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PROBABILITY AND STATISTICAL INFERENCE: HOW 
CAN TEACHERS ENABLE LEARNERS TO MAKE THE 

CONNECTION? 

Chapter 11 

From the point of view of deductive logic that has shaped so much of 
statistical teaching in the past, probability is more basic than statistics: 
probability provides the chance models that describe the variability in 
observed data. From the point of view of the development of 
understanding, however, we believe that statistics is more basic than 
probability: whereas variability in data can be perceived directly, 
chance models can be perceived only after we have constructed them 
in our own minds. (Cobb & Moore, 1997, p. 820) 

1. INTRODUCTION 

Life is unpredictable and surrounded by seemingly random or chance events, 
or is it? It has become natural for people to observe that taller people tend to 
be heavier, that young men tend to have more car accidents, and that shares 
may return 3% per year in the long run. Inference or the drawing of a 
conclusion from data-based evidence abounds in the media. Crowded into a 
typical day's media articles are the results of polls, observational studies, and 
experiments such as: 58% of voters approve of the government's 
performance, 1 1-year-old children are getting heavier, or arthroscopic knee 
surgery is ineffective. In these scenarios inferences are respectively based on 
the following statistical elements: a random sample of 1000 people over the 
age of 18 and a quoted 3.2% margin of error, a sample of 1 1 -year-olds taken 
in 1985 and in 2000 with a weight comparison between the two samples, and 
a comparison of a sample of patients randomly assigned fake surgery or real 
surgery. Such studies involve statistical inference, which attempts to draw a 
conclusion about a particular population from data-based evidence provided 
by a sample. Drawing inferences from data is now part of everyday life but it 
is a mystery as to why and how this type of reasoning arose less than 350 
years ago (Davis & Hersh, 1986). 

Graham A. Jones (ed.), Exploring probability in school: Challenges for teaching and 
learning, 267-294. 02005 
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The foundations of probability and statistics were laid down as separate 
disciplines around 1660. Probabilistic thinking emerged in response to 
games of chance (Greer & Mukhopadhyay, this volume). Statistical thinking 
can be traced to John Graunt who, in 1662, used official statistics to draw 
inferences from data, such as estimating the population of London. These 
two quite different lines of thought took over 250 years to become 
connected. Stumbling blocks to incorporating probabilistic ideas into 
empirical data analyses appeared to be an inability not only to relate balls-in- 
urn-type problems to real world problems but also to believe that prediction 
was possible when there was a plethora of causes operating in the real world 
problem. Astronomers took a key conceptual step when they began to focus 
on the errors in their measurements rather than just the arithmetic mean of 
their measurements. Such recognition led to astronomy and geodesy using 
probability distributions, such as the normal distribution for measurement 
errors. Lightner (1991, p. 628) described this realization as a transition phase 
because "many concepts from probability could not be separated from 
statistics, for statisticians must consider probabilistic models to infer 
properties from observed data." It was not until the end of the 19 '~  century, 
however, that the astronomers' error curve was reconceptualized as a 
distribution governing variation in social data such as heights of people. 
During the first half of the 20' century statistical inference based on 
probability became integrated into the discipline. 

The recognition that mathematical probability models could be used to 
model and predict group (e.g., human group) behavior resulted in a shift in 
thinking that incorporated a nondeterministic view of reality. Historically, 
there were huge conceptual hurdles to overcome in using probability models 
to draw inferences from data; therefore, the difficulty of teaching inferential 
reasoning should not be underestimated. 

Research on students' informal and formal inferential reasoning would 
suggest that there are huge gaps in current knowledge about how best to 
enable learners to make the connection between probability and statistical 
inference. The integration of statistical data analysis with theoretical 
probabilistic distributions and the assumptions underlying those models 
present a real conundrum in teaching. 

Biehler (2001) argued that there was a four-stage development process 
for refining students' thinking towards formal inference. In the context of an 
example involving the comparison of two boxplots he described the stages 
and the person-roles as: fine tuning the comparison (the EDA methods 
expert); widening and exploiting the context by bringing in more variables 
(the subject matter explorer); generalization (the critical theory builder); and 
chance critique: Can group differences be "due to chance"? (the inference 
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statistician). Whatever the developmental process should be, there is a need 
to build a pedagogical framework in order to develop students' inferential 
reasoning. Such a framework would give teachers a sense of the overall aims 
and purposes of statistical inference and the statistical reasoning processes 
that need to be developed when they teach the prescribed curriculum 
content. Without attention to the complexity of informal inference and to the 
provision of a teaching pathway towards formal inference, statistical and 
probabilistic inferential reasoning will continue to elude most students. 

This chapter considers a possible pathway to formal inference by first 
drawing on, as an illustration, a case study that involved students in drawing 
informal inferences from the comparison of boxplots. Second, ways that 
students could be helped towards formal inference are suggested, and finally 
two possible pathways to formal inference, theoretical or simulation, are 
discussed. 

2. INFORMAL INFERENCE 

Before students are introduced to confirmatory or formal inference methods 
to decide whether the patterns they see in data are real or random, they are 
usually presented with situations that require informal inference. Research 
on students' informal inference from comparison of data plots is relatively 
recent. Biehler (1997) analyzed a transcript and videotape of some Grade 12 
students' methods of handling multivariate data. From the perspective of 
how a statistical expert would handle the data he identified a number of 
problem areas for teaching data analysis. In particular for the comparison of 
boxplots he pointed out the difficulty of drawing conclusions, even for 
experts, when faced with a variety of patterns and when encountering 
differences in medians, ranges, and interquartile ranges each of which may 
support differing conclusions. He acknowledged the difficulty of verbally 
describing and interpreting graphs, and reported that the language used by 
both teachers and students was inadequate. 

