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HOW CAN TEACHERS BUILD NOTIONS OF 
CONDITIONAL PROBABILITY AND 

INDEPENDENCE? 

Chapter 9 

"The probability changes unless you put it back in." - Middle school student 
reasoning about conditional probabilities in a without-replacement task. (Tarr 
& Jones, 1997, p. 54) 

1. INTRODUCTION 

Research offers an emerging description of students' thinking in conditional 
probability and independence. Each of these concepts is associated with 
precise mathematical definitions that convey their interrelatedness. With 
respect to conditional probability, Hogg and Tanis (1993) point out that in 
some random experiments there is interest only in those outcomes that are 
elements of a subset B of the sample space S. Under these circumstances, the 
conditional probability of an event A given that event B has occurred, 
P(AIB), is the probability of A considering as possible outcomes only those 
outcomes of the random experiment that are elements of B. That is, the 
probability of event A is evaluated under the conditions of a new sample 
space, one that has been conditioned by the occurrence of event B. 

Hogg and Tanis also note that a special case of conditional probability 
occurs in a random experiment carried out in without-replacement situations. 
For example, consider an experiment where a gumball is selected and not 
replaced from a machine containing one red, one green, and one yellow 
gumball. The sample space immediately prior to the second draw will be a 
subset of the original sample space. The probability of "green," for example, 
will be conditional on the outcome of the first draw. If a green gumball is 
picked on the first draw, the probability of "green" given the event "green" 
on the first draw will be 0. On the other hand, if a red gumball is selected on 
the first draw, the probability of "green" given the event "red" on the first 
draw will be 0.5. 

Graham A. Jones (ed.), Exploring probability in school: Challenges for teaching and 
learning, 21 5-238.02005 
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In "without replacement" situations, such as those described above, 
conditional probabilities become particularly explicit because the reduction 
of the sample space can be visualized. In the research literature, it is often 
within the context of without-replacement situations (sampling one object at  
a time) that conditional probability problems occur (e.g., Falk, 1983; Falk, 
1988; Borovcnik & Bentz, 1991) although social contexts have also been 
used (e.g., Tversky & Kahneman, 1982; Watson, this volume; Watson & 
Moritz, 2002) to assess students' understanding of conditional probability. 

Based on these definitions it is generally accepted that students' 
"understanding of conditional probability" is demonstrated by their ability to 
recognize and adjust the probability of an event when it is changed by the 
occurrence of another event; that is, to "revise probability judgments as new 
information becomes available" (Borovcnik & Bentz, 199 1, p. 90). 

Some mathematical presentations (e.g., Borovcnik, Bentz & Kapadia, 
1991; Hogg & Tanis, 1993) of independent events define A as an 
independent event of B if P(A1B) = P(A), that is if the occurrence of event B 
does not change the probability of the occurrence of event A. It follows that 
independence represents a special case of conditional probability. In fact, 
Borovcnik and Bentz (1 99 1) associate independence with the "unconditional 
probability" (p. 90) of event A; that is when occurrence of event B does not 
influence the probability of event A. Because of its relatedness to conditional 
probability, some researchers (e.g., Kelly & Zwiers, 1988; Ahlgren & 
Garfield, 1991) recommend introducing the concept of independence via the 
conditional probability definition because it is more intuitive for students 
(Shaughnessy, 1992). In contrast with conditional probability, tasks that have 
been used in research on students' thinking about independence (e.g., Cohen, 
1957; Kahneman & Tversky, 1972; Shaughnessy, 1977) are largely 
associated with either observing a sequence of independent trials or with 
random experiments involving with-replacement situations. Within this 
context, an "understanding of independence" is demonstrated by students' 
ability to recognize and correctly explain when the occurrence of one event 
does not influence the probability of another event. The focus of this chapter 
is on research in conditional probability and independence that uses both 
with- and without-replacement tasks. 

2. THE EMERGENCE OF CONDITONAL PROBABILITY AND 

INDEPENDENCE IN THE MIDDLE SCHOOL MATHEMATICS CURRICULUM 

Recent world-wide curriculum reforms in school mathematics (e.g., 
Australian Curriculum Corporation, 1994; Department of Education and 
Science and the Welsh Office, 1991; National Council of Teachers of 
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Mathematics [NCTM], 1989, 2000) advocate broadening the scope of 
probability in the middle school mathematics curriculum and placing more 
emphasis on conceptual understanding. Such recommendations represent a 
departure from traditional curricula which placed only nominal emphasis on 
probability in school mathematics. Shaughnessy (1992) notes that although 
no comprehensive survey of how much probability is taught in schools has 
been undertaken, one could confidently say that, until recently, elementary 
and middle school students have had little or no opportunity to study 
probability concepts such as conditional probability and independence. 

In the wake of new curriculum developments, conditional probability 
and independence have emerged in prominent curricular materials for 
middle school students including the Connected Mathematics Project 
(Lappan, Fey, Fitzgerald, Friel, & Phillips, 1997), Mathematics in Context 
(National Center for Research in Mathematical Sciences Education & 
Freudenthal Institute, 1997-1998), The National Numeracy Strategy 
(Department for Education and Skills, 1997), Chance and Data: 
Investigations (Lovitt & Lowe, 1993) and NCTM-sponsored curriculum 
projects for middle school probability (Bright, Frierson, Tarr & Thomas, 
2003; Zawojewski, 1991). Although some curricular documents (e.g., 
NCTM, 2000) restrict the formal study of conditional probability for 
students in Grades 9-12, Watson (1995) argues that "it would be a disservice 
to save conditional probability only for advanced students in the final years 
of high school" (p. 16). She advocates that conditional probability and 
independence be introduced in the middle school mathematics curriculum, 
and taught in an intuitive manner. 

