Chapter 10

ROUTING PROPANE DELIVERIES

Moshe Dror

Abstract

1.

This chapter is about solving the problem of propane deliveries. It is
commonly viewed as a representative problem of a much larger family of
hard problems of considerable practical significance. This problem has
been on the “front burner” of the logistics academic and practitioners
community for over twenty years. In this chapter [ attempt to describe
the practices of a propane distribution company and to summarize the
literature on the more general topic of inventory routing. It is one
person’s point of view and I apologize ex ante for my unavoidable biases.

Introduction

The outline of this chapter is as follows:

Personal experience, the basic problem and its variants,

Real-life examples, starting with Bell et al. (1983),

The initial analysis of Federgruen and Zipkin (1984),

The propane distribution as in Dror (1983), and extensions,

The new wave: Kleywegt et al. (2002, 2004) and Adelman (2003a,b,

2004),

= Summary

1.1

One day in the Fall of 1995, T had the opportunity to spend a day
in the “passenger seat” of a propane delivery truck observing a propane
delivery operation in a rural area of upstate New York ’first-hand.” More
than 10 years before that, in the Spring of 1983, I completed a Ph.D.
thesis on this very topic. However, I was only given the chance to ob-
serve a “real-life” delivery operation for one day in 1995. While writing
my thesis, I did visit the headquarters of a large propane distribution

Personal experience
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company 3—4 times; I talked to it’s managers, collected data from the
operational offices of one district, but did not drive a delivery truck until
Fall of 1995. Talking to the driver of the delivery truck for the whole
day, visiting the different customers, and observing the operations first
hand was a new experience. On that day we visited customers who had
almost empty tanks and customers whose tanks were full, and a num-
ber of customers in between the two extremes. After lcaving the depot,
before starting on their routes, the propane delivery drivers gather (un-
officially) at a local diner for a morning coffee and a short chat. They
discuss their respective routes and the customers on their routes. Past
experiences, road conditions, and advice are freely exchanged. Ouly af-
ter that early gathering do the drivers go ahead and deliver propane
to their customers. I believe that this kind of first-hand viewing of an
operation is very valuable for understanding and subsequent analysis of
logistics operations. I learned a lot that day.

1.2 The basic problem of propane distribution

The basic propane truck delivery operations are usually conducted
in rural areas. Propane (and similar liquid or gas products) is used to
heat individual houses and other facilities, which are not connected by
a delivery (rigid-pipe) network. In densely populated cities economies
of scale dictate a different mode of operation via a connected delivery
(pipeline) network which provides the commodity (propane) on demand
to its customers just as electricity and water is delivered. Rural propane
customers are dispersed in a certain geographical area serviceable from a
central facility (a depot) located in their area and are serviced from this
single depot by delivery trucks (special tank-trucks filled with propane).
The delivery trucks are usually of a few (2-3) fixed capacity types.
Each customer has a propane tank located on his property (next to his
house). The tank usually belongs to the propane company servicing the
customer on a long-term basis. The customer tanks come in a number (5
to 8) of different sizes. A propane service contract requires the company
to maintain a sufficient level of propane in the customer’s tank at any
time. Once the propane is delivered to a customer, a payment invoice
is issued requiring the customer to pay within a week or so. In essence,
once the propane is delivered it belongs to the customer. In this setting
the subsequent inventory holding costs for the propane are incurred by
the customer. It is quite common to hear customers complain about the
company filling their tanks to capacity just before summer — a period of
very low propane consumption. Even in sparse rural areas there might
be pockets of a few locally concentrated users connected by a rigid pipe



10 Routing Propane Deliveries 301

network to a single propane storage facility. In this case, each customer
is equipped with a metering device and billed periodically for his/her
consumption. Thus, the propane in the tank incurs a holding cost ab-
sorbed by the company. From an academic perspective one might want
to view propane distribution as what is called in business practice as
vendor managed inventory replenishment (VMI). In this chapter we do
not try to link propane distribution, modelling, and the literature, with
the more general area of VMI.

In a medium size propane service district (2,000-5,000 customers,
though 10,000 customer districts can also be found) a company uses
(owns) 3 to 7 delivery trucks. Each morning, the truck drivers are given
a list of customers (their location, tank sizes, names, if necessary special
individual characteristics, etc.) and simple dispatching instructions and
off they go on their delivery routes. At times, they are unknowingly as-
signed a customer whose tank is still full and subsequently a service visit
is wasted. Presently, without the more prevalent information technol-
ogy, the exact demand (tank emptiness) becomes known only when the
driver checks the tank’s propane level on his arrival. Truck dispatching
is based on partial information, experience, and a demand forecast which
are all used to generate daily dispatching lists. Each day (5 days in every
regular week) a preselected subset of customers is replenished. The basic
refill policy is to fill-up customers’ tanks to their capacity on each re-
plenishment (service) visit. Since the individual customers’ consumption
rates are only estimated (they are viewed as random variables), this gives
rise to stock-out events which necessitate “cmergency” deliveries, which
represent propane deliveries in response to customer’s request because
of an empty tank. These emergency deliveries have to be performed
7 days a week, weekends and holidays included, and are quite costly. In
one Pennsylvania district of slightly over 2,000 customers, from which
initial data was collected for the 1983 study (Dror, 1983), there were
about 100 stock-out related deliveries in a period of three months. From
the propane company point of view, it is pertinent to operate efficiently
with a long time view perspective. That is, the company would like to
design the logistic operations which. minimize its long run cost of deliver-
ing propane to a given set of customers (a district). It is quite common
for such US companies to own {operate) 300—-500 districts. In some
larger districts, propane companies may own separate propane storage
facilities called satellite depots (see Bard et al., 1998). These satellite
depot facilities serve as intermittent refill points for the delivery trucks
enabling the trucks to extend their delivery routes without returning to
the home depot for refill. It is a quite complex routing setting with many
parameters which are only partially known at the beginning of the work
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day and vary over time. Recently, electronic automatic measuring and
reporting devices have been introduced into the propane tanks. These
devices relay tank propane level information to the district office. Thus,
wasteful visits to customers which do not require certain minimal vol-
ume propane delivery could be avoided. I do not know how common this
automated reporting technology is. Even if this technology is presently
quite common, it only helps in deciding who not to service on a given
day but does not eliminate many of the difficulties inherent in efficient
propane distribution planning. Key question: What does the district
know about the status and evolution of a system (the customers, the
delivery trucks, and the depots), and when do they know it?

