THREAT MODELLING FOR WEB SERVICES
BASED WEB APPLICATIONS

Lieven Desmet, Bart Jacobs, Frank Piessens, and Wouter Joosen
DistriNet Research Group, Katholieke Universiteit Leuven, Celestijnenlaan 2004, 3001
Leuven, Belgium

Abstract: Threat analysis of a web application can lead to a wide variety of identified
threats. Some of these threats will be very specific to the application; others
will be more related to the underlying infrastructural software, such as the web
or application servers, the database, the directory server and so forth. This
paper analyzes the threats that can be related to the use of web services
technology in a web application. It is part of a series of papers, written by
different academic teams, that each focus on one particular technological
building block for web applications.

Key words: Threat analysis, web services, web applications

1. INTRODUCTION

Analyzing and modelling the potential threats that an application faces is
an important step in the process of designing a secure application. Some of
these threats are by nature very specific to the application, and one can only
give quite general guidelines on how to identify such threats. But other
threats are directly or indirectly related to the underlying platforms,
technologies or programming languages. Hence, it makes sense to identify
and document these technology-specific threats, and to provide guidelines to
software vendors on how to mitigate the associated risks.

This paper reports on the results of such an analysis for the use of web
services technology in web applications. It is part of a series of papers
[1,2,3,4,5], written by different academic teams, that each focus on one
particular technological building block for web applications. Each of these

132 Lieven Desmet, Bart Jacobs, Frank Piessens, and Wouter Joosen

papers (including this one) starts from the generic architecture for web
applications presented in [1].

2. WEB SERVICES

Web services are a more and more common building block in modern
web applications. This section gives a short introduction to web services, and
describes how they can be used in web applications.

2.1 Web services

A web service is essentially an XML-messaging based interface to some
computing resource. The web services protocol stack consists of:
¢ Some transport layer protocol, typically HTTP.
o An XML-based messaging layer protocol, typically SOAP [9]
* A service description layer protocol, typically WSDL [10]
e A service discovery layer protocol, typically UDDI [11]

In this document, the assumed web services communication model is
SOAP over HTTP. Basic SOAP interactions are asynchronous and
unidirectional, but can be combined to implement request/response
processes, or even more sophisticated interactions.

- SOAP messages are XML based messages for exchanging structured and
typed information. SOAP can be used to implement RPC, but the focus
shifts to document based information flow in recent web service
development.

Next to the originating and receiving node of a web service, intermediate
nodes can be defined, as shown in Figure 1. Those intermediate nodes can
process the SOAP message, and add extra information to the message (such
as a signature on a part of the message).

P
ioinati SOAP SOAP ivi

%2}
[O
>
=

il

Figure]. Process flow of a SOAP message.

This document also makes the assumption that WSDL is used to specify
the public interface to a web service. A WSDL-based description of a web
service can include information on available functions, typing information
and address information. WSDL is usually generated by tools, not by hand.

Threat Modelling for Web Services Based Web Applications 133

The use of dynamic discovery of web services in web applications is not
vet widely used. Hence this document does not consider the service
discovery layer.

2.2 Web services in web applications

A generic architecture for web applications is presented in [1]. Within
this architecture for web applications, the technology of web services can be
used for a variety of purposes. Some examples include:

1. Wrapping legacy applications: Incorporating legacy application
functionality within a web application is often done by giving the legacy
application a web service fagade, which can be used by the application
server.

2. Better web server — application server separation: If the web server
communicates with the application server by SOAP/HTTP instead of
RPC, the firewall between the DMZ (containing the web server) and the
middle tier only needs to open port 80.

3. Rich Clients: The browser can download client-side application
components (such as Java Applets or .NET assemblies) from the web
server. These components can then interact with the web server using
web services.

4. Integration of building block services: Reusable application services such
as authentication or storage can be made available as web services and be
used in a variety of web applications.

5. Multistage processing: Web services support an asynchronous messaging
model. A single request can traverse multiple intermediaries before
reaching its final destination. For example, an authentication server as
intermediary can authenticate the SOAP message before its arrival at the
application server.

6. Virtual organizations: Web services can be used for business-to-business
integration, creating useful federations of autonomous entities.

Since this paper intends to provide guidelines for Independent Software
Vendors building web applications, we assume that the last scenario will be
less common. Instead we focus on the most important threats in the other
scenarios in the remaining of this paper. These scenarios do not use some of
the more advanced features of web services, such as dynamic discovery of
services and UDDI. Hence, our threat modelling does not consider these
features either. This assumption seems to be in line with the Microsoft
Threats and Countermeasures guide [8].

