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COMBINATORICS AND THE DEVELOPMENT OF 
CHILDREN'S COMBINATORIAL REASONING 

Chapter 5 

Simple combinatorics is the backbone of elementary probability and our 
teaching of probability should take account of this fact. (Freudenthal, 
1973, p. 596) 

1 .  INTRODUCTION 

Combinatorics is one of the oldest branches of discrete mathematics, dating 
back to the 1 6 ~ ~  century when games of chance played a key role in society 
life (Abramovich & Pieper, 1996). To provide a theory for these games, 
specific counting techniques and mathematical ideas were created. In 
particular, the work of Pascal and Fermat, who studied the theory of 
combinatorial problems, laid a foundation for the theory of probability and 
provided approaches to the development of "enumerative combinatorics" 
(Abramovich & Pieper, 1996). 

Combinatorics may be defined as a principle of calculation involving the 
selection and arrangement of objects in a finite set. Combinatorics is a 
significant component of the mathematics curriculum, comprising a rich 
structure of powerful principles that underlie several other areas such as 
counting, computation, and probability (Borovcnik & Peard, 1996; English, 
1993). 

Recommendations to incorporate combinatorics in the school 
mathematics curriculum date back to the early 1970s (e.g., Kapur, 1970; 
Kenny & Hirsh, 1991; National Council of Teachers of Mathematics 
[NCTM], 1989). The Working Group (K-4) of the Commission on Standards 
for School Mathematics (NCTM, 1986) highlighted combinatorics as an area 
of exploration within two of its themes for curriculum development; these 
themes were "Ways of building models of representations" and "Ways of 
counting/computing." Not long after this recommendation came the 199 1 
NCTM Yearbook titled, Discrete Mathematics across the Curriculum, K-12 
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(Kenny & Hirsch), in which several chapters were devoted to the teaching of 
combinatorics especially in the middle and secondary school years. 

Despite its importance in the mathematics curriculum, combinatorics 
continues to remain neglected, particularly at the elementary school level. 
Yet, as Kapur (1970) pointed out over 30 years ago, the real-world nature of 
the domain makes it suitable for study at all grade levels. Indeed, 
combinatorics provides the basis for meaningful problems to be solved in a 
variety of ways and with a variety of representational tools (including 
manipulative materials). 

Combinatorial problems also facilitate the development of enumeration 
processes, as well as conjectures, generalisations, and systematic thinking. 
For example, to determine all the possible outfits from a set of differently 
colored shirts and pants, one needs to systematically match one colored shirt 
with each pair of pants and then repeat the process with each of the 
remaining colored shirts. This is a more efficient procedure than randomly 
matching shirts with pants (see Polaki, this volume). The development of 
the important concepts of relations, equivalence classes, mapping, and 
functions is also promoted through combinatorial activities. Furthermore, 
given the broad applicability of the combinatorial domain (e.g., chemistry, 
biology, physics), cross-disciplinary problems can be created within real- 
world contexts for students. 

This chapter begins by exploring some elementary ideas of combinatorics 
and how they support children's development of beginning probability ideas 
and problem-solving skills. Consideration is then given to various types of 
combinatorial problems and the relevant difficulties they present children. A 
review of studies that have addressed children's combinatorial reasoning is 
presented in the second half of the chapter. The chapter concludes by 
looking at ways in which we might increase children's access to powerful 
ideas in combinatorics. 

2. ELEMENTARY COMBINATORICS 

The fundamental counting principle (DeGuire, 1991) is frequently cited in 
describing the combinatorial domain. This principle asserts that if one task 
can be performed in n ways and another task in m ways, then the number of 
ways of performing the two tasks is nm, with the principle extending to any 
number of tasks. The principle can also be viewed in terms of the Cartesian 
product of two given sets, A and By which is the set formed by the 
combinations produced by pairing each member of A in turn with each 
member of B. The Cartesian product of two or more sets is also especially 
useful in constructing sample spaces. That is, if 4 and Sz denote sample 



COMBINATORICS AND THE DEVELOPMENT OF CHILDREN'S COMBINATORIAL 123 
REASONING 

spaces for two different probability experiments performed in succession, 
then a sample space for the combined experiment is the Cartesian product, S1 
x Sz (Borovcnik, Bentz, & Kapadia, 199 1 ; Polaki, this volume). 

The process of linking items from discrete sets in a systematic manner to 
form all possible combinations has also been referred to as the "odometer 
strategy," so named because of its resemblance to a vehicle's odometer 
(English, 1988, 1990, 1991 ; Scardarnalia, 1977). To illustrate this strategy, 
consideration is given to the selection of pairs of items, one from each of two 
discrete sets. 