Konold, Pollatsek, Well, and Gagnon's (1997, p. 165) analysis of the 
same Grade 12 students that Biehler had used, hypothesized that the students 
had not made "the transition from thinking about and comparing properties 
of individual cases or collections of homogeneous cases to thinking about 
and comparing group properties". The desired thinking was described as a 
propensity perspective, the development of which the authors were not, at 
that time, prepared to prescribe. McClain, Cobb, and Gravemeijer (2000), 
however, believed that their instructional experiments, designed to focus 
seventh-grade students' argumentation on how the data were distributed, 
developed students' ability to reason about group propensities. The students' 
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argumentation, for example, suggested that 75% of the observations for 
treatment X were greater than 75% of the observations for treatment Y and 
therefore treatment X would be recommended. Argumentation issues such as 
sample size and sampling variability were not broached and would not be 
expected at this level. Ability to take into account the sample size when 
drawing inferences from data is described by Watson (2001) as a higher 
order skill. 

In fact, Konold and Pollatsek (2002) recommended that the early teaching 
of statistics should focus on informal methods of data analysis. They 
envisaged that the focus should be on why the data are collected and 
explored and what one learns from the data. Their idea of a data detective 
approach to data analysis fits with that of Pfannkuch, Rubick, and Yoon 
(2002), who believe students should approach data analysis in the thinking 
roles of hypothesis generator, discoverer, and corroborator. In other words, 
statistical exploratory data analysis should largely be kept separate from 
probability, with only informal quantifications of variability to denote a 
propensity or a spread of one sample distribution compared to another. It 
should be noted that Shaughnessy (2003) advocates that the teaching of 
probability should always be connected to a statistical approach. 
Furthermore, he suggests that previous recommendations to start with a 
probability problem and then gather data should perhaps be the other way 
around. That is, "statistics should motivate the probability questions" (p. 
223). 

A Case Study 

The following case study of some Grade 10 (15-year-old) students' attempts 
at informal inference is used to illustrate how and why a proposed 
framework for transitioning students towards formal inference needs to be 
formulated. 

Background 

In 2002 a new approach to national assessment in New Zealand was 
introduced at Grade 10. Instead of one final external examination in 
mathematics, one third of the course is internally assessed, with external 
moderation, and the rest is an external examination (New Zealand 
Qualifications Authority, 2001). Statistics is internally assessed and students 
are given data sets to investigate. The level of statistical thinking required at 
Grade 10 with this new internal assessment, compared to the previous 
external assessment that largely asked students to read and interpret graphs 
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and calculate measures of central tendency, produced real challenges for 
teachers and students. These challenges set the scene for the case-study 
investigation. 

Research method 

Based on the ideas of Gravemeijer (1998) and Skovsmose and Borba 
(2000), a developmental research method was used (Pfannkuch & Horring, 
2004). The school selected, which draws on students from low 
socioeconomic backgrounds, is culturally diverse, and has teachers 
interested in improving their statistics teaching. A workshop, which focused 
on communicating the nature of statistical thinking to the teachers (Wild & 
Pfannkuch, 1999), was conducted by the author. After the workshop the self- 
selected case-study teacher and another teacher were interviewed to identify 
problematic areas in their statistics teaching (Pfannkuch & Wild, 2003). The 
teachers then wrote a new 4-week statistics unit. Although all Grade 10 
teachers implemented the new teaching unit, research data were collected 
mainly from the case-study classroom. These data were videotapes of 15 
lessons, student bookwork, student responses to the assessment tasks, 
student questionnaires, and the teacher's weekly audio-taped reflections on 
the teaching of the unit. Teacher and author observations as well as the 
student responses on the questionnaires identified informal inference as a 
problematic area. Therefore the first analysis of the assessment task data 
focused on how students drew inferences from data. The results of the 
analysis led to a consultation group of five statisticians being formed to 
debate and discuss possible ways to progress. 

The assessment task 

16 18 20 22 24 26 28 30 32 34 
Max temp 

Figure I .  Comparison of Napier (N) and Wellington w) maximum temperatures in 
the summer 
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The students were given a table of data showing the maximum 
temperatures of two cities, Napier and Wellington, which were presented to 
the students as if they were two independent samples. At a much more 
sophisticated level, analyses taking into account pairing would be done. A 
story involving a decision about where to go for a summer holiday was 
communicated to the students. Students were required to pose a question 
(e.g., Which city has the higher maximum temperatures in summer?), 
analyze the data, draw a conclusion, justify the conclusion with three 
supporting statements, and evaluate the statistical process. All students chose 
to analyze the data by ,calculating the five summary statistics and then 
drawing boxplots by hand. Figure 1 shows the boxplots drawn electronically. 
Note that Grade 10 students are not expected to identify outliers so the 
whiskers were drawn to the minimum and maximum observations. 

Results 

The analysis of the student assessment responses was grounded in the 
hierarchical performance levels associated with the SOLO taxonomy (Biggs 
& Collis, 1982). Based on the student responses, four categories of 
justifications for their conclusions were identified: comparison of equivalent 
summary statistics; comparison of nonequivalent summary statistics; 
comparison of variability; and comparison of distributions. Within these 
categories hierarchies of responses according to the SOLO taxonomy were 
identified and qualitatively described: no response; prestructural - irrelevant 
information; unistructural - some relevant information but non- 
discriminating; multistructural - some relevant information with some 
discrimination; and relational - information communicated is relevant to the 
question and is discriminating. After the qualitative descriptors for each 
category and each level within a category were written by the author, the 
author and another person independently coded all responses. A consensus 
was then reached on the final codes for each student response. The details of 
the student responses are recorded in Table 1 and some examples of student 
responses are given in Figure 2. 

