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THE NATURE OF CHANCE AND PROBABILITY 

Chapter I 

The theory of probabilities is at bottom nothing but common sense 
reduced to calculus; it enables us to appreciate with exactness that 
which accurate minds feel with a sort of instinct for which ofttimes 
they are unable to account ... It teaches us to avoid the illusions which 
often mislead us; ... there is no science more worthy of our 
contemplations nor a more useful one for admission to our system of 
public education. (Laplace, 198611 825, pp. 206-207) 

1. INTRODUCTION 

Epistemological problems play a fundamental role for mathematics 
educators, because analyzing the obstacles that have historically emerged in 
the formation of concepts can help us understand students' difficulties in 
learning mathematics. This is particularly important in the field of 
probability, where, in addition to the difficulty of understanding scientific 
knowledge as a theoretical interpretation of real phenomena, one has to deal 
with typical misconceptions and beliefs, and knowledge about future events 
that is often based on divinatory predictions that have arisen Erom a magical 
ancestral way of thinking. For centuries all speculation about future events 
was inconceivable, since the future only belonged to the omniscient and 
omnipotent glory of the supreme Creator as noted by Jacques Bernoulli 
(1 71 311 987) in introducing the fourth part of Ars Conjectandi. Mind you, 
this divine association was not an obstacle for players betting on games of 
chance; however, the quantitative control of these bets remained in the field 
of intuition. 

Gerolamo Cardano, who connected betting to the enumeration of winning 
combinations, was the first to make progress in probabilistic thinking in the 
16th century. However, the decisive step in probability thought was achieved 
by Blaise Pascal and Pierre de Fermat in their correspondence (Pascal 
1654/1963a), and was exposed by Pascal in his Traitk du Triangle 
Arithmktique (Pascal 1654/1963b, Edwards 1987). Ignoring metaphysics, 
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Pascal and de Fermat quantified the winning chances for the players in the 
case when a game actually stops before one of them wins the prize and 
where equal probabilities were not appropriate. The assumption of 
equiprobability of the elementary outcomes in a fair game was the first 
criterion to estimate the probability of a compound event made up of these 
outcomes. 

Since then, the concept of probability has received different 
interpretations according to the metaphysical component of people's 
relationships with reality (Hacking, 1975) and thus probability is a young 
area where formal development has been linked to a large number of 
paradoxes that show the disparity between intuition and conceptual 
development in this field (Borovcnik, Bentz, & Kapadia, 1991). For 
example, many students think that the events "obtaining 5 and 6" and "6 is 
obtained twice" are equally likely when throwing two dice. Other examples 
are given in SzCkely (1986) and through this chapter (e.g. the first historical 
probability problem posed to Galileo by the Grand Duke of Tuscany). 

Even today, and in spite of having a satisfactory axiomatic system, there 
are still controversies over the interpretation of basic concepts and about 
their impact on the practice of statistics. Moreover, Borovcnik and Peard 
(1996, p. 249) remark that probabilistic reasoning is different from logical or 
causal reasoning and thus counterintuitive results in probability are found 
even at very elementary levels. This is in contrast with other branches of 
mathematics where counterintuitive results are encountered only when 
working at a high degree of abstraction. This fact explains the existence of 
erroneous intuitions and learning difficulties that still persist at the high 
school level (Batanero, Serrano & Green, 1998; Batanero & Sanchez, this 
volume; Fischbein, Nello, Marino, 1991; Jones & Thornton, this volume; 
Langrall & Mooney; this volume Shaughnessy, 1983, 1992; Watson, this 
volume). A well-known example is the following: when successive players 
try to pick at random the shortest stick among a set of sticks it is argued that 
the first player has the greatest probability to get the shortest stick, because 
successive players might be unable to get it. The fact that the probabilities 
are equal for all players in this example is contrary to naive probabilistic 
intuition. 

In this chapter we will examine different interpretations of the nature of 
chance, randomness, and probability and will highlight how these multiple 
conceptions are complementary and can influence curriculum goals. Finally 
we include some implications for the teaching and learning of probability in 
schools. 
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2. CHANCE AND CAUSALITY 

Different Perceptions of Chance 

When a human being achieves by hisher intelligence a certain perception of 
the world and time, he or she is confronted with the fundamental uncertainty 
of future events. The idea of chance is as old as civilization, but there are 
many different conceptions of this idea which have spanned the history of 
thinking up to the present day. Various explanations have tried to describe 
our uncertainty of future events, in particular: 

- Believing in a destiny predetermined by a supernatural spirit or God; 
- Assuming a personal chance factor, unequal for different 

individuals; 
- Accepting natural necessity, ineluctably subjected to laws which still 

are partially unknown and which govern the world's origin and 
evolution; 

- Arguing the inextricable complexity of the infinitesimal causes 
generating macroscopic phenomena, which we consider fortuitous as 
the only possible reasonable interpretation; 

- Assuming the existence of a fundamental, chaotic and absolute 
natural randomness. 