134 Lieven Desmet, Bart Jacobs, Frank Piessens, and Wouter Joosen

3. OVERVIEW OF ASSETS AND THREAT
CATEGORIZATION

This section starts with an overview of the important assets within a web
services based web application. Next, a generic classification of threats
associated with web services is presented. The section ends with an
overview of the attack entry points of web services within a web application.

3.1 Assets

The assets to be protected are subdivided into:

o Application specific assets: The data and procedures in the server
systems are the main assets, possibly spread over all three tiers.
Since we make an abstraction of the application, these cannot be
detailed further. For a specific application, further analysis is
necessary.

o Web service specific technology artifacts. These include elements
such as WSDL files, assemblies implementing client and server
calls, SOAP messages and so forth. The threats to these assets are
the web services technology specific threats. Threats to these
assets usually lead indirectly to threats to application specific
assets (e.g. leaking of an assembly might give an attacker the
necessary information on how to attack a back-end system, a
SOAP message will usually include application specific
information, tampering with a WSDL file may enable service
spoofing, and so forth.)

e Private information on the client machine

o Availability of the various machines, connections and services in
the architectural picture.

3.2 Overview of possible threats

We follow the STRIDE threat categorization [13] for systematically
enumerating the threats. In this section, we discuss in a generic way the
threats present in a scenario with a single web service consumer and a single
web service provider.

1. Spoofing: Whenever the communication line between the web
service consumer and provider crosses a trust boundary, there is
a threat of spoofing. Both the provider and the consumer can be
spoofed.

2. Tampering: Tampering can be done while data is on the
communication channel, while data resides on the consumer

Threat Modelling for Web Services Based Web Applications 135

machine, or while it resides on the provider machine. For web
services in particular, targets for tampering are the SOAP and
WSDL files, the executing code at both consumer’s and
provider’s side, and application specific data on the consumer or
provider.

3. Repudiation: Repudiation threats are by nature application-
specific and are not further detailed here. Web services do
provide countermeasure technologies here, such as XML
signatures.

4. Information disclosure: Information can leak during
communication, or while being stored on consumer or provider
machine. Similar to the tampering threats, targets for information
disclosure are the SOAP and WSDL files, the executing code at
both the consumer’s and provider’s side, and application specific
data on the consumer or provider.

5. Denial of service: Denial-of-service attacks try to disturb the
services by overloading the communication line, or by enforcing
a crash or ungraceful degradation of the consumer or provider.

6. LElevation of privilege: An elevation of privilege can occur on
both the consumer’s and producer’s machine.

33 Attack entry points

On the architectural overview in Figure 2, the possible places where there
can be a web service consumer and provider combination are indicated. For
each of these web-service instances, each of the generic threats discussed in
the previous section is potentially relevant, thus leading to a very high
number of potential threats.

companyj?rg‘gt_w‘ ko

DMZ : %
. 1 % application |
clien
i . s .
S0AP

Browser —————— Web server Application Server 3P Application Server

+| back-end
-+ (mainframe,
database, ...)

HITP
Rich client ——S°% | Web server Application Server —32AY 4 Wrapped Legacy Application

Web server —32A%_ Application Server

Figure 2. Attack entry points.

136 Lieven Desmet, Bart Jacobs, Frank Piessens, and Wouter Joosen
4. LIST OF THREATS

In order to keep the list of identified threats reasonable in size, we present
only the most relevant threats in this section. For those threats, only a short
overview is given here. More details can be found in [14].

To be able to identify the most relevant threats, we make two
assumptions. Firstly, we assume that the company network and the servers
are secured according to best practices. We do take into account that an
internal attacker might get company network access, but with no privileges
on any of the server systems. As a consequence, we consider it unlikely that
an attacker can get direct access to state kept on any of the server machines.
(Of course, indirect access is still possible, e.g. an application exception can
leak information to clients.)

Secondly, we assume that attacks will be directed to the server. We do
not consider attacks to the client. The rationale for this is that the web
application designer/architect typically is concerned with protecting server
assets, and does not have much control over the client software anyway.

The threat analysis is done on web applications, running on a Microsoft
platform, as introduced in Section 4 of [1].

4.1 Spoofing

Given the possible instances of web services within the web application,
the scenario where the client is spoofed in its communication with the web
server is considered the most relevant. Weak or no authentication of the
client can lead to unauthorized access to the web service.

Two other relevant spoofing threats can occur if the web service crosses a
trust boundary. If the DMZ cannot be trusted, there could be a spoofing
threat between the web server and the application server. If the application
server communicates with a remote application server, there is a
considerable spoofing threat in both directions (see [12] for further
information).