Conclusion responses ranged from nonuse of comparison language to 
comparisons that suggested statistical tendency. The analysis of the 
justification statements for the conclusion revealed that students compared 
features of the boxplots in a nondiscriminating manner (unistructural 
responses). Students did not tend to explain how their analysis supported 
their conclusion and was appropriate in relation to the question (relational 
responses). 
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Conclusion Comparing Comparing Comparing Comparing 
equivalent non- variability distributions 

stats equivalent 
stats 

No response 2 3 12 9 2 1 
Prestructural 0 2 3 1 0 
Unistructural 1 1  8 7 15 9 
Multistructural 1 1  7 4 5 0 
Relational 6 10 4 0 0 
Total number 30 30 30 30 30 
of students 

Table I .  Details of student responses when comparing boxplots 

Comparing equivalent summary statistics (27130) and comparing the 
variability with a statement about the ranges that was not relevant to the 
question posed (16130 classified as pre- or unistructural responses), were 
prevalent in student responses. Eighteen students attempted comparison of 
nonequivalent summary statistics (see Fig. 2). There was no attempt at 
comparing the difference in medians in relation to the variability (e.g., Is the 
difference between the medians quite large or small compared to the 
variability in maximum temperatures between Napier and Wellington?) and 
little attempt at comparing the shape of the distributions. 

A qualitative analysis of the learning experiences provided, using the 
videotape and student bookwork data, suggested that students had learning 
opportunities that only compared features of the data. For example, the 
teacher's only worked example with the class was one where the question 
generated was: "What are the differenceslsimilarities between male and 
female exam scores?'Hence only features, such as "the IQR for the male 
data is smaller than for female and therefore less spread," of the sample 
distributions were compared in class. 

The last part of the assessment task required students to evaluate the 
statistical process with three separate statements. Twenty students said that 
more data should be made available before making a decision. For thirteen 
students, however, a typical comment was: 

Firstly Wellington only has 30 temperatures where as Napier has 33. 
Giving Napier an unfair advantage. For this to be a fair test there 
needs to be exactly the same number of temperatures. Those 3 extra 
temperatures have affected the result. 

Even though students had compared data sets of unequal size in class 
they were not asked to raise concerns about the comparison and hence their 
belief that data sets should have equal sample sizes was not uncovered. 
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Conclusion 
* Napier has the highest temperature (U). 
* Napier is warmer than Wellington (M). 

Napier tends to be warmer than Wellington (R). 

Comparing equivalent summary statistics 
* Also the fact that the statistics for Napier are higher than Wellington (except the 

interquartile range) (U). 
Napier has a higher median than Wellington. Napier has a highest temperature of 
33.1•‹C but Wellington's'highest is 27.4"C (M). 
This is shown in the median, with Napier's median being several degrees higher 
than Wellington's (R). 

Comparing nonequivalent summary statistics 
* Napier's median temperature is higher than Wellington's upper quartile (U). 

Also because the median of Napier's temperature is higher than three quarters of 
Wellington's temperatures which suggest that half of Napier's temperatures are 
warmer than three quarters of Wellington's (R). 

Comparing variability 
Napier has a larger range of data compared to Wellington (U). 
The box-and-whisker plot also shows that Napier has a wider range of 
temperatures, and that many of the temperatures are grouped between 22.75OC and 
23.8OC, while in Wellington the temperatures are more evenly spread (M). 

Comparing distributions 
The box plot for Wellington is drawn lower than Napier's (U). 

Figure 2. Examples of student responses with SOLO level indicated 

Discussion 

Hypotheses were generated by the author and five statisticians as to why 
drawing a conclusion and justifying it were problematic when comparing 
data plots. One hypothesis was that school and introductory textbooks and 
therefore teaching tended to compare only features of boxplots and not to 
draw a conclusion, since significance testing and confidence intervals are 
introduced at a later stage (Wild & Seber, 2000). Other hypotheses proposed 
were as follows: the assessment demands were beyond the capabilities of 
Grade 10 students, 'informal inference' techniques were not established or 
recognized within the statistics discipline implying that the assessment 
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expectations were unrealistic, the curriculum did not provide a teaching 
pathway to build students' concepts of formal inference or provide learning 
experiences for the transition between informal and formal inferential 
thinking. 

Informal inference could have been presented to the students by giving 
clear-cut examples and limiting them to comparing data sets of similar 
spreads and samples of size 30. This was not what the teachers wanted; they 
considered it was the inherent messiness of data, the absence of a clear 
decision, and the positing of possible contextual explanations, which made 
data comparison interesting. If informal inference was to be taught there 
would need to be more awareness among teachers of the formal inference 
ideas underpinning comparison of data plots. 

In thinking of the needs of informal inference for the comparison of data 
plots, the author and statistician group determined that before drawing a 
conclusion there were four basic aspects to attend to in order to understand 
the concepts behind significance tests, confidence intervals, P-values and so 
forth. These were identified in the following way: comparisons of centers; 
considering the differences in the centers relative to the variability in the 
samples; checking the distribution of the data (normality assumptions, 
outliers, clusters); and the sample size effect. In cognizance of these 
conceptual underpinnings for formal inference and of the student responses, 
a pedagogical framework towards formal inference is beginning to be 
developed. This framework, based on the assumption that formal inference 
notions should begin to be developed by Grade 10, continues to be under 
debate. It is a framework for making teachers aware of the reasoning that 
students need to experience and develop for inference, namely: 

1. Reasoning with measures of center 
2. Distributional reasoning 
3. Sampling reasoning 
4. Drawing an acceptable conclusion based on informal inference. 
Underlying this reasoning is a fundamental statistical thinking element, 

consideration of variation (Moore, 1990; Wild & Pfannkuch, 1999). It is this 
consideration of variation that is closely allied to developing students' 
probabilistic reasoning. 