The precise placement of conditional probability in the school 
mathematics curriculum cannot be determined by any single investigation 
but the results of several recent studies (Jones, Langrall, Thornton, & Mogill, 
1999; Tarr, 1997; Tarr & Jones, 1997) lend credence to the notion that topics 
such as conditional probability and independence are indeed appropriate for 
the middle school mathematics curriculum and need not be deferred until 
students have developed robust skills in comparing fractions. In all of these 
recent studies, students used a variety of strategies to make correct 
conditional probability judgments following instruction, and many did so 
without the predominant use of fractions or numerical probabilities. Instead, 
they used their own invented strategies to make valid probability judgments. 
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3. CONDITIONAL PROBABILTIY AND INDEPENDENCE: CONCEPTIONS 

AND MISCONCEPTIONS 

Research into middle school students' thinking in conditional probability has 
grown steadily (e.g., Fischbein & Gazit, 1984; Piaget & Inhelder, 
195111975; Shaughnessy, 1992; Tarr & Jones, 1997; Tarr, 2002; Watson & 
Moritz, 2002; Yhfiez, 2002) as has research on independence (e.g., 
Fischbein, Nello, & Marino, 1991; Green, 1983; Konold, Pollatsek, Well, 
Lohmeier, & Lipson, 1993). The findings of a number of these studies 
provide a helpful focus for this section (for a more detailed discussion of 
misconceptions in conditional probability and independence, see Jones & 
Thornton; Pratt; this volume). 

Probabilistic Thinking in Conditional Probability 

Fischbein and Gazit (1984) carried out a teaching experiment involving 285 
students from Grades 5, 6 and 7. They found that, when students were asked 
to determine conditional probabilities in with- and without-replacement 
situations, the percentage of correct responses was generally lower for 
without-replacement situations, although approximately 24% of fifth-grade 
students correctly determined conditional probabilities in both with and 
without-replacement tasks. By way of contrast, the percentage of correct 
responses for sixth graders was 63% for with-replacement tasks and 43% for 
without-replacement tasks, and that for seventh graders was 89% for with- 
replacement tasks and 71% for without-replacement situations. Based on 
their analysis, Fischbein and Gazit identified two fundamental 
misconceptions in students' thinking in conditional probability: 

1. Students did not realize that the sample space had changed in a 
without-replacement situation, and 

2. Students found the probability of an event in a without- 
replacement situation by comparing the number of favorable 
outcomes for the event before and after the first trial rather than 
by making comparisons with the total number of outcomes (pp. 
8-9). 

In a related study, Tarr (2002) reported that students' conditional 
probability judgments were impaired by their misuse of the phrase "50-50 
chance" in two distinct ways. In particular, when the sample space contained 
two elements, students often assumed each outcome had a "50-50 chance," 
even when the two events were not equally likely. Additionally, they applied 
the phrase to probability situations in which more than two outcomes in the 
sample space were equally likely to occur, and concluded that each event 
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had a "50-50 chance." Both of these invalid uses of "50-50 chance" were 
problematic as students considered conditional probabilities in without- 
replacement situations. In particular, their persistent use of this phrase often 
impeded students' ability to recognize that the probabilities of all events 
changed in non-replacement situations. 

The conclusions of Fischbein and Gazit (1984) and Tarr (2002) clearly 
suggest that a primary objective of instruction must be to develop the idea 
that the sample space is changed in without-replacement situations. 
Additionally, an instructional program must help students to consider the 
composition of the sample space in relation to the total number of outcomes; 
that is, although the number of elements of a target color may remain 
unchanged after sampling without-replacement, it is critical to consider how 
the entire sample space has been modified by the conditioning event. 

Probabilistic Thinking about Independence 

In relation to middle school students' thinking about independence, a key 
study was carried out by Fischbein et al. (1991) with 618 students in Grades 
4-8. In this study, the researchers asked students to determine which event 
was more likely: obtaining three "heads" by tossing one coin three times or 
by tossing three coins simultaneously. Thirty-eight percent of fourth and 
fifth graders and 30% of junior high students, with no prior instruction in 
probability, responded that the probabilities were not equal. By a ratio of 
nearly 2: 1, students at each grade level believed the probability of obtaining 
three heads, by tossing a single coin three times, was higher. Based on 
follow-up interviews, Fischbein et al. found that students harboured a 
pervasive belief that the outcomes of a coin toss can be controlled by the 
individual. The researchers concluded that such a belief is incompatible with 
the notion of independence, given that the probability of obtaining a head on 
each trial remains constant at 0.5. 

Similar misconceptions were evident in the U.S. National Assessment of 
Educational Progress in Mathematics (Brown et. al., 1988) that asked 
students to state the most likely outcome on the next toss of a fair coin which 
had landed "TTTT" on four successive trials. Results indicated that only 
47% of the seventh graders selected the correct alternative-heads and tails 
are equally likely. Slightly higher achievement was obtained in a study of 
2,930 British students aged 11 to 16 years (Green, 1983). In this study a fair 
coin was flipped four times, each time landing heads up. When asked to 
name the most likely outcome of the fifth toss, 75% of all students, including 
67% of 11-12 year olds, answered correctly that "heads is as likely as tails." 