4.2 Tampering

The highest risk for tampering exists at the client side. An attacker can
tamper with all assets residing on the client machine or traveling over the
HTTP channel. This leads to the following threats that are considered most
relevant in this category. 7
e A SOAP message is replayed, leading to the unintended duplication of a

server action or to inconsistencies on the server.

Threat Modelling for Web Services Based Web Applications 137

e A SOAP message is tampered with or maliciously constructed, leading to
a whole variety of problems on the server side, such as information
disclosure due to thrown exceptions or violations due to malicious input
(e.g. SQL injection attacks to the database).

e The WSDL-file sent to the client, containing essential contact
information (such as URLs) is tampered with. Changing this information
can mislead the client.

e The rich client is reverse engineered and modified. In a rich client
scenario, an attacker can gain valuable information by analyzing the
browser extension sent to the client. Modifying this extension can enable
an attacker to bypass input validation checks, or to construct malicious
SOAP calls.

Depending on the context of a particular application, the threat of
modifying state information on the servers could be important, but is not
further detailed in this document. In particular in the scenario where the web
application allows remote upload (or modification) of the content or
functionality of the web application, modification of the state information on
the server could be an important threat.

4.3 Repudiation

Repudiation threats are by nature application-specific and are not further
detailed here. Web services do provide countermeasure technologies here,
such as XML signatures.

4.4 Information disclosure

The highest risk for information disclosure exists again at the client side.
An attacker can read all assets residing on the client machine or traveling
over the HTTP channel. This leads to the following threats that are
considered most relevant in this category:

e SOAP messages are disclosed, possibly leaking application specific
information such as credit card numbers to an attacker.

e WSDL files are unnecessarily disclosed, giving the attacker information
about the application structure.

e Web service implementation leaks information about application
internals, for instance by sending stack trace information on errors.

Depending on the context, additional threats that are not detailed in this
document could be relevant. In particular, weak host or network security

138 Lieven Desmet, Bart Jacobs, Frank Piessens, and Wouter Joosen

could lead to disclosure of web services specific information such as the files
containing the web service code (the .asmx files).

4.5 Denial of service

We consider server denial of service the most relevant threat in this
section, causing the server to crash or to degrade ungracefully because of a
malicious SOAP call.

In addition, sending a client a malicious assembly in a rich client scenario
could do denial of service on that client. Also communication overload could
be a threat.

4.6 Elevation of privilege

Again, our focus is on elevation of privilege on any of the servers. We
consider the most relevant threat to be the scenario where a web service
wraps a legacy application. This can possibly expose legacy software
vulnerabilities: the wrapping web service essentially provides a
communication path from the Internet to an application written without this
connectivity in mind.

S. DESIGN GUIDELINES FOR
COUNTERMEASURE SELECTION

A multitude of security technologies is available to counter the threats
identified. One of the key challenges for a designer is to make a sensible
selection of such countermeasure technologies. In this section, we give an
overview of countermeasure technologies, and we provide guidance on how
to select appropriate technologies.

The guidance is structured as follows: for each kind of countermeasure
we summarize the issues and questions a designer should keep in mind while
selecting a technology for implementing that countermeasure, and we give a
short overview of the available technologies with their properties.

5.1 Authentication
Authentication counters spoofing threats.
Questions/issues:

¢ Do you want to authenticate a user or a machine?

Threat Modelling for Web Services Based Web Applications 139

Do you want entity authentication or message authentication? Entity
authentication provides evidence that a given entity is actively
participating in this communication session, while message
authentication provides guarantees about the originator of a message.

Do you need to propagate the authentication through delegation? If your
service relies on other services, you may need to authenticate the client
to the other services. Not all authentication technologies support this
kind of delegation.

What assumptions can you make about the authenticated party (e.g. can
you install software on the authenticated party’s machine)?

What is the number of users? Some authentication technologies scale
better than others.

Does your application need access to authenticated identities? Some
authentication technologies do not provide an API to retrieve
authenticated identities at the application level.

Do you need to integrate in an existing infrastructure? If an
authentication infrastructure is already in place, it is probably a good
idea to reuse it.

Security versus ease-of-use? Security mechanisms that are not easy to use
can cause the end users to either make mistakes or ignore them
altogether.

Related to data protection and authorization needs: authentication is often
done as a precursor to authorization. So make sure authentication and
authorization technologies work seamlessly together. Similarly, data
protection is often combined with authentication.

Available technologies:

At the network level, use IPsec. IPsec authenticates machines, but does
not provide an API for passing identities to applications. IPsec requires
OS support (available from Windows 2000 and up).