3. TOWARDS FORMAL INFERENCE 

During Grades 9 to 12 the connections between probability and statistics 
should gradually be developed and informally introduced to students. In 
particular, when using the pedagogical framework towards formal inference, 
attention needs to be drawn to a number of key principles: probability can be 
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used to quantify variability, data can be modeled by probability distributions 
despite the multitude of causes operating, confidence limits or boundaries 
exist, and samples are drawn from populations. Relations between data 
analysis and probability have to be consciously developed in teaching 
(Biehler, 1994). Some ways of addressing the four components of the 
pedagogical framework in teaching are now discussed. 

Reasoning with Measures of Center 

Wild and Pfannkuch (1999, p. 240) said that "the biggest contribution of 
statistics is the isolation and modeling of 'signal' in the presence of 'noise"'. 
If the comparison of boxplots is considered then the medians are the signal 
and the variability within and between the boxplots is the noise. Two-thirds 
of the case-study students did not acknowledge that the comparison of the 
medians was the salient feature of the statistical comparison. Such a finding 
resonates with Konold and Pollatsek's (2002, p. 273) research which found 
that students failed "to interpret an average of a data set as saying something 
about the entire distribution of values". They believed that statistical 
reasoning would elude students unless they understood that the comparison 
of averages is the statistical method for determining whether there is a 
difference between two sets of data. 

From the learning experiences observed in the case-study classroom, the 
students would be unlikely to know why the comparison of centers should be 
the focus of their reasoning. Konold and Pollatsek (2002) suggest that the 
central idea of searching for a signal amongst the noise has not been the 
focus of teaching and hence students have not developed this notion. The 
learning experiences that they suggest involve students appreciating causal- 
type variability in a process, its inherent probabilistic nature, and the 
consequent building of a mound-shaped distribution. Biehler (1994) 
contrasts the explaining and describing of variation by causal and other 
factors and consideration of probability models as two cultures of thinking, 
namely EDA thinking and probabilistic thinking. He believes that the 
connections and interfaces between the two modes of thinking are 
problematic. He concurs however with Konold and Pollatsek (2002) and 
Joiner (1994) that the Galton board is a useful basis for teaching such 
connections. The Galton board has a funnel containing beads, rows of pins 
that simulate factors acting on a process, and a series of slots into which the 
beads fall. The process of the beads falling through the funnel (signal), then 
bouncing through the pins (noise), and finally forming a mound shaped 
distribution in the slots physically embodies the signal and the noise. 
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Learning experiences based on these ideas could help students to reason with 
and search for the signal or measure of center amongst the noise. 

Joiner (1994) advocates that students should collect and plot data such as 
the arrival time of their school bus each day over an extended period in a 
time series plot (Fig. 3). From such a graph the underlying signal (mean) and 
the noise can be visualized, and boundaries that capture most of the variation 
can be informally imposed. The time-series graph also allows students to 
visualize and discuss ideas of randomness whereas a mound-shaped graph 
does not. From a quality management perspective the strategy for 
interpreting such a graph is to differentiate between special-cause and 
common-cause (or chance) variation. Since it is natural for students to look 
for causes these intuitions can be built into teaching. 

The first strategy is to identify special-cause variation, which is usually 
outside the upper and lower limits. These data come from outside the usual 
process, which in this example can be identified as the time when the bus 
was very late. Possible reasons for such an unusual occurrence could be a 
bus breakdown, or a passenger becoming ill, or a driver not turning up for 
work. These reasons are not part of the normal expectations or occurrences 
for the driving of a bus. Special-cause variation can contribute either a small 
or large amount to total variation and typically has a much bigger impact on 
variation than any common-cause variation. 

Bus Arrival Times 

30 

Minutes 
after 20 

7am 

Special cause 
variation 

\ 
Common- 
cause 
variation 

Figure 3. Student investigation of her bus arrival time (adapted from Joiner, 1994) 



278 MAXINE PFANNKUCH 

Common-cause (or chance) variation is confined between the upper and 
lower limit times. For the bus example some common cause factors could 
include normal day-to-day variation: traffic density, number of people 
catching the bus, green light run, weather, and other factors of which one is 
unaware. These factors are present all the time. Individually they have a 
small effect but collectively they can add up. For example, if the weather 
was bad, the traffic congested, and many people were catching the bus, then 
collectively these effects might compound and the bus may well be much 
later than usual. This type of discussion about the data should give students 
the notion of variation not being attributable to one cause but a multitude of 
causes that are modeled as random or chance variation. Such variation 
cannot be explained. This investigation would highlight thinking about 
variation in terms of realizing that variation happens, that some of it can be 
explained, but the rest cannot. This random variation is described 
mathematically by probability. According to Wild and Pfannkuch (1999, p. 
242), "special-cause versus common-cause variation is a distinction which is 
useful when looking for causes, whereas explained versus unexplained 
variation is a distinction which is useful when exploring data and building a 
model for them." 