JAMES E. TARR AND JOHN K. LANNIN 

In a third study using this same item, Konold et al. (1993) found that only 
70% of the undergraduates in a remedial mathematics course responded 
correctly. Moreover, in extensions to this item, Konold et al. asked students 
to state which of the following sequences was most likely and which was 
least likely to occur when a fair coin was tossed five times: (a) HHHTT, (b) 
THHTH, (c) THTTT, (d) HTHTH and (e) all four sequences are equally 
likely. In the most likely case, approximately 61% of the undergraduates 
responded correctly, but only about 35% responded correctly in the case of 
the least likely sequence. Clearly a substantial number of students who 
demonstrated some understanding of independence in the most likely case 
abandoned this thinking in the least likely case. Konold concluded that a 
conflict existed between the belief that a coin has an equal chance of coming 
up heads or tails and that roughly half heads and half tails are expected in a 
sample of coin flips. 111 the most likely case, Konold asserted that students 
justified all sequences were equally likely by use of an outcome approach in 
which they interpreted the problem as a request to predict what will happen; 
such students typically used statements such as "anything could happen" to 
justify the response "equally likely." Students who switched their response 
from "equally likely" changed their perspective from an outcome approach to 
a related heuristic known as representativeness - the belief that a sample or 
even a single outcome should reflect the parent population (Kahneman & 
Tversky, 1972). Such pervasive beliefs are powerful and demonstrate 
students' inability to deal consistently with the concept of independence. 
Thus, even when students seemingly exhibit an understanding of the concept 
of independence, the representativeness heuristic may still prevail. 

Because students of all ages are prone to exhibit various misconceptions 
when observing a series of independent trials (Garfield & Ahlgren, 1988; 
Shaughnessy, 1992) or when considering with-replacement probability 
situations, an instructional program in independence must address these 
problematic features of probabilistic thinking. In particular, 
"representativeness" arguably represents the greatest impediment to 
developing an understanding of independence. Accordingly, instruction must 
provide experiences that will challenge the thinking of students who have 
adopted this powerful and pervasive heuristic. Moreover, instruction should 
develop the notion that the sample space is preserved in with-replacement 
situations as this represents a key to fostering an understanding of 
independence. 
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Frameworks for Describing Students' Reasoning 

Although the investigations into students' thinking in conditional probability 
(e.g., Borovcnik & Bentz, 1991; Fischbein & Gazit, 1984) and independence 
(e.g., Fischbein et al., 1991; Green, 1983; Konold et al., 1993) depict various 
aspects of students' probabilistic thinking, none of these studies provided a 
coherent model of middle school students' thinking in conditional probability 
and independence. Several recent studies (Jones et al., 1996; Jones et al., 
1997; Tarr & Jones, 1997; Jones et al., 1999) addressed this void by 
formulating and validating cognitive frameworks that capture the manifold- 
nature of students' probabilistic thinking. Consistent with cognitive research 
by neo-Piagetian theorists (e.g., Biggs & Collis, 1991), Tarr & Jones (1997) 
postulated that middle school students' thinking in conditional probability 
and independence could be described and predicted across four levels that 
represent a continuum from subjective thinking to numerical reasoning (see 
Figure 1). In particular, the four levels were in concert with the existence of 
substages or levels of thinking that recycle during maturational stages and 
reflect shifts in the structural complexity of students' thinking: Level 1 is 
associated with subjective thinking, Level 2 is seen as a transitional stage 
between subjective and naive quantitative thinking, Level 3 involves the use 
of informal quantitative thinking and Level 4 incorporates numerical 
reasoning. Students' probabilistic reasoning at each level is illustrated in 
relation to the conditional probability and independence tasks in Figure 2. 

Level I 

Students exhibiting Level 1 thinking tend to rely on subjective judgments; 
they generally believe that they can control the outcome of an event, and 
they ignore relevant quantitative information in formulating probability 
judgments. These students' lack of quantitative referents leads them to form 
conditional probability judgments by constructing their own reality, by 
imposing their own system of regularity or by searching for patterns that do 
not exist. For example, when asked whether the chance of drawing a grape 
candy has changed (Conditional Probability Task, Figure 2), a student at this 
level may respond, "No, because grape is my favorite flavor and I really 
want a grape!" Notice that this judgment is made without regard to the 
changing number of grape candies in the jar. Additionally, these students 
often use their own recent experiences (availability heuristic, Tversky & 
Kahneman, 1983) when predicting the outcome of an event, and this leads 
them to believe that previous outcomes generally influence future outcomes. 
Thus, when predicting the outcome of the third flip (Independence Task, 
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Figure 2), a student exhibiting Level 1 might respond, "When I flip coins 
with my brother, I am good at getting three in a row so I think it will be red 
again." Because of their tendency to rely on subjective judgments, to impose 
their own system of regularity, or to rely heavily on personal experiences, 
students at Level 1 do not focus on independence and conditional probability 
in any meaningful way. 

CONDITIONAL 
PROBABILITY 

NDEPENDENCE . 1 
LEVEL 1 

(Subjective) 
Recomizes when 
"certain" and 
"impossible" events 
arise in replacement and 
non-replacement 
situations. 
Generally uses 
subjective reasoning in 
considering the 
conditional probability 
of any event in a "with" 
or "without" 
replacement situation. 
Ignores given numerical 
information in 
formulating predictions. 