It is then easy to understand the difficulty of giving a definition of 
randomness, which includes all these interpretations. Bennett (1993) and 
Courtebras (2001) analyzed different historical, philosophical and 
psychological conceptions of chance. Some of these conceptions still appear 
in children and naive minds (see Langrall & Mooney; Watson; in this 
volume; the latter for an analysis of the role of chance language). However, 
continuous progress of scientific knowledge and education about rational 
thinking produced an evolution of dominantviews about random 
phenomena. A brief historical journey will be useful to appreciate this 
evolution. 

Chance, Causality and Determinism in History 

Chance mechanisms, such as cubic dice, or astragali (bones from the ankle 
of animals with hooves, such as the sheep) have existed since the first 
Sumerian, Assyrian and Egyptian civilizations, and were used to predict the 
future and to engage in decision-making. Games of chance were so 
widespread in ancient Rome as to be an object of regulation (Hacking, 1975, 
p. 25). However, a scientific idea of randomness was absent in the first 
exploratory historical phase, which extended according to Bennett (1993), 
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from antiquity until the beginning of the Middle Ages when chance was 
conceived as fortune and related to causality. Within this framework, the 
Greek philosophers developed various points of view. For Democritus, 
everything on earth is the combined h i t  of chance and need. Aristotle 
considered that chance results from the unexpected but remarkable 
coincidence of two or more series of events, independent of each other and 
due to so many different factors that the eventual result is pure chance. 

Aristotle's philosophy pervaded the Middle Ages where magic thinking 
and superstitions were frequent in the mind of the layperson. The 
Renaissance progressively gave way to a deist determinism that Denis 
Diderot summarized in this expression: "It is written up there" (Diderot, 
179611983). This conception was particularly well expressed by Jacques 
Bernoulli in introducing the fourth part of Ars Conjectandi: "All which 
benefits under the sun from past, present or future, being or becoming, 
enjoys itself an objective and total certain ty... since if all what is future 
would not arrive with certainty, we cannot see how the supreme Creator 
could preserve the whole glory of his omniscience and omnipotence." 
(Bernoulli, 171311987, p. 14). 

One hundred years later, Pierre Simon Laplace based his deterministic 
thinking on the "principle of sufficient reason," by virtue of which Leibniz 
denounced the "blind chance of epicureans" (Leibnitz, 17 1011 969). After 
this reference, Laplace writes in his Essai Philosophique sur les 
Probabilitbs: "Present events are connected with preceding ones by a link 
based upon the evident principle that a thing cannot occur without a cause 
which produces it". Laplace goes on to present his point of view in a 
shocking formula: "We ought then to regard the present state of the universe 
as the effect of its anterior state and as the cause of the one which is to 
follow" (Laplace, 18 1411995, p. vi). 

From this viewpoint, chance is only the "expression of our ignorance." 
Laplacian determinism was radical and dominated scientific thinking until 
the 19th century. It allowed no place either to natural chance, intrinsic in 
some situations, or to the "secondary causes" contingency, that is to give 
people the freedom to choose and decide. This position obviously challenged 
philosophers and was lengthily discussed by them; it also questioned 
scientists' rapport with the real world (Thom, 1990). Does determinism 
translate a conception of nature to its reality? Or should we understand it as a 
theoretical postulate about the uniqueness of evolution in an idealized world, 
which is represented by mathematical models whose equations integrate the 
formulations of the admitted laws and assumptions? 

At the beginning of 20th century, Henri Poincard remarked that ignorance 
of the laws governing certain natural phenomena did not necessarily involve 
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a chance interpretation. Moreover, he noticed that, for the laws of perfect 
gases and Brownian motion, the regularity of macroscopic phenomena can 
be translated to deterministic laws, even when these phenomena are 
primarily random at the microscopic level. These remarks led PoincarC to 
declare in his Calcul des Probabilitb: "Is it thus necessary that chance be 
different from the name we give to our ignorance?" (PoincarC, 191211987, p. 
3). PoincarC gives then the following definition: 

a very small cause, which escapes us, determines a considerable effect 
that we cannot fail to see, and then we say that this effect is due to 
chance, ... it might happen that small differences in the initial 
conditions produce very large ones in the final phenomena ... 
Prediction becomes impossible and we have the fortuitous 
phenomenon. (PoincarC, 19 1211 987, p. 4-5). 

Determinism remained however, impossible to circumvent for the 
majority of scientists in the 20th century: "God does not play dice" 
according to Einstein's formulation, taken again by RenC Thom who claims 
(Thom, 1986, p. 24): "in this conflict determinism-chance, Science is 
deterministic by reasons of principle." 

