
MOKAEANE V. POLAKI 

DEALING WITH COMPOUND EVENTS 

Chapter 8 

Instruction can lead students to actively experience the conflicts 
between their primary intuitive schemata and the particular types of 
reasoning specific to stochastic situations. (Fischbein & Schnarch, 
1997, p. 104) 

1. INTRODUCTION 

The ability to make valid probability predictions in the context of compound 
events (e.g. tossing a coin and throwing a six-sided die) is a key learning 
goal for the middle school (National Council of Teachers of Mathematics 
[NCTM], 2000). More specifically, the NCTM declares that middle school 
students should be able to compute probabilities for simple compound 
events, including the expected number of occurrences of a target event for a 
certain number of trials. When adequately established, this knowledge base 
will serve as a basis for dealing with more complex compound events and 
other probabilistic situations including conditional and independent events in 
the higher grades (Tarr & Lannin, this volume). 

According to Hogg and Tanis (1997), compound events are events such 
as A or B, A and B, and the complement of A; however the term also refers 
to a two-stage or two-dimensional random experiment such as the 
simultaneous rolling of a die and the tossing of a coin. It is this latter usage 
of compound events or compound random experiments, as they are 
sometimes called, that will be the focus of this chapter. By way of contrast, 
simple events or simple random experiments are one-dimensional random 
experiments that deal with situations such as the tossing of a single coin. 
Hence in compound events we are dealing with pairs of outcomes (usually 
ordered pairs), whereas in simple events we are dealing with single 
outcomes. Although the terms one-dimensional and two-dimensional are 
referenced in the literature (English, 1990; 1993; Zimmermann & Jones, 
2002), in this chapter we will use the terms simple and compound events 
(see also Bsrtanero & Sanchez; Pratt; Watson; this volume). 

Graham A. Jones (ed.), Exploringprobability in school: Challenges for teaching and 
learning. 191-214. 02005 
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This chapter will analyze elementary and middle school students' ability 
to generate sets of outcomes associated with compound events, and will 
examine some research on the impact of instruction on the learning of both 
theoretical and experimental probability (Benson & Jones, 1999; Jones, 
Langrall, Thornton, & Mogill, 1999; Lecoutre, 1992; Piaget & Inhelder, 
195111975; Pratt, 2000; Polaki, Lefoka & Jones, 2000; Polaki, 2002a; 
Speiser & Walter, 1998; Vidakovic, 1998; Watson & Moritz, 1998). 
Whereas the theoretical probability of an event is based on an analysis of 
sample space composition and uses symmetry, number, or simple geometric 
measures to determine the likelihood of an event, the experimental 
probability of an event has a frequentist orientation. It is based on 
experimentation or simulation and uses relative frequency to determine the 
likelihood of an event (Jones, Langrall et al., 1999). The chapter will also 
explore various learning experiences that might be used to nurture or support 
the development of students' thinking in dealing with compound events. 
More specifically, it will focus on understanding students' probabilistic 
thinking when they deal with simple and compound events in both interview 
and instructional settings. 

2. UNDERSTANDING STUDENTS' PROBABILISITIC THINKING 

As mentioned in the opening paragraph, understanding compound 
experiments requires one to be able to (a) generate complete sets of 
outcomes for each experiment, and (b) use sample space symmetry, 
composition or experimentation as a basis for making probability 
predictions. Accordingly, the concepts of sample space and probability of an 
event will constitute a context for exploring students' ability to deal with 
compound events. With these concepts in mind, reference will be made to 
the Probability Thinking Framework (see Figure 1, Polaki et al., 2000) 
which was an extension of earlier research (e.g., Jones, Langrall et al., 1997) 
that described students' probabilistic thinking across five constructs: sample 
space, probability of an event, probability comparisons, conditional 
probability, and independence. Validation of the Probability Thinking 
Framework (Framework) with Basotho students (Polaki et al., 2000) 
suggested the existence of four levels of probabilistic thinking: subjective 
(Level I), transitional (Level 2), informal quantitative (Level 3), and 
numerical (Level 4). These four levels were found to be consistent with 
Case's (1996) more general cognitive model and in essence suggested that 
Case's model could be applied to probabilistic thinking in addition to the 
three knowledge domains previously examined by Case: numerical, spatial, 
and narrative thinking. 
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In order to fully appreciate the conceptual difficulties students experience 
when challenged to generate sets of outcomes for compound experiments, it 
is important that we first examine what research says about students' ability 
to generate sets of outcomes for random situations involving simple events. 

Sample Space: Simple Events 

Some middle school students, depending on their experience with random 
phenomena, may have difficulty in listing the complete set of outcomes for a 
random experiment (Polaki et al., 2000; Green, 1983). With regard to simple 
experiments, research in this knowledge domain (e.g. Polaki et al., 2000) has 
shown that when challenged to generate the sample space, students operating 
at Level 1 (Figure 1) typically provide incomplete sets of outcomes and 
often justify their responses subjectively. Figure 2 shows examples of 
assessment tasks associated with simple events. 

Show a spinner with 4 evenly-spaced colors: Red, Green, Blue, and 
Yellow. 
You got . . . . . ... on the first spin, what colors could you get if you spin 
again? 
Write them down. 
Can you explain that to me? 
Which color are you most likely to get if you spin again? 

Show a six-sided fair die, and allow the student to roll the die. 
What did you get? 
Write down all the outcomes you could get if you roll the die again. 
Can you explain that to me? 
How would you describe the chance of obtaining an even number when 
vou roll the die? 

