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HOW DO TEACHERS FOSTER STUDENTS' 
UNDERSTANDING OF PROBABILITY? 

Chapter 7 

The goal of instruction should not be to exchange misconceptions for 
expert concepts but to provide the experiential basis for complex and 
gradual processes of conceptual change. (Smith, diSessa & Rochelle, 
1993, p. 74) 

1. INTRODUCTION: TWO KEY IDEAS IN PROBABILITY 

Probability is unusual in many respects. As a knowledge domain, it straddles 
mathematics in its pure abstraction, and physics, economics and indeed most 
sciences and social sciences because of its wide range of applicability. 
Equally unusually for an aspect of mathematics, it explicitly pervades our 
everyday lives whereas most aspects of mathematics are hidden and, 
although they may have a fundamental impact on our lives, for the most part, 
we are unaware of their insidious effect (Noss, 1997). The language of 
probability pervades almost everything we do: sports commentators talk 
about a 50150 ball, weather forecasters announce an 80% chance of rain; 
health is assessed in terms of risk factors based upon probabilistic 
calculations. Indeed it seems probability is one of the few areas of 
mathematics that informs explicitly the way in which we conduct our 
everyday lives. 

In more recent years mathematics curricula have begun to recognize the 
significance of chance and probability, as illustrated below through the 
Australian, American and British curricula. In Australia, the National 
Statement on Mathematics for Australian Schools (AEC, 1991) informs the 
teaching that takes place in the various Australian states. Chance and Data is 
one of five mathematics content areas in that document and is seen as critical 
to the teaching of mathematics in a modern society. 

Graham A. Jones (ed.), Exploring probability in school: Challenges for teaching and 
learning, 171-1 89.02005 



A sound grasp of concepts in areas of chance, data handling and 
statistical inference is critical for the levels of numeracy appropriate 
for informed participation in society today. (AEC, p. 163) 

Similarly in the USA, the Principles and Standards for School Mathematics 
(NCTM, 2000) sets out 5 content areas, including one on Data Analysis and 
Probability. In England, the National Curriculum: Mathematics (DEE, 
1999a) inserts probability into one of four attainment targets, Handling Data. 

Any one of these national curriculum documents could be used to 
illustrate the focus on probability in schools but I have chosen to draw upon 
the National Numeracy Strategy for England and Wales (DfEE, 1999b), 
which provides considerable detail. This document, often referred to as "the 
framework" for mathematics, sets out the teaching programmes, referenced 
against identified key objectives for ages 4 to 13 years. Nearly all teachers in 
state education in England and Wales follow this programme. 

Probability becomes an explicit part of the curriculum from age 7 years 
on. Between ages 7 and 10, the curriculum focuses on the following ideas: 
(a) the language of probability with some emphasis on equally likely 
outcomes, (b) events that consist of two or more outcomes, (c) how the 
results from an experiment can vary and (d) the difference between 
theoretical and experimental probabilities. So the curriculum emphasizes at 
this stage the importance of variation, though it is limited in scope, and some 
elementary work on calculating probabilities. 

In 2001, the corresponding teaching plans for ages 11 to 13 were 
published (DEE, 2001). There is now an increased emphasis on calculating 
probabilities and the calculation of all possible combinations in various 
situations. There is also some emphasis on the estimation of probabilities 
from experiments. A key objective aimed only at the most able students at 
age 13 states, "Recognize that, with repeated trials, experimental probability 
tends to a limit.. ." (p. 283). 

It is questionable whether sufficient emphasis is given to randomness in 
terms of time in the primary phase, and to the law of large numbers in either 
the middle school or secondary phase in terms of the range of ability for 
whom this is a key objective. In my view, the curriculum sends a clear signal 
that the ideas behind the law of large numbers are beyond the scope of all 
but the highest abilities. 

Furthermore, there is a notable omission from the curriculum; indeed the 
central theme of this chapter is to address this omission. Mathematicians and 
statisticians would surely argue that the concept of distribution is central to 
their domain. The discussion about the comparison of theoretical and 
experimental probabilities, which is fostered by the curriculum, should find 
expression through the emergence of a notion of distribution. By limiting the 
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experience of randomness and variation to situations for which children 
often already have an intuitive feel, they are not given in my view the 
opportunity to recognize the powerful connection between randomness, the 
law of large numbers and distribution. 