When combinations of two items are formed from two given sets with 
one item from each set, an item from one set is held constant while the items 
from the other set are varied systematically until all possible combinations 
with the constant item have been formed. A new constant item from the first 
set is then selected. The exhaustion of all constant items in the first set 
indicates the generation of all possible combinations. 

There is, of course, more to the combinatorial domain than the 
aforementioned basic combinatorial operations. Batanero, Godino, and 
Navarro-Pelayo (1997; see also Batanero & Sanchez, this volume) identified 
a number of concepts and procedures important to the teaching and 
assessment of combinatorics. Most of these, listed below, are also linked to 
probability. For example, the sampling model is included in the 
combinatorial models, and the logical procedures of classification, 
systematic enumeration, inclusion/exclusion, and recurrence are fundamental 
in dealing with probabilistic situations. Likewise, the use of tree diagrams is 
a basic procedure in determining sample space. 

Basic Combinatorial Concepts and Models 

- Combinatorial operations: These comprise combinations, arrangements, 
permutations, and the associated concepts, notations, and formulae; 

- Combinatorial models: These include the sampling model (population, 
sample, orderedlnon-ordered sampling, replacement), the distribution 
model (correspondence and application), and the partition model (sets, 
subsets, union). 

Combinatorial Procedures 

- Logical procedures: Included here are classification, systematic 
enumeration, inclusion/exclusion principle, and recurrence; 



- Graphical procedures: Common procedures here include tree diagrams 
and graphs; 

- Numerical procedures: These include addition, multiplication, and 
division principles, combinatorial and factorial numbers, Pascal's 
triangle, and difference equations; 

- Tabular procedures: The construction of tables and arrays are most 
common here; 

- Algebraic procedures: These include the generation of functions. 
(Batanero, Godino, et al., 1997, p.240). 
Combinatorial procedures are also applied to the random experiment, 

which is the starting point for the study of probability in the elementary 
grades. The two key aspects of a random experiment are the formulation of 
the experiment and the identification of all the possible outcomes or sample 
space (Batanero, Godino, et al., 1997; Hawkins et al., 1992; Langrall & 
Mooney, this volume; Nisbet, Jones, Langrall, & Thornton, 2000; Polaki, 
this volume). To describe simple experiments, we can simply list all the 
possible outcomes. However, to determine a sample space dealing with 
compound events (e.g., multiple trials of a random experiment) requires 
more complex enumeration processes than a sample space involving simple 
events (e.g., rolling a single die). The compound events require 
combinatorial reasoning. For example, to determine the relative frequencies 
of various sums (experimental probabilities) of tossing two or three dice, one 
would begin by systematically listing all of the outcome pairs (or triples). 
Once the sample space is (or was) produced, one could reason that the 
probabilities of the various sums are different because some sums would be 
generated by several combinations of numbers (see Section 5). For example, 
the sum of 7 occurs when a 5 and 2 are rolled, as well as a 6 and a 1, and a 4 
and a 3 (as well as 2-5, 1-6, and 3-4, if ordered pairs are being listed). 
Likewise, a sum of 8 is produced by rolling a 6 and a 2, two 4s, and a 5 and a 
3. In contrast, a sum of 11 can only be produced by rolling a 5 and a 6. 

As Batanero, Godino, et al. (1997) note, many probability 
misconceptions are due to a lack of combinatorial reasoning where students 
incorrectly enumerate the sample space in a problem. This further highlights 
the importance of the inclusion of combinatorics in the elementary 
mathematics curriculum. The next section considers some of the 
combinatorial problem situations that can be used to develop children's 
combinatorial reasoning. 



COMBINATORICS AND THE DEVELOPMENT OF CHILDREN'S COMBINATORIAL 125 
REASONING 

3.  COMBINATORIAL PROBLEM SITUATIONS 

There are several different types of problem situations in which 
combinatorial ideas are utilised (e.g., Batanero, Navarro-Pelayo, & Godino, 
1997; Batanero & Sanchez, this volume; Dubois, 1984; Tarr & Lannin, this 
volume). It is not the intention here to review all of these classifications; 
rather, consideration is given to the more common problem types including 
those suitable for elementary school students. These problem types include 
the following: 
- Problems that reflect the fundamental counting principle (DeGuire, 199 1) 

and that make use of tree diagrams, systematic lists, and tables; 
- Combinatorial configurations that involve (a) selections, (b) distributions, 

and (c) partitions (Batanero, Navarro-Pelayo, et al., 1997; Dubois, 1984). 