Figure 2. Examples of Tasks Based on Simple Events 

Polaki et al. (2000) found that when the students exhibiting Level I 
thinking were asked to list the set of outcomes for a spinner with four colors, 
they were more inclined to give one outcome, arguing that the spinner would 
land on their favorite color. When these students were challenged to list all 
possible colors to which the pointer could land after landing on one of four 
colors on the first spin (see Figure 2: Item I), Polaki et al. observed that the 
students excluded the color they got on the first spin, arguing that they could 
not get it again since they got it on the first spin. Furthermore, when asked to 
predict the most likely color (Item 1 (d), Figure 2), these students picked one 
of the 4 colors, often arguing that the one they had chosen was their favorite. 
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Similarly, in response to Item 2b (Figure 2), where the students were 
asked to list all possible outcomes on the second roll of a fair die, Level 1 
students were more inclined to only mention 5 of the six equally-likely 
outcomes, arguing that they could no longer get the outcome they obtained 
on the first trial. Jones, Langrall et al. (1999) termed this "the sample space 
misconception." Furthermore, these researchers observed that this thinking 
tendency remained resilient even when subjected to a carefully designed 
instructional program (see Langrall & Mooney, this volume). Apart from 
this misconception, students tended to give a wide range of subjective 
reasons including the claim that their incomplete lists of outcomes were 
based on personal preference or that they knew for sure that things would 
happen the way they had predicted (deterministic perspective). Similar 
findings were recorded in Jones et al. (1997). Unlike their Level 1 
(subjective) counterparts, students exhibiting Level 2 (transitional) thinking 
were often able to provide complete sets of outcomes for simple random 
events like those incorporated into Items 1 and 2 (Figure 2). It is important to 
note that students at Level 3 (informal quantitative) and Level 4 
(quantitative) experienced no difficulty in listing complete sets of outcomes 
for simple random experiments. However, students operating at the Levels 1 
through 4 experienced varying degrees of difficulty when challenged to 
provide complete sets of outcomes for compound random events. 

Two possible interpretations have been documented to explain the 
observed features of students' thinking with regard to generating sets of 
outcomes for simple experiments. Jones et al. (1997) claimed that the 
tendency of Level 1 (subjective) students to provide an incomplete set of 
outcomes with subjective justifications was consistent with Biggs & Collis' 
(1991) prestructural thinking in that the students seemed to be distracted by 
an irrelevant aspect: generally their preoccupation with their favorite color. 
Using a different cognitive lens, Polaki et al. (2000) argued that this type of 
thinking corresponded to Case's pre-dimensional thinking level in the sense 
that the absence of a mental counting line had made it impossible for 
students at this level to construct a part-part schema (conceptual structure 
that enables the learner to compare or order parts) that would enable them to 
coordinate the organization and numbering of the elements of the sample 
space. Whereas a part-part schema is a conceptual structure that enables the 
learner to compare or order parts of a whole, a part-whole schema is a 
related structure that makes it possible for the learner to compare parts to a 
whole (Lamon, 1999). For this reason, such students provided an incomplete 
sample space, supporting their responses with subjective reasons. Polaki et 
al. also noted that the observed subjective reasoning was a result of failure to 
coordinate order and numbering. As further confirmation of their position, 
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they asserted that the mechanisms successfully used in sample space tasks by 
students operating at Levels 2 through 4 did reveal the presence of a mental 
counting line and a part-part schema that enabled the students to organize 
and list complete sets of outcomes. 

Sample Space: Compound Events 

Generating complete sets of outcomes for compound random experiments 
presents students operating at Levels 1 through 4 of the Framework (Figure 
1) with varying degrees of challenge. Figure 3 shows examples of the kinds 
of tasks that were used to assess thinking with respect to compound 
experiments. Whereas Level 1 students typically experience no success at 
generating sets of outcomes for compound experiments, their Level 2 
counterparts show some success on this task, but often provide incomplete 
sets of outcomes. Polaki (2002b) concluded that whereas the existence of a 
mental counting line enables students operating at Level 2 to organize and 
generate the sample space for simple experiments, it does not enable them to 
generate sets of outcomes for compound events. Such events require, as will 
be shown shortly, the use of more than one mental counting line to organize 
and generate complete sets of outcomes. 

Research in this knowledge domain (English, 1990, 1993; Benson & 
Jones, 1999; Polaki, 2002a) has further shown that, at the lowest level of 
sophistication, students provide incomplete sets of outcomes for compound 
experiments often on the basis of some subjective reasoning (e.g. personal 
preference) or trial-and-error strategies. For example, when challenged to list 
all possible ways of choosing a pair of pants and a pair of shoes from 3 pairs 
of pants and 2 pairs of shoes (Figure 3: Item 3), many students first try to 
match shoes and pants without following any systematic strategy. The final 
step is to go through this rather haphazard list to identifj repeated pairs and 
delete them. Polaki (2002a) observed that this inefficient strategy might 
work for the less complex compound situations such as Item 3 (Figure 3) but 
not for the more difficult situations such as Item 4 (Figure 3). 

Level 3 (informal quantitative) students differed from their Level 
l(subjective) and Level 2 (transitional) counterparts in that they were able to 
provide complete sets of outcomes for compound experiments using a 
partially generative strategy (Polaki et al., 2000; Jones et al., 1997). Whereas 
the Level 2 students would generate an incomplete set of outcomes for 
tossing a fair coin and a fair die (Figure 3: Item 1) without following any 
order or strategy, Level 3 students would first produce 6 outcomes by a kind 
of alternating of a H and a T; each time picking up numbers they had not 
picked up from the 6 possible outcomes of a die as follows: "H 1, T 2, T 1, H 



DEALING WITH COMPOUND EVENTS 197 

Show a fair coin and a six-sided fair die, allow the student to roll them 
at the same time. 
What did we get? Write down all the outcomes you could get when 
you roll the die and flip the coin at the same time. 
Can you explain that to me? 
What is the probability of obtaining an H and an even number? 
You and I are playing a game. You toss a fair coin and win a point 
every time it turns up heads. I roll a six-sided fair die and win a point 
every time I get an even number (2,4, or 6). If you wanted to win the 
game, would you choose a coin or a die? How did you decide? 
Thabo has 3 different pairs of pants: 1 grey, 1 khaki, and 1 white. 
Furthermore, he has two pairs of shoes: 1 black and 1 brown. Suppose 
he chooses a pair of pants and a pair of shoes without looking: 
How many possible combinations of pants and shoes can Thabo 
choose to wear? 
List all possible combinations of pants and shoes that Thabo can 
choose to wear. 
Palesa plans to eat lunch at Speak Easy Restaurant. Three types of 
Lunch are available: fish (with potato chips), chicken (with rice), and 
beef stew (with papa). Each lunch is served with 1 of the following 
beverages: coke, pepsi, fanta, monis, sprite, appletizer, and grapetizer. 
In how many different ways can she choose to eat at Speak Easy? 
List all possible ways in which Palesa can choose to eat at Speak 
Easy. 