Perhaps one reason for the limited extent to which these key concepts are 
addressed lies in their perceived difficulty. Teachers need to find ways of 
building on what children already know and to be aware of the limitations of 
that knowledge if they are to find pedagogic strategies that support the 
learning of these concepts. 

2. WHAT DO CHILDREN NOT KNOW AND WHAT DO THEY ALREADY 

KNOW? 

The domain of probability and chance has been the focus of a great deal of 
research into the errors and irrational thinking that people, not just children, 
seem to exhibit when making judgments of chance. The failure of our 
intuitions has been so well documented that it is perhaps not surprising when 
teachers, confronted with the difficulties faced by their children, believe 
probability is simply counter-intuitive. A corollary to this view could be that 
our mental apparatus is hard-wired in such a way that it is beyond redress 
through any pedagogic strategy. It is certainly worth briefly summarizing 
that body of literature before evaluating whether the above perspective is the 
only defensible interpretation. Such a review has been completed in earlier 
chapters of this volume (e.g., Jones & Thornton; Langrall & Mooney; 
Watson) and so I refer the reader to the areas of most relevance to this 
chapter. 

Research on What Children (and Adults) do not Know 

The seminal work was carried out by Piaget and Inhelder (19511 1975). They 
noted that in order to accommodate probabilistic thinking the organism 
needs the capacity to recognize uncertainty and to be able to catalogue 
systematically all possible combinations. The latter requirement demands 
that probabilistic knowledge is a late development, well into the stage of 
formal operations. Probability theory can be seen as an invention by the 
organism to operationalize randomness. 

Meanwhile, how are people to make judgments of chance in everyday 
life? Many researchers have offered descriptions of the sorts of heuristics 
that people use to make such judgments. The main body of literature has 
been provided by Kahneman and Tversky (e.g., Kahneman, Slovic, & 



Tversky,l982) who catalogued during the 1960s and 1970s a long list of 
such heuristics. See Jones and Thornton, this volume, for a description of the 
representativeness and availability heuristics and also for an account of 
Konold's outcome approach (Konold, 1989). The outcome approach is one 
reason why, when teachers ask children to make a prediction about a chance 
situation, the children will respond that it is impossible to say, "it's just a 
matter of chance". For them perhaps, all that matters is what happens in 
practice. Lecoutre (1992) has reported a related phenomenon, named the 
equiprobability bias. (see Watson, this volume, for a full account of the 
equiprobability bias.) Lecoutre argued that the equiprobability bias was 
resistant to modification (even amongst individuals grounded in probability 
theory) but that a correct response could be induced by masking the chance 
element of the problem. She concluded that correct cognitive models are 
often available but are not spontaneously associated with the situations at 
hand. 

In other words, children who were quite capable of identifying the 
possible combinations typically failed to use this information correctly when 
a random element was added to the task. They would tend to respond instead 
that it was just a matter of chance or "50150." Lecoutre's work suggests that 
it is perfectly feasible to gain success by masking the random element in a 
task, and that our lack of comfort with randomness persists even beyond the 
point in our development when we are able to compute combinations. 

The above account of human fallibility in making judgments of chance is 
depressing but it is not at all clear that the catalogue of failure necessarily 
implies that it is impossible to offer children productive learning 
experiences. Indeed the next section will strike an altogether more optimistic 
note. 

Research on What Children (and Adults) do Know 

Piaget's approach was to examine the epistemology of probabilistic 
knowledge from a genetic perspective and as such he was less interested in 
how the setting might shape such development. In contrast, teachers deal 
continuously with the partial knowledge of their children, and consequently 
teachers need guidance on how their actions, including the offering of 
certain types of resources, might shape children's knowledge development. 
Fischbein's work (1975, Fischbein & Schnarch,l997) on intuitions provides 
some constructs that relate to those aspects of our mental apparatus that are 
brought into play when we are making more immediate decisions and 
judgments. In one experiment by Fischbein, subjects were asked to predict 
the next event in a random sequence. Even very young children gradually 
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tuned the proportions of their predictions to the relative frequencies of the 
outcomes, suggesting that they were able to intuit relative frequencies. 
Fischbein's thesis suggested that the weaknesses described above were the 
consequence of a pedagogy that emphasized the deterministic. According to 
Fischbein, children's early primary (by which he meant unschooled or 
untaught) intuitions fail to develop as effective secondary (scientifically 
learned or taught) intuitions because of a lack of support from the school 
system. However, his work does not quite reach the level of specificity that 
would help the teacher faced with the challenges of fostering probability 
learning. 