The Concept of Chance in the 2(Yh Century 

In contemporary science we wonder about the existence of fundamental 
chance in natural phenomena, and about the possible degree of accuracy in 
its observations. Werner Heisenberg's uncertainty principle in quantum 
mechanics implies that a particle's movement can only be described by 
random functions and it is theoretically impossible to deterministically fix at 
the same time its position and speed (Kojeve, 193211990). The existence of 
intrinsic chance was accepted and developed in genetics by Jacques Monod 
(1970), then in thermodynamics by Ilya Prigogine and Isabelle Stengers 
(1979). Epistemologists such as Edgar Morin (1990) elaborated the founding 
concept of complexity, allowing a thorough enlightening of the chance 
notion, as predicted by PoincarC. Contemporary writings about chaos, 
determinism, chance and complexity are now very numerous. 
Mathematicians such as David Ruelle (1991) developed chaos theory to 
model complex phenomena, thus contributing to a better understanding of 
these phenomena. 

Whatever our philosophical conceptions of chance and necessity and our 
epistemological conceptions of probabilities are, they are compatible with 
the contemporary mathematical theory of probability. In developing an 
axiomatic theory that was adequate to support these different interpretations, 
mathematics does not enter these philosophical or epistemological debates. 
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Random experiment is thus a primitive mathematical concept and whatever 
be the nature of chance in each particular random experiment, we can give 
probabilities for the different events, just by applying probability models, 
which fulfil the axioms of probability theory. But the teacher of probability 
needs to be aware of these interpretations, because they implicitly determine 
students' behaviors and answers when confronted with chance situations or 
when having to put their probabilistic intuitions and knowledge in practice. 

3. RANDOMNESS AND PROBABILITY 

First Steps 

Bellhouse (2000) analyzed a 13th century manuscript, De Vetula, attributed 
to Richard de Fournival(1201-1260). In this manuscript a long epic poem is 
transcribed. One of its passages describes a dice game, where the players 
should bet on the sum of points obtained with three dice. This poem is the 
oldest known text establishing the link between observed frequencies and the 
enumeration of possible configurations: "Sixteen compound numbers are 
produced. They are not, however, of equal value, since the larger and the 
smaller of them come rarely and the middle ones frequently" (Bellhouse, 
2000, p. 134). 

By counting the 216 "ways of failing" (216 arrangements of the three 
dice), which produce 56 "observable configurations of points," the author of 
the poem connects each of the 16 different sums to its corresponding number 
of "ways of failing," achieving thus an implicit determination of their 
probabilities. He then advises the players to organize their bets according to 
their expected profit: "you will learn full well how great a gain or a loss any 
one of them is able to be" (Bellhouse, 2000, p. 135). 

The author thus claims to be able to quantify the chances of an event to 
come. Let us notice that this same game, betting on the sum of three dice, 
motivated the Grand Duke of Tuscany to pose to Galileo (about 1620) the 
first known and solved probability problem in history. Although there are 
exactly 6 different configurations which produce either the sums 9 and 12 or 
the sums 10 and 11, and therefore they should be expected to have the same 
frequency, the observation of a long series of trials made players prefer 10 
and 11 to 9 and 12. To explain this paradox, Galileo, took into account the 
order of number in the three dice, and gave a complete combinatorial proof 
of the right solution: 25 different ordered configurations for the sums 9 and 
12 and 27 possible configurations for the sums 10 and 11. 
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During the 16' century Cardano explicitly suggested using the relative 
weight of favorable outcomes in a chance game to make a fair bet. In his 
Liber de Ludo Aleae, Cardano (166311961) advised players of the basic role 
of combinatorial calculation, and gave them a general rule: consider all the 
possibilities which represent the number of ways the favorable results can 
occur, and compare this number with the remainder. The mutual bet should 
be posed according to this proportion, so that the players can compete on 
equal terms (Pichard, 200 1, p. 17). 

Classical Interpretation 

With the advent of various conceptions of probability, explanations of 
chance and randomness arose in terms of probability and this has continued 
until today. Such explanations depended upon the underlying conception of 
probability. The first authors interpreted their conceptions in terms of 
winning expectation. Pascal (165411963a) estimated "the value" of an 
interrupted game by proportionally dividing the stakes among each player's 
chances. In his Traitk du Triangle Arithmktique he suggested that a fair 
division of stakes should be proportional to the probability of winning the 
whole stake by each player (Pascal, 165411963b). 

Christiaan Huygens, inspired by Pascal, was the author of the first 
probability treatise: De Ratiociniis in Aleae Ludo (Huygens, 1657 1998). In 
modern terms, he showed in his third proposition that if p is the probability 
of a person winning a sum a, and q that of winning a sum b, then he may 
expect to win the sumpa + qb. 

In the same way Gottfried Wilhelm Leibniz wrote (Leibniz, 167611995, 
p. 161): 

If a situation can lead to different advantageous results ruling out each 
other, the estimation of the expectation will be the sum of the possible 
advantages for the set of all these results, divided into the total number 
of results. 

This classical approach, arising from Fermat's conceptions transcribed in 
his letter to Pascal in September 1654 (Fermat, 185311989, p. 154), was 
found in the first definitions of probability, as given by Abraham de Moivre 
in The Doctrine of Chances: 

Wherefore, if we constitute a Fraction whereof the Numerator is the 
number of Chances whereby an Event might happen, and the 
Denominator the number of all the chances whereby it may either 
happen or fail, that Fraction will be a proper definition of the 
Probability of happening (de Moivre, 17 1811 967, p. 1) 
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Historically the first authors related the randomness of possible outcomes 
in a chance situation to their own uncertainty about future events. Jacques 
Bernoulli expressed in Ars Conjectandi: "Probability is in fact a degree of 
certainty, and differs from certainty as the part from a whole". (Bernoulli, 
171311987, p. 16). 