The same bus arrival data (Fig. 3) can be used to construct a mound- 
shaped graph (Fig. 4), a graph which is the result of a random process that 
has no detectable pattern. There should be recognition that even though an 
individual event (arrival time) cannot be predicted, the group as a whole 
obeys some law of stability and hence predictions can be made about the 
behavior of the group. It would seem that students should first construct a 
series graph to visualize and experience the random variation and signal, and 
second, construct a mound-shaped graph in which the signal and noise are 
represented in a different perhaps nonintuitive way. Such learning 
experiences including those suggested by Konold and Pollatsek (2002), as 
well as other similar approaches for probability experiments, could lead 
students to a nondeterministic or probabilistic view of reality. Probabilistic 
thinking helps separate the reality or signal from the background noise. The 
link between explaining and describing variation by causal and other factors 
and modeling the variation by probability distributions (Biehler, 1994) is 
crucial in relating probability and data analysis. 
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Figure 4. Student investigation of her bus arrival time distribution 

Distributional Reasoning 

When comparing variability between Napier and Wellington temperatures, 
half of the case-study students made a comparison of the ranges, which was 
not relevant to the question they posed. Formal inference requires 
considering the differences in the centers relative to the variability in the 
samples, which presupposes an understanding of standard deviation or 
confidence intervals or significance. Taking the sample size into account a 
statistician might, but is unlikely to, informally infer by mentally intuiting 
confidence intervals for the true population means and visualizing whether 
there might be an overlap. This would be an impossible inference for a 
Grade 10 student with no experience of confidence intervals. The students, 
however, could look at variability within a data set and between data sets. 
The focus in teaching could be on describing, interpreting, and comparing 
the variability in the data sets rather than attempting to determine whether 
event A is "greater" than event B. For example, Wellington has a fairly 
symmetrical distribution whereas Napier is less symmetrical with some 
bunching - greater density - between 22.75 (LQ) and 23.8 (MED) and a 
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greater spread between 25.5 (UQ) and 33.1 (MAX). It should be noted, 
however, that the students would be describing sample distributions rather 
than population distributions and the features they note may well be due to 
"chance" (see Fig. 5). 

Recent research (e.g., Konold et al., 2002; Watson, 2002) has focused on 
distributional reasoning and the importance of students describing the 
"clumps and bumps" and attending to the variability within a distribution, 
which by its nature is both probabilistic and statistical. Experiences that 
involve looking at distributions of data are prerequisites to experiencing the 
behavior of random events and the probability distributions that describe 
them. To build up concepts about distribution as well as confidence 
intervals, the connections between probability and statistics can be 
reinforced through consideration of the range of "likely" outcomes in 
repeated probability experiments. As Shaughnessy (2003) notes, 
"Confidence intervals model the variability of the likely point values from 
repeated probability experiments. The concepts of sample space and 
variability are closely connected" (p. 223). According to Scheaffer, Watkins 
and Landwehr (1 998, p. 17) "probability questions should require students to 
observe the entire distribution rather than just the height of one bar." Links 
could also be made between the distributions and variability in probability 
experiments and the distributions and variability present in social data. 

In particular students should not continue to believe that comparing a 
feature such as "50% of Napier's temperatures are higher than 75% of 
Wellington's temperatures" is evidence for a real difference, rather that it 
may be a noteworthy feature to describe. It is important also that students 
consider that the difference may have resulted from chance. According to 
Moore (1990) and Konold (1994, p. 206) "students do not spontaneously 
raise this possibility." The term "chance" should not be lightly overlooked in 
teaching, as students may understand the term in dice problems but may not 
for real problems where causes are known (Wild & Pfannkuch, 1999). What 
students should be building up is the concept that they have sample data and 
that if they took other samples they would obtain different plots. 

Sampling Reasoning 

Statistical inference reasons from the sample to the population, a notion that 
is alien to most students according to Scheaffer et al. (1998), whereas 
probability reasons from the population to the sample. Taking samples from 
a hypothetical population and recognizing the importance of sample size are 
major problems associated with informal inference. There are many strands 
to building up concepts about sample size effect. Based on the case-study 
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some matters that need attention are the following: comparison of sample 
data of unequal sample size; the notion of a sample; the sample and its 
relationship to the population; the size of the sample and its relationship to 
the population; and small sample versus large sample variability. A 
repertoire of teaching and learning possibilities needs to be considered to 
build up these concepts (Watson, 2004). Biehler (1994, p.15) considers that 
"the production of random samples from populations and the randomization 
in experiments should be an intermediate step that consolidates the 
conceptual shift from data analysis to inference." Whereas from the 
perspective of building up students' conceptions of sample and sampling, 
Saldanha and Thompson (2002) suggest reinforcing schema that interrelate 
repeated random selection, variability among outcomes, and distribution. 

For the case-study students it was necessary first to overcome the belief 
that the data sets must be of the same size. Using Curcio's (1987) 
hierarchical model for interpreting graphs, the author's observation, 
corroborated by the teachers, was that the students had experience of reading 
the data, less experience at reading between the data, and little experience of 
reading beyond the data. If these students had some experience of inferring 
"missing data" from a data set they may have predicted that the missing 
summer temperatures were likely to be within the interquartile range or at 
least within the range. Such informal probabilistic notions are essential in 
building up ideas about likelihood and confidence intervals. The problems of 
missing data are well-known in statistics and students could be given 
opportunities to impute values for observations and to analyze data with and 
without the imputations. Specific attention could be drawn to students' 
beliefs and to whether their conclusions would change with unequal sample 
sizes. 