Nevertheless, Fischbein offers a more positive outlook in the sense that 
his work promotes the notion that new pedagogies might support the 
development of "better" intuitions, rather than leaving our children to 
develop in a state of epistemological anxiety (Wilensky, 1997). 

Research has reported children at age 10 or 11 years with well- 
established intuitions for randomness. Young children seem to recognize 
random experiments as involving the following characteristics: 
unpredictability, irregularity, unsteerability, and fairness (Pratt, 1998a). 

Unpredictability: If the next outcome is not predictable, a child might 
regard the experiment as random, 
Irregularity: If there is evidently no patterned sequence in prior results, a 
child might refer to the experiment as random, 

3. Unsteerability: If the child is unable to exert physical control over the 
outcome of the phenomenon, the experiment might be seen as random, 
and 

4. Fairness: If there seems to be a rough symmetry in the experiment, a 
child may think of the experiment as random. 

I would claim that these intuitions for randomness are not so different 
from the expert perspective, though, whereas these four intuitions might be 
about as much as a 10 year old child knows, the expert's knowledge will 
connect these intuitions to a rich and extensive concept image (Tall & 
Vinner, 1981). An expert recognizes the differences between fair and 
random. In particular, random can be biased and so perhaps might be 
regarded as unfair. My perspective is that we should not dismiss the child's 
knowledge as a misconception to be eradicated (see Smith, diSessa, & 
Rochelle, 1993 for a brilliant articulation of this perspective). Instead, we 
should accept the pedagogic challenge of how to build on the child's 



impoverished view of randomness so that it is connected to, but not identical 
with, that of fairness. 

From an expert perspective, the four intuitions for randomness sometimes 
appear self-contradictory. To a young child, a spinner, whose equal-sized 
sectors read 1, 2, 3, 4, 5 and 6 might be seen as fair and so random. Now 
consider a spinner also numbered 1 to 6 but in such a way that the 6 sector is 
twice the size of the others. The same child might well regard this spinner as 
unfair and so non-random. Both these spinners are in fact largely 
unpredictable and unsteerable and will both generate irregular results, and so 
in these respects the experiment with the non-uniform spinner might have 
been regarded as random too. In my research, children often appeared 
unconcerned by such inconsistencies; they adopted whichever stance was 
cued by the most obvious characteristics of the situation in question. The 
teacher's role might be to find a way to raise these inconsistencies in the 
hope that the cognitive conflict somehow helps the child to begin to 
distinguish between fairness and randomness. Of course, the problem for the 
teacher might be that the child continues to ignore the conflict, which might 
appear to be more of a conflict for the teacher than it is for the child! 

There is one final point that I wish to raise about the differences between 
the limited, but useful, intuitions of the 10-year-old child and the powerful 
expert understanding, and this is in my view the most significant issue. The 
four intuitions for randomness focus entirely on immediately observable 
aspects of the experiment. The children in my research did not in the initial 
interviews exhibit any awareness of the longer term aggregated properties of 
randomness, Yet, the crucial understanding that an expert has, and one of the 
key objectives identified in the first section, is that set out in the law of large 
numbers. The mathematically exciting property of random experiments is 
not so much their unpredictability in the short term but their predictability 
over a large number of trials, in the sense that the relative frequency of an 
outcome tends towards its probability. 

The law of large numbers, regarded by the Numeracy Strategy for 
England and Wales as accessible to only the most able children, appears to 
be the principal aspect of randomness that distinguishes an expert 
understanding of randomness from that of some 10-year-old children. How 
might teachers support the development of intuitions for this idea (and 
indeed for distribution)? Some educators have suggested that technology 
could have a particularly significant role to play. In the next section, a short 
review of the research on technology and probability will be given before 
continuing with a more detailed summary of a research study that focuses on 
technology-supported probability learning. I will use this latter study to infer 
some pedagogic principles to guide probability teaching. 
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3. THE ROLE OF TECHNOLOGY IN FOSTERING STUDENTS' 

UNDERSTANDING OF PROBABILITY 

A literature describing the use of technology in the teaching and learning of 
probability has slowly emerged over the past two decades. The following 
review provides a background against which the subsequent study can be 
better understood. Below the main issues are listed. 