Pierre-Simon Laplace published his Essai Philosophique sur les 
Probabilitb in 1814, already partly written in 1795 for the Meetings of 
Teachers' Training Schools. In this fundamental book, Laplace clearly 
underlined the subjective view in judging equiprobability, which is 
necessary for the classical definition of probability, in concrete situations. 
After affirming that probability is partly related to the extent of our 
ignorance and knowledge, he noted that: 

the theory of chance consists in reducing all the events of the same 
kind to a certain number of equally possible cases, that is to say, to 
such as we may be equally undecided about in regard to their 
existence, 

and gave this definition as the first principle: 

probability is thus simply a fraction whose numerator is the number of 
favorable cases and whose denominator is the number of all cases 
possible (Laplace, 181411995, p. ix). 

In this classic conception of probability we would say that an object is 
chosen at random out of a given class, if the conditions in this selection 
allow us to give the same probability for any other member of this class 
("hasard du tirage au sort", according to Lahanier-Reuter, 1999). In fact it 
was argued that this Laplacian definition of probability was based on a 
subjective interpretation, associated with the need to judge the 
equipossibility of different outcomes. Although equiprobability is clear when 
throwing a die or playing a chance game, it is not the same in complex 
human or natural situations. Bernoulli noted this in Ars Conjectandi, and 
gave examples of epidemics and weather phenomena: equiprobability "can 
hardly be found in some very rare cases and does not happen apart from 
games of chance" (ibid. p. 40). 
He then indicates how to determine the probabilities of real events: "what is 
not given a priori is at least possible a posteriori, that is to say, it will be 
possible to obtain it by observing the result of many similar examples" (ibid. 
p. 42). He thus suggested the possibility of an objective and frequentist 
estimate for the probability of a concrete event. 
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Frequentist Approach 

Theoretical studies concerning the quantitative prediction of future events 
from the regularity observed in repeated trials of random phenomena only 
appeared three centuries ago, when Bernoulli justified a frequentist 
estimation of probability in giving a first proof of a main probability 
theorem, the Law of Large Numbers. In modern terms, this theorem can be 
stated as follows: when repeating the same experiment enough times, the 
probability that the distance between the observed frequency of one event 
and its probability p is smaller than a given value, can approach 1 as closely 
as desired. 

The stabilization of frequencies for an event, after a large number of 
identical trials of a random experiment, had been observed over several 
centuries. The proof given by Bernoulli that the classical probability 
correctly reflects this idea of stabilized value, was interpreted as a 
confirmation that probability was an objective feature of random events. 
Given that stabilized frequencies are observable, they can be considered as 
approximated physical measures of this probability. As Alfred Renyi 
claimed: "we consider probability as a value independent of the observer, 
which roughly indicates with which frequency the event will happen in a 
long series of trials." He adds: "Mathematical theory of probability ... 
concerns objective probabilities which can be measured like physical 
magnitudes" (Renyi 196611 992, p. 26). 

Moreover the frequentist approach defines probability as the hypothetical 
number towards which the relative frequency tends when stabilizing (von 
Mises, l928Il953; Renyi, l966Il992; Ventsel, 1973). In this conception, we 
assume the existence of this number for which the observed frequency is an 
approximated value. According to Gnedenko and Kolmogorov (1954), 
"mathematical probability would be a useless concept if it did not find 
concrete expression in the relative frequency of events resulting from long 
sequences of experiments, carried out under the same conditions." 

However, from a practical viewpoint, the frequentist approach does not 
provide the probability for an event when it is physically impossible to 
repeat an experiment a very large number of times. It is also difficult to 
decide how many trials are needed to get a good estimation for the 
probability of an event. Moreover, we cannot give a frequentist 
interpretation to the probability of an event, which only occurs one time 
under the same conditions, such as is often found in econometrics. But the 
most significant criticism of the frequentist definition of probability is the 
difficulty of confusing an abstract mathematical object with the empirical 
observed frequencies, which are experimentally obtained. In von Mises' 
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(192811952) axiomatic system, probability is considered as the theoretical 
limit of frequencies. However such a conception raises the didactic problem 
of confusing model and reality, and makes the modeling process difficult to 
understand for students who need to use abstract knowledge about 
probability and random variables to solve concrete problems. 