Figure 3. Sample Tasks Based on Compounds Experiments 

2, H 3, T 4." They would then continue in this way until they had produced a 
complete set of 12 possible outcomes. In contrast to the students using this 
partially generative approach (Level 3), those exhibiting Level 4 used a 
generative approach to list complete sets of outcomes for compound 
experiments (Polaki et al., 2000; Jones et al., 1997). For example, when 
asked to list all possible ways of choosing to eat at a restaurant, given 3 
types of lunch and 7 different beverages (Item 4, Figure 3), these students 
took each type of lunch and then systematically matched it with each of the 7 
beverages to produce a complete set of 21 outcomes. English (1993) termed 
this approach the odometer strategy for, like the roll over an odometer, it 
entails taking each possible outcome in one set (in this case types of lunch) 
and systematically matching it with each of the outcomes in the second set 
(see English, this volume, for a more detailed description). Implicit in this 
strategy, according to Polaki (2002b), is the ability of the learner to use a 
crude form of the multiplication rule in order to figure out when the set of 
possible outcomes is indeed complete. Clearly, this is a highly sophisticated 
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strategy compared to the trial-and-error strategy used by students operating 
at Level 2. 

It is appropriate to consider a possible interpretation of the partially 
generative strategy exhibited by students operating at Level 3 (informal 
quantitative). According to Polaki et al. (2000) the thinking of these students 
appeared to be consistent with Case's (1996) bidimensional thinking in that 
they were able to employ more than one counting line to do the arithmetic 
necessary for generating complete sets of outcomes for compound 
experiments. In the example described in the foregoing paragraph, the 
process of listing a complete set of outcomes for rolling a six-sided die and 
tossing a fair coin (Item 1, Figure 3) entails recognizing and counting 
elements of each of the sample spaces associated with the coin and the die, 
before integrating these into a whole. Although Jones et al. (1997) used a 
different psychological perspective, their interpretation is similar. They 
argued, in accord with Biggs & Collis (1991), that students at Level 3 were 
often able to focus on more than one aspect of a situation, that is, exhibit 
multi-structural thinking. 

To interpret Level 4 students' ability to produce a complete set of 
outcomes for compound experiments using a generative strategy, Polaki et 
al. (2000) have argued that Level 4 students' thinking is more consistent 
with what Case (1996) described as integrated bidimensional thinking. 
According to Case, students using integrated bidimensional thinking are able 
to use and systematically coordinate arithmetical thinking using multiple 
counting lines. It is this coordination of multiple counting lines in using the 
odometer strategy that distinguishes Level 4 from Level 3 students. In a 
similar way, Jones et a1 (1997) argued that Level 4 thinking is more 
consistent with Biggs and Collis' (1991) relational thinking in the sense that 
students at this level are able to integrate more than one aspect of a situation 
into a meaningful structure. In the case of compound situations such as the 
tossing of two fair coins, this process entails simultaneously counting and 
ordering the elements of the two sets, and integrating them so as to generate 
a compound sample space {(H H), (H T), (T,H), (TT)). The added use of a 
rough multiplication rule to figure out that the maximum number of possible 
outcomes is 4, confirms for these students that the sample space is indeed 
complete. 

Probability of an Event: Simple Events 

To make likelihood predictions in the context of simple events, Level 1 
(subjective) students typically provided subjective responses, including 
idiosyncratic and deterministic reasoning (Polaki et al, 2000; Jones et al., 
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1997). For example, they would argue that a tail is more likely when a fair 
coin is tossed because it is a favorite outcome or because "it often comes up 
for them." In contrast, Level 2 (transitional) students showed more success at 
making probability predictions for simple events, and had started to use 
informal but valid quantitative judgments to predict the most-likely or least- 
likely event, albeit inconsistently. For example, when asked to describe the 
chance of obtaining an even number when a six-sided fair die is rolled, these 
students sometimes used the phrase "3 out of 6". However, they typically 
used this informal quantitative language rather inconsistently and at times 
reverted to subjective reasoning. In particular, Polaki et al. (2000) found that 
what Watson, Collis & Moritz (1997) termed "acknowledgment of 
uncertainty without quantifying it" was prevalent amongst the sample of 
elementary and middle school students they assessed. For instance, when 
asked to predict whether a head or tail was more likely to occur when tossing 
a fair coin, students showing this type of thinking insisted that they did not 
know because anything could happen. 