At the transport level, use any of the HTTP authentication mechanisms
(basic, digest, forms, passport, integrated windows, or SSL client
certificate). For a discussion of the advantages and disadvantages of
each of these authentication mechanisms, see [6].

At the application level, use WS-Security, or XML digital signatures on
SOAP messages. XML digital signatures can provide message
authentication, but require an infrastructure to manage client certificates.
Single-sign-on infrastructures such as Microsoft Passport can support the
web application in authenticating the client.

140 Lieven Desmet, Bart Jacobs, Frank Piessens, and Wouter Joosen

e An intermediate authentication and/or authorization server can be used
within the web service flow to check the user identity and to approve
credentials.

Example designs:

e Basic HTTP authentication over an SSL protected channel is often used
for client to web server authentication.

e [Psec is a good choice for mutual authentication between web server and
application server.

5.2 Data protection

Data protection counters tampering and information disclosure threats for
data in transit.

Questions/issues:

e Do you need selective encryption? Is it feasible to protect all content in
the same way, or do some parts have different protection requirements
than other parts?

e End-to-end or hop-by-hop? Are all intermediates that process the
messages trusted, or do you need protection from potentially
untrustworthy intermediates?

* Do you cross a Network Address Translation (NAT) device? Some data
protection technologies cannot cross NAT boundaries.

e Related to authentication mechanism: often session keys for data
protection are negotiated as part of the authentication process. Make sure
you keep in mind these dependencies.

Available technologies:

e At the network level use 1Psec/ESP. This is hop-by-hop, non-selective
data protection. IPsec does not mix well with NAT.

e At the transport level use SSL or RPC Packet Privacy. Again hop-by-
hop, non-selective data protection. SSL can cross NAT boundaries.

e At the message level, use XML encryption of (parts of) SOAP messages.
This is the only technology providing selective protection and end-to-
end protection.

Threat Modelling for Web Services Based Web Applications 141
Example designs:

e SSL is the typical choice for data protection between client and web
server.

e Message level protection is needed in some multistage processing
scenarios.

5.3 Authorization

Authorization counters tampering and information disclosure on data
residing on servers. Authorization can also counter elevation of privilege or
denial of service.

5.3.1 Questions/issues:

o What information do you need to make authorization decisions? Do you
base access control decisions only on authentication information, or also
on application state information?

e What is the granularity of the assets you are protecting access to? Do you
need to control access to the application, or to specific functionalities
within the application, or to specific objects in the application?

¢ Do these objects that need protection map naturally on operating system,
web server or database resources?

¢ Do you need to integrate in an existing infrastructure?

How will the access control policy be managed?

* Authorization technology is related to the authentication mechanism (and

identity flow), as discussed in section 5.1.

5.3.2 Available technologies:

e At the machine level, by restricting access to a set of IP addresses (using
IPsec, 1IS or a firewall). This is a very coarse-grained access control.
Keep also in mind that IP addresses can be spoofed to fool 1IS access
control.

e At the URL level, by configuring IIS. IS can leverage the Windows
access control mechanisms for restricting access to web server files.

o At the application server level, by using .NET or COM+ mechanisms for
role-based access control.

e In the application code itself: application code performs the necessary
authorization checks, possibly calling a centrally managed authorization
engine. See [7] for a detailed discussion of application managed
authorization.

142 Lieven Desmet, Bart Jacobs, Frank Piessens, and Wouter Joosen

e An intermediate authorization server can do access control or prove the
client’s authority.

5.3.3 Example designs:

e Each of the server machines could use IP-based access control to make
sure the server machines are only accessible from expected machines.

e Role-based access control for protecting web application functionality
from clients.

5.4 Input validation
Input validation potentially counters any of the STRIDE threats.
Questions/issues:

e As data flows from client to back-end or from client to other client, who
will sanitize the data? Consider all data flows originating from an
untrustworthy source and make sure they are validated somewhere.

e s there a strict XML schema describing allowable input? If so, this can
be used as a basis for validation. If not, provide a description of
allowable input using other means such as regular expressions.

e Where does untrustworthy data go? If it goes to the database, SQL
injection is a possible threat. If it is echoed to clients, cross-site scripting
could be an issue. If it goes to a wrapped legacy application, there is a
threat of buffer overflows.

Available technologies:

e Validating XML parser.
¢ Regular expression API’s.

5.5 Other countermeasure technologies

We briefly summarize other countermeasure technologies. For more
detail, we refer to [14].

e Nom-repudiation: Non-repudiation counters the repudiation
threat. This can only be done meaningfully at the application
level. Possible technologies include XML signatures and
application-level auditing.