Subjective View 

Even though the frequentist approach was an advance relative to the classical 
view, it was not free of controversy. Bayes' formula published in 1763 
raised questions that belied intuition. This formula gave the probabilities of 
various causes when one of their consequences is observed. The probability 
of such a cause would thus be prone to revision as a function of new 
information and would lose its objective character postulated by the 
frequentist conception. Keynes (1921), Ramsey (1931), and de Finetti (1974) 
described probabilities as personal degrees of belief, based on personal 
judgment and information about experiences related to a given outcome 
(Cabrii, 1992; Hacking, 1975). De Finetti (1974) claimed that "probability 
does not exist." He considered that assuming an objective existence would 
be an erroneous and dangerous conception. Since probability is a theoretical 
concept, its estimated value depends on numerous factors, such as the 
observer's knowledge, the observation conditions or the data that he is able 
to collect. Therefore, we cannot say that probability exists in reality without 
confusing this reality with the theoretical model chosen to describe it. 

In this subjective view, what is random for one person might be 
nonrandom for another. Randomness is no longer a physical "objective" 
property, but has a subjective character and probability does not measure a 
magnitude, such as length or weight, but only a degree of uncertainty, 
specific for each person (Kyburg, 1974).   mile Borel, one of the founding 
fathers of measure theory, suggested that "to understand some errors made in 
incorrect applications of probability theory, we should briefly insist on the 
subjective character of probability". He underlined that "the possibility of an 
event is always related to a certain system of knowledge and is thus not 
necessarily the same for all people" (Borel, 193011991, pp. 70-71). 

In this subjectivist viewpoint, the repetition of the same situation is no 
longer necessary to give a sense to probability. The fact that repeated trials 
are no longer needed serves to expand the field of applications of probability 
theory, in particular to economic decisions (Saporta, 1992). Today, the neo- 
Bayesian school assigns probabilities to all that is dubious or unknown, even 
nonrandom phenomena. But, what is the scientific stature of the results 
which depend on judgments that vary with the observer? The solution of this 
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dialectical debate between objectivists and subjectivists is again found in the 
status of the mathematical model of probability theory. 

Mathematical Formalism 

Throughout the 20th century, different schools contributed to the 
development of the mathematical formalization of probability. Borel's first 
view of probability as a special type of measure (Borel, 193011991) was used 
by Andrei Kolmogorov (193311950), by considering a set (the sample space) 
representing all possible outcomes in a random experience. Kolmogorov 
applied sets and measure theories and used Lebesgue integration to derive a 
satisfactory axiom system, which was generally accepted by different 
schools independently of their philosophical interpretation of the nature of 
probability. Probability is thus a mathematical object and probabilistic 
models can be built to describe, simplify and interpret random reality. 
Probability theory has proved its efficiency in many applications, but the 
particular derived models raise heuristic and theoretical hypotheses, which 
need to be evaluated empirically. Moreover, probability cannot be 
considered as just a special case of measure theory, since the concept of 
independence or the limit theorems, so relevant in probability, play a specific 
role. In the period from Laplace and Gauss, to Kolmogorov and Doob, many 
other probabilists derived these results and built an extensive framework of 
knowledge attracting young researchers to this interesting field (Cabrii, 
1992). 

Intuition of Randomness and Random Sequences 

When theoretical developments about statistical inference began to reveal 
the importance of separating the notions of random process and random 
sequence, interest in finding models for processes, which provide long 
sequences of random digits, was born. The possibility of obtaining 
pseudorandom digits with deterministic algorithms also suggested the need 
for examining the sequence produced, regardless of the process by which it 
had been generated. Debate about such things led to the formalization of the 
concept of randomness (Fine, 197 1). 

Intuitively (and in particular with children), chance is perceived as being 
primarily unforeseeable. Thus, for example, in throwing a die six times, the 
sequence [I, 2,3,4,5,6] seems less likely than [2,5, 1,6,4,3]. Players hold 
the belief that they risk less if they choose a sequence where no regularity 
can be perceived a priori. According to Pamysz (2004), various concepts 
were created during the 20th century to take into account this 
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unpredictability; for example, the sequences of equidistributed digits or 
normal numbers introduced by Bore1 (1909). 

Fine (1971) discussed some approaches used to define a random 
sequence. von Mises (192811952) based his study of random sequence on the 
intuitive idea that a sequence is considered to be random if we are convinced 
of the impossibility of finding a method that lets us win in a game of chance 
where winning depends on forecasting that sequence. von Mises and Martin- 
Lof (1966) suggested that a random sequence does not exhibit any 
exceptional regularity effectively testable by any possible statistical test. 
Kolmogorov and Chaitin's vision (1975) of a random sequence is a highly 
irregular or complex sequence that cannot be reproduced from a set of 
instructions which is shorter that the sequence itself (Zabell, 1992, Delahaye, 
1999). It is important to remark that in both the theoretical approaches of 
von Mises and Kolmogorov perfect randomness would only apply to 
sequences of infinite outcomes and therefore, randomness would only be a 
theoretical concept. 