Fundamental Counting Principle 

- Application of the odometer strategy promotes more efficient problem 
solving in problems requiring the systematic testing of alternative 
solutions. For example: 

- The sum of two numbers is 14. Their product is 45. What are the two 
numbers? 

- Large towels cost $12 and regular towels cost $8. If I spent $76, what 
could I have bought? 

- How many different three-digit numbers can be formed using only the 
digits, 3,6, and 8? 

Other problems include situations where items from two or more discrete 
sets are combined in all possible ways, such as the following: 
- Sarah is making greetings cards. She has blue card, pink card, and yellow 

card, as well as gold and silver lettering. How many different types of 
cards can she make using a colored card and lettering? 

- A sandwich bar sells brown rolls, white rolls, and multigrain rolls. It 
offers choices of chicken, beef, and seafood fillings, along with French 
and Italian dressings. How many different kinds of rolls can you buy, 
with each having one type of filling and one type of dressing? 

Selections 

Dubois' (1984) classification of combinatorial problems as "selections" 
emphasises the concept of sampling. In problems of this nature, a sample of 
y objects must be taken from a set of x (usually distinct) objects. Examples 
of the type below are important in developing early probability 



understandings. The problem below can easily be changed to allow each 
marble to be selected once only (i.e., selection without replacement). 
- Sam has a bag containing four numbered marbles, with each marble 

showing one of these digits: 4, 6, 8, and 1. He asks his friend to select a 
marble from the bag and write down its number. He then tells his friend 
to put the marble back in the bag. His friend repeats this process until he 
has made a 3-digit number. How many different 3-digit numbers can his 
friend make? 

Distributions 

Problems that belong to this category involve the distribution of a set of n 
objects into m cells (Batanero, Navarro-Pelayo, et al., 1997, Kapur, 1970), as 
in the following example: 
- Carla has three identical birthday invitations and has four different 

colored envelopes in which she can place them. She cannot place more 
than one invitation in the one envelope. How many ways can she place 
the three invitations in the envelopes? 
In problems of the type above, conditions can be changed to generate 

other distribution situations, such as whether the items to be distributed are 
identical or not, whether the containers are identical or not, whether the 
items must be ordered, and so on. 

Partitions 

Partition problems entail breaking a set of n objects into m subsets, which, as 
Batanero, Navarro-Pelayo, et al. (1997) indicate, is in bijective (or one-to- 
one) correspondence with distribution problems. A partition problem is of 
the form: 
- James has 6 spare flag stickers displaying Australia, USA, France, Italy, 

the Netherlands, and New Zealand. He decides to share these flags 
between his two friends, Samantha and Penny. In how many ways could 
he share the flags? 

4. PROBLEM DIFFICULTY 

The research of Batanero, Godino, et al. (1997) showed that the three types 
of combinatorial configurations (i.e., selections, distributions, partitions) are 
not of equal difficulty, even afier instruction on combinatorics. Drawing 
upon Fischbein and Gazit's (1988) earlier research, Batanero, Navarro- 
Pelayo, et al. (1997) explored other task factors that influence problem 
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difficulty with 14-15 year-olds. These factors included the type of 
combinatorial operation, namely, permutations (where the order of item 
placement matters), combinations, and arrangements (with and without 
repetition). The other factors were the nature of the elements to be combined 
(digits, letters, people, and objects) and the values given to the parameters n 
and m. 

Before instruction, there was little difference in the difficulty level of the 
three types of combinatorial configurations. Interestingly, the main type of 
difficulty before instruction was the students' inability to systematically list 
items. After the students had received instruction in combinatorics (as part of 
their regular school curriculum), there was a reduction in the difficulty level 
of selection problems, arrangements problems, and permutations with 
repetition, but not so for the partition and distribution problems. Individual 
student interviews indicated that many students also failed to see two 
combinatorial problems with a different combinatorial configuration as 
equivalent, even when both problems employed the same combinatorial 
operation. This highlights the need to address the underlying mathematical 
features of combinatorial problems so that students can recognize related 
problem structures. This point is revisited in a later section. 

5. CHILDREN'S COMBINATORIAL REASONING 

Research on children's combinatorial reasoning has not been prolific, despite 
its role in the development of early probability ideas. The work of Piaget 
(e.g., Inhelder & Piaget, 1958) is probably the most cited, where the 
establishment of a combinatorial system plays a central role in his theory of 
cognitive development. This system is considered evident in one's ability to 
"link a set of base associations or correspondences with each other in all 
possible ways so as to draw from them the relationships of implication, 
disjunction, exclusion etc." (Inhelder & Piaget, 1958, p. 107). Piaget and his 
associates conducted a number of studies charting the development of 
combinatoric operations in the formation of propositional logic. These 
studies included the "coloring liquids" experiment (Inhelder & Piaget, 1958) 
and the "colored counters" task (Piaget & Inhelder, 195111975). 