Polaki et al. (2000) argued that whereas Level 1 students had not as yet 
constructed a mental counting line, their Level 2 counterparts had 
constructed this counting line, and it enabled them to construct a part-part 
schema. This structure appeared to have made it possible for Level 2 
students to coordinate the notions of number and ordering needed for 
comparing probabilities of simple events. Thus the thinking shown by Level 
1 students is more consistent with Case's prestructural thinking. In contrast, 
Level 2 students' ability to list complete sets of outcomes and their limited 
success at predicting likelihood was more consistent with Case's (1996) 
unidimensional thinking. In essence, the presence of a mental counting line 
enabled Level 2 students to construct a part-part schema that made it 
possible for them to coordinate number and ordering in the case of simple 
events but not, as we will see, for compound events that required part-part 
and part-whole comparisons. Whereas such skills would suffice for simple 
experiments (structurally more simple), they apparently did not work for 
compound random situations where the learner needed to think of more than 
one aspect of a situation and then simultaneously integrate this into a single 
structure (more complex). Using a different cognitive perspective, when 
interpreting similar findings, Jones et al. (1997) posited that the type of 
thinking shown by Level 2 students corresponds to Biggs and Collis' (1991) 
unistructural thinking in the sense that the students appeared to have engaged 
the task in a relevant way even though they focused on a single aspect. This 
explains why they can make valid probability predictions for simple events 
but not for compound events, which require them to coordinate more than 
one aspect of the random situation. 
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Students operating at Level 3 and 4 experienced no difficulty in making 
predictions in the case of simple random experiments. Furthermore, they 
showed greater consistency when using valid quantitative judgements to 
predict the most and least likely events. However, they often stopped short 
of using precise numerical measures (fractions) when challenged to do so. In 
the sense of Case (1996) the students operating at these higher levels had 
constructed a mental counting line that enabled them to coordinate number 
and the ordering of probabilities for simple events. I examine in the next 
section compound random experiments; these caused varying difficulties for 
students at all levels. 

Probability of an Event: Compound Events 

As we noted previously, students operating at Level 1 and Level 2 
experienced great difficulty with sample space; that is in listing complete 
sets of outcomes for a compound random experiment. Since valid probability 
predictions are derived from an analysis of sample space composition or 
symmetry, it is logical to expect these students to struggle when challenged 
to make probability predictions for compound experiments. This probably 
explains why most of them tend to make arbitrary predictions in the context 
of compound events, justifying them subjectively. 

By way of contrast, Level 3 and Level 4 students experienced greater 
success at listing complete sets of outcomes for compound events, but were 
very erratic when asked to make predictions of likelihood. In the sense of 
Case (1996), students operating at these levels (3 and 4) had, in the same 
way as their Level 2 counterparts, constructed a mental counting line that 
enabled them to order probabilities for simple events but not for compound 
events. These latter events require the construction and use of multiple 
counting lines to perform the arithmetic associated with probabilistic 
thinking. 

In this section I have provided background on the kinds of thinking upper 
elementary and middle school students might bring to the classroom with 
regard to the generation of sample space and the making of likelihood 
predictions for simple and compound events. Additionally, I have attempted 
to provide a psychological interpretation of students' thinking, and have 
pointed to connections between quantitative thinking and probabilistic 
thinking as it pertains to both simple and compound events. The presence of 
mental counting lines and the subsequent construction of part-part and part- 
whole schemata appear to drive the development of students' probabilistic 
thinking. 
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The next section examines attempts to support or nurture the 
development of students' ability to deal with simple and compound random 
experiments in an instructional setting (e.g. Jones, Langrall et al., 1999). My 
intention is to describe key changes in the development of students' 
probabilistic thinking, and to identify some instructional strategies that might 
be used to develop and encourage more sophisticated forms of probabilistic 
thinking. 

3. STUDENTS' THINKING IN AN INSTRUCTIONAL SETTING 

A number of attempts have been made to study the development of students' 
ability to generate complete sets of outcomes and to make valid probability 
predictions for simple and compound random experiments (e.g. Polaki, 
2002a; Jones, Thornton, Langrall & Tarr, 1999). This section provides a 
discussion of the observations made in an instructional program that was 
aimed at documenting and interpreting how upper elementary school 
students acquire increasingly sophisticated ideas in dealing with simple and 
compound random situations (Polaki 2002b). It is hoped that this discussion 
provides a useful picture of the type of thinking that students will bring to 
instruction in the middle school years. As in the previous section, notions of 
sample space and probability of an event are used as the context for 
examining the development of students' understanding in relation to simple 
and compound events. 

Instructional Program 

The instructional program was premised on the cognitively guided 
instruction model: according to this model research-based descriptions of 
students' thinking in a knowledge domain are used to inform instructional 
decisions (Carpenter & Fennema, 1988). Accordingly, the Framework 
(Figure 1) was used as the research base on students' probabilistic thinking 
to inform instruction that focused on simple and compound random 
experiments. In the sense of Jones, Thornton et al. (1999), the Framework 
was used in three ways: (a) planning the instructional session in that it 
constituted a basis for selecting and developing appropriate learning 
activities, (b) implementing the instructional session in that it provided a 
context for interpreting and classifying students' responses and interactions 
during instruction, and (c) assessing and monitoring students7 thinking at 
various stages of instruction. 

An overarching goal of the instructional research was to develop a 
detailed account of key episodes and conditions that are crucial to enabling 
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the students to make conceptual progress in thinking about simple and 
compound random experiments. The intent was to formulate a learning 
trajectory (Cobb, 2000; Simon, 1995) that described students' expected 
thinking as they generated sets of outcomes and made predictions for tasks 
involving simple and compound events. An instructional sequence design 
that proved useful in evoking key changes in students' thinking entailed five 
phases: (a) exposing students to a game-like random situation and asking 
them to list possible outcomes and to make initial probability predictions; (b) 
asking the students to act out (play) the game-like situation a limited number 
of times (say 50), and then asking them to reflect on the predictions they 
made in the first phase; (c) simulating the game, displaying the data, 
discussing the results, and then asking the students to reexamine the 
responses they provided in the first phase; (d) examining sample 
composition or symmetry in order to reconsider the questions posed in the 
initial phase; and (e) reconciling the observations made after the computer 
simulation phase with the results of the analysis of sample space 
composition. Figure 4 shows an abridged version of the instructional session 
built around a simple random experiment. Figure 5 shows examples of tasks 
used in the instructional setting. 