2. The industrial gases inventory case

A motivating example from Adelman (2003), attributed to Bell et
al. (1983), is very useful for introducing some basic difficulties regarding
the inventory routing decisions. This example with deterministic daily
demands is restated in Figure 10.1 (where the internode distances are in
miles) and in the corresponding table below.

LCustomer I Tank Capacity ] Daily Demand ]

A 5000 gallons 1000 gallons per day
B 3000 3000
C 2000 2000
D 4000 1500

Assuming vehicles of 5000 gallon capacity, a simple inventory routing
solution is to replenish customers A and B together every day, and cus-

@_m_

100

Figure 10.1. A simple example with 4 customers
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tomers C and D together every day. The daily “cost” of this solution is
420 miles and uses two vehicles.

An improved routing solution consists of a cycling replenishment pat-
tern which repeats every two days. On the first day use only one vehicle
and deliver 3000 gallons to customer B and 2000 gallons to customer C,
travelling 340 miles. On the second day two vehicles are used. Vehicle
1 delivers 2000 gallons to customer A and 3000 to customer B. Vehicle
2 delivers 2000 to customer C and 3000 to customer D. Each vehicle
travels on that day 210 miles. Thus, the average daily distance travelled
over two day period is 380 miles. This is 10% lower than the first so-
lution. Tt is interesting to note that even though this solution has been
known since 1983, Adelman (2003a) is the first to derive it analytically
and prove its optimality!

The above example illustrates that finding an optimal replenishment
solution even in a simple (deterministic) setting can be quite difficult.
However, a number of successful distribution solutions have been devel-
oped over the years. One of the first success stories is that of industrial
gases distribution systems developed by Marshall L. Fisher (Fisher et
al., 1982) and his associates and is described below in some detail.

2.1 Industrial gases delivery system

The inventory management of industrial gases introduces real-life lo-
gistics issues very similar to the inventory management for propane de-
liveries. We repeat the operational description from Bell et al. (1983).

In the industrial gases case the main products are oxygen, nitro-
gen, hydrogen, argon, and carbon monoxide. Essentially, liquid oxygen
and nitrogen are manufactured in highly automated plants. The plants
serve as supply depots where liquified gases are stored at a temperature
less than -320°F. The liquified gases are distributed in cryogenic bulk
tankers to industrial users and hospitals. Storage tanks at customer
sites are monitored by the supplier under long-term contracts. Simi-
larly to propane, the supplier of liquid gases delivers the product at his
discretion with the guarantee of continuous availability. In 1982, one
company — the Air Products corporation, employed 340 trucks which
travelled over 22 million miles a year. Distribution efficiency is the main
competitive tool differentiating among the producers since the manufac-
turing costs among different companies are about the samec and lower
distribution costs allow lower pricing or higher profit margins. The deci-
sions taken in distribution operations set the customers’ tanks inventory
levels, by determining how much to deliver, how to combine the differ-
ent loads on a truck and how to route the truck. That is, inventory
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management at customer locations is integrated with vehicle routing. A
single liquid gas plant distribution problem may involve several hundred
customers and about 20 trucks. Complicating factors include estimating
customer usage rates which vary considerably over time. Inventory must
be maintained above a specified safety-stock level and customers are not
open for delivery every day of the week or during every hour of the day
(this varies across customers). Trucks also differ in their capacity and
operating costs which might even change by state boundaries because of
different state laws from one state to another.

There are numerous other driving cost related characteristics which
need to be accounted for in real-life dispatching. We will not go into this
here and the more specific details of the system are described in Bell et
al. (1983). As we will see in the case of propane delivery, liquid gas deliv-
ery also requires careful forecasting of the rate at which each customer is
consuming its product and the calculation of the “best” time to deliver,
in terms of cost and delivery feasibility. What is usually known in terms
of consumption rates is the inventory levels which are recorded before
each delivery. In the case of liquid gases some customers are contacted
(telephoned) from time to time to establish exact inventory levels to fa-
cilitate forecasting and dispatching. However, when deciding on vehicle
routing sequences, it is comforting to note that feasible routes contain
between two to four customers only. That is, even when dispatching 10
to 30 trucks daily, efficient routes are not very difficult to construct. In
fact, the system described in Bell et al. (1983), is designed to produce a
distribution schedule for the next two to five days. To select the delivery
routes, first, a set of possible routes is generated with the sequencing
order of customer stops. However, the delivery amount is not specified
in the route generation stage. Since the number of customers on a route
is small, “the number of technically feasible routes is not unreasonably
large.” A large mixed-integer programming model is solved each time
which selects the routes from the set of externally gencrated potential
routes, and determines the vehicle, the time each route starts, and the
amount to be delivered to each customer on the route. We do not repeat
here the mathematical formulation of the route selection model. How-
ever, we note that it incorporates parameters which represent the effect
of short term delivery decisions on the events beyond the horizon of the
model which is two to five days. Otherwise, a short term solution would
“paint” the long term efficiency objective into a bad corner. One main
difference between delivery of industrial liquid gases and propane is that
in the propane case the policy is to fill the customer’s tank to capacity
on each service visit. In addition, delivery routes usually have between
4-12 customers making the route construction scheme more difficult.
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In the next section we focus on one of the first academic attempts to
model inventory distribution.