Predisposition to 
consider that 
consecutive events are 
always related. 
Pervasive belief that 
they can control the 
outcome of an event. 
Uses subjective 
reasoning which 
precludes any 
meaningful focus on 
independence. 
Exhibits unwmanted 
confidence in predicting 
successive outcomes. 

probabilities of some 
events change in anon- 
replacement situation, 
however recognition is 
incomplete and is usually 
confined to events that 
have previously occurred. 
Inappropriate use of 
numbers in determining 
conditional probabilities. 
For example, when the 
sample space contains two 
outcomes, always assumes 
that the two outcomes are 
equally likely. 
Representativeness acts as 
a confounding effect when 
makmg decisions about 
conditional probability. 
May revert to subjective 

events change in anon- 
replacement situation. 
Keeps track of the 
complete composition of 
the sample space in 
judging the relatedness 
of two events in both 
replacement and non- 
replacement situations. 
Can quantify, albeit 
imprecisely, changing 
probabilities in anon- 
replacement situation. 

LEVEL 2 
(Transitional) 

judgments. 
Shows some recognition 
as to whether 
consecutive events are 
related or unrelated. 
Frequently uses a 
"representativeness" 
strategy, either a positive 
or negative recency 
orientation. 
May also revert to 
subjective reasoning. 

LEVEL 3 
(Informal Quantitative) 

Recognizes when the 
outcome of the rust event 
does or does not 
influence the outcome of 
the second event. In 
replacement situations, 
sees the sample space as 

Recomizes that the I 

restored. 
Can differentiate, albeit 
imprecisely, independent 

. Recognizes that the 
mobabilities of aN 

and dependent events in 
"with" and "without" 
replacement situations. 
Some reversion to 
representativeness. 

LEVEL 4 
(Numerical) 

Assigns numerical 
probabilities in 
replacement and non- 
replacement situations. 
Uses numerical 
reasoning to compare 
the probabilities of 
events before and after 
each trial in 
replacement and non- 
replacement situations. 
States the necessary 
conditions under which 
two events are related. 

Distinguishes dependent 
and indenendent events 
in replacement and non- 
replacement situations, 
using numerical 
probabilities to justify 
their reasoning. 
Obsemes outcomes of 
successive trials but 
rejects a 
representativeness 
strategy. 
Reluctance or refusal to 
predict outcomes when 
events are equally- 
likely. 

Figure I .  A framework for assessing students' thinking in conditional probability 
and independence (Tarr & Jones, 1997) 

Level 2 

Students exhibiting Level 2 thinking are in transition between subjective and 
informal quantitative thinking. Although they sometimes make 
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appropriate use of quantitative information in making conditional probability 
judgments, they are often distracted by irrelevant features. That is, students 
at this level tend to place too much faith in the distribution of previous 
outcomes when forming predictions; consequently, they are often prone to 
invoke a representativeness strategy (Shaughnessy, 1992), incorporating 
either a positive or negative recency orientation (see Jones & Thornton, this 
volume). For example, when predicting the outcome of the third flip 
(Independence Task, Figure 2), a student at this level may respond, "I think 
it will be white since i t3  really hard to get red three times in a row." In 
considering conditional probabilities, when they do utilize quantitative 
reasoning, their thinking is limited. Consequently, students at Level 2 are 
able to recognize that the probabilities of only some events change in non- 
replacement situations, and recognition is usually restricted to events that 
have previously occurred. Thus, Level 2 students might argue that the 
chance of drawing a grape candy has decreased because there are now fewer 
in the jar but they maintain that the chance of drawing each of the other 
flavored candies has remained unchanged "because there's still the same 
number of those in the jar." 

CONDITIONAL PROBABILITY 

. . I are these outcomes equally likely? Explain. 

A candy jar contains an assortment of flavors: 4 grape, 3 
cherry, 2 apple, and 1 lemon candies. A grape candy is drawn 
and eaten. Has the chance of drawing another grape candy 
from the jar changed or is it the same chance as it was before? 
Has the chance of drawing a cherry candy changed? ... an 

INDEPENDENCE TASK 

Figure 2. Sample tasks for conditional probability and independence 

apple candy? ... a lemon ca&Iy? Expl&. 
- - 

A chip colored red on one side, white on the other is flipped 
repeatedly, landing with the red side facing up twice in a row. 
Which outcome is most likely for the third f l i ~ :  red. white. or 

Level 3 

By Level 3, students have gained an awareness of the role quantities play 
in forming conditional probability judgments. Although such students do not 
usually assign precise numerical probabilities, they often use relative 
frequencies, ratios, or some form of odds as an appropriate strategy in 
determining conditional probabilities in both with- and without-replacement 
situations. Students at Level 3 monitor the complete composition of the 
sample space and usually recognize that the conditional probabilities of all 
events change in nonreplacement situations. Thus, students at this level 
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might argue that the probability of drawing a lemon candy (Conditional 
Probability Task, Figure 2) has increased since "lemon was 3 away from 
having the most but now it is only 2 away (from having the most)," and 
assert the probability of cherry has increased "because it is now tied with 
grape [for having the most] but it used to be behind." By keeping track of the 
sample space composition, students are able to recognize independent events 
in replacement situations but they sometimes revert to a representativeness 
strategy after observing a run on one outcome in a sequence of independent 
trials (Shaughnessy, 1992). Thus, in predicting the outcome of the third toss 
(Independence Task, Figure 2), students may explain, "It could be red or 
white because there is still one red and one white side on the chip." 