Sample Space: Simple Events 

The discussion in this section will focus on how students' probabilistic 
thinking evolved from subjective reasoning to an ability to generate 
complete sets of outcomes for simple random experiments. The pretest 
indicated that all the 12 students who took part in the instructional program 
operated at Level 1 (subjective) thinking prior to the start of the instructional 
program. The reader should note that, unlike the assessment items, 
instructional activities did not explicitly require students to generate sets of 
outcomes for simple experiments. Instead, the need to focus on the set of all 
possible outcomes for simple experiments was implicitly called for when the 
students were challenged to make probability predictions. The instructor's 
probing questions together with discussions in whole- and small-group 
settings seemed to be crucial in enabling the students to construct explicit 
links between probability predictions and sample space composition. It was 
observed that at the end of the 6-week instructional period 8 (67%) students 
were operating at Level 4 (numerical) with regard to ability to generate sets 
of outcomes for simple and compound random experiments. Given that 
sample space and probability of an event are interrelated, the instructional 
session that challenged the students to make predictions on the basis of 
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Which Color Now? 

Materials: Spinner as shown. 

Making Conjectures 
Each player chooses either a black or white color. Players take turns to spin 
the spinner. Each player wins a point each time the pointer lands on which 
chosen color. The winner, player with the greatest number of points, wins a 
Walkman. If you wanted to win a Walkman, which color would you 
choose? How did you decide? [Challenging students to make conjectures] 
Playing the Game 
Students work in groups. Two students take turns to spin the spinner. The 
third student records the number of times the spinner landed on black or on 
white. The game takes 50 trials. 
Analyzing Sample Space Composition 
Did the game turn out as you expected? Why or why not? Which color was 
best for winning the Walkman? Why? If we wanted to predict the winning 
color before playing the game, what would you suggest we do? Explain. 
Making Extensions 
Was this a fair game? Why or why not? If you think the game was unfair 
describe how you would design a fair game. If you think the game was fair, 
describe how you would design an unfair game. 

Figure 4. Typical instructional session built around a Simple Random Event 

sample space composition forced the students to focus more closely on the 
need to generate complete sets of outcomes. 

Case study analyses revealed that although the majority of students made 
substantial progress in dealing with sample space, two students named Mpho 
and Tau showed a persistent belief that the outcomes of a random 
experiment were dependent on previous outcomes (Jones, Langrall et al., 
1999). This occurred despite learning experiences that were designed to 
challenge this misconception. Eventually the thinking of the rest of the 
students progressed beyond Level 1 with respect to the listing of outcomes 
of simple random experiments. However, the generation of a complete set of 
outcomes in the case of compound experiments produced new challenges 
and interesting developmental patterns. 
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Sample Space: Compound Events 

Whereas most students had little difficulty in generating complete sets of 
outcomes for simple random experiments, they struggled when challenged to 
generate sets of outcomes for compound random experiments. In order to 
evoke growth in students' ability to generate complete sets of outcomes, they 
were first asked to figure out the number of ways in which a child named 
Thabo could choose to wear a pair of pants and a pair of shoes: given 3 pairs 
of pants in the top drawer and 2 pairs of shoes in the bottom drawer (Item 3, 
Figure 3). Another child called Tefo was the only one who gave a correct 
response using a nongenerative strategy. This strategy entailed matching a 
pair of pants to a pair of shoes without following any system, and then 
checking to see if any of the items had been omitted. The rest of the students 
also employed this strategy, albeit without success. It is also worth noting 
that compared to other items involving compound events (e.g. Item 4; Figure 
3), this item was a structurally easier problem as it involved two sets with 
small numbers of elements; namely two and three respectively. 

Instead of showing the students how to do the problem, the instructor 
asked the students to solve a similar but more complex problem. The 
problem challenged students to figure out the number of ways of eating at a 
restaurant given 3 types of lunch and 7 types of beverages (Item 4, Figure 3). 
This time the instructor insisted on the need to figure out a systematic 
strategy for listing all possible outcomes. In so doing, the instructor 
established conditions that produced a cognitive conflict in the hope that this 
conflict would motivate the students to figure out a systematic way of listing 
all possible outcomes. Three types of responses came to the fore. First, the 
majority still used the trial-and-error strategy, and consequently gave up 
after listing an incomplete set of outcomes. Second, one student called 
Mampe came up with 18 possible outcomes after matching each type of 
lunch with all but one of the 7 beverages. Third, another student called Lineo 
followed a similar approach but used all beverages, and correctly came up 
with 21 possible outcomes. Mampe and Lineo had used the odometer 
strategy (English, 1993) to a different degree of accuracy. Interestingly, 
Lineo had not been able to use the same strategy earlier to solve a much 
simpler problem (Item 3, Figure 3). Additionally, both Mampe and Lineo 
were able to figure out the number of possible outcomes, apparently using 
the multiplication rule. That is, when Lineo was asked to explain how she 
figured out that the number of possible ways of eating at the restaurant was 
21 (Item 4, Figure 3), Lineo explained: "Well, I figured out how many 
drinks there were.. ... So I multiplied 7 by 3 to get 2 1 ". 

As the lesson continued, Mampe, Lineo, and Lebo were asked to present 
and defend their solution strategies in a whole-class discussion setting. 
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Whereas Mampe and Lineo had used the odometer strategy (English, 1993) 
to varying degrees of success, Lebo had attempted in vain to use a trial-and- 
error strategy to solve the problem. This discussion enabled those students 
who had employed trial-and-error approaches to become aware of the 
limitations of their approach. More importantly, it enabled the rest of the 
class to become aware of the odometer strategy. Indeed, subsequent lessons 
did suggest that the majority had begun to use the odometer strategy 
successfully to solve similar problems. Thus the creation of a cognitive 
conflict by way of posing a more challenging task when the students were 
experiencing difficulties with the less challenging task made it possible for 
them to attain a conceptual breakthrough. Additionally, discussions of these 
type of tasks in small- and whole-group settings helped to move the majority 
of the students closer to using the kinds of multiple operations that were 
needed for sample space tasks involving compound events. 