3. The initial analysis

The first, more “mathematical” analysis of the inventory routing prob-

lem is contained in the paper by Federgruen and Zipkin (1984). In that
paper Federgruen and Zipkin examine:
“the combined problem of allocating scarce resources available at some
central depot among several locations (or “customers”), each experiencing
a random demand pattern, while deciding which deliveries are to be made
by each set of vehicles and in what order.”

It sounds very promising and is viewed as an extension of the stan-
dard vchicle routing problem where the “deliveries serve to replenish the
inventories to levels that appropriately balance inventory carrying and
shortage costs, but thereby incur transportation costs as well.”

Essentially, the problem is examined from the point of view of in-
ventory management in multiple locations with the added complication
of routing — constructing delivery routes for a fleet of capacitated ve-
hicles. The inventory status information for each location is assumed
to be available at the beginning of the day and delivery quantities to-
gether with routes for each vehicle are then computed. The deliveries
are executed and then the actual demand is observed with its resulting
subsequent holding and shortage penalties. There is no requirement of
visiting all the customers. As the authors state “ours is the first attempt
to integrate the allocation and routing problems into a single model.”
The importance of such integration and analysis is very nicely moti-
vated by Herron (1979). Federgruen and Zipkin (1984) present a very
direct model which views each customer’s inventory from the perspective
of the newsvendor problem. That is, there are zero delivery costs to a
customer and the deliveries to the customer(s) are driven by the shortage
costs. For completeness we restate the mathematical formulation below
slightly changing the original notation.

paragraphConstants

NV = number of vehicles

7o = number of locations, with 0 indicating the depot location

Qv = capacity of vehicle v

c;j = cost of direct travel from location i to location j

F;(-) = cumulative distribution function of the one period demand in
location ¢, assumed strictly increasing

h;’ = inventory carrying cost per unit in location ¢

h; = shortage cost per unit in location ¢
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I; = initial inventory at location ¢
A = total amount of product available at the central depot.

Variables.

yik = 1, if delivery point ¢ is assigned to route (vehicle) &k, and is 0
otherwise.

xijk = 1, if vehicle k travels directly from location i to location j, and
is 0 otherwise.

¢; is the amount delivered to location ¢. Note that in the spirit of classi-
cal VRP formulations, at most one vehicle visits any given location.

Just like in the newsvendor inventory model, the inventory cost func-
tion C;(-) and its derivative CI(-), for i = 1,..., 7, are given by

e I;+q;
Cilg;) = ./1 hi (& = I — q;)dF;(€) + /o L+ g — E)dF;(€)

i+qi
Cilg) = (hf + h) VFi(I; + q;) — hi

Now the mathematical formulation expressing a single period cost
minimization is stated as follows:

minZCijCEijk + ZC’(Q’) (10.1)

i,5,k i

subject to the following constraints

quik < Qky k=1,...,NV; (10.2)
)

> a4 < 4 (10.3)
i

NV

> o = NV: (10.4)
k=1

NV

> ya=1, i=1,..., 7 (10.5)

k=0

> Tije =y, j=0,...,fk=1,...,NV; (10.6)
1

D @ik = ik, i=0,...,0k=1,...,NV; (10.7)

g <|SI-1, SC{1,...,a}2< 8] <A1,
(i.j)eSxS k=1,...,NV; (10.8)
xijkE{O.l}, i,j=0,...,nk=1,...,NV; (109)
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ik € {0,1}, i=0,...,ak=1,... NV; (10.10)
g >0, i=1,..., " (10.11)

This formulation has a mixture of 0-1 integer linear VRP type con-
straints and nonlinear constraints (10.2). It is a single period formulation
which generates deliveries driven essentially by the expected shortage
costs. For the propane delivery setting the formulation unnecessarily
assumes limited supply at the depot (constraint (10.3)) but does not
contain the tank capacity constraints at the customer locations. It also
incorporates an inventory holding cost per unit per unit time — which is
not directly applicable to the propane case. More importantly, it charges
inventory shortage costs per unit per unit time. In the propane case the
shortage costs might be best represented by some step function repre-
senting customer specific cost of emergency delivery. However this is a
very nice model and for a fixed vector y it decomposes into simpler prob-
lems. On the one hand we get the inventory allocation problem, and on
the other NV-TSPs, one for each route-vehicle. It is an attractive ap-
proach but unfortunately not appropriate for the propane delivery long
term optimization problem. The primary reason is that this model is a
single period optimization which does not project short-term decisions
into long term cost implications. Thus, it might attempt to myopically
“paint” a sequence of one period solutions into a long-term bad solution.
We will return to this point later when we compare this model with the
later model taken from Dror and Ball (1987).

4. The initial propane delivery model (Dror and
Ball, 1987)

We first describe a number of very simple principles guiding the effi-
ciency of propane deliveries.

m Visit a customer as infrequently as possible. This translates simply to
delivering as much as possible to a given customer on each visit. In
other words, if it is feasible to deliver as much as the customer’s tank
capacity on each visit, then do so.

» If it does not cost extra to visit a customer then replenish him/her.
That is, if you can save a future service visit which has a positive cost
by delivering early at no (or small) cost, then go ahead and replenish.

s Replenishing earlier reduces the risk of stock-out and increases the
present value of cash-flow (see Dror and Trudeau, 1996).