According to Watson (2004), despite curriculum statements referring to 
sampling and making inferences about populations, there has been a lack of 
attention to reasoning about samples and sampling in schools. She 
hypothesizes this situation may have arisen because "developing reasoning 
related to sampling may be associated with developing literacy and social 
reasoning skills rather than developing numeracy skills." Her research 
suggests that students have inadequate foundations for making inferences. 
Students know variation exists in a population and their dilemma is how to 
deal with this variation when taking a sample. The idea of taking random 
samples, a chance process that ensures appropriate variation, appeared to be 
a sophisticated notion. Students struggled with conflicting ideas such as 
suggesting that the sampling method should ensure representativeness, 
include all the population, and be fair about who should be included. She 
suggests class debates could be used to convince students of the need to take 
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random samples and suggests that the range of views reported by Metz 
(1999) would be a good starting point. Random sampling is critical to 
inference. The reasoning underlying random sampling is not based primarily 
on calculations but on an appreciation of the role of probability and variation 
in the selection of samples that will be used to make inferences about a 
population. 

Saldanha and Thompson (2001) reported on a teaching experiment in 
which students drew random samples from unknown populations of objects 
such as candies in a sack. In order to make a decision about whether two 
students' results were unusual all the students engaged in determining a 
criterion for deciding when two distributions were alike. According to 
Saldanha and Thompson the critical shift in students' thinking was turning 
away from thinking about single samples to considering the proportions of 
the collections of samples that were similar to the unusual distribution. Such 
informal significance testing using hand-drawn samples as well as computer 
simulations is important for starting to understand that the cut-off point for 
making a decision is arbitrary but the uncertainty can be quantified by 
probability. Similar scenarios involving balls-in-urn type problems as well as 
real-world problems that can be simulated could become part of the teaching 
repertoire so that students experience making their own decisions about 
whether an effect is real or not. Students can also decide on the size of the 
sample to take and through such experiences "build an understanding of a 
'reasonable size' for a representative sample ... and form a link between 
reliability and sample size" (Watson & Moritz, 2000, p. 133). 

The problem of informal inference is compounded by sample size and 
variability being interconnected. Watson and Moritz (2000) suggested 
explicit discussion with students would be profitable. Aspinwall and Tarr 
(2001) indicated in their research, with balls-in-urn type problems, that most 
middle school students could obtain an appreciation of the role of sample 
size in uncovering the parent distribution. Focused instruction on drawing 
students' attention to the number of trials and the outcomes of the 
probability simulations was part of the teaching design. In another study 
(Stohl & Tarr, 2002)' two students, using probability simulation tools and 
carefully designed teaching tasks, were facilitated to establish a link or 
bidirectional relationship between empirical and theoretical probability, to 
understand the role of sample size, and to make inferences from probability 
experiments. 
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Figure 5. Randomly generated samples of size 30from a Normal distribution with 
mean 50 and standard deviation 10 

Hand and computer simulations, such as taking random samples of the 
same and different size, as well as small and large size, from a population, 
could also be part of students' learning. Such simulations might enable 
students to "see" the variability of the sample mean, the variability within 
and between samples, and allow comparison of the variability of the samples 
with the variability of the population (e.g., Fig. 5). Context-free simulations 
such as shown in Figure 5 might not advance students' conceptions of the 
sample size effect but hypothetical situations grounded within the context of 
a problem (e.g., If they took another summer's temperatures would they get 
the same graphs? How large a sample should they take to be fairly certain 
that it was representative of the population?) might start to induct students 
into some formal inference ideas. Formal inference is predicated on the idea 
of "taking random samples" and independent observations, which in such 
contextual situations may not be the case but the model assumptions can be 
discussed at a later stage. 
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Drawing a Conclusion 

Consider the case-study example: If there were no overlap between the 
boxplots, statisticians would not carry out a formal test for no difference 
between the means. Such a test may be required, however, when plots are 
considered to be overlapping. Simulations could be used to overcome 
students' belief that the statement "50% of Napier's temperatures are higher 
than 75% of Wellington's temperatures" is evidence for a real difference as 
well as the belief that a sample size of 30 is large enough. Students' attention 
could be drawn, for example, to noticing that some randomly generated plots 
of sample size 30 from the same population distribution give rise to the 
above statement: see boxplots 2 and 4 or 9 and 10 in Figure 5. The 
simulations should generate boxplots and histograms, as these are the types 
of graphs from which the students are required to make informal inferences. 

For drawing a conclusion the statistician group suggested that Grade 10 
students could "look at the plots" and compare the centers, spreads, and 
anything else that is noteworthy. After comparing and describing features, 
students could then draw an informal inference: for example, "the sample 
data suggest that Napier has higher maximum temperatures on average in 
summer than Wellington." The words "sample", "suggest", and "on 
average" were used to reinforce statistical inference ideas. By Grade 11 
students could be referring to the underlying population when drawing 
conclusions. The question of whether the students are drawing a valid 
conclusion can be addressed in another pedagogical framework that focuses 
on the evaluation of the statistical process. Questions can be raised such as: 
"Does this conclusion make sense in terms of what I know about the real 
world? Is there an alternative explanation?" 

Many rich learning experiences, particularly in the above four 
components of the pedagogical framework, are necessary to prepare students 
for formal inference. All areas require at a foundational level consideration 
of variation, which by its very nature is linked to probabilistic 
understandings. 

4. FORMAL INFERENCE 

Fundamental to statistical inference is the recognition that sample data can 
be used to make predictions and decisions about the underlying population 
and that the sample selected is just one of many samples that could be drawn 
from the population. Underpinning formal inference methods are 
understandings of sampling distribution, random sampling, and distribution 
of the mean differences as well as recognition that the comparison of 
measures of centers is central to the argument. Recent research suggests that 
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better teaching methods are needed to improve students' conceptual 
understanding of sampling in relation to statistical inference (Watson, 2004). 
Research on formal inference is limited. Educators, however, are attempting 
to find new ways, using computer-based simulation approaches, to improve 
students' conceptual understanding of statistical inference and the 
probability distribution models that are used. 