In essence the students noticed that in listing sets of outcomes for 
compound events, there was no reasonable alternative to using a systematic 
strategy. For Item 4 (Figure 3), the arithmetic seemed to entail not only 
counting the number of elements in both sets (types of lunch and types of 
beverages) but it also entailed clever counting via the use of the 
multiplication rule: one needs to multiply the number of beverages (7) by the 
number of types of lunch to figure out the number of possible outcomes. It is 
important to mention that subsequent assessments indicated that 8 of the 12 
students who participated in the study (67%) were indeed operating at the 
highest level of thinking with respect to sample space (Level 4). This was 
evidenced by their proficiency in listing complete sets of outcomes for 
compound random experiments using a generative strategy. 

Probability of an Event: Simple Events 

In the first phase of the instructional session focusing on simple random 
experiments (see Figure 4), the majority of the students claimed that the 
player with a black color would win for a wide range of subjective reasons, 
including the fact that black was a favorite color. During the second phase of 
this instructional program when the students were asked to play the game in 
small-group settings, the player with the white color happened to win in all 
the groups. This development coupled with discussions on how to figure out 
a winning strategy by examining the composition of the sample space was 
crucial in shaking the students' subjective stance. Although some students 
argued that the white color was best for winning because they lost when they 
chose black, their thinking changed considerably after focusing on the 
analysis of sample space composition. Many began to argue along these 
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lines: "We would get 3 blacks and 5 whites. We said we look for the one that 
was bigger. I will say 5 out of 8." They had apparently begun to establish 
implicit connections between the winning color and the composition of 
sample space. 

Although students' use of informal quantitative expressions such as "5 
out of 8" to describe the chance that the pointer would land on white could 
lead one to believe that the students were using part-whole comparisons, it 
became clear that they were merely comparing parts of a whole (part-part 
comparison) rather than making part-whole comparisons. This came to the 
fore when students were challenged to deal with probability situations that 
definitively call for the use of a part-whole schema to order probabilities. For 
example, in the process of deciding whether it would be best to choose a die 
or a coin in Item 2 (Figure 3), most students were able to describe the 
probability of getting a head on a fair coin as "1 out of 2" and the probability 
of obtaining an even number on a die as "3 out of 6". However, some argued 
that they would choose a coin in order to win the game because, as they 
explained it, "It did not take that long to get a head". Others asserted that 
they would choose a die because one could get an even number many times 
on a die. Clearly, none of the students seemed to attach a quantitative 
meaning that went beyond comparing parts of different wholes (sets of 
outcomes for a coin and a die). It would seem, therefore, that the presence of 
a mental counting line (Case 1996) made it possible for the students to 
construct a part-part schema that enabled them to make informal quantitative 
comparisons in certain contexts, but not for those that clearly required part- 
whole comparisons. 

Probability of an Event: Compound Events 

The students in Polaki's (2002b) study seemed to struggle conceptually in 
making valid probability predictions for compound random experiments. In 
order to illustrate the extent of the complexity of making likelihood 
predictions in these situations, it is useful to look at another typical 
instructional experience slightly different from the one shown in Figure 4. 
Whereas Figure 4 describes an instructional session built around a game-like 
simple random event, Figure 6 summarizes key features of a game-like 
situation incorporating compound experiments. Both instructional sessions 
consisted of four learning phases. They were aimed at enabling the students 
to (a) base probability predictions on sample space composition, and (b) 
establish conceptual connections between theoretical and experimental 
probability. 
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1. Show spinner with 8 identical sectors: 3 painted black, and 5 painted 
white. Each player chooses either a black or white color. Players take 
turns to spin the spinner. Each player wins a point each time the pointer 
lands on a chosen color. The winner, player with the greatest number of 
points, wins a Walkman. If you wanted to win the game, which color 
would you choose? How did you decide? Was the game fair? Why or why 
not? 

2. Materials: 2 fair coins. [Spin one coin and allow the student to spin the 
other]. What did we get? Write down all the outcomes you could get 
when you spin both coins again. Can you explain this to me? Are you 
more likely to get 2 heads, 2 tails, one of each, or is it the same chance? 
How did you decide? How would you use numbers to explain this to your 
friend? I did it 100 times this morning; how many times would you expect 
I got (a) 2 heads, (b) 2 tails, and (c) one of each? Please explain your 
answer. 

3. Each of the two identical containers A and B has 7 bears: 2 red, 2 yellow, 
and 3 green. You and a friend take turns picking a bear from the two 
containers without looking. If there is a color match, that player wins a 
point. If there is no-match, the other player wins a point. If you wanted to 
win the game, would you choose to aim for a color match or a color mis- 
match? How did you decide? 

4. Each of the 11 jockeys chooses one of the horses numbered: 
2,3,4,5,6,7,8,9,10,11, and 12 to compete in a race from Mahlanyeng to 
Mafefoane. The jockeys take turns to roll two six-sided dice. Each jockey 
moves his horse one-step whenever the sum matches the number on his 
horse. The winning horse is the one that gets to Mafefoane first. If you 
wanted to win the race, which horse would you choose? Why? 

Figure 5. Examples of tasks used in an instructional setting 

The researcher began by simulating, with Minitab software, each 
compound random experiment for the following sequence of trials using 
Minitab statistical software: 10, 20, 100, 500, 1000, 5000, 10 000. Then the 
results of each sequence of trials were displayed in the form of pie charts and 
bar graphs using the Excel software. Following a full explanation of the 
process of a simulation, the students were shown the data display for each 
compound experiment. Finally the students were challenged to comment on 
the data, and to make connections between the probabilities derived from 
analysis of sample space composition or symmetry and those derived from 
experimentation or simulation. 
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1. Making Conjectures. Mpho and Teboho are playing a game, each tossing 
a fair coin. If there is a match (2 heads or 2 tails), Mpho wins a point. If 
there is no match, Teboho wins a point. Mpho saysthe game is unfair. 
Teboho disagrees, arguing that the game is fair because each of the 
players has a chance to win a point. What do you think? Why? 