To develop the above principles more formally we describe a basic
analysis of a single customer with a fixed sized tank (size T'), a cost
of refill b (b; for customer i), daily consumption rate p (deterministic
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for now) and initial inventory Iy. Assume the analysis for an n-day
period (for “large” n). Note that the tank is refilled on each visit and
the customer is serviced when the tank inventory reaches zero.

In this case, the (optimal) cost of service visits is:

b(nu — Ip)
A

If we plan deliveries for the next m (< n) days, and select this plan-
ning horizon m small enough such that no customer will need more than
one replenishment during the next m days, then for each customer we
will have to examine two possible cases:

(1) If Iy — mu < 0, this customer must be replenished during the next
m days, otherwise a stockout occurs.

(2) If Iy — mp > 0, the customer need not be replenished during the
next m days.

If case 1 occurs, then the optimal policy would dictate that the replen-
ishment take place on day t* = Iy/u, allowing for non-integer t* values.
Clearly, if case 2 occurs it is best not to replenish the customer in this
current m day period. This single customer analysis is very basic and
does not communicate any problem dynamics. What if the capacity of
the system is insufficient to replenish all the customers whose t* day
falls on a specific day during the current m-day period, but is sufficient
to replenish all the customers which have their best delivery day t* fall
during some day of the current m-day period? Some of these customers
will have to be replenished on a day different than their corresponding
t*. Thus, just for that reason we have to calculate for each customer
the marginal cost over n days, denoted ¢(¢), of replenishment on day ¢
deviating from day t*. That is, ¢(t*) = 0, and ¢(t) > 0, t # t*. There
are other important reasons for evaluating this marginal cost ¢(t), for in-
stance balancing the work load over time. Another quantity is calculated
for the customers who do not need to be replenished on day ¢ during the
current m-day period. This quantity is denoted by ¢(t) and represents
the decrease in future costs (over an n day horizon) if the customer is
replenished during the current m-day period at no cost instead of being
replenished at his “best” day in a future m-day period at cost b. Below
we repeat the calculation from Dror and Ball (1987).

If replenishment is executed on day ¢, then the closing inventory I is
defined by

I.=T—-(m—t)u.
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Now a simple difference calculation for ¢(t) and g(t) is as follows:

(np = (T —(m—t)))  (np—(T—(m—t")u) b
b 7 —b = = (L~ pit)

= c(t)

plrpe = Ue —mp)) (g = (T = (m = t))) (' = Le + te)
T T T

= b~ c(t) = g(1)

The above simple deterministic single customer analysis is extended to
a more realistic stochastic model and later ¢(t) and g(¢) are used as
a cost coefficient in a multi-customer setting. The major weakness of
the above analysis lies in its assumption that we know b—the cost of
visiting a customer, and that this value, even though customer specific,
remains constant for all the replenishments in the n-period. Clearly, this
is not entirely true in real-life propane distribution. We will return to
this important point later on.

4.1 The stochastic single customer

Let r; denote the amount of propane consumed by customer on day
t. Normally, we do not know the value of ;. We do not know its exact
value for past days, which is less important, and, even more so, we do
not know its value for future days. That is, r, £ = 1,2,... are random
variables. For simplicity we assume that rs are independent identically
distributed random variables for each ¢ (consider that the seasonality
effects are removed) with mean p, variance o2, and cumulative distri-
bution function F(-). The randomness (and variability) of consumption
makes the replenishment scheduling a risky proposition. Guessing that
there is enough propane in a customer’s tank when there is not usually
results in a high cost emergency replenishment. Guessing that there is
little left in the tank when there is a lot left results in an almost equally
costly visit. Thus, it is of value to calculate the replenishment day which
balances the risk of the two cost penalties and at the same time accounts
for future implications of an expected delivery volume that is less than
the tank capacity. We describe below this calculation assuming that the
customer’s tank is full on day 1.

Let Ry = E§=1 r; denote the cumulative consumption over a t day
period. Let Pg(t) denote the probability that a stockout occurs on day ¢
given that the tank has not been refilled prior to day ¢. Thus, assuming
that p <7,

Pg(t) = Prob{Ry—1 < T < Ry} = Prob{R;_1 <T} — Prob{R; < T}
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= FU=D(1y — FO(T)

where F%)(T) is the k-fold convolution of F' (set F(*) = 0),

Now we are in a position to write down the expression for the expected
cost during the next n + m days associated with a delivery on day ¢
denoted by E(t). Denote by k* = max {k : such that ku < T},

t—1 t—1
E(t) = (S+c(i))Ps(i) + <1 -3 PS(«I:)>C(¢)
i=1 1=1
t—1
= (S +c(t) — c(i)) Ps(i) — c(t)
i=1

for 1 <t <k* (or k* +1).

What is particularly interesting is that in Dror and Ball (1987), it has
been proven that E(t), 1 < ¢ < k* is a strictly convex function by proving
that Pg(t) > Ps(t — 1), 2 <t < k*, for r;s normally distributed with
coefficient of variation < 1. Moreover, in Kreimer and Dror (1990), this
result was strengthened by proving that the relation Ps(t) > Pg(t — 1),
2 <t < k* holds for a number of other interesting distributions. In Dror
(2002), the relation Ps(t) > Pg(t — 1), 2 < t < k* (monotonicity) was
stated formally as a more general conjecture.

In summary, the result is that E(t), when viewed as a continuous
function of ¢, is convex; thus it achieves its minimum at a single point (or
at most 2 points as a discrete function). That is, let E(t*) = min{E(t) :
1 <t < k*} determines the “best” (minimal expected cost) day for
replenishment —¢*. It is appropriate to note that a similar analysis
(with similar results) has been conducted by Jaillet et al. (2002).