In the coloring liquids experiment, children were presented with four 
containers of different chemical substances that they were to mix in all 
possible ways. The colorless, odorless liquids were perceptually identical 
(beaker 1 contained diluted sulphuric acid, beaker 2 contained water, beaker 
3 was oxygenated water, and beaker 4, thiosulphate). A bottle with a dropper 
that contained potassium iodide was also included. Given that oxygenated 



water oxidises potassium iodide in an acid medium, combining the two 
liquids will produce a yellow color (this was demonstrated to the child). The 
child was given the four containers and the dropper bottle, and asked to 
reproduce the yellow color. 

The colored counters task was part of an investigation into children's 
development of the idea of chance. In another task, children were presented 
with sets of counters: each set was a different color, and the children were 
asked to create as many different pairs of counters as possible. The children's 
performance in both experiments suggested that preoperational children 
generate combinations only in an empirical manner by randomly associating 
two elements at a time (i.e., there is a lack of systematic method). Not until 
the concrete-operational stage is there evidence of some systematic method 
in generating combinations, albeit a rather limited system involving only a 
one-to-many multiplicative correspondence between one item and all others. 

The experiments indicated that 9- to 11-year-old children can generate 
two-by-two and three-by-three combinations, but without a systematic 
procedure. As the formal-operational period is entered, a change is evident in 
both combinatorial methods and reasoning. Children now have a systematic 
method for generating m x n combinations and are able to reason 
propositionally in forming their combinations. For example, when 
considering a possible combination, they are able to entertain hypothetical 
statements such as, 

If this liquid in beaker 4 is water, when you mix it with liquids in 
beakers 1 and 3, it wouldn't completely prevent the yellow solution 
from forming. 

This is a consideration of possibility rather than reality since the event 
involving the formation of the yellow solution is not seen in reality (Flavell, 
1963). 

Children's performance in these Piagetian tasks suggests that the 
combinatorial system does not emerge until well into the stage of formal 
operations. However, as with several of Piaget's experiments, the equipment 
and instructions given were scientific and abstract (Carey, 1985) for 
children; a feature which is likely to have masked their abilities in the 
combinatorial domain. More recent research, which has employed child- 
appropriate materials and meaningful task contexts, has indicated that young 
children are able to link items from discrete sets in a systematic manner to 
form all possible combinations of items (e.g., English, 1991; 1993). 

In one such study (English, 1991), 50 children aged between 4.5 years 
and 9.8 years were individually administered a series of 7 novel tasks that 
involved the dressing of cardboard toy bears (placed on stands) in all 
possible different outfits. In these tasks an outfit comprised a colored top 



COMBINATORICS AND THE DEVELOPMENT OF CHILDREN'S COMBINATORIAL 129 
REASONING 

and a colored pair of pants (or same-colored tops and skirts with different 
numbers of buttons, for two of the tasks). For each task, the child was 
provided with more items than were needed to form all possible 
combinations. The goal of the problem tasks was to dress the bears such that 
each bear had a different outfit (in terms of colors for the first five tasks, and 
in terms of total number of buttons for the remaining tasks). No assistance 
was given to the child by the researcher. 

The tasks increased in complexity from the initial two tasks (i.e., Tasks 2 
and 3; Task 1 was a familiarisation task) through to the final task (Task 7). 
Task 2 (2 sets of tops x 3 sets of pants) and Task 3 (3 sets of tops x 2 sets of 
pants) were of comparable difficulty, each involving 6 combinations. Task 4 
was made more complex by increasing the number of possible combinations 
from 6 to 9 (3 sets of tops x 3 sets of pants). Each of the remaining tasks 
required 6 combinations but there were additional features that increased 
their complexity. Task 5 included a constraint on goal attainment, namely, 
the instruction to give the third bear in the line of bears a blue top (while still 
forming all possible combinations). Tasks 6 and 7 engaged the children in 
working with number combinations instead of color. Task 7 had a hidden 
constraint, namely, two combinations derived from different items had the 
same total number of buttons (i.e., one-button toplthree-button skirt; and 
two-button topltwo-button skirt). One of these combinations thus had to be 
discarded. This is in contrast to the earlier probability example where each of 
the combinations derived from tossing 2 (or 3) dice must be taken into 
account in determining the probabilities of the various sums. 