2. Playing the Game. The students work in groups of three. One chooses a 
match and the other chooses a no-match. The two students take turns 
tossing the coin. The third students record the results. Did the game turn 
out as you expected? Explain. 

3. Examining Data Generated from a Simulation. The researcher shares the 
results of doing the experiment 20; 50; 100; 500; 1,000; 10,000 times 
using the computer. What can you say about the results? Do you think the 
game was fair? Why or why not? 

4. Making Extensions. List all possible outcomes of this game. What was 
the probability of getting a match? What was the probability of getting a 
no-match? If you wanted to figure out whether the game was unfair or fair 
prior to playing the game, what would you do? Are there any connections 
between your answers and the data obtained from a computer? 

Figure 6. Typical instructional session built around a compound random situation 

In spite of the fact that most students had learned how to generate a 
complete sample space for compound random experiments using the 
odometer strategy, it became apparent that the students were not basing their 
probability conjectures (Item 1, Figure 6) on an analysis of sample space 
composition as readily as they had done in the case of simple random 
situations. On the contrary, the majority gave a range of incorrect responses, 
including the claim that the game was fair because each of the players had a 
chance to play; that is a chance to try winning a point. As expected, small- 
sample experimentation (playing the game 50 times) proved not to be very 
helpful in this task, because the player with a match got more points in some 
groups and fewer points in others, and so the results were inconclusive. In 
addition, long-term simulation had no real effect on students' understanding 
of probability because they failed to make any useful connections between 
theoretical probability and experimental probability. It was in the modeling 
of the game (focusing on an analysis of sample space composition) where 
students appeared to make explicit connections between probability of an 
event and sample space composition. They listed a complete set of outcomes 
for the problem described in Figure 6,  namely, {(HH), (HT), (TH), (TT)), 
and were eventually able to conclude correctly that the game is fair because 
one can have no-match "2 out of 4 times" and a match "2 out of 4 times". 

In looking at the data generated from a computer simulation of the 
experiment described in the third phase of the instructional program (Item 3, 
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Figure 6),  students' attention was drawn to the fact that, as the number of 
trials increased, the number of target outcomes (matches in this item) tended 
to stabilize around a fixed number (0.5). Whereas some students did 
recognize this observation, none of them were able to make explicit 
connections between this ratio and the theoretical probability of obtaining a 
match when two fair coins are tossed. In other words, the students could not 
establish connections between experimental probability and theoretical 
probability. This difficulty was also observed after dealing with similar 
game-like situations (e.g. Item 4, Figure 5). It seems that recognizing that 
experimental probability (relative frequency) approaches theoretical, 
probability (law of large numbers) as the number of trials increases was 
beyond the thinking of the students who took part in the instructional 
session. In essence, making connections between experimental and 
theoretical probabilities entails seeing the relationship as a limiting process; 
this was a highly abstract idea for these elementary school students many of 
whom had exhibited deficiencies in quantitative thinking and had had little 
experience in experimentation (see Pratt; Stohl; this volume). 

Indeed research on students' understanding of simulation (e.g. 
Zimmerman & Jones, 2002) has shown that simulations continue to pose a 
lot of conceptual difficulties even for older students. Zimmerman and Jones 
challenged high school students to (a) assess the appropriateness of a 
simulation given a compound random experiment, and (b) design an 
adequate simulation given a compound random experiment. Results showed 
that the students had difficulty in responding to both tasks. More 
specifically, they tended to construct a simulation that would be appropriate 
for a single random experiment rather than for the given compound random 
experiment. Whereas some students cherished useful beliefs such as the fact 
that assumptions are necessary in making simulations, and experimental 
probability would approach theoretical probability as the number of trials 
increased, others held problematic beliefs such as simulations cannot be used 
to model a real world problem. 

Returning to Polaki (2002b), it is apparent that despite students' 
consistent ability to list complete sets of outcomes for compound random 
experiments, and their exposure to large-sample simulations, they experience 
great difficulty in making predictions about compound experiments. This 
became even more apparent when they responded to assessment items. The 
following episode illustrates the nature of this difficulty. At the end of the 
instructional period, Thabo successfully listed a complete set of outcomes 
for tossing two fair coins simultaneously (Item 2, Figure 5). When asked 
how many times he expected to get (a) 2 heads, (b) 2 tails, and (c) one of 
each if the experiment was done 100 times, he said he would get 2 heads 25 
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times. He explained as follows: "When you multiply 25 by 4 you will get a 
100." Furthermore, when challenged to use numbers to explain the 
probability of getting two heads he said, "100 over 25.. . . . .I mean 25 over a 
hundred." He provided similar, though invalid, responses when challenged 
to predict the number of times he would expect to get "one of each" (a head- 
tail combination) if the experiment was done 100 times. Surprisingly, he was 
unable to provide similar responses for other compound random situations. It 
seems that Thabo was able to establish some connection between sample 
space and probability measures, albeit inconsistently. 

The only student who made real progress in making predictions for 
compound processes was Lineo. Before the start of instructional activities, 
Lineo stated, in response to Item 2 (Figure 5), that she expected to get two 
tails 25 times if the experiment were done 100 times. She elaborated on this 
by saying," 50 is left for the head and tail, and tail and head." However, she 
later said that she would get "one of each" 25 times. In this latter case it was 
not clear whether she meant a head followed by a tail, a tail followed by a 
head, or a combination of the two. She had difficulty explaining her response 
but it seems that she had reverted to just a head and a tail (or a tail and a 
head) and hence was not in contradiction with her earlier assertion that "50 is 
left for the head and tail, and tail and head." 