There has been some speculation that the use of computers in stochastic 
work might be hindered by learners' concerns about the nature of computer- 
based randomness. It has been recommended that the pseudo-random nature 
of randomness on the computer may need to be made transparent as part of 
the activity (Borovcnik & Peard, 1996). Although the complex algorithms 
used to generate pseudo-random numbers are likely to be hidden from 
students, it appears that top-level engagement with the model may provide 
reassurance or clarification. 

Cliff Konold has been one of the pioneers in exploring the use of 
computers in the teaching and learning of probability. Reflecting on an 
experiment (1995) in which he placed bets against a student with respect to 
the outcomes of a series of coin tosses, Konold demonstrated how (a) we are 
more likely to find stories and explanations for the vicissitudes of the data 
than to regard the data as forceful in its explanatory power, (b) technology 
itself is not necessarily engaging but rather the task design is fundamentally 
important, (c) there is a tendency for students to underestimate just how 
much data is needed to draw reasonably sound conclusions, (d) variation 
tends to be ignored by designers who often fail to exploit the ability of 
technology to repeat trials and experiments, and (e) the focus of software 
design should be on sense-making and the enrichment of intuitions. 

More recent work (Stohl & Tam, 2002) has focused on how notions of 
inference can be fostered in sixth grade students using a software tool, 
Probability Explorer, to formulate and evaluate inferences. This study 
revealed that students were able to understand the interplay between 
empirical and theoretical probability, recognize the importance of using 
larger samples to make inferences, and justify their claims with data-based 
evidence. 

At about the same time as Konold was reporting on his work, Wilensky 
(1993) was completing research that was set in the context of a connected 
mathematics project and focused on university students' use of StarLogo 
microworlds. Wilensky described how students worked through various 
epistemological anxieties to begin to see randomness in a connected way, 
neither representing complete ignorance, nor just a mathematical formalism. 



To reach this position, the students struggled against a range of obstacles that 
reflect the relative infancy of probability and the lack of feedback from 
everyday experience to point up the inadequacy of their probability 
judgments. 

A central notion in Wilensky's use of StarLogo is that, unlike the more 
conventional uses of computers, the child interacts with the formalisms 
themselves to build new products, a process which brings the learner into a 
closer intimacy with fundamental epistemological and conceptual barriers 
embedded in the stochastic. As an example, consider the following classic 
problem: 

A chord is drawn randomly across a circle of diameter 1Ocm. What is 
the probability that this chord is longer than the radius of the circle? 

Wilensky's students were confused in that it was possible to establish 
different answers to this problem and yet impossible to disprove any of those 
answers. When the students tried to program the problem into the computer, 
they recognized that the solution would depend on how they programmed 
the random generation. According to Wilensky, this was a critical break- 
through in their beginning to address epistemological difficulties with the 
notion of randomness. 

Other researchers have built on Wilensky's Logo-based approach. 
Abrahamson & Wilensky (2002) describe the design of a NetLogo 
microworld that enables the observation of the incremental growth of a bell- 
shaped curve. Reflecting on this process, Abrahamson and Wilensky 
recognize a range of epistemological perspectives that constitute the sort of 
complexity identified in Wilensky's original work. 

Paparistodemou, Noss and Pratt (2002) built a probability game into 
Imagine, a powerful version of Logo. In studying young children's 
understanding of random mixture, portrayed as a dynamically shifting set of 
bouncing balls, they showed that even children as young as six years of age 
were able to make sense of random mixtures represented in such quasi- 
concrete ways. 

The original observations by Konold (in particular), together with the 
early microworld studies, found subsequent expression in the formulation of 
the Chance-Maker microworld that is described in the next section. The 
study associated with the Chance-Maker microworld provides a number of 
insights, which may, in the mind of the reader at least, inform our thinking 
about how teachers might foster children's understanding of probability. 
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4. THE CHANCE-MAKER STUDY 

In providing this synopsis of part of my own research I will illustrate what I 
see as a number of important pedagogical guidelines that hopefully flesh out 
Fischbein's precept: greater emphasis on stochastics would provide better 
support for children's early intuitions (1975, p.73). 