Amongst statisticians (e.g., Cobb & Moore, 1997) there is general 
agreement that significance tests are overused and that the size of the effect 
is usually more important than how statistically significant it is. Therefore 
confidence statements should be introduced before significance testing. 
Scheaffer et al. (1998, p. 23) believe that the approach to confidence 
intervals should be through simulation so that "students can begin 'to 
develop some feel' for reasonable values of population parameters" before 
formalization. 

Classical Approach 

Traditionally the approach to inference is a probability theory-based 
explanation couched in mathematical language. The rationale, however, for 
this approach is obscure to most students. Consider the example used in the 
case study and the process of reasoning that older students would carry out 
for a significance test. First the students would establish a null and a one- 
sided or two-sided alternative hypothesis for the underlying population 
means. On the assumption that the two samples were randomly selected and 
taken independently from two normally distributed populations, with 
underlying means PN and PW and with unknown standard deviations, a 
significance test would be conducted. Assuming the null hypothesis was true 
a standard statistical package calculates the test statistic, confidence 
intervals, standard error, P-value, and degrees of freedom. The test statistic 
has a probability distribution that can be approximated by the t-distribution 
with nN+nw-2 degrees of freedom, where nN and nw are sizes of the samples, 

XN and & are the means of the samples, and sN and sw are the sample 
standard deviations. On the basis of the P-value the students would assess 
the strength of evidence against the null hypothesis and then conclude that 
there was no/weak/strong evidence of difference in mean maximum 
temperatures between Napier and Wellington. Or more traditionally, decide 
whether or not to reject the null hypothesis. Inference in this case might be 
applied to data that are not the product of random sampling. There is an 
assumption that a probability model does govern the data production. And of 
course the degree of uncertainty includes only the chance variation, it says 
nothing about other potential sources of error. 
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According to Moore (1990, p.134), in the classical approach "the 
mechanics of stating a hypothesis, calculating a test statistic" and finding a 
P-value "conceal the reasoning of significance tests". He believes the 
reasoning is difficult and significance tests need not be in the school 
curriculum. Not only is the reasoning difficult but, in addition, the myriad of 
underlying concepts that are theoretically addressed in the lead up to 
statistical significance testing remain largely elusive to most students. 

Simulation and Classical Approach 

With more technology becoming available, many educators who recognized 
that the theoretical development was deficient, started to use simulations, 
particularly for the sampling distribution and the Central Limit Theorem. 
Despite the promotion of the use of such simulations in instruction, delMas, 
Garfield, and Chance (1999) concluded that there was no substantial 
evidence that simulations actually improved students' conceptual 
understanding of the sampling distribution. Lipson (2002), for example, 
focused her research on elucidating tertiary students conceptions on 
sampling distributions and hypothesis testing. Based on experience and other 
research evdience that the concept of sampling distribution was poorly 
understood and that an empirical view of sampling distribution was an 
essential component of students' schemata, Lipson (2002) exposed mature- 
age students to a learning strategy that involved dynamic computer 
simulations of the sampling process linked to the formation of a sampling 
distribution. A common confusion among students initially was the 
difference between the distribution associated with the sample and the 
sampling distribution. Student concept maps revealed that the sampling 
software helped in elucidating some aspects of sampling distributions, but 
failed to link the empirical and theoretical representations of the sampling 
distribution and to link the sampling distribution to hypothesis testing and 
estimation. She concluded that instructional improvements in software for 
the development of the concept of sampling distribution were needed. 

In a recent small study Lipson, Kokonis, and Francis (2003) devised a 
computer simulation session to support the development of students' 
conceptual understanding of the role of the sampling distribution in 
hypothesis testing. They reported that students' conceptual understanding 
progressed through four developmental stages: (a) recognition (the sampling 
distribution summarizes repeated samples from a hypothesized population, 
the sample statistic is variable), (b) integration (locating the observed sample 
on the hypothesized sampling distribution, the concept of a single 
population), (c) contradiction (recognizing an inconsistency between 
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observed sample and hypothesized population, one observed sample but a 
range of possible populations from which it may have been drawn, extending 
the concept of variability to the population), and (d) explanation (possible 
statistical explanations for contradiction, decisions based on probabilities). A 
stumbling block for students appeared to be that they looked for a contextual 
explanation rather than a statistical explanation, even when they 
"acknowledged the low probability of the sample coming from the 
hypothesized population" (p. 7). They concluded that current software 
supported the recognition stage only and that students need considerable 
support for the other developmental stages. They also suggested that 
"students need to have a lot more experience in thinking about the kinds of 
samples that one could expect to arise from the sampling process" (p. 9). 

DelMas et al. (1999) also sought to improve students' conceptual 
understanding of sampling distribution. They created their own software and 
course materials, which, after several iterations, are becoming more effective 
at challenging students' understanding of the sampling distribution. They 
found that "good software and clear directions that point students to 
important features will not ensure understanding" (p. 8). Rather, course 
activities are needed to challenge each student's misconceptions. Better 
results were obtained when the activities were structured "to help students 
evaluate the difference between their own beliefs about chance events and 
the actual empirical results" (p. 8). 