In another situation (Item 3, Figure 5) where Lineo was asked to decide 
whether it would be wise to choose a match or no-match, given 2 identical 
containers each with 7 bears (2 red, 2 yellow, and 3 green), Lineo correctly 
chose a no-match arguing that one could get a no-match many times. 
Apparently she was, by this time, able to mentally generate and visualize a 
complete set of outcomes for a compound experiment before making a valid 
decision. Furthermore, in a similar compound random experiment, where she 
was shown two identical spinners each divided into 2 equal sectors labeled 
10 and 4 respectively, Lineo used a generative strategy to list all possible 
sums when both spinners are spun at the same time. She argued that the most 
likely sum was 14, and she justified this voluntarily using precise numerical 
measures (fractions). Her explanation was as follows: " It is 2 over 4 because 
it can be 10 with 4 and 4 with 10 and so you can get 14 in 2 different ways." 

My research (Polaki, 2002b) suggested that the progress made by Lineo 
occurred because of the development of a more stable part-part schema. This 
schema made it possible for her to count and order elements of the sample 
space before making predictions. Pedagogically, the instructors' insistence 
on having the students focus on the composition of the sample space 
appeared to be critical in helping Lineo build this part-part schema. More 
specifically, when the students failed to recognize that Item 2 (Figure 3) 
represented a fair game, the instructor drew 2 identical chocolate bars one 
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divided into 2 equal parts and the other into 6 equal parts. He then asked the 
students to decide which of the 2 children would eat more chocolate if one of 
them ate one part of the first chocolate, and the other ate three parts of the 
second chocolate bar. Whereas all students agreed that the two children 
would eat the same amount of chocolate, only Lineo was able to make 
adequate connections with the probability situation and recognize that indeed 
Item 2 (Figure 3) represented a fair game. In essence the chocolate bar 
episode represented a scaffolding activity that enabled Lineo to attain a 
conceptual breakthrough in building the more stable part-part schema needed 
for ordering probabilities: From Case's (1996) perspective, Lineo's thinking, 
at the end of the instructional period, corresponded to integrated 
bidimensional thinking as manifest in her ability to order probabilities in 
both simple and compound random situations. 

4. SUMMARY AND CONCLUSIONS 

This chapter has provided a detailed description of upper elementary and 
middle school students' ability to generate complete sets of outcomes and to 
make valid probability predictions for simple and compound events. 
Additionally, it has given an account of how upper elementary students' 
thinking in relation to sample space and likelihood predictions for simple 
and compound random experiments evolve in an instructional setting. 

Looking at upper elementary students' growth in probabilistic thinking 
suggests the kind of cognitive background and potential that they are likely 
to bring to the middle school program in probability. The general picture 
appears to be that a carefully designed instructional sequence can enable 
students to finally experience consistent success at generating complete sets 
of outcomes for compound random processes. Students' strategies for listing 
sets of outcomes for simple and compound random experiments include (in 
increasing degree of sophistication) (a) arbitrary lists and incomplete lists 
based on subjective reasoning for simple events, (b) trial-and-error 
strategies, (c) partially-generative strategies for compound events, and (d) 
generative strategies for compound events. 

An instructional process that appeared to foster students' proficiency in 
listing complete sets of outcomes for simple and compound random 
experiments was the creation of a problematic situation that produced a 
cognitive conflict and motivated students to use a more systematic process. 
Discussions in small group and whole-class settings constituted a supportive 
context for this problematic situation. It emerged that the listing of complete 
sets of outcomes for compound random processes entailed first using a part- 
part schema in order to count the number of elements in each set, before 
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integrating these into a single structure. Furthermore, students recognized the 
need for the multiplication rule as a means of assessing whether their listed 
sample space was complete. From a psychological perspective, it appears 
that this complex sample space operation may only be performed by students 
operating at Case's (1996) integrated bidimensional level; that is by students 
who have constructed multiple mental counting lines and are able to perform 
a number of operations simultaneously and flexibly. 

When upper elementary students make probability predictions in simple 
and compound random experiments, a number of thinking tendencies come 
to the fore: (a) subjective responses, (b) use of informal quantitative phrases 
to describe probabilities, and (c) an ability to link predictions to sample 
space composition and to order probabilities accordingly. As in the case of 
generating complete sets of outcomes, a number of factors contributed to the 
progress made by these students during instruction. These include (a) small- 
sample experimenting, (b) focusing on an analysis of sample space 
composition, and (c) conceptual questions posed in small group or whole- 
class settings. Paradoxically, most of the students experienced more success 
in listing sets of outcomes than in making probability predictions for 
compound random experiments. It appears that making predictions for 
compound random processes is a much more complex phenomenon: 
Students need to conceptually view and assess the combination of elements 
in the sample space before doing the counting and ordering required for 
making a valid prediction. Psychologically, it seems that students need to 
have attained a cognitive level similar to what Case (1996) termed the 
integrated bidimensional level, before they can make probability predictions 
in the case of compound events. At this cognitive level, students have 
constructed and are able to operate on more than one mental counting line; 
they are also able to perform the required arithmetic. 

Another key observation is that central conceptual structures that seem to 
drive the development of students' probabilistic thinking are contained in 
part-part and part-whole schemata. In fact a number of the students in 
Polaki's (2002b) study struggled in their attempt to order probabilities 
because of their failure to make part-part and part-whole comparisons. 
Research on students' understanding of rational number concepts (e.g. 
Singer & Resnick, 1992) has indicated that these same schemata play a key 
role in dealing with rational numbers. The teaching of probability and 
rational number concepts might benefit learners to a greater extent if 
teachers attempt to organize instructional activities and tasks that evoke 
growth in students' ability to make part-part and part-whole comparisons. 

Further research work in these knowledge domains is needed to explore 
students' growth in learning to make valid predictions for compound events. 
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Such a body of research has a potential to inform learning experiences and 
episodes that are critical to the development of students' ability to deal with 
various aspects of compound events. 
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