The results of the study revealed a series of solution paths used by the 
children in solving the set of problem tasks. These paths ranged from 
random item selection through to a systematic pattern in item choice, 
reflecting increasing sophistication in solution procedure. The most efficient 
procedure, namely, the odometer strategy, involves repeating the selection of 
an item until all possible combinations with that item have been formed 
(e.g., red toplblue pants; red toplyellow pants; red toplred pants). Upon 
exhaustion of the item (e.g., red top), a new "constant" item is chosen and 
the systematic matching process repeated. The selection of items to combine 
with each new constant item displays a systematic cyclic pattern (e.g., blue 
pants, yellow pants, red pants; blue pants, yellow pants, red pants). Children 
who develop this strategy know when they have solved the task and 
conclude that no further combinations can be formed (e.g., "I know I can't 
make any more outfits because there are three different tops and I've used 
each pair of pants three times"). 



While the 4- to 6-year-old children did not display significant learning 
across the set of tasks, the 7- to 9-year-olds demonstrated considerable 
improvement in their solution strategies, with all but 4 of the 26 children 
adopting more efficient, systematic procedures (without adult intervention). 
Another interesting finding is that the most efficient solution procedure (i.e., 
the odometer strategy) emerged as a means of verifying task solution prior to 
its being used to generate a solution (English, 1991). That is, on task 
completion or apparent completion, children would use an odometer 
procedure to determine whether further combinations could be made from 
the remaining items. For example, children might select a red top from the 
remaining red tops, place it in front of them and then systematically match it 
with a pair of pants from each of the remaining sets of pants. This procedure 
would be repeated with each of the remaining sets of tops. Each trial 
combination would normally be held in the children's hands or placed in 
front of them. All but one of the children who adopted this procedure during 
the course of task execution initially used the procedure for checking 
purposes. In all, 29 of the 50 children used the odometer strategy to form 
trial combinations with their unused items. It thus appears that a significant 
component in children's adoption of this strategy is their ability to use it in a 
verifying or checking capacity (see Polaki, this volume, for a related 
discussion on children's checking procedures). 

The research on young children's development of a basic combinatorial 
system (English, 199 1 ; 1993) did not include Piaget's propositional 
reasoning, that is, subjects' ability to consider "the relationships of 
implication, disjunction, exclusion etc." (Inhelder & Piaget, 1958, p.107). 
Nevertheless, the findings do indicate that, with the use of hands-on 
materials within a meaningful context, young children are able to produce 
independently a systematic procedure for forming m x n combinations prior 
to the stage of formal operations postulated by Piaget and Inhelder. The 
findings support the inclusion of the combinatorial domain as a topic of 
investigation in the elementary school. 

In another study, English (1999) investigated 32 ten-year-old children's 
structural understanding of combinatorial problems when presented in 
various task situations. The children were examined in terms of their ability 
to: (a) identify the structural (or relational) properties of elementary 
combinatorial problems (Zdimensional [AxB] and 3-dimensional [AxBxq), 
and (b) represent and solve the problems. The children's ability to reason 
analogically was also explored with respect to: (a) determining the structural 
similarities and differences between problems, (b) solving new related 
problems, and (c) posing their own problems. 



COMBINATORICS AND THE DEVELOPMENT OF CHILDREN'S COMBINATORIAL 13 1 
REASONING 

The findings highlighted, among others, the issue of solution accuracy as 
opposed to structural understanding. The majority of the children could solve 
the problems in a variety of ways and could represent the problems 
symbolically. However, they had difficulties in explaining fully the two- 
dimensional structure of the AxB problems and could rarely identifL the 
cross-multiplication feature of these problems. Although a good proportion 
of the children recorded multiplication statements, there was nevertheless a 
sizeable number who favoured repeated addition, irrespective of the type of 
graphic representation they employed (e.g., drawings, systematic listing, tree 
diagrams). Children's symbolic representations for the 3-dimensional 
problems also suggested they lacked a complete understanding of the 
problems' structure. A multistep multiplication statement was rarely 
recorded for these problems; the majority of those who chose multiplication 
recorded one-step statements only (e.g., 3x2). 

In a similar vein, the children's graphic representations of the problems at 
times gave mixed messages about their structural understanding. For 
example, some children displayed knowledge of the odometer strategy in 
their graphic representations yet recorded addition statements only. Other 
children did not demonstrate knowledge of this strategy, yet recorded 
multiplication statements for each problem. 

The foregoing research studies indicate that, when given meaningful 
problem situations, children are able to independently develop powerful 
combinatorial ideas. Clearly, mathematics curricula in the elementary and 
middle schools need to include novel problem experiences that encourage 
children to explore combinatorial ideas and processes, without direct teacher 
instruction. 