4. FUNDAMENTAL STOCHASTIC IDEAS 

Concepts Progressively Built from School to University 

A key point in teaching probability is to reflect on the main content to 
include at different educational levels and how this content can help prepare 
students for life (see Gal, this volume). We have described in the previous 
sections the fundamental stochastic ideas that have helped Probability theory 
to develop throughout history. These ideas are analyzed by Heitele (1975), 
who takes the view after Bruner (1960) that fundamental mathematical 
concepts can be studied at various degrees of formalization. These degrees 
of formalization are manifest in more complex cognitive and linguistic levels 
as one proceeds through school to university using a spiral curriculum. He 
also suggests that small children can build intuitive models for these 
fundamental ideas that later help them to establish correct analytic 
knowledge. This is particularly important in stochastics where the large 
number of paradoxes might confuse even mathematically trained people. In 
effect, it underscores in the case of stochastics the need to reinforce intuitive 
understanding before formal teaching of the topic commences. As suggested 
by Feller (1950) even adults are able to improve their stochastic intuition. 
However, wrong intuitions that are acquired early are difficult to change and 
can later cause difficulties in learning (Fischbein, 1975). 
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In developing his list of key stochastical ideas Heitele considered results 
from developmental psychology and the history of probability, since both 
sciences prove these concepts to be difficult, though powerful. We briefly 
analyze below some ideas mentioned by Heitele. 

Random Experiment, Events and Sample Space 

The idea of listing all the different possibilities in a random experiment and 
taking into account not only the possible outcomes, but also the different 
possibilities for or against to estimate a player's probability of winning, was 
implicit in the pioneers' work on games of chance. At the same time the first 
unsuccessful attempts to solve some classical probability problems were due 
to considering incorrect sample spaces. The notion of sample space 
progressively developed and was formalized by Kolmogorov, who explicitly 
took the set of all the different possible outcomes as a base to build a 
satisfactory set of axioms for probability calculus. This set of axioms quickly 
gave momentum to a spectacular development of this part of mathematics. 
Fischbein (1975) emphasized the cognitive relevance of the sample space, 
because small children, who are too linked to deterministic thinking, often 
concentrate on a single event rather than on the whole set of possible results 
when dealing with random situations. This same behavior has been described 
in Konold's (1989) "outcome approach". Jones , Langrall, Thornton, and 
Mogill's (1999) research involving an instructional probabilistic program 
with young children suggests that overcoming misconceptions related to 
sample space was a key factor for children who showed a growth in 
probabilistic thinking (see also Langrall & Mooney, this volume). 

The Addition Rule 

Dividing a compound event into its single constituents is a powerful way to 
derive complex probabilities from simpler ones (see Polaki, this volume). 
The second axiom of probability achieves this by allowing us to compute the 
probability of the compound event. As it is a general rule in mathematics, 
once this idea is accepted, it is progressively generalized. Starting from the 
union of two single disjoint events, this rule is extended to a fixed or variable 
number of events, and later to compute probabilities in a continuous setting, 
where the sum is replaced by an integral. 
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Independence and Conditional Probability 

The complex relationship between probabilistic concepts and intuition 
appears in the concept of independence. As we described earlier, the concept 
of probability started from the study of chance games, where independence 
was natural: A die or a coin does not have a memory of preceding throws. It 
was necessary to wait until the middle of the 18 '~  century before the concept 
of independence was noticed and made explicit. It started as an intuitive 
notion: two events were considered to be independent if there was no reason 
to think that one of them could influence the other. The probabilistic 
translation of this idea is expressed by the multiplication rule: 

The concept of independence soon became essential in the emergence of 
the normal distribution, obtained by Laplace and Gauss as the limiting 
distribution of many "small" independent errors. With the recent foundation 
of probability as an axiomatic theory by Kolmogorov, an inversion between 
definition and concept arose because then stochastic independence was 
defined in terms of the multiplication rule. This new definition was criticized 
(von Mises, 192811952), because it brought an extension of the concept, 
which emptied it of its intuitive content. That is, some events can be 
stochastically independent and not be intuitively independent or vice versa. 

This historical difficulty in establishing a simple link between the 
intuitive idea of independence and its formal definition recurs in the teaching 
of probability, where it can be an obstacle for students when solving 
conditional probability problems. Misconceptions as regards conditional 
probability are very commonly discussed in statistics education research and 
are described in other chapters of this book (e.g., Batanero & Sanchez; Tarr 
& Lannin; Watson). 

Computing probabilities in compound experiments requires one to 
analyse whether the experiments are dependent or not. Here we compose the 
experiments themselves and not just the events in the same experiment. 
Therefore Heitele (1975) suggests that the study of compound experiments 
can lead students to perceive mathematics' facility to build complex models 
based upon simpler ones. 

Equidistribution of Probability 

The ideas described above, though very powerful, do not help us in finding 
an objective criterion to start assigning probability to simple events. A 
possible strategy is accepting Laplace's equiprobability rule in situations 
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where there is physical symmetry or where it is possible to apply the 
indifference principle. Even when this strategy seems natural in games of 
chance and other experiments with finite sample spaces, it is not free from 
subjective judgment, as described above. Besides young children sometimes 
do not easily accept equiprobability for cases which are obvious to adults, 
because they personalize random generators or believe in "lucky numbers" 
(Truran, 1996). 