My study was in fact a piece of design research (Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003) in which one aim was to build a microworld, 
which eventually became known as Chance-Maker. At the same time, I 
aimed to gain fresh insights into how children's stochastic thinking evolved 
through the use of the developing computer-based tools. The findings about 
these children's initial intuitions for randomness have already been 
discussed. In this section, I wish to emphasize the emergence of new 
knowledge. 

The Chance-Maker Microworld 

In the final iteration of the research, the children were given a series of 
gadgets (Figure I), mini-computational devices that simulate everyday 
random generators (a coin, a spinner, a dice and so on). The design of these 
devices was based on the assumption that the children would regard the 
normative state for such gadgets as one of being fair. In order to appreciate 
their understanding of chance, I needed to challenge this perspective. Hence, 
the gadgets were in some cases intentionally broken, in the sense that some 
sort of bias had been inserted into their operation. The children were asked 
to identify which gadgets were not working properly. The gadgets also 
contained a variety of tools. The children were challenged to use these tools 
to mend the broken gadgets. My assumption was that they would aim to 
make the gadgets fair but the research showed that fairness has many ways 
of manifesting itself. 

Each of the gadgets shown in Figure 1 has a strength control. This allows 
the child to control how hard the coin, spinner or dice is thrown or tossed. 
Higher strengths make the simulation continue for a longer time period 
though in fact strength has no effect on outcome. Alternatively, the child can 
click with the mouse directly on the gadget, in which case it is triggered with 
the same strength. This allows replications of experiments which do not 
necessarily generate the same outcome. 



Figure I .  Three of the gadgets in the Chance-Maker microworld 

When a child wishes to mend any of the gadgets, she opens up the gadget 
to gain access to the mending tools. In Figure 2 the tools for the dice gadget 
are shown. The results are listed (in the Results box) and can be displayed as 
a pictogram (Pict button) or as a pie chart. (Pie button). Trials of an 
experiment can be repeated many times (in Figure 2, the Repeat tool is 
prepared for an experiment of 100 trials), usually by turning the graphics off 
to save time (On/O#button). Results will accumulate until a new experiment 
is begun (New button). 

Figure 2. The main tools in the dice gadget 

The workings box shows the computational core of the gadget. In this 
particular case, the dice "chooses" from the list 1, 2, 3, 4, 5, 6, 6, 6. The 
workings box can be edited by the child to change the way it works. 

Emergent Knowledge 

In order to extract the pedagogic issues, I summarize below a typical 
evolution of knowledge, though, of course, there were variations in the ways 
that different children interacted with the software. The qualitative 
methodology adopted for this study does not allow claims of statistical 
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generality, though hopefully the reader may find some resonance, which in a 
sense imbues the work with a degree of generality (for more detail, you may 
wish to refer to Pratt, 1998b, 2000). 

The children began by simply triggering the gadgets into action, usually 
through the strength control. Their challenge was to ascertain which gadgets 
seemed in their view not to be working properly. There was much evidence 
to support the intuitions for randomness identified in the pre-interviews. 

By default, the coin gadget was unbiased. Nevertheless the children 
thought that they identified effects due to the strength control. However, the 
children discovered that any apparent pattern was not maintained; 
conjectures about the effect of the strength control upon the results was not 
supported over more extended periods of time. 

They were confused that the pie chart for the coin did not appear uniform. 
They experimented again with the strength control and various other features 
to see if they could make the pie chart display as they felt it should. They 
would consistently use small numbers of trials and so the pie chart was never 
satisfactory. 

Sometimes by accident (the software accumulates results unless the New 
button is pressed), and sometimes after a researcher prompt, the children 
tried increasing the number of trials and found that the pie chart would then 
appear to be more even. Thus, after some time working with the coin, the 
children would articulate thoughts such as: "the more the number of times 
we throw the coin, the more even is its pie chart". This expression is, in my 
view, a good example of what Noss and Hoyles (1996) call a situated 
abstraction. The children have abstracted a rule for how the phenomenon 
behaves but the abstraction is apparently tied to its setting in so far as one 
can ascertain fiom their language. 

