tions. In this section, we discuss approaches to facility location under
uncertainty that have appeared in the literature.

Most approaches to decision making under uncertainty fall into one of
two categories: stochastic programming or robust optimization. In sto-
chastic programming, the uncertain parameters are described by discrete
scenarios, each with a given probability of occurrence; the objective is to
minimize the expected cost. In robust optimization, parameters may be
described either by discrete scenarios or by continuous ranges; no prob-
ability information is known, however, and the objective is typically to
minimize the worst-case cost or regret. (The regret of a solution under
a given scenario is the difference between the objective function value of
the solution under the scenario and the optimal objective function value
for that scenario.) Both approaches seek solutions that perform well,
though not necessarily optimally, under any realization of the data. We
provide a brief overview of the literature on facility location under un-
certainty here. For a more comprehensive review, the reader is referred
to Owen and Daskin (1998) or Berman and Krass (2002).

Sheppard (1974) was one of the first authors to propose a stochastic
approach to facility location. He suggests selecting facility locations to
minimize the expected cost, though he does not discuss the issue at
length. Weaver and Church (1983) and Mirchandani, Oudjit, and Wong
(1985) present a multi-scenario version of the P-median problem. Their
model can be translated into the context of the fixed charge location
problem as follows. Let S be a set of scenarios. Each scenario s 6 S has a
probability qs of occurring and specifies a realization of random demands
(hiS) and travel costs (cijS). Location decisions must be made now,
before it is known which scenario will occur. However, customers may
be assigned to facilities after the scenario is known, so the Y variables
are now indexed by a third subscript, s. The objective is to minimize
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the total expected cost. The stochastic fixed charge location problem is
formulated as follows:
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The objective function (2.40) computes the total fixed cost plus the
expected transportation cost. Constraint (2.41) requires each customer
to be assigned to a facility in each scenario. Constraint (2.42) requires
that facility to be open. Constraints (2.43) and (2.44) are integrality
and non-negativity constraints. The key to solving this model and the
P-median-based models formulated by Weaver and Church (1983) and
Mirchandani, Oudjit, and Wong (1985) is recognizing that the problem
can be treated as a deterministic problem with |/ | |5 | customers instead
of |7|.

Snyder, Daskin, and Teo (2003) consider a stochastic version of the
LMRP. Other stochastic facility location models include those of Lou-
veaux (1986), Franga and Luna (1982), Berman and LeBlanc (1984),
Carson and Batta (1990), and Jornsten and Bjorndal (1994).

Robust facility location problems tend to be more difficult compu-
tationally than stochastic problems because of their minimax struc-
ture. As a result, the literature on robust facility location generally
falls into one of two categories: analytical results and polynomial-time
algorithms for restricted problems like 1-median problems or P-medians
on tree networks (see Chen and Lin, 1998; Burkhard and Dollani, 2001;
Vairaktarakis and Kouvelis, 1999; and Averbakh and Berman, 2000) and
heuristics for more general problems (Serra, Ratick, and ReVelle, 1996;
Serra and Marianov, 1998; and Current, Ratick, and ReVelle, 1997).

Solutions to the stochastic fixed charge problem formulated above
may perform well in the long run but poorly in certain scenarios. To
address this problem, Snyder and Daskin (2003) combine the stochastic
and robust approaches by finding the minimum-expected-cost solution
to facility location problems subject to an additional constraint that
the relative regret in each scenario is no more than a specified limit.
They show empirically that by reducing this limit, one obtains solutions
with substantially reduced maximum regret without large increases in
expected cost. In other words, there are a number of near-optimal solu-
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tions to the fixed charge problem, many of which are much more robust
than the true optimal solution.

6. Location models with facility failures

Once a set of facilities has been built, one or more of them may
from time to time become unavailable — for example, due to inclement
weather, labor actions, natural disasters, or changes in ownership. These
facility "failures" may result in excessive transportation costs as cus-
tomers previously served by these facilities must now be served by more
distant ones. In this section, we discuss models for choosing facility lo-
cations to minimize fixed and transportation costs while also hedging
against failures within the system. We call the ability of a system to
perform well even when parts of the system have failed the "reliability"
of the system. The goal, then, is to choose facility locations that are
both inexpensive and reliable.

The robust facility location models discussed in the previous section
hedge against uncertainty in the problem data. By contrast, reliability
models hedge against uncertainty in the solution itself. Another way
to view the distinction in the context of supply chain design is that
robustness is concerned with "demand-side" uncertainty (uncertainty in
demands, costs, or other parameters), while reliability is concerned with
"supply-side" uncertainty (uncertainty in the availability of plants or
distribution centers).

The models discussed in this section are based on the fixed charge
location problem; they address the tradeoff between operating cost (fixed
location costs and day-to-day transportation cost — the classical fixed
charge problem objective) and failure cost (the transportation cost that
results after a facility has failed). The first model considers the maximum
failure cost that can occur when a single facility fails, while the second
model considers the expected failure cost given a fixed probability of
failure. The strategy behind both formulations is to assign each customer
to a primary facility (which serves it under normal conditions) and one
or more backup facilities (which serve it when the primary facility has
failed). Note that although we refer to primary and backup facilities,
"primariness" is a characteristic of assignments, not facilities; that is, a
given facility may be a primary facility for one customer and a backup
facility for another.