6 .  CHILDREN'S COMBINATORIAL REASONING AND PROBABILITY 

REASONING 

The importance of children's combinatorial reasoning in analyzing sample 
space has been evident in several studies (e.g., Benson & Jones, 1999; 
Johnson, Jones, Thornton, Langrall, & Rous 1998; Nisbet et al., 2000; 
Zimmermann & Jones, 2002). The work of Jones and his colleagues has 
revealed children's difficulties in recognizing and constructing valid sample 
spaces and simulations for two-dimensional or compound-event problems 
(i.e., problems that involve performing two random experiments or 
performing one random experiment twice) 

In the study by Jones, Langrall, Thornton, & Mogill (1999), 37 third- 
grade children participated in an instructional program in probability. About 



43% of the program focused on sample space, 45% on probability of an 
event and probability comparisons, and the remainder on conditional 
probability. Fifteen of the 37 children exhibited what the authors referred to 
as the "sample-space misconception" immediately prior to instruction. These 
children could not list all the outcomes in a simple (one-stage) experiment 
and did not recognize the possibility that all outcomes could occur; rather, 
they made subjective statements as to why only particular outcomes would 
happen (e.g., "Red, because it's my favourite color."). For five of the 37 
students, this misconception persisted even after the instructional program 
had ended. 

Overcoming this misconception was one of the key patterns in producing 
growth in probabilistic thinking. Case studies showed how children 
progressed from being unable to list all the outcomes of a sample space to 
spontaneously listing outcomes for simple and subsequently, compound 
experiments. For example, when asked to list the outcomes in a game where 
two chips (red on one side and white on the other) were tossed, one student 
wrote RR, RW, WR, and WW. The student explained that she "started with 
red and kept matching" (Jones et al. 1999, p. 507). Her strategy illustrated 
the "odometer" strategy cited previously in this chapter. 

The use of written communication in developing children's probabilistic 
thinking was investigated in a study by Johnson, Jones, Thornton, Langrall, 
and Rous (1998). A class of fifth-grade students participated in a 5-week 
"Probability Writing Program," which engaged the children in discussing 
and solving a series of probability problems. Included in these problems 
were sample-space tasks, such as the Locker Problem: 
- Ann can't remember her locker combination. She remembers that the 

first number is a 1 or a 2; the second number is a 3 or a 4; and the third 
number is a 5 or a 6. If she guesses, what is the chance that she will open 
her locker on the first try? (p. 222) 

Following class discussions on their solutions, the children completed 
journal entries for the problem and the class teacher subsequently responded 
in writing to the children's entries. Pre- and Post-Probability Assessments 
were undertaken, together with an Initial Writing Assessment and a Final 
Writing Assessment. The writing assessments invited the children to 
respond to a probability question and provide detailed justification for their 
thinking. These pre- and post-program assessments showed that the students 
made significant gains in probability thinking as well as in their writing 
abilities. 

In particular, the strong growth shown by several of the students seemed 
traceable to "a series of critical interactions" that took place between the 
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teacher and the students through the medium of their journals (Johnson et al., 
p. 214). For example, the ongoing written exchanges between the teacher 
and a child in working the Locker Problem led the student to progress from 
randomly listing the possible combinations (135, 146, 235, 136, 245, 236, 
145, 246) through to using the odometer strategy in solving the second 
component of the problem: 
- Finally, Ann remembers that the first number of her locker combination 

is 2. She also knows that the second number is a 3 or a 4; and the third 
number is a 5 or a 6. What is Ann's chance now of opening her locker on 
the first try? (p. 222) 

The student listed the possibilities (2-3-5, 2-3-6, 2-4-5, 2-4-6) and explained 
that "There are 4 possible combinations. There used to be 8 but we found out 
what the first number is so that eliminated 4 numbers. The possibility has 
changed because it used to be 1 right number out of 8 but now it's 1 out of 4 
because she knows what the first number is." (Johnson et al., p. 215). 

The studies addressed in this section indicate that children have difficulty 
with basic probability ideas because they are not able or not willing to 
construct combinatorial type outcomes. Because these children do not 
exhaust the sample space or, alternatively, duplicate possibilities, they fail to 
determine the probabilities of particular outcomes in two- and three-stage 
compound experiments. 

7. INCREASING CHILDREN'S ACCESS TO POWERFUL 
COMBINATORIAL AND PROBABILITY IDEAS 

The Principles and Standards (NCTM, 2000) highlights the importance of 
providing children with opportunities to engage in the mathematical 
processes of representation, reasoning, abstraction, generalization, and 
forming connections. Combinatorial problems can help children construct 
meaningful representations, reason mathematically, and abstract and 
generalize mathematical concepts (Sriraman & English, 2004). Furthermore, 
as research has shown, combinatorial problems lend themselves to a variety 
of solution approaches, enabling children with minimal content knowledge 
to work towards a solution. 