Combinatorics 

Combinatorics is not simply a calculus tool for probability, but there is a 
close relationship between the two topics. At a cognitive level, according to 
Piaget and Inhelder (1951/1975), if the subject does not possess 
combinatorial capacity, he is not able to use the idea of probability, except in 
cases of very elementary random experiments. On the one hand, from a 
mathematical point of view the connection between probability and 
combinatorics is particularly noticeable in compound experiments. This is 
the case because the task of generating the sample space of a compound 
event requires the application of a combinatorial constructive process on the 
events that comprise the compound event. On the other hand, arrangements 
and combinations may be defined by means of compound experiments 
(ordered sampling witWwithout replacement, non-ordered sampling 
witWwithout replacement). It is not surprising then that we use tree diagrams 
to facilitate both the understanding of combinatorial configurations and 
compound random experiments (analyses of elementary combinatorics and 
of students' combinatorial reasoning, are given in this volume: Batanero & 
Sinchez; English; Polaki). 

Random Variable and Distributions Models 

One of the most powerful ideas in probability was born in the 20" century 
and served to expand its applications beyond games of chance, as well as to 
solve many paradoxes and difficulties. Random variables appear in many 
different contexts in everyday life and the number of distribution models for 
random variables as well as their applications is enormous. Again, possible 
generalizations or extensions of this idea appear in bivariate and multivariate 
random variables, as well as in stochastic processes. Associated with random 
variables is the idea of expectation. Expectation is a very natural aspect of 
games of chance, where it appeared very early in the historical development 
of probability. An intuitive introduction to the notion of random variable and 
expectation at any early age might provide the background for later formal 
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understanding of probability models, such as the binomial, geometric, 
uniform, exponential or normal distributions. 

Laws of Large Numbers 

The progressive stabilization of the relative frequency of a given outcome in 
a large number of trials, that has been observed for centuries and was 
translated by Bernoulli to a mathematical theorem, served as a justification 
for the frequentist definition of probability, as we have seen. Modern 
generalizations of this theorem are known as Laws of Large Numbers. These 
laws lead to connections between probability and statistics and they give 
validity to statistics as a methodological tool in experimental sciences. 
Regularity in the distribution of independent unpredictable outcomes implies 
the possibility of discovering mathematical models in randomness and then 
getting some control over it (separating random and nonrandom components 
in natural phenomena). This idea again is not free of difficulties, because the 
specific nature of random convergence is difficult to grasp and long runs, 
coincidences, or unexpected patterns are counterintuitive (see Watson; 
Batanero & Sanchez; this volume). 

Sampling 

Given that we are rarely able to study complete populations our knowledge 
is based on samples, which have two different features: representativeness 
and variability. Because samples are (or should be) representative of the 
population, we expect them to be similar to the population but, at the same 
time, variability implies that one sample is different from another. 
Psychologists such as Kahneman, Slovic and Tversky (1982) suggest that we 
put too much emphasis on representativeness and are not sufficiently 
cognizant of random sampling fluctuation and the effect of sample size on 
sampling variability. 

Modeling and Simulation 

During the 20" century, probabilistic knowledge was organized into a true 
mathematical theory, like other branches of mathematics such as geometry. 
Starting from social practices and the interpretation of tangible reality, this 
scientific or mathematical approach served to overcome the debates about 
the nature of the objects concerned and to accommodate the various 
philosophical conceptions about the nature of chance. The abstract character 
of probability's axiomatic foundation allows the possibility of utilizing 
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models that are formalized in its symbolic system and developed to represent 
problems arising from reality. The modeling of concrete situations is today a 
compulsory step in the operation of scientific knowledge and, moreover, 
probability is a field where simple models can be composed in a powerhl 
way. Therefore, the teaching of statistics and probabilities should incorporate 
the learning of modeling. 

Heitele (1975) also included the idea of simulation among his list of 
fundamental stochastic ideas. Simulation might be used as a pseudoconcrete 
model for many different real situations and it offers the possibility of 
working without mathematical formalism when analyzing random situations. 
Simulation then can act as an intermediary between reality and the 
mathematical model. As a didactic tool it can serve to improve students' 
probabilistic intuition, to teach them the different steps in the work of 
modeling, and to help them discriminate between model and reality. 

5. IMPLICATIONS FOR TEACHING 

The above discussion shows the multifaceted nature of probability (Cabrii, 
1992), and in particular its duality (Hacking, 1975); it also suggests that 
teaching cannot be limited to one of these different perspectives because 
they are dialectically and experientially intertwined. Probability can be 
viewed as an a priori degree of uncertainty and, at the same time, as a 
personal degree of belief (De Finetti, 1974). 

The controversies with respect to the development of the theory and 
philosophy of probability have also influenced teaching (Henry, 1997b; see 
also Greer & Mukhopadhyay, this volume, for a detailed analysis of factors 
affecting the place and contents of probability in the mathematics 
curriculum). Before 1970, the classical view of probability based on 
combinatorial calculus dominated the secondary school curriculum. Later it 
was complemented with an axiomatic approach in the so-called "modern 
mathematics" era. On the one hand combinatorial reasoning is difficult and 
students often found this approach to be very hard. On the other hand the 
multiple applications of probability to different sciences were hidden and 
probability was considered by many secondary school teachers as a 
subsidiary part of mathematics, since it only dealt with chance games. 