In addition to the notation defined earlier, let

l, if facility j G J serves as the primary facility and facility
k G J serves as the secondary facility for customer i G /,

O, if not,
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and let V be a desired upper bound on the failure cost that may result
if a facility fails. Snyder (2003) formulates the maximum-failure-cost
reliability problem as follows:
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The objective function (2.45) sums the fixed cost and transportation
cost to customers from their primary facilities. (The summation over
k is necessary to determine the assignments, but the objective function
does not depend on the backup assignments.) Constraint (2.46) requires
each customer to be assigned to one primary and one backup facility.
Constraints (2.47) and (2.48) prevent a customer from being assigned to
a primary or a backup facility, respectively, that has not been opened.
(The summation on the left-hand side of (2.47) can be replaced by Y^k
without affecting the IP solution, but doing so considerably weakens the
LP bound.) Constraint (2.49) is the reliability constraint and requires
the failure cost for facility j to be no greater than V. The first summation
computes the cost of serving each customer from its primary facility if
its primary facility is not j , while the second summation computes the
cost of serving customers assigned to j as their primary facility from
their backup facilities. Constraint (2.50) requires a customer's primary
facility to be different from its backup facility, and constraints (2.51)
and (2.52) are standard integrality and non-negativity constraints. This
model can be solved for small instances using an off-the-shelf IP solver,
but larger instances must be solved heuristically.

The expected-failure-cost reliability model (Snyder and Daskin, 2004)
assumes that multiple facilities may fail simultaneously, each with a
given probability q of failing. In this case, a single backup facility is
insufficient, since a customer's primary and backup facilities may both
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fail. Therefore, we define

{1, if facility j G J serves as the level-r facility for
customer i £ / ,

0, if not.

A "level-r" assignment is one for which there are r closer facilities that
are open. If r = 0, this is a primary assignment; otherwise it is a
backup assignment. The objective is to minimize a weighted sum of
the operating cost (the fixed charge location problem objective) and the
expected failure cost, given by

\J\-i
\ \ \ ht • r* - - /i { \ n i V- •
7 7 7 I l"i \->21U \ X KJ J J. 2,lf *

iei jeJ r=o

Each customer i is served by its level-r facility (call it j) if the r closer
facilities have failed (this occurs with probability qr) and if j itself has
not failed (this occurs with probability 1 — q). The full model is omitted
here. This problem can be solved efficiently using Lagrangian relaxation.

Few firms would be willing to choose a facility location solution that
is, say, twice as expensive as the optimal solution to the fixed charge
problem just to hedge against occasional disruptions to the supply chain.
However, Snyder and Daskin (2004) show empirically that it often costs
very little to "buy" reliability: like robustness, reliability can be improved
substantially with only small increases in cost.

7. Conclusions and directions for future work

Facility locations decisions are critical to the efficient and effective
operation of a supply chain. Poorly placed plants and warehouses can
result in excessive costs and degraded service no matter how well inven-
tory policies, transportation plans, and information sharing policies are
revised, updated, and optimized. At the heart of many supply chain
facility location models is the fixed charge location problem. As more
facilities are located, the facilities tend to be closer to customers result-
ing in lower transport costs, but higher facility costs. The fixed charge
facility location problem finds the optimal balance between fixed facility
costs and transportation costs. Three important extensions of the basic
model consider (1) facility capacities and single sourcing requirements,
(2) multiple echelons in the supply chain, and (3) multiple products.

The fixed charge location problem, as well as these extensions, as-
sume that shipments from the warehouses or distribution centers to the
customers or retailers are made in truckload quantities. In reality, distri-
bution to customers is often performed using less-than-truckload routes
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that visit multiple customers. This chapter reviewed two different ap-
proaches to formulating integrated location/routing models. However, as
indicated above, these approaches suffer from the fundamental problem
that facility locations are typically determined at a strategic level while
vehicle routes are optimized at the operational level. In other words,
the set of customers and their demands may change daily resulting in
daily route changes, while the facilities are likely to be fixed for years.
We believe that additional research is needed to find improved ways of
approximating the impact of less-than-truckload deliveries on facility lo-
cation costs without embedding a vehicle routing problem (designed to
serve one realization of customer demands) in the facility location model.

Incorporating inventory decisions in facility location models appears
to be critical for supply chain modeling. As early as 1958, researchers
recognized that inventory costs would tend to increase with the square
root of the number of facilities used. Only recently, however, have non-
linear models that approximate this relationship between inventory costs
and location decisions been formulated and solved optimally. While we
believe that these models represent an important step forward in location
modeling for supply chain problems, considerable additional research is
needed. In particular, researchers should attempt to incorporate more
sophisticated inventory models, including multi-item inventory models
and models that account for inventory accumulation at all echelons of
the supply chain. Heuristic approaches to the multi-item problem have
recently been proposed by Balcik (2003) and an optimal approach has
been suggested by Snyder (2003). The latter model, however, assumes
that items are ordered separately, resulting in individual fixed order costs
for each commodity purchased.

Finally, since facility location decisions are inherently strategic and
long term in nature, supply chain location models must account for the
inherent uncertainty surrounding future conditions. We have reviewed a
number of scenario-based location models as well as models that account
for unreliability in the facilities themselves. This too is an area worthy
of considerable additional research. For example, generating scenarios
that capture future uncertainty and the relationships between uncertain
parameters is one critical area of research. Reliability-based location
models for supply chain management are still in their infancy. In fact, it
is not immediately clear how to marry reliability modeling approaches
and the integrated location/inventory models we reviewed, since the non-
linearities introduced by the inventory terms complicate the computation
of failure costs. In this regard, the more general techniques of stochastic
programming (Birge and Louveaux, 1997) may ultimately prove fruitful.
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