Threat Modelling for Web Services Based Web Applications 143

o Sandboxing: Sandboxing counters elevation of privilege threats,
and can be provided by the operating system (process separation)
or by NET Code Access Security.

e Secure coding: Secure coding counters all kinds of threats. It is
not further discussed here, since it is not a design time
countermeasure. See [13] for more information.

o [Intrusion/fraud detection: Intrusion or fraud detection counters
all kinds of threats. As a designer, the process of detecting
intrusions or fraud can be made easier by providing good,
application-level audit data.

o Availability related countermeasures: These countermeasures
counter denial-of-service related threats. Available technologies
include filtering (rejecting unacceptable requests as quickly as
possible, e.g. by using firewall rules) and throttling (limiting the
number of unauthenticated requests to your application).

6. CONCLUSION

Threat modelling and countermeasure selection are important steps in an
engineering process for building secure software. Documenting the threats
inherent in the use of specific technologies and guiding designers in the
selection of countermeasures to these threats can make these steps
significantly easier. This paper reports on the results of an analysis of the use
of web service technologies for web applications from this perspective. The
most relevant threats are identified, and rough guidelines on how to mitigate
the associated risks are provided. Threats, vulnerabilities and risks are
described informally. A potential direction for future work is a more formal
description, for instance in a UML profile for risk analysis, such as CORAS
[15,16].

7. ACKNOWLEDGEMENTS

This work reported in this paper was developed as part of the Designing
Secure Applications (DeSecA) project, funded by Microsoft. Partners within
this project are the Universita’ degli Studi di Milano, the Technical
University of llmenau, the University of Salford, and the COSIC and
DistriNet research groups of the Katholiecke Universiteit Leuven.

144 Lieven Desmet, Bart Jacobs, Frank Piessens, and Wouter Joosen

8. REFERENCES

[1]L. Desmet, B. Jacobs, F. Piessens, and W. Joosen. A generic architecture for web
applications to support threat analysis of infrastructural components, Eighth IFIP TC-6
TC-11 Conference on Communications and Multimedia Security (CMS 2004), September
2004, UK, ppl155-160

[2]1D. De Cock, K. Wouters, D. Schellekens, D. Singelee, and B. Preneel. Threat modelling
for security tokens in web applications, Eighth IFIP TC-6 TC-11 Conference on
Communications and Multimedia Security (CMS 2004), September 2004, UK, pp 213-223

[3]R. Grimm and H. Eichstadt. Threat Modelling for ASP.NET - Designing Secure
Applications, Eighth IFIP TC-6 TC-11 Conference on Communications and Multimedia
Security (CMS 2004), September 2004, UK, pp175-187

[4]1E. Bertino, D. Bruschi, S. Franzoni, 1. Nai-Fovino, and S. Valtolina. Threat modelling for
SQL Server, Eighth IFIP TC-6 TC-11 Conference on Communications and Multimedia
Security (CMS 2004), September 2004, UK , pp189-201

[5S]D. W. Chadwick. Threat Modelling for Active Directory. Eighth IFIP TC-6 TC-11
Conference on Communications and Multimedia Security (CMS 2004), September 2004,
UK, pp203-212

[6]Microsoft Patterns and Practices: Building Secure ASP.NET Applications, Microsoft
Press, January 2003.

[7]Microsoft Patterns and Practices: Designing Application Managed Authorization,
http://msdn.microsoft.comy/library/default.asp?url=/library/en-us/dnbda/html//DAMAZ.asp

[8]Microsoft Patterns and Practices: Improving Web application security: Threats and
Countermeasures, Microsoft Press, June 2003.

[91W3C Note, SOAP: Simple Object Access Protocol 1.1, May 2000,
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/

[10] W3C Note, Web Services Description Language (WSDL) 1.1, 15 March 2001,
http://www.w3.0rg/TR/2001/NOTE-wsdI-20010315/

[[1] UDDLorg white paper, UDDI Technical White Paper, 6 September 2000,
http://www.uddi.org/pubs/lru_UDDI_Technical White Paper.pdf

[12] Hartman, Flinn, Beznosov, Kawamoto. Mastering Web Services Security. Wiley
Publishing 2003.

[13] Howard, LeBlanc. Writing Secure Code 2" edition, Microsoft Press, 2003.

[14] Designing Secure Application project (DeSecA), final report, May 2004.

[15] M. Lund, I. Hogganvik, F. Seechusen, and K. Stolen. UML profile for security
assessment, Technical report STF40 A03066, SINTEF Telecom and Informatics,
December 2003.

[16] M. Lund, F. den Braber, K. Stolen, and F. Vraalsen. A UML profile for the
identification and analysis of security risks during structured brainstorming, Technical
report STF40 A03067, SINTEF ICT, May 2004.