4.2 The propane routing model

The notation is similar but not identical to the presentation of the
model by Federgruen and Zipkin (1984).
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Constants.

NV = number of vehicles

M = the set of customers, with 0 indicating the depot location
Q@ = capacity of a vehicle (homogenous vehicles)

¢;j = cost of servicing customer i then travelling from ¢ to j

m = number of days in planning period.

The quantities defined in the previous subsection now become cus-
tomer specific, so that we have T3, bi, i, Si, ¢i(t), gi(t), Ioi, and ¢},
defined for all i € M. Customer i’s expected demand on day ¢ is de-
noted by ¢;(¢) and equal to T; — Iy; — p;t. Since not all customers in M
need to be replenished during the current planning period, we partition
the customers into two subsets. Let M = {i € M be such that tf < m}
as the customers who must be replenished during the current planning
period, and M°¢ = M\ M the rest of customers. In addition, to simplify
the formulation we denote by TSP(N) a travelling salesman problem
solution for customers in N C M.

Variables.

Yiwt = 1, if customer 7 is assigned to route (vehicle) w on day ¢, and is
0 otherwise.

Now the mathematical formulation expressing a single period cost min-
imization is stated as follows:

NV m .
min Z Z (TSP(Nwt) + Z ¢i(t)Yiwr — Z gi(t)yiwt> (10.12)

w=1 t=1 e T ieMe

subject to the following constraints

NV ] N

D v =1, Vie M, (10.13)
w=1 t=1

NV i

DN i <1, Vie MC, (10.14)
w=1 t=1

> )y < Q, w=1,...,NVit=1,...,m (10.15)
€M

Nyt = {i: Yiwt = 1}, w=1,..., NVit=1,...,m (10.16)
Yiwt € {0, 1}, Vi, w,t (10.17)

The y;y¢ variables indicate for customer 7 the replenishment day and
the replenishment vehicle. We artificially require that customers be re-
plenished before or at their best day t*. Customers who do not have
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their best day fall in the current m-period, do not have to be replen-
ished (10.14). Other than the term for TSP(N) in the objective function
followed by the appropriate set partition in (10.16), the formulation re-
sembles that of the generalized assignment problem. The stochasticity
is captured by the t*’s and the dynamics (long-term implications) by the
ci(t)’s and g;(t)’s. The “big” problem is that of calculating the individual
b; values required for calculation of ¢;(t)’s (g;(¢)’s). Dror and Ball (1987)
offered only an approximation of unproven quality, but their computa-
tional tests compared very favorably with the real-life results (Trudeau
and Dror (1992)). For practitioners, a solution system based on this
approach is best described in Dror and Trudeau (1988). This (10.12) -
(10.17) mathematical formulation is similar in spirit to the formulation
from Bell et al. (1983). There are however a number of differences. It
is not a set-covering approach. That is, it is not a scheme to cover a
given set of customers by selecting routes, cach containing a subset of
customers, from a large family of externally generated routes. It is a
customer selection approach which selects subsets of customers together
with the days in which to replenish these customer subsets (see also Dror
et al., 1985, 1986). In addition, the amounts delivered are determined
by the replenishment day since the policy is always to fill-up the tank,
and the delivery implications are explicitly projected forward. In Bell
et al. (1983) the future implications of a present delivery are not clearly
spelled out.

5. The Markov decision process approach for
inventory routing

Clearly propane delivery routing is merely one representative of a
large class of practical significant problems. Yet due to the inherent
combinatorial and stochastic nature of this class, it remains notoriously
intractable. Formulating the control problem as a Markov decision pro-
cess represents an attractive modelling approach which captures most
of the system dynamics intrinsic to propane delivery. Following Minkoff
(1993), there have been a number of attempts to do just that. Markov
decision process modelling of inventory routing has taken-off in the work
of Kelywegt, et al. (2002, 2003). However, the concomitant contribution
by Adelman (2003a,b, 2004) is the most promising solution approach
yet. We attempt below to provide a brief summary of the main ideas in
these works,



10

5.1

Routing Propane Deliveries 313

The Markov decision process model (MDP)

The Markov decision process model is stated as follows (We modify
the models of Minkoff, 1993; Kleywegt et al., 2002, slightly to unify
notation and assumptions.):

(1)

(2)

The state variable I = (I,..., ), where M is the customer set
and m = |M]|, represents the current amount of inventory at each
customer. The constant vector ' = (11,...,75) represents the

customers’ tank capacities. Thus, the inventory can vary (contin-
uously or discretely) in the product state space T bounded below
by the zero vector and above by the vector of tank capacities. Let
Iy = (114, ..., Imt) € T denote the inventory state at time ¢.

Given a state vector I € Z, denote by A(I) the set of all feasible
decisions. A decision a € A(l;) in time ¢ selects (i) the subset of
customers for replenishment, and (ii) the vehicles’ replenishment
routes. Note that the amount to be replenished can be either a part
of the decision, or, like in a partially observable MDPs, the outcome
of customer inventory level observed on delivery if we always refill
customer’s tank. In the second case, the decision a will have to
contain an estimate of what should be the replenishment volume.
However, the actual delivery value might be quite different. Let
a; € A(I:) be the decision chosen at time ¢. In our propane Markov
decision model we assume that the exact demand is revealed only
when the vehicle arrives at customer location and the policy is to
fill-up the tank.