In a "cautionary note," however, Gardiner (1991) indicated that the 
educational value of basic discrete mathematics lies in the fact that it forces 
students to think about important elementary processes such as systematic 
counting. Yet, he warns that this feature can be easily undermined by 
teachers who believe they should "help" students to solve problems by 



reducing the solutions to a number of "manageable and predictable steps, or 
rules, requiring an absolute minimum of thinking" (p. 12). This leads us to 
the first of several recommendations for increasing children's access to 
powerful combinatorial ideas. 

Foster Independent Thinking 

Children should be given opportunities to explore combinatorial problem 
situations without direct instruction. The rich and meaningful contexts in 
which these problems can be couched means that children have sufficient 
resources to tackle the problems unassisted. However, appropriate teacher 
questioning as children work on the problems can promote children's 
combinatorial understanding. For example, asking children to explain and 
justify their solutions can lead them to reject some of their original ideas, or 
to modify, refine, or consolidate their original arguments (Maher & Martino, 
1996). 

Encourage Flexibility in Approaches and Representations 

Being able to work flexibly with different representational forms is an 
increasingly important skill in today's world. Indeed, representational 
fluency has been shown to be at the heart of an understanding of many of the 
key constructs in elementary mathematics and science (Cobb, Yackel, & 
McClain, 2000; Lesh & Heger, 2001). Fluency with representational systems 
is essential to mathematical learning at all levels. 

As previously noted, combinatorial situations lend themselves to a variety 
of solution approaches and representations. When presented with novel 
combinatorial problems, children will naturally display a number of different 
solution approaches, as the research cited here has shown. At the same time, 
children will adopt various representations in solving these problems 
including the use of drawings, tables, systematic and unsystematic listings, 
and concrete models. It is important that children be given the freedom to 
use different representations and approaches, and that they be encouraged to 
describe and explain their actions. In doing so, children can identify the 
similarities and differences between their own representational forms and 
those of other children. 

Focus on Problem Structures 

One of the major goals of mathematics education is that children see the 
connections and relationships between mathematical ideas and apply this 
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understanding to the solution of new problems (Fuson, 1992; Hiebert, 1992; 
NCTM, 2000). If children are to make the appropriate links to new learnings, 
they need to construct understandings that comprise the structural relations 
between ideas, not the superficial surface details (English, 1997). That is, 
children need to identify the important structural properties of a problem 
situation: these being determined primarily by how the quantities in the 
problem are related to each other, rather than by what the quantities 
themselves are (Novick, 1988). A common finding in many of the studies on 
combinatorics is that students have difficulty in identifying related problem 
structures. As a consequence, students' ability to transfer their learning to 
new combinatorial situations is limited. It is thus imperative that children's 
combinatorial experiences include problems that vary contextually but are 
essentially isomorphic in their mathematical structure (Sriraman & English, 
2004). Furthermore, as indicated in the studies of English (1991, 1993), the 
inclusion of additional features, such as a constraint on goal attainment, can 
help children become more robust and more flexible in their application of 
combinatorial knowledge. 

Encourage Sharing of Solutions 

It is recommended that children share their solutions to combinatorial 
problems with their peers. Children should describe and explain how they 
arrived at their solutions and why they consider their solutions to be 
effective ones. This practice of sharing means that the solutions children 
generate must hold up under the scrutiny of others. When children don't have 
to produce something sharable, they can frequently "settle for second best" 
(English & Lesh, 2003). In addition, when children share their solutions, 
they provide us with insights into their combinatorial understanding and also 
provide important opportunities for their peers to give constructive feedback. 

Provide Problem-Posing Opportunities 

The ability to pose problems (in addition to solving them) is becoming 
increasingly important in today's society (Brown & Walter, 1993; English, 
1998; English, 2003). In the study cited earlier (English, 1999), the 32 ten- 
year-old children were invited to pose their own problem using two of the 
given problems as a base. The children had considerable difficulty here: 41% 
were either unable to create a sensible problem, or pose a different problem 
type, such as subtraction (when the original was addition). Twenty-eight 
percent of the children could construct an appropriate problem statement, but 



were unable to pose an appropriate question, rendering the problem 
insolvable. This can be seen in the following example: 

John had a green toothbrush, a blue toothbrush, and a purple toothbrush, 
and he had blue toothpaste, red toothpaste, and white toothpaste. How 
many times can he use them? 