Level 4 

Students exhibiting Level 4 thinking can spontaneously assign numerical 
probabilities when interpreting probability situations. Because they are 
acutely aware of the role numbers play in forming probability judgments, 
they closely monitor the composition of the sample space and recognize its 
importance in determining whether two events are independent or dependent. 
Thus, students at this level are able to articulate the changing probabilities of 
drawing a grape candy (Conditional Probability Task, Figure 2) by saying, 
"It was 4 out of 10 before you drew the grape candy, but now it is only a 3 
out of 9 chance for drawing grape unless you put the grape candy back in the 
jar." Such a response reflects sophistication in probabilistic reasoning in that 
the students are able to state the conditions by which two events are 
dependent or independent. With respect to replacement situations, Level 4 
students are less likely to succumb to use of a representativeness strategy 
even after observing a run of one outcome on a sequence of independent 
trials. Students at this level may use numerical probabilities to reject 
representativeness by stating, "It doesn't matter what happened before. It's 
always going to be a '50-50 chance' for red because there are two outcomes 
and they are equally likely" (Independence Task, Figure 2). 

Key Elements Underlying Reasoning in Conditional Probability 

Two substantive aspects emerged from our review of research into students' 
reasoning in conditional probability. The first relates to part-part and part- 
whole reasoning and the second relates to students' invented representations. 
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Part-Part versus Part- Whole Reasoning 

Conditional probability judgments require the ability to make probability 
comparisons. There is conflicting evidence documenting middle school 
students' abilities to make correct probability comparisons. On the one hand, 
Piaget and Inhelder (195111975) concluded that children who lacked an 
understanding of part-whole relationships experienced difficulty comparing 
the likelihood of different events. On the other hand, Falk (1983) and Green 
(1983) identified numerous strategies that enabled students to make 
probability comparisons without an understanding of rational numbers and 
without assigning numerical probabilities. Using odds or other part-part 
comparisons, students in the Falk and Green studies were able to compare 
the likelihood of two events. In contrast to the assertions of Piaget and 
Inhelder (195111975), Falk (1983) and Green (1983) suggest that students do 
not need to reach the stage of formal operations in order to successfully 
make probability comparisons (see also Polaki, this volume). 

In a pivotal study of 26 fifth-grade students, Tarr (1997) observed that 
prior to a 9-day instructional program students primarily used part-part 
comparisons rather than part-whole comparison when making conditional 
probability judgments. Although part-part comparisons enabled many Level 
2 students (see Figure 1) to realize that the probabilities of some events 
change in without replacement situations, such strategies often limited 
students in recognizing that the probabilities of all events change in without- 
replacement situations. Because the total number of objects is critical to 
making part-whole comparisons, emphasis during instruction was placed on 
having students determine the total number of outcomes in the sample space. 
Analysis of video tapes taken during instruction revealed that students began 
to make part-whole comparisons after learning how to assign numerical 
probabilities in the initial lesson. 

Invented Forms of Probability Representations 

Given the lack of opportunity to learn probability (Shaughnessy, 1992), 
many students may not spontaneously assign conventional numerical 
probabilities in describing conditional probabilities. In the absence of a 
standard form for representing the probability of an event, students are likely 
to use alternative forms for stating and comparing probabilities. Some of 
these invented representations were associated with part-part comparisons 
while others were associated with part-whole comparisons and others were 
idiosyncratic representations. In particular, Tarr (1997) reported four 
invented probability notations, three of them exhibited prior to instruction 
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while the other occurred during instruction. Students' invented forms of 
probability representations are illustrated in relation to the Conditional 
Probability Task in Figure 2. 

In the first of these invented representations, students describe the 
probability of an event using the word "chance" as a unit of probability 
measure. Rather than identifying the total number of objects (candies) when 
assigning numerical probabilities to various events, these students consider 
each individual object as a unit of chance. Thus, in describing the conditional 
probabilities after a grape candy is drawn without replacement, students may 
explain, "Drawing a grape candy has gone down one chance because you've 
pulled a grape candy out. The lemon candy has gone up one more chance 
because you took the grape candy out." From a positive vantage point, this 
invented way of describing the probabilities of events may well take into 
account both the total number of ways the target event can occur as well as 
the total number of objects comprising the sample space. Despite such 
consideration of the total number of objects, the strategy nevertheless 
focuses on part-part comparisons, in particular the number of objects of the 
target event and its complement. 

A second alternative form involves the use of relative frequencies, ratios 
or some form of odds to describe the probability of an event. Essentially, 
these students make part-part comparisons to determine whether the 
probability of an event has or has not changed. For example, students 
adopting this representation in the Conditional Probability Task (Figure 2) 
will argue that the probability of selecting a grape candy (on the second 
draw) has changed because "there were more grape candies than cherry 
candies and now there is the same number of each." Using this strategy, 
students keep track of the composition of the sample space after each trial 
and compare the number of favorable and unfavorable outcomes when 
making judgments about conditional probabilities. Moreover, they often 
monitor the relative ranks of events within the sample space and notice, for 
example, when the number of grape candies no longer exceeds the number 
of cherry candies. 

A third alternative form of stating the probability of an event is 
essentially the conventional numerical representation. In this strategy, 
students compare the number of ways the target event could occur to the 
total number of possible outcomes but do so in a nonconventional manner. 
For example, they may describe the probability of selecting a lemon candy 
as a "one of ten chance" (i.e., one in ten chance) before a grape candy was 
drawn without replacement and a "one of nine chance" afterwards. This use 
of numerical probabilities was limited to contexts in which the sample space 
comprised only two events as was the case in the preceding example. 



HOW CAN TEACHERS BUILD NOTIONS OF CONDITIONAL PROBABILITY AND 227 
INDEPENDENCE? 