The system’s randomness is expressed in terms of the daily consump-
tion rate r = (r1,...,rm). That is, the amount that can be delivered
to customer ¢ at time ¢ (the demand ¢;;), equals T; — I;;, which is a
random variable dependent on r;’s since the last replenishment. The
amount delivered to customer ¢ (denoted by d;;(a) in deference to ¢;t)
by executing the policy a on day t can be either zero, a predetermined
quantity dj. or T; — I (if a replenishment always fills-up the tank).
Let U = {It—i-l € RT . ((Ilt—rlt‘i'dlt(a)), ey (I,m—r,erdmt(a))) }
The known joint probability distribution F' of customers demands
at = (ques - - -, @) gives us a known transition function in the form of
a conditional probability distribution. That is, for any state I € 7,
and decision ¢ € A(I), we have

Prob{U | It,a] = F(U | It,a).

Let ({I,a) denote the expected single stage net reward (cost) if the
process is in state I at time ¢, and decision a € A(!) is implemented.
Note that not only the exact customer demands are random variables
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but also the costs of the corresponding routing solution is a random
variable since we do not know this cost until we execute the route
and incur the additional recourse routing costs in response to route
failures (see Trudeau and Dror, 1992).

(5) The objective is to maximize the expected total discounted value
(or the present value of the cash flow), over an infinite (or finite
“long” n-day) horizon. The decisions in time ¢, a(t), are restricted
to the feasible sets A(l;) for each ¢t and depend only on the history
(Io,ao, ..., It—1,a¢—1, It) of the process up to time t. Let II be the set
of policies which depend on the history up to time ¢. Let a € [0,1)
denote the discount factor. Let v*(I) denote the optimal expected
value given the initial state is I, then

o0
(1) = s 7| Y- aCallo = 1
mell —1
Following standard text book analysis (see Bertsekas and Shreve, 1978),
a stationary deterministic policy 7 selects a decision 7(I) € A(I) based
only on the current state I. In principle, under some conditions, one
can solve the above system by dynamic programming, computing the
optimal value function v* and an optimal policy 7*. However, for the
problem described here as the propane inventory problem, this is clearly
impractical. The state space Z is much too big (uncountable). The
dimensionality is too high. The subproblems which need to be solved
are NP-hard, etc. See the detailed arguments in Kleywegt et al. (2002,
2004). On the surface, this modelling approach seems to lead nowhere.
Still, as a mathematical model it has the ability to represent the in-
trinsic problem details in a clear manner. Minkoff (1993) and Kleywegt
et al. (2002, 2004) both attempted the ambitious undertaking of “sal-
vaging” this Markov decision process approach to obtain reasonable so-
lutions for inventory routing. (See also Berman and Larson (2001), for a
different modelling approach.) In essence, Minkoff (1993) and Kleywegt
et al. (2002, 2004), solution approach partitions the set of customers and
estimates parameters for each subset by simulation. The optimal value
function v* is approximated by © by choosing a collection of subsets (of
size 1 or 2) of customers that partition the customer set. The approxi-
mate function 2 is computed for each subset and the sum over the sub-
sets counstitutes the approximate value. To simplify matters, Kleywegt
et al. (2002, 2004) discretize their inventory demand state space. In all
fairness, in Kleywegt et al. the focus is on designing vehicle routes which
are limited to one or at most two customers, and the customers stock-
outs are due to lack of available vehicles. Since in our experience with
propane delivery, vehicle availability was never the reason for stockouts,
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we do not consider these limitations here. There are however a num-
ber of questions regarding the modelling and solution methodology of
Kleywegt et al. (2002, 2004). In addition, it is not clear how Kleywegt
et al. solutions compare with real-life inventory routing since they did
not conduct computational study which compares their results with real
world data. However, many of the questions/reservations regarding their
model are subsequently addressed in the work of Adelman (2003a, 2004)
which we describe next.

5.2 Price-directed Markov models

Adelman (2004) states his decision model clearly: “The dispatcher
chooses nonnegative integer-valued replenishment quantities ¢ =< ¢,
q2, - - -, qm > With ¢; equal to the quantity replenished at 7, ¢ =1,...,m.”
For simplicity, we can adopt this notion of deciding the propane replen-
ishment quantities a priori regardless of the amount I;; realized at time
t in location 7 and the actual demand at ¢ (remember that we do not
know the exact inventory levels before service and therefore do not know
how much is needed to fill the tank at 7). The state space is as before
the product space of estimated (and known) inventory levels Z. After
estimating an inventory state I € 7 the dispatcher selects the subset of
customers who will be replenished in the current period. As before (for
instance, Dror and Ball, 1987), it is assumed that nc customer will be
replenished more than once in a period. The customers are partitioned
into non-empty (disjoint) subsets M = {M; U---U Mg}, where K is
the number of subsets (K < m) including the subset of customers who
are not to be replenished in the current period, say My . Note that K
and the particular partition are part of the action a € A(I). The idea
is that the customers in each subset M;, j = 1,..., K — 1 are replen-
ished together (the same vehicle trip) in the current period (in Adelman,
2004, a period is a day). Based on the present state I, the correspond-
ing action space A(I) consists of determining the partition number K,
the partition M = {M; U---U Mg}, and the vector ¢. The vehicle
capacity constraints specify that ZjE.Mi g <Q,i=1...,K—-1 In
addition, the components of the replenishment vector ¢ as a function of
the state I have to confirm to the customer tank constraints. That is,
gi(I) <max{0,T; — I;}, i = 1,...,m. In fact, one can replace the actual
tank capacities T; with artificial tank capacities 17, or vehicle capacity Q
with artificial vehicle capacity Q' < @, as in a chance constrained mod-
els, to control the route failure probability for each subset of customers
(see Trudeau and Dror, 1992).
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After executing action a € A(I;), the system observes (on delivery)
a partial realization of demand. That is, the system observes only the
demand quantities of the customers who were replenished at period ¢
(day t). However, Adelman (2004) like Kleywegt et al. (2002, 2004)
models the MDP as if the entire vector of demands d = (d;,...,ds) is
observed after the decision «a is taken. Here, we follow their modelling
approach with respect to the probability distribution of the demand
vector. That is, let n(d) denote the probability that the demand equal
d where d; € D;, and D; is a finite set of nonnegative integers.