Only 32% of the children could create a solvable problem, many of which 
were set in one of the contexts of the given problems. This is of concern, 
given that problem posing - like its companion, problem solving - is a 
fundamental part of learning and doing mathematics. Problem posing is 
involved in creating new problems from old ones, as well as in reformulating 
given problems. Also like problem solving, problem posing is a natural part 
of our everyday lives (English, 2003). The benefits of incorporating 
problem-posing experiences within the mathematics curriculum are 
numerous. Winograd (1991) noted that students' original problem creations 
can serve as a viable and readily accessible source of content for students' 
mathematical learning. Students appear more motivated to pose and solve 
problems in which they have a vested interest; student-generated problems 
are more likely to connect mathematics to the students' interests, which is 
often not the case with standard textbook problems (Silver, 1994). At the 
same time, problem-posing experiences can lessen students' mathematics 
anxiety and lead to a more positive disposition towards the discipline 
(Brown & Walter, 1993; Healy, 1993; Silver, 1994). 

By including problem posing in children's experiences with 
combinatorics, we can increase their access to the combinatorial concepts 
and procedures identified earlier in this chapter, and enhance their 
understanding of combinatorial problem structures. Furthermore, when 
children create their own combinatorial problems, they need to consider the 
problem design, that is, the components that will make up the problem, such 
as the known and unknown information, the goal to be attained, and any 
imposed constraints or conditions on achieving the goal (Moses, Bjork, & 
Goldenberg 1993). This understanding of problem design enables children to 
differentiate mathematical problems from nonmathematical problems, good 
problems from poor, and solvable from nonsolvable problems. In addition, 
understanding problem design enables children to provide more effective 
feedback on their peers' problem creations (English, 2003). 

Provide Novel Probability Problems 

Novel probability problems that utilise combinatorial ideas provide rich 
opportunities for children to predict, experiment, and analyse probabilistic 
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situations (Jones, Langrall, Thornton, & Mogill, 1999). Two examples of 
such problems appear below: 
a) Sarah is making greeting cards. She has a blue card, a pink card, and a 

yellow card, as well as gold and silver lettering. She makes as many 
different cards as possible and picks one at random to send to you. Is it 
more likely that you will get a "blue card" or a card with "gold 
lettering"? Explain your response. 

b) Sam and his brother Ryan have a favourite game. Sam has 2 red smarties 
and one green smartie in his left hand and 1 red smartie and two green 
smarties in his right hand. He lets Ryan choose one smartie from each 
hand without looking. Is Ryan more likely to choose two smarties of the 
same color or two smarties of different colors? Justify your response. 

Notice in the second example above that some combinations can occur in 
more than one way. Hence, children have to take this into consideration in 
determining which situation (two smarties of the same color or two smarties 
of different colors) is the more likely. 

8. CONCLUDING POINTS 

Combinatorics comprises a rich structure of significant mathematical 
principles that underlie several other areas of study including probability, 
computation, and counting. The domain also serves other disciplines such as 
biology, chemistry, and physics. As such, combinatorics has an important 
role to play in the elementary school mathematics curriculum and should go 
hand-in-hand with children's experiences in probability. 

As the research cited here has indicated, even young children are able to 
work effectively with combinatorial situations when these are couched 
within meaningful contexts. Indeed, the real-world applications of 
combinatorics enable problems to be created that are appealing and 
meaningful, while at the same time, challenging to young children. Such 
problems lend themselves to a variety of approaches and representational 
forms. Furthermore, combinatorial problems facilitate the development of 
enumeration processes, as well as conjectures, generalisations, and 
systematic thinking. 

It is thus imperative that we create learning environments that will 
facilitate children's development of powerful combinatorial ideas. A number 
of suggestions for fostering this learning have been presented. In particular, a 
focus on combinatorial problem structures needs attention. This is especially 
important across all problem types to enable children to develop conceptual 



understanding, transfer their learning to related situations, and create new 
problems for sharing with others. 

Also in need of greater attention is how the use of computer technology 
can promote students' combinatorial reasoning. Stohl and Tarr (2002) have 
shown how the social aspects of learning, together with students7 
interactions with microworld tools, can challenge students' misconceptions 
in probability. In exploring simulations with combinatorial problems, 
Abramovich and Pieper (1997) have shown how a spreadsheet can enable 
students to focus on the patterns that emerge by decreasing the emphasis on 
pen and paper calculations. Indeed, as Stohl and Tarr have argued, there is a 
need to investigate the effects of long-term, sustained interaction with 
"dynamic, multi-representational software" on children's understanding of 
basic combinatorial ideas (p. 335). 
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