Interestingly, when more than two events comprise the sample space these 
students seemed unable to describe the probabilities of the events. 

Following instruction, most students' use of alternative forms for stating 
numerical probabilities was largely replaced with more conventional ways of 
describing the probability of an event: using ratios or odds, or formal 
numerical probabilities. Nevertheless, other students either adopted or 
continued to use invented forms of representing probabilities. Remarkably, 
one invented strategy was exhibited only in postinstructional assessments; 
these students combined, the use of percents and ratios to create a "hybrid" 
form of numerical probability. For example, after assigning the probability 
of drawing each individual piece of candy in the Conditional Probability 
Task (Figure 2), these students might describe the conditional probability of 
drawing an apple candy as "20% out of 90%" since 10% of the entire 
sample space was, in essence, removed by the occurrence of the conditioning 
event. It should be noted that although the strategy is not mathematically 
correct, this invented form of communicating the conditional probability of 
an event seems to have meaning to the student. Given that no such strategy 
was demonstrated during the instructional program, the students' strategy for 
stating probabilities is evidence that students continue to invent their own 
representations even when standard forms are negotiated during instruction. 

4. THE IMPACT OF INSTRUCTION ON STUDENTS' PROBABILISTIC 
REASONING 

In this section we focus specifically on research findings and implications 
related to the teaching of conditional probability. Recent teaching 
experiments (Castro, 1998; Fischbein & Gazit, 1984; Jones et al., 1999; 
Kiczek & Maher, 2001; Tarr, 1997) have documented growth in students' 
understanding of conditional probability and independence. In addition to 
providing insights into the development of students' probabilistic thinking, 
this research has identified learning environments, teaching strategies, 
learning tasks, and assessment activities that have the potential to contribute 
to theory and practice in the teaching and learning of probability. 

Impact of Instruction on Students' Probabilistic Reasoning 

Shaughnessy (1992) noted that research has "not been particularly concerned 
with the influence of instruction on the misconceptions of stochastics" (p. 
483) and this statement remains largely true, especially as it relates to the 
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impact of instruction on student understanding of conditional probability and 
independence. 

As discussed earlier in this chapter, Fischbein and Gazit (1984) were the 
first to specifically address the impact of instruction in conditional 
probability. Due to poor student performance following implementation of 
the instructional program, they cautioned against introducing these concepts 
prior to sixth grade. However, two important limitations to this study have 
caused researchers to question this conclusion: (a) there was no 
preassessment of student performance that allowed for examining growth in 
student understanding, and (b) there is little evidence to confirm the extent to 
which the instructional intervention was implemented as intended 
(Shaughnessy, 1992). 

As evidence that instruction can impact student understanding at earlier 
grade levels, Jones et al. (1999) conducted an instructional intervention that 
significantly increased third grade students' understanding of probability 
concepts. Using a small-group teaching experiment format for 16 
instructional sessions, Jones et al. documented growth in student learning of 
the concepts of sample space, theoretical probability of an event, and 
probability comparisons. However, student understanding of conditional 
probability appeared to lag behind that of the other constructs, with only 1 of 
37 students able to use informal quantitative or numerical reasoning in 
conditional probability. These results suggest that an understanding of 
sample space and theoretical probability of an event are requisite to 
developing an understanding of conditional probability. 

Further evidence of the impact of instruction on student learning can be 
found in Tarr (1997). This teaching experiment focused exclusively on fifth 
grade students' understanding of conditional probability and independence 
concepts. Utilizing an instructional design that was infonned by a research- 
based framework of students' probabilistic reasoning (Tam & Jones, 1997), 
the study reported statistically significant growth in student learning in 
conditional probability and independence. Specifically, in conditional 
probability 19 of 26 students were coded at Level 1 or 2 before instruction, 
whereas following instruction 22 of 26 students exhibited thinking at Level 3 
or Level 4; sustained learning was evidenced in retention assessments seven 
weeks following instruction. Similar growth patterns were found with regard 
to student thinking in independence. Moreover, statistically significant 
differences on measures of conditional probability and independence were 
also found. 
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Learning Environments and Instructional Strategies 

A key characteristic of the aforementioned teaching experiments (Fischbein 
& Gazit, 1984; Jones et al., 1999; Tarr, 1997) is the value placed on 
students' probabilistic reasoning during instruction. Each instructional 
program was designed so that students predicted the outcome of a particular 
experiment, collected data for a number of trials, and re-examined their 
predictions based on their empirical evidence and renewed understanding of 
the situation. Such envir~nments lead to deeper understanding of key ideas 
by encouraging discussion and reflection among students regarding possible 
misconceptions. Similarly, other researchers (e.g., Kiczek & Maher, 2001; 
Koirala, 2003; Stohl & Tan, 2002) document the importance of providing 
students with opportunities to collaborate on probability problems to enable 
them to overcome initial misconceptions and negotiate shared meanings. 

Using a related model of instruction, Castro (1998) compared the impact 
of two different instructional orientations: (a) an environment that focused 
on eliciting student thinking and encouraging reflection on probabilistic 
ideas (referred to as, "conceptual change"), and (b) "traditional instruction" 
that centered on a clear, linear presentation of mathematical ideas without 
considering student conceptions and misconceptions. Castro found that 
misconceptions in conditional probability and independence were more 
resilient among those receiving "traditional instruction" than in classes that 
focused on "conceptual change." For example, students experiencing 
"traditional instruction" were more likely to retain representativeness 
strategies than students experiencing instruction that confronted 
misconceptions. 