The initial impression of the spinner gadget is that it looks unfair (the 
sectors are not uniform) and so the children quickly suspected it was not 
working properly (they felt it should be unbiased). This was confirmed by 
the appearance of uneven pie charts. Their attention was drawn by this 
unfairness to the unfairness of the workings box. However, editing the 
workings box so that each outcome appeared only once did not seem to solve 
the problem. The pie chart for example still appeared "unfair", in the sense 
that the sectors were unequal. 

Instead of reusing their situated abstraction fiom the coin gadget, they 
continued to use small numbers of trials and tried many configurations of the 
workings box, adjusting the values to compensate for discrepancies in the 
previous pie chart. Nevertheless, the pie was inconsistent in its appearance. 



This activity seemed to demonstrate the deep situatedness of the knowledge 
gained from working with the coin gadget. 

Eventually, perhaps out of desperation, they recalled quite explicitly what 
they had learned about the coin gadget. They tried a greater number of trials 
and found at last that the pie chart now appeared to them to be fair. 

Along the way they articulated the situated abstraction that "the spinner's 
workings box makes the pie chart fair". When challenged by the researcher, 
some of the children realized that this would only work when the number of 
trials was high. 

The children began working on the dice exactly as they had with the 
spinner. Again they ignored their previous learning. However, on this 
occasion they were much quicker to turn to their previous situated 
abstractions to explore what would happen with a uniform workings box and 
a high number of trials. It seemed that, by the third gadget, the new 
knowledge was now sufficiently reliable to be called up in preference to 
other ideas that they might have for how it worked. 

This brief synopsis only covers some aspects of the research but 
nevertheless it allows me to draw out some pedagogic guidelines, which the 
teacher might find resonates with their own experiences in the classroom. 

5. IMPLICATIONS FOR PEDAGOGY 

Purpose and Utility 

Teachers are confronted with what Ainley, Pratt, and Hansen (in press) have 
called the planning paradox. Like the Numeracy Strategy in England and 
Wales, most curricula are set out in terms of teaching objectives, based 
directly on mathematical concepts or skills. We claim that if teachers plan 
from teaching objectives, the tasks are likely to be unrewarding for the 
children and mathematically impoverished. However, if teachers plan from 
tasks, the activity is likely to be unfocussed and unassessable. 

We propose two constructs to discuss task design. The first construct we 
call purpose. We define a purposeful task as one that has a meaningful 
outcome for the learner, in terms of an actual or virtual product, or the 
solution of an engaging problem. The second construct is utility. We have 
found that it is possible to plan for opportunities for learners to appreciate 
the utility of mathematical concepts and techniques in the sense that they 
learn how and why that idea is useful by applying it in a purposeful context. 
We claim this dualistic approach stands in contrast to the conventional 
emphasis on how to carry out a technique. 
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The difficulty in planning lies in linking purpose to utility in such a way 
that there is a high probability that the learner will stumble across the utility 
of the mathematical concept as they engage in the purposeful activity. I see 
this notion as critically important in the successful design of the Chance- 
Maker task. The children enjoyed the idea of working on the concrete and 
meaningful task of figuring out which gadgets were not working properly 
and then attempting to mend them. However, purpose is insufficient. The 
design of the Chance-Maker tools made it almost impossible for the children 
to avoid ideas that lie behind the two principal concepts: (i) the law of large 
numbers (through the repeat tool and the graphing facilities), and (ii) 
distribution (through the workings box). 

No doubt there are many ways of engaging children in work on these two 
key ideas and the Chance-Maker case is just one such method. Perhaps the 
most critical implication that can be drawn for our pedagogy is not limited to 
probability but applies to task design in the general practice of teaching 
mathematics. 