Once the demand is realized, costs are computed. That is, given
an action a € A(I;), we obtain a partition of M as M = M;(a) U

+U M (q)(a) and the corresponding cost equal to Zfi(la)_l Ci (M;(a)),

where the cost for replenishing a given subset M;(a) is C;(M;(a)) — the
cost of the replenishment route (a TSP route) through M;. Clearly, if
our convention is that the subset Mg 4)(a) does not get replenished in
the current period, then the cost CK(G)(MK(G) (a)) = 0. In addition to
the delivery (routing) cost, Adelman (2004) also uses a traditional linear
form to account for inventory holding and shortage costs in each location
in the form of gi(L;, gi,di) = hi(Li + qi — i) + bi(di — (I + ¢1))™

Adelman (2004) derives an infinite horizon, expected discounted cost
MDP which requires the dispatcher to find an optimal expected cost
minimizing policy. After deriving the optimality equations (following
Puterman, 1994) for finding an optimal policy that is Markovian, sta-
tionary, and deterministic, a linear program is proposed to solve the
problem. Again, because of the huge size of the subsequent model, ap-
proximation solution schemes must be proposed. That is, the optimality
equations are:

K(a)-1

1EM j=

j=1
-I-anp I'|l,a) u*(I’)}, viel

1'eT
where g; (Ii,qi(a)) is the expected holding and stockout cost for item %
given the current state I; and g;(a) is replenished. The linear program

is:
LPy = maxz s(Hv(I)
v I

N<Y glla@)+ Y. C@) +a S p | Lap (I'),

ieM j=1 eIl yae A(I1€Z
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where s(I) > 0 can be arbitrary positive constants for all I € Z.

Substituting v(I) by the sum of customer dependent value functions
Vi(I), that is, v(I) = > ;cp Vi(I),¥V I € I we can rewrite the above
linear program.

An important modelling novelty introduced in Adelman’s (2004) math
programming based solution scheme, is his approximation of C;(M;)
from below with } ., W;(q;), where Wj(q;) represents the allocated
cost of replenishing customer j with quantity ¢;. Without recasting the
full analysis of Adelman (2004), we note that the inventory replenish-
ment solution uses the Wj(g;) in a similar role to the customer specific
bj value in Dror and Ball (1987). The optimal W7 (g;) values have to
satisfy cost allocation efficiency conditions. That is, >.cp, Wi(g5) =
C(M;) = the cost of the TSP tour through the subset of customers
M; including the depot. Thus, one approximating model proposed by
Adelman (2004) is

LPapp = hax Z Z s(1:) Vi(l)

)

ieM Iex
Vill) < gi(Li, @) + Wilas) + > pill | L g0 ViT}),
= Vg e Y1), el
> Wilg) C(M'), ¥YM' e M,q € Y(M)

ieM’

where T(M') = {gj,i € M': 3", cpp @ < Q-NV}, VM' C M, and C(M’)
is the cost on an optimal VRP solution.

Adelman (2004) has shown that LP,,, gives the same results as forc-
ing separable V' in LPg, but LP,;, is much easier to solve. The optimal
vector W* of W(g;)’s is coupled with the optimal vector V*. When
the optimal prices V;*(1;) are used to obtain the control solution then
Adelman calls it a price-directed control policy. We note that our defi-
nition of Y(M’) is different than that in Adelman (2004) since the cost
function C'(-) must also depend on the full vector ¢, because it is now the
solution to a VRP instead of a T'SP. However, we believe that the math
goes through in this case if we ignore the travel time. There are a num-
ber of key technical details in Adelman (2004) which we omit here for
the sake of space. Incidently, in Adelman (2003b), Proposition 2 shows
that when C(M') is the cost of the optimal VRP solution, it can be
decomposed into individual TSP solutions for the purpose of solving the
relaxed LP. Based on the computational results, this (Adelman, 2004)
solution methodology is proven superior to that of Minkoff (1993) and
Kleywegt et al. (2002).
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5.3 Cost allocation for subsets and inventory

In Adelman (2003a) the “price-directed” solution methodology for in-
ventory routing receives an additional boost in terms of clarification of
ideas, solution philosophy, and results. However, we should note that
this paper looks for optimal policies in a deterministic setting like the
one in the example described in Figure 1. The key concept in this pa-
per is that of incremental cost when considering, in current time, the
replenishment for customer ¢. That is, the key value which “real-world”
dispatcher ought to examine is C(M; U ©) — C(M;), M; C M,i & Mj,
together with the future cost implication of delivering quantity d; > 0
to 7.

Since all the costs have to be absorbed by the customers, Adelman’s
(2003a) analysis requires a cost allocation process which is applied si-
multaneously to routing and inventory replenishment decisions. (For
cost allocation in vehicle routing see Gothe-Lundgren et al., 1996.) The
propane delivery problem is formulated as that of minimizing long-run
time average replenishment costs. This objective corresponds nicely to
the objective of maximizing the long-run average number of units (gal-
lons) delivered per hour of delivery operation which is used in real-life
propane distribution. Adelman (2003a) formulates the problem as a
control problem using dynamic system equations. Without restating the
evolution of the problem modelling and the technical details involved,
we note that the main thrust is to reformulate the deterministic control
problem as a nonlinear program in which “in the long-run averages, re-
plenishment must equal consumption.” Solving the nonlinear program
leads to the development of what is called the price-directed operating
policy which maximizes the net-value of the replenishment. Incidently,
Adelman proved that the objective used by Dror and Ball (1987), is also
a net-value replenishment maximizing objective justifying its apparent
success. Next, we sketch out Adelman’s (2003a) modelling approach.
We attempt to keep the notational convention of the earlier sections.