Learning Tasks and Assessment Activities 

The above results highlight the importance of intertwining assessment and 
instruction. In particular, the findings of Castro (1998), Jones et al. (1999), 
and Tarr (1997) indicate that instructional tasks should elicit particular 
student conceptions and misconceptions, enabling students to reflect on the 
validity of their probabilistic intuitions, and providing teachers access to 
student thinking. Engaging students in carefully designed tasks allows the 
teacher to formally and informally assess student thinking and inform 
instructional decision-making. 

Additionally, the frameworks used by Jones et al. (1999) and Tarr (1997) 
suggest that teachers' knowledge of the levels of students' probabilistic 
reasoning guided their questioning and their selection of instructional tasks. 
For example, when Tarr observed students reasoning that some probabilities 
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remained the same in nonreplacement situations, he designed a task where 
one Milky Way bar was drawn without replacement from a bag of 3 Milky 
Way, 2 Butterfinger, and 1 Snickers candy bars. Then he focused student 
discussion on the probability of drawing a Snickers bar, given that the Milky 
Way bar had been removed from the bag. This drew student attention to the 
change in the total number of objects in the bag and the subsequent changes 
in probability. For Jones et al. and Tam, the use of formative assessments of 
student understanding precipitated the construction of specific tasks designed 
to encourage deeper understanding of particular probabilistic ideas. 

5. IMPLICATIONS FOR TEACHING AND LEARNING: FOSTERING 

UNDERSTANDING 

Recent teaching experiments in probability provide several implications for 
the teaching and learning of conditional probability and independence. In 
particular, the previously discussed research-based knowledge of students' 
probabilistic reasoning can inform the planning, implementation, and 
evaluation of instructional programs. 

The Design of Problem Tasks 

Instructional plans in conditional probability and independence should 
include assessment tasks and key questions that elicit students' thinking and 
serve as a foundation for subsequent whole-class discussions. Such tasks 
should be set in contexts that are familiar to middle school students and 
promote small-group and whole-class discussions. For example, sampling 
candy bars without-replacement from a bag of Halloween candy or selecting 
names of students to be among the first to go to lunch represent appropriate 
contexts for the study of conditional probability. Likewise, by sampling with 
replacement in these same contexts, students can explore the concept of 
independence. Additionally, problem contexts requiring students to analyze 
whether a game is fair or unfair are viable avenues for eliciting students' 
reasoning and engaging them in mathematical discourse. For example, 
students can investigate whether any sequence of three flips of a colored chip 
(Independence Task, Figure 2) is more likely than another. Points could be 
assigned to each outcome (e.g., 1 point for obtaining Red-White-Red, 1 point 
for obtaining Red-Red-Red) with the winner being first to score 5 points. 
Data from many games can be subsequently analyzed and used as the focus 
of a whole-class discussion. 

Such instructional tasks should encourage students to examine novel 
situations and provoke cognitive conflict among students. For example, 
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consider a common probabilistic misconception among adults (Shaughnessy, 
1992; Tversky & Kahneman,l982; Utts, 2003; Watson & Moritz, 2002), 
namely that P(A1B) = P(B1A). Students could be encouraged to examine the 
difference in real-world situations similar to the one provided by Utts: the 
probability of testing positive for steroid use given that you actually used 
steroids, and the probability that you used steroids given that you test 
positive. We would expect that students would respond to this task in a 
manner similar to how most adults do, viewing these probabilities as the 
same. However, examining a related situation regarding the results when a 
single die is rolled could encourage students to revisit their initial reasoning. 
Teachers might ask students to examine the difference in the probabilities of 
two situations: (a) the die displays a six, given the result is even, and (b) the 
result is even, given the die displays a six. In the former case (a), the 
conditional probability is 113; in the latter case (b) the conditional probability 
is 1. Discussion of the difference between these two results can encourage 
students to re-evaluate their initial conception that P(A1B) = P(B1A). 

As stated earlier, the rich descriptions of students' thinking conveyed in 
the framework (see Figure 1) can aid teachers when designing tasks that 
could elicit student misconceptions and create cognitive conflict. Such tasks 
should be designed to focus on particular conceptions and misconceptions 
with regard to conditional probability and independence. 

Relating Notions of Sample Space and Probability of an Event to 
Conditional Probability and Independence 

From a teaching and learning perspective, it is apparent that the key to 
understanding conditional probability lies in making connections between 
sample space and the probability of an event. By fostering students' 
understanding of "sample space" and "probability of an event" it is possible 
to develop a predisposition to monitor the composition of the sample space, 
to make probability comparisons, and to determine that the probability of all 
events change in non-replacement situations. This assertion is consistent 
with Jones, Langrall, Thornton, & Mogill (1996) who concluded that third- 
grade children's ability to connect "sample space" and "probability of an 
event," and their willingness to use numbers in describing probability 
situations were key factors in facilitating the learning of conditional 
probability. 

Understanding the role of the sample space in making conditional 
probability judgments is a distinguishing characteristic of students' thinking 
at Levels 3 and 4 of the framework (Figure 1). In particular, consideration of 
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the total number of objects better enables students to recognize that the 
probability of all events changes in nonreplacement situations. Accordingly, 
teachers might find it helpful to encourage students to make multiple 
comparisons - including comparisons to the whole - when teaching 
conditional probability. For example, in relation to the Conditional 
Probability Task (Figure 2), teachers can focus student attention on the 
changing number of elements comprising the sample space by asking the 
following question before and after a grape candy is selected: "How many 
total candies are there?" Such a question focuses students' attention on the 
total number of objects ils a basis for assigning numerical probabilities. By 
doing so, students become aware that although the number of lemon candies 
stays the same, the total number of candies decreases from 10 to 9 given the 
conditioning event. 