Testing Personal Conjectures 

We know from the literature that children (and adults) have many 
idiosyncratic ways of thinking about chance situations. Some have been 
outlined above. How are we to regard these ways of thinking? My theoretical 
framework (Pratt & Noss, 2002), built as a synthesis of the work by Noss 
and Hoyles (1996) and diSessa (1993), asserts that old pieces of knowledge 
coexist with newer pieces of knowledge, either in a connected way or 
perhaps isolated from each other. This framework stands in opposition to 
much of the misconceptions literature, which often presents misconceptions 
as ideas to be eradicated and replaced with normative views. In fact, 
misconceptions are typically naive ideas that nevertheless contain some 
element of the normative view. Thus, like experts, children see randomness 
as unpredictable but need to learn that there is also a long-term sense in 
which randomness is in fact predictable. Misconceptions can be useful 
platforms for further learning in the sense that they become connected to 
new knowledge. Thus, knowledge about the unpredictability of short-term 
randomness was connected to the behavior of Chance-Maker's gadgets in 
the longer term. As a result it becomes possible to abstract limitations on 
both the predictable and unpredictable faces of randomness. When 
misconceptions are so wrong-headed that they seem to have no pedagogic 
potential, a strategy can be developed by which children recognize the lack 
of explanatory power of that idea compared to an alternative view. Hence the 



strength control was designed to show that changing the force with which 
the gadget was thrown had rather less explanatory power than the role of 
either the workings box or the number of trials. 

Feedback is crucial here. If children are to be in a position to refute long 
standing beliefs, or, as I would prefer to say, if they are to have less reliance 
upon those beliefs, they need feedback that gives them good evidence of the 
weakness of their current ideas. The children need to be able to test out their 
personal conjectures and evaluate them. 

In the Chance-Maker study above, the children were able to test out the 
notion that the strength affected the result of throwing the gadgets. I refer to 
the strength bar as a redundant control in the sense that, mathematically the 
children do not need it. However, psychologically it is crucial that the 
children are able to test out their personal conjectures. 

In the context of probability, this is even more important than elsewhere 
in mathematics. At this level, probability theory is essentially a model for 
describing certain types of phenomena. When we experience those 
phenomena, we make judgments about them, which rarely receive feedback 
that might cause us to reflect on whether our judgments were correct. When 
we play games, we attend to the excitement of the game; we do not usually 
reflect on our strategy (cf. the outcome approach). In any case, we are not 
usually in a position to try out the sort of long-term experiments that might 
give us helpful feedback. 

Whatever tasks we design to help children understand key objectives like 
the law of large numbers and distribution, those tasks must provide a 
mechanism for the children to appreciate the power of these ideas compared 
to their own intuitions. 

Large Scale Experiments 

An appreciation of the law of large numbers cannot be realized without the 
facility to carry out long-term experiments. It seems, from my research, that 
some ten-year-old children may well not have appreciated how randomness 
behaves in the long term. Their tendency, it seems, is to carry out a small 
number of trials of an experiment when given the choice. Why would you do 
otherwise unless you had good reason? Indeed children seem to follow a 
Law of Small Numbers (Kahneman et al., 1982). 

My research suggests that the tasks that teachers give children should 
encourage them to decide for themselves how many trials to use. If they are 
simply told to use a large number of trials then how are they to realize the 
problems in using small numbers of trials, which they may well have done 
given a free choice? Even so, the task needs to encourage them to try 
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increasingly high numbers of trials, and the available tools need to facilitate 
such large-scale experiments. 

Systematic Variation of the Context 

The situated cognition movement (see for example Lave, 1988,1991) argues 
persuasively that knowledge is deeply contingent upon the setting. The 
children in my research did however eventually reuse their situated 
abstractions. Why do I think they did this? It seems that, once the children 
had seen the lack of explanatory power of their own ideas, they would 
reconsider recently learned knowledge. Furthermore, as those ideas proved 
reliable across different contexts, the ideas took on a higher priority (here I 
lean heavily on the notion of phenomenological primitives or p-prims: 
diSessa, 1988)' and were more easily cued as sense-making devices. 

I believe that the children were eventually able to connect across the 
gadgets because there were huge structural similarities. In a sense the only 
difference between them was the outward appearance, which to the child 
was highly significant but to the mathematician is irrelevant. The underlying 
tools were identical in each case and, of course, the gadgets were wrapped 
up inside the same microworld. 

Although a difficult challenge, new pedagogies that provide different 
contexts for the same mathematical idea and offer similar tools within each 
context may prove more effective in helping children to appreciate the wide 
applicability of the two key concepts, the law of large numbers and 
distribution. 