With the increasing recent interest in statistics at school level and with 
continuing computer development, there is a growing interest in an 
experimental introduction of the notion of probability as a limit of the 
stabilized frequency. Probability has now been turned into a theoretical tool 
that is used to approach problems that have arisen from statistical 
experiences. Probabilistic modeling of statistical questions is moreover 
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central in the educational process because it enables students to decide the 
best solution to some paradoxes that appear even in apparently simple 
problems, and are predicated on the basis of confbsion between model and 
reality (Girard, 1997). Let us consider, for example, the probability of 
getting at least one tail when flipping a coin twice. Some famous 
mathematicians gave different solutions to this simple problem because they 
applied different models for the sample space in this experiment. Thus, 
D' Alembert in 1776 argued in the French Encyclopedia that this probability 
was 213, since he considered three different equiprobable cases: getting a tail 
in the first flip (in this case the game is over), getting a head in the first flip 
and a tail in the second, or getting two successive heads. In his Essai 
Philosophique, Laplace found that the solution of the problem was 314, 
assuming equiprobability for the four events (tail, tail), (tail, head), (head, 
tail), (head, head). This is a very simple but paradoxical problem that we can 
propose to our students. They can simulate the game to decide 
experimentally which of the two previous models better fits the situation and 
later try to explain mathematically why one solution is preferable to the 
other. 

Interpreting random situations in terms of probabilistic models will serve 
to overcome the controversy between classic, subjective and fiequentist 
approaches. This modem conception will give probability the status of a 
mathematical object that quantifies what Popper (1959) described as the 
propensity for a given outcome to appear more easily or frequently than 
others. 

From a didactic viewpoint, it is desirable to distinguish three different 
stages in the modeling process (Henry, 1997a, 2001). Special attention 
should be paid to the first stage, where students work at the concrete level 
observing a real situation and describing it in their own words. This 
description already involves some abstraction and simplification of reality, 
insofar as choices need to be made vis-A-vis what is relevant in the situation 
with respect to the problem studied (working hypotheses). This description is 
controlled by a theoretical look, that is, scientific knowledge based on 
general prebuilt models. For example, we can describe the "yes" or "no" 
response from a person taken at random in an electoral survey, by the 
sampling of a marble from a Bernoulli's urn which contains marbles of two 
colors in proportion p and 1-p. Moreover, we start from the working 
hypotheses to represent such descriptions by a system of simple and 
structured relationships among idealized objects: it is the pseudoconcrete 
model level. In the voting example, we can assume that the probability of 
answering "yes" is the same for any person in the population (independent of 
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his gender, age or social position) and that it does not change in a short 
interval of time. 

The second modeling stage is the formalization of the model, which 
presupposes being able to represent the pseudoconcrete model in a symbolic 
system suitable for probabilistic calculus. To do this it is necessary to 
introduce a mathematical reference sample space 0, characterize the events 
as parts of this unit, translate the working hypotheses into model 
assumptions and finally define the probability distribution as an abstract 
measure on R Probabilistic theory then allows a solution to the problem 
posed. In the voting example, we introduce the idea of random binomial 
distribution to estimate the probability of having x out of n positive votes in 
a group of n people and use the normal approximation for large values of n. 

At the third stage, it is advisable to go back to the initial questions and 
translate the mathematical results in terms of the pseudoconcrete model. This 
will make these results meaningful in providing some answers, which should 
be related to the working hypotheses to appreciate the relevance of these 
answers in the real situation (model validation). In our example, we might 
use the theoretical model to check the hypothesis that a change in the value 
of p took place in the general population as a consequence of some political 
actions or that the vote of young people is different from the vote in the 
general population. 

The development of computers has added an important resource to 
simulation in statistics and probability with random digit generators. 
However, using computers as simulation tools requires characterizing a 
model of the simulated situation and makes it still more necessary to 
explicitly state the working hypotheses. To be theoretically acceptable the 
simulation should correspond to the same theoretical model as the random 
experience we are trying to reproduce. In order for it to be didactically 
effective, that is, for students who have no theoretical models available to 
accept it as a simulation of the given experience, the simulation should be as 
close as possible to the experience itself. It is in fact only by working with 
different simulations, and recognizing their analogy with the same 
experience that students can abstract the idea of a model and make it a 
powerful tool in problem solving. 

Finally, we remark that a pure experimental approach is not sufficient in 
the teaching of probability. Even when a simulation can help to find a 
solution to a probability problem arising in a real world situation, the 
simulation cannot prove that this is the most relevant solution, because it 
depends on the hypotheses and the theoretical setting on which the model is 
built. A genuine knowledge of probability can only be achieved through the 
study of some formal probability theory. However, the acquisition of such 
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formal probability theory by the students should be gradual and supported by 
their stochastic experience (see Pfannkuch, this volume). 
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