Although facility in assigning numerical probabilities may help students 
make conditional probability judgments, it is not sufficient for developing 
students' understanding of independence. The key to fostering students' 
understanding of independence lies in making probability comparisons after 
each independent trial. In essence, students who examine probabilities 
"compared to before," or "compared to last time,'' are often subsequently 
able to realize when the probability of an event has or has not changed. As 
an example, in the Conditional Probability Task (Figure 2), teachers might 
ask, "What is the probability of selecting a lemon candy on the first draw? 
What is the probability of selecting a lemon candy on the second draw? How 
do the probabilities compare?" By way of contrast, on the Independence 
Task (Figure 2) teachers might ask, "What is the probability of obtaining 
'red' on the first flip? What is the probability of obtaining 'red' on the 
second flip? How do the probabilities compare?'Additionally, teachers 
might be encouraged to have students compare the composition of the 
sample space before and after each trial in order to recognize that the sample 
space remains unchanged in replacement situations and that the probability 
of all events is likewise unchanged. Thus, on the Conditional Probability 
Task (Figure 2) teachers might ask, "How would the probabilities of each 
event change if the grape candy were replaced after being selected?" 

Focusing on the Two Concepts Simultaneously 

Given the relatedness of conditional probability and independence, several 
researchers (e.g., Ahlgren & Garfield, 1991) recommend introducing 
independence as a special case of conditional probability because it is more 
intuitive for students (Shaughnessy, 1992). This assertion is consistent with 
recent findings (Tarr, 1997) in which student understanding of both concepts 
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was fostered as a result of discussion that focused on the distinctions 
between these two concepts. By learning how to describe the probability of 
an event, students were poised to make subsequent comparisons in deciding 
whether the probability of all events had or had not changed. More 
importantly, by heightening their attention on the composition of the sample 
space after each trial, students were able to recognize that the sample space 
is restored in replacement situations and is changed when sampling without 
replacement. Thus, it is recommended that teachers promote discussion of 
the two concepts within one instructional segment, with particular focus on 
the sample space in each sampling context. 

Using Simulations to Build and Enhance Understanding of Conditional 
Probability and Independence 

There is a growing body of evidence (e.g., delMas & Bart, 1989; Pratt, 2000; 
Pratt, this volume; Stohl & Tarr, 2002; YQfiez, 2002) to support the role of 
simulations as a means of fostering understanding of some probability 
concepts. Surprisingly, there is little evidence that simulations foster 
students' thinking in conditional probability. Yhiiez (2002) reported that 
university engineering students struggled with modelling random 
experiments involving conditional events; they lacked confidence in the 
simulation method and experienced difficulty interpreting graphs of the 
relative frequencies for estimating conditional probabilities. 

By way of contrast, it appears that students' thinking in independence can 
be developed by promoting links between data and chance. Specifically, 
results of several studies (e.g., delMas & Bart, 1989; Pratt, 2000; Pratt, this 
volume; Tarr, 1997) suggest that simulations may be fruitful in challenging 
students' use of a representativeness strategy which is in conflict with the 
concept of independence. Data from individual simulations can be pooled 
and the combined results can serve to challenge students' use of the 
representativeness heuristic. In a surprising result, Tarr (1997) found that 
repeated exposure to random experiments during assessment interviews may 
have produced learning among control group students, particularly when the 
results of individual trials did not turn out as they predicted. More precisely, 
after repeated flips of a colored chip did not yield a "representative" 
sequence, several students from the control group seemed to have learned 
that small samples do not necessarily reflect the parent population. Some of 
them may also have learned that events can occur against the odds and that a 
colored chip does not have a "memory." This finding is similar to delMas & 
Bart (1989) who reported that students exposed to computer-generated 
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simulation data became less likely to believe they could predict outcomes of 
random experiments and less likely to adopt a representativeness strategy. 

Some caution on the use of simulations is warranted. Middle school 
students are often eager to predict the outcome of a single trial and small 
samples of simulation data may, in fact, serve to validate flawed 
probabilistic reasoning. Thus, teachers should instead help students to focus 
on predictions over the long term rather than on predictions of individual 
outcomes. For example, instead of having students predict which flavor of 
candy will be drawn in any single trial (Conditional Probability Task, Figure 
2), it is more useful for, them to predict which flavor will be drawn most 
often when the experiment is carried out repeatedly. Larger pools of data are 
more likely to reflect theoretical probabilities, and trends in data can be used 
to challenge faulty predictions. Additionally, Shaughnessy, Canada, and 
Ciancetta, (2003) advocate carrying out repeated trials of an experiment to 
develop student intuition for a "range of outcomes," and how the probability 
of an outcome is situated within the distribution of outcomes for an 
experiment. This important focus on distribution of outcomes is also shared 
by Watson and Kelly (2003). For further suggestions on the use of 
technology to foster students' probabilistic reasoning, see Pratt, this volume. 

6. CONCLUSION 

The emergence of conditional probability and independence in the middle 
school mathematics curriculum presents new challenges for students and 
teachers. Recent research supports the notion that these topics are both 
important and appropriate for middle school students. Furthermore, 
instruction that is informed by researched-based knowledge of students' 
thinking in conditional probability and independence can foster a 
coordinated understanding of both key concepts. 
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