Simulation Approach 

Although there is beginning to be some success at improving students' 
understanding of sampling distribution and its relationship to significance 
testing, this is only one of many critical steps in developing statistical 
inference expertise. Jones, Lipson, and Phillips (1994) argue that attempts at 
using an empirical approach, such as exposing students to computer 
simulations to build up the concept of a sampling distribution, have largely 
been ineffective. They conjecture that a reason for this problem is that 
students have difficulty in integrating "their empirical experience of the 
sampling distribution with the theoretical model of the sampling distribution 
that is used in classical inference" (p. 257). They argue that the theory-based 
approach is inaccessible to today's cohort of students taking introductory 
statistics. They advocate, as do other educators (e.g., Scheaffer, 1992; 
Konold, 1994; Biehler, 2001) that inference should be dealt with entirely 
from an empirical perspective. Scheaffer (1992, p. 80) believes that students 
who are taught through simulation methods will "understand how statistical 
decisions are made" and more importantly realize that classical procedures 
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"require an underpinning of randomness". Some computer packages 
designed for students such as Datascope (Konold & Miller, 1995) and 
Fathom (Key Curriculum Press Technologies, 2000) enable this approach. 

The resampling approach, initially proposed by Julian Simon in the late 
1960s (Konold, 1994), has the potential to make strong connections between 
probability and data analysis. It elucidates how probability provides a 
theoretical structure for statistical inference, as it is based on the notion of 
considering what would happen if the method was repeated many times. 
Consider the case-study example where the observed median difference in 
maximum temperatures is 2.2. The student can ask the question: "Although I 
know that my particular samples for Napier and Wellington maximum 
temperatures have these particular medians and spreads I know that if I 
repeat this study with the same sample sizes I will get different values. So, is 
this difference I see between Napier and Wellington maximum temperatures 
due to 'chance' (random or sampling variation) or is there a real difference?" 
The resampling method takes all the maximum temperature values and 
randomly reassigns them to Napier and Wellington. Given that the values 
have been randomly assigned then any difference between the medians of 
Napier and Wellington is due to "chance". Students can then look at some of 
the plots generated by this procedure and state: "If the difference were due to 
chance (or random or sampling variation) then I could obtain graphs like the 
following (Fig. 6)." 

The computer can then be instructed to repeat this procedure, say 1000 
times, each time computing the difference in medians. A histogram of the 
empirical distribution of the differences in medians (Fig. 7) can then be 
displayed and a one-sided P-value can be estimated. In this case the student 
can state: "Suppose that the difference is due to 'chance' (random variation) 
how often will I see this difference of 2.2 or larger in the medians? This 
difference or larger occurs less than once in 1000 through 'chance' (random 
variation) only. Therefore there is strong evidence of a real difference in 
median maximum temperatures between Napier and Wellington." 
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Figure 6. Maximum summer temperatures randomly assigned to Napier (N) and 
Wellington (W) 

Figure 7. Empirical sampling distribution of the d~ference in medians for 1000 
resamplings 
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Classical statistical inference presupposes a decision-making process is in 
operation. The logic of P-values, however, is based on the degree to which 
the outcome was surprising, which is more about assessing the strength of 
the evidence for the populations under consideration (Cobb & Moore, 1997). 
The resampling approach would seem to be more in tune with such a 
conceptualization of a P-value. 

Konold (1994, p. 210) used the resampling approach in one course with 
high school students. He reported, "at a deeper level, many students after 
instruction using resampling appear unaware of the fundamental nature of 
probability and data analysis." He believed, however, that the resampling 
approach in instruction should not be discarded but that it should be trialled 
over a series of courses to determine whether conceptual understanding was 
possible. Furthermore, Simon, Atkinson, and Shevokas (1976) reported that 
students who used the resampling approach consistently outscored the 
students using the traditional approach. Research is limited at this stage to 
support the resampling approach. Experience with computer simulations 
would suggest that much research would be needed in developing 
instructional activities or support for students to gain a deeper conceptual 
understanding of the randomization process, the notion of "chance" 
outcomes, and the distribution of the difference in medians to determine the 
likelihood of a particular outcome. At the present time the resampling 
approach to teaching would appear to be the most promising direction, as it 
could enable students to link probability intuitively with statistical inference. 
Basically, students need to understand that perceived patterns in data may be 
due to "chance", in which case inferential procedures should be conducted to 
determine whether the pattern is "real" or "random". Furthermore, a 
statement expressed in the language of probability, which is an assessment 
of the strength of the evidence for the correctness of the conclusion since the 
sample is not the entire population, must accompany any conclusion. There 
should be recognition that an element of uncertainty will always prevail. 

5. CONCLUSION 

How can teachers enable learners to make the connection between 
probability and statistical inference? Current research points to two 
strategies: first, emphasizing actual experience with exploring data before 
making connections between probability and inference; second, building a 
pedagogical framework, such as the one proposed in this chapter, to define a 
teaching pathway towards formal inference in Grades 9 to 12. Formal 
inference using a resampling approach could be introduced at Grade 12 
although some educators suggest an introductory tertiary course is more 
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appropriate. For the mathematically able students and those students whose 
careers will involve "t-tests", the resampling approach and the classical 
approach could possibly be integrated in tertiary level courses. Educators 
such as Cobb and Moore (1997) and Garfield and Ahlgren (1988) suggest 
that for a conceptual grasp of inference, informal probability is sufficient. 
Deriving the distributions and understanding inference from the classical 
viewpoint should be left for advanced study. 

Historically full integration of probability and statistical inference in the 
statistics discipline only occurred in the first half of the twentieth century. 
Therefore it is not surprising that research on the teaching and learning of 
statistical inference with its inherent probabilistic nature is only in its 
infancy. Concerted efforts should be made by researchers to develop a 
teaching pathway towards formal inference as well as to investigate and 
develop new teaching approaches for formal inference. A key part of these 
investigations will be the linking of variation ideas and probability. 
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