6. FINAL REMARKS 

The four pedagogic implications, purpose and utility, testing personal 
conjectures, large-scale experiments and systematic variation of the context, 
have been abstracted from research that depended fundamentally on 
technology. Critics of technology-based research in this domain refer to how 

' DiSessa's work provides a detailed model of conceptual change in which knowledge is seen as 
fragmented - at least in its initial stages. Small pieces of knowledge, p-prims, are abstracted directly 
from experience. One example of such a p-prim could be characterised as "I push - it moves". P- 
prims have priorities attached to them, which determine how likely any particular p-prim is to be 
cued, and this cueing priority is in turn modified according to how consistent and helpful the p-prim 
turned out to be in practice. Gradually, through "tuning towards expertise", p-prims may become 
connected to each other, forming what we might think of as concepts. Although situated abstractions 
are at a much higher grain level than p-prims, I have found his model useful as a way of thinking 
about the coexistence of different, possibly contradictory, situated abstractions and the process of 
tuning that might increase the likelihood of activation of normative abstractions. 



children might not believe in the randomness of the computer, which is after 
all only pseudorandom anyway. I found that it was important that the 
children were able to persuade themselves that they could not predict or 
control the outcome from the computer, nor that they could find patterns in 
the results. Under these circumstances, children began to believe that the 
computer was indeed generating random results. The idea that the numbers 
from the computer are pseudorandom seems far less worrisome. From a 
modeling perspective, the use of a stochastic model to describe the results of 
a computer random generator are no different from using such a model to 
describe the results from'a dice or any other physical random generator. It is 
worth reflecting though on the special nature of technology in relation to 
each of the four pedagogic guidelines listed above. 

Purpose and utility are ideas that have arisen naturally from the 
constructionist ideas of Papert and others (Hare1 & Papert, 1991). Papert has 
argued that building concrete or virtual objects is a particularly appropriate 
way of learning. Building seems to provide a concrete focus that lends 
greater meaning to the activity. The mending task in the Chance-Maker 
study fits easily into this paradigm and illustrates how it is possible to link 
purpose and utility. Task design is central since it is the task that imbues 
initial purpose and drives the activity thereafter. Equally it is the task design 
that leads the learner to the utilities associated with the planted mathematical 
concepts. Elsewhere (Ainley & Pratt, 2002), I have discussed other fruitful 
areas to explore in order to link purpose and utility. Thus, although computer 
environments used in a constructionist way facilitate the resolution of the 
planning paradox, they are not unique. 

The testing of personal conjectures is an especially difficult aim to 
achieve without the use of technology. Hard-pressed teachers are unable to 
provide sufficient feedback to satisfy knowledge hungry children, given 
permission to explore. Without access to technology, teachers would have to 
employ other techniques such as group work and whole class sessions. The 
difficulty then is that, on the one hand without computers the feedback is not 
neutral, it is less personal and it may be incorrect. On the other hand, 
computers are not very good at handling the range of possible idiosyncratic 
ideas that a child may hold. 

Large-scale experiments are also difficult to handle without technology. 
To avoid tedium, teachers tend to collate the work of whole classes. 
Unfortunately there is then some loss of individuality which means you may 
find yourself exploring someone else's way of thinking about the situation 
rather than your own. In many schools computers are still relatively rare 
resources. To relieve this problem and to give experience with conventional 
random generators, teachers often begin with group work away from the 
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computer. This process is about making explicit a range of personal 
conjectures. In order that these conjectures can be tested in a large-scale 
way, individual or small group exploration on the computer is nevertheless 
likely to be needed as a follow-up to the initial group work. 

Setting up different contexts might on the face of it look easier to do away 
from the computer, and there is some truth to this. However, it is important, 
and this is where the computer has salience, that the contexts have the same 
mathematical structure and probably some similar surface features to cue the 
reuse of recently learned knowledge. 

One huge dilemma remains. When children use computers, will what 
they learn about probability "transfer" to conventional settings? Said in 
another way: "Will children reuse the knowledge in the new setting?" The 
research in probability suggests no, at least not in any simplistic way. If we 
think of a task set in the physical world as just another gadget, we see the 
problem. This gadget is so very different from those on the computer. The 
affordances or attributes of the physical world are in many respects 
insufficient for most people to gain rich intuitions for the key ideas. In the 
end, this is why the literature is full of reported failures. However, I hope 
that the suggestions above point towards the redesign of pedagogies that 
might bring virtual and physical settings closer together, and enable children 
to reuse in conventional settings ideas initially constructed in the virtual 
world. 
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