Adelman links the initiation of a replenishment action to any sub-
set of customers with an occurrence of one stockout (or more than one,
if occurring simultaneously) in the system which triggers a “must” re-
plenishment response. (This is not how propane replenishment systems
behave in practice, but it is quite fitting in this setting.) Now the time is
measured not in day units, but as the elapsed time between the succes-
sive initiations of new replenishment activities. Thus, T represents the
time elapsed between replenishment epochs t and t 4+ 1,1 =1,2,3,...,
and I;; be the inventory level at customer ¢ just before the tth replen-
ishment operations activation. We require that at least one day lapses
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between consecutive replenishment activities. Given a set M of cus-
tomers, let M ; C M denote a subset of customers, and let the zero-one

variable Zr , = 1, if customers in M ; are replenished during epoch .

Myt
The corresponding control problem is formulated as follows:

(CONTROL)
. . Zf 1 ZM M (A[ )Z Myt
inf im sup (10.18)
N—oo Zt:l Tt
L1 = Lig + dig — pily, V positive integer t;Vi € M (10.19)
diy < (T; Y 75, ¥ positive integer ;v € M (10.20)
M,CM:ieM;

Z diy <Q-NV, Y positive integer t (10.21)
ZE]T/I\A

Z Zﬁ/ivt =1, Y positive integer ¢ (10.22)
MicMm
ZM\AJ € {0,1}, VM\A C M,V positive integer ¢ (10.23)
s,I,T>0 (10.24)

The objective (10 18) minimizes the long-run average replenishment costs.
Note that C(M ;) denotes the cost of the corresponding VRP solution

through the subset M i+ Constraints (10.19)) state the conservation of
inventory for each customer 7. Constraints (10.20) insure that the in-
dividual tank capacities are respected. Constraints (10.21) make sure
that for the replenishments scheduled in an epoch the vehicle fleet ca-
pacity is not exceeded. Constraints (10.22) state that exactly one subset
is selected for replenishment in each replenishment epoch. The other
constraints are just state 0—1 selection for subsets and nonnegativity of
the corresponding vectors. We note that it is straight forward in this
formulation to limit the choice of the subsets M ; which can be consid-
ered for replenishment and thus manage the size of the corresponding
control problem.

In order to solve the above problem, a nonlinear programming model
is proposed which is a relaxation of the original. Denote by Zz; a non-

negative decxslon variable representing the long-run time avcraoe rate
that the subset M is replenished together. For each such subset ]\/[
which contains ¢, let d, ;7. denote the decision variable representing the
A

average replenishment quantity delivered to 1 when replenishing the sub-
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set M 4 The corresponding program is stated as:

(NLP)  min ) O(My)Zy, (10.25)
MicMm
> 457,257, = Hi»  VIiEM (10.26)
> d; 57, <@ -NV, VM;C M (10.27)
iGﬁA
d 51, < Ty, VM, CM,ieM;  (10.28)
Z,d =0 (10.29)

Adelman (2003a) shows that solutions to (NLP) may not be necessar-
ily implementable because it does not capture all the dynamics in the
system.

Next, a dual problem to (NLP) is formulated below with decision
variables V; and data d; derived from a set Do.

(D) max Y 1;V; (10.30)
ieM
ST diVi <C(My), ¥ (Mgd)eDo (10.31)
iE]’\/TA

The interpretation of the V;’s is that “at optimality they are the marginal
costs, or prices, associated with satisfying constraints (10.26) of (NLP)”
and “u;V; at optimality can be interpreted as the total allocated cost
rate for replenishing customer ¢ in the optimal solution to (NLP).”

As far as solution, Adelman (2003a) solves the (NLP) by solving a
version of the dual problem (D) by column generation procedure. We do
not describe here the technical details and the difficulties involved. With
this solution scheme he can prove that the solution for the motivating
example (Figure 10.1) is indeed optimal!

The computational study of Adelman’s (2003a) price-directed solution
methodology demonstrates its viability. It produces results superior to
all the previously proposed solution schemes.

6. Summary

This chapter is about solving the problem of propane deliveries. It is
commonly viewed as a representative problem of a much larger family of
hard problems of considerable practical significance. This problem has
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been on the “front burner” of the logistics academic and practitioners
community for over twenty years. In fact, it was voted as the “most
important/interesting” current OR problem in an unofficial gathering
of Operations Research professionals which took place in early 1983 at
Cornell University. Has it been solved now?

Clearly, Bell et al. (1983) describe a workable solution to the prob-
lem. They were able to construct a mathematical optimization module
which routinely solved mixed integer programs with 800,000 variables
and 200,000 constraints. In 2004, with our present computing power,
this model should be able to solve problems 100 times larger. Could
they prove optimality of their solution for the example in Figure 10.17
I do not think so. This problem was solved by Adelman (2003a).

In another solution scheme, Dror and Ball (1987) proposed and im-
plemented a solution methodology which routinely solved problems with
5,000 customers. While it was (and may still be) a very promising solu-
tion methodology, it did not claim or deliver optimal solutions.

Presently, the work of Adelman (2003a,b, 2004) stands out as the
reigning incumbent. Adelman (2003a), describes computational testing
of his approach on a number of instances form Praxair, Inc. available
online. These computational results are very promising. We would hope
that more testing on “real-world” problems and operational implemen-
tation would follow.

Final Note. Propane deliveries are made every day in the US,
Canada, and Europe (to my knowledge). The real-world operators are
making moncy replenishing customers with propane and are in the mar-
ket for improved solution methodologies for their operations.
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