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1. INTRODUCTION 

Cancer research over the past few decades has generated a rich and 
complex body of knowledge showing that cancer cells acquire numerous 
features that differentiate them from their normal counterpart. These 
functional differences arise fi-om the acquisition of multiple genetic changes 
affecting a variety of cellular pathways. It has been proposed that the 
diversity of cancer cell features is a manifestation of six essential alterations 
in cell physiology that collectively control malignant growth: abnormally 
activated growth signals, insensitivity to growth inhibition, evasion from 
programmed cell death, limitless replicative potential, sustained 
angiogenesis, and tissue invasion and metastasis '. Laboratory experiments 
have demonstrated that, at a minimum, several of these essential alterations 
are necessary for the direct tumorigenic transformation of normal human 
epithelial and fibroblast cells2. Conversely, one may expect that effective 
treatment of an established cancer would require simultaneous therapeutic 
actions on at least several of these essential alterations. The Transforming 
Growth Factor Beta (TGF-P) signaling pathway is one of the few pathways 
that either directly or indirectly modulate several of these essential 
alterations: abnormally activated growth signals, insensitivity to growth 
inhibition, evasion fi-om programmed cell death, and tissue invasion and 
metastasis 3. This explains why the TGF-P signaling pathway plays a central 
role in cancer development and progression. 
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Transforming Growth Factor Beta (TGF-B) is part of a large family of 
polypeptides that includes more than 30 members. This superfamily is 
broadly divided into two subfamilies, the TGF-DIActiviniNodal subfamily 
and the BMP (bone morphogenetic protein)/GDF (Growth and 
Differentiation Factor)/MIS (Muellerian Inhibiting Substance). There are 
three isoforms of TGF-0, TGFBl (TGF-PI), TGFB2 (TGF-P2) and TGFB3 
(TGF-P3). These isoforms are encoded by different genes but all bind to the 
same receptor: TGFBR2 4. Of the three isoforms, TGFBl is most fi-equently 
upregulated in cancer cells 5'6 and has been more extensively studied. 

TGF-P is secreted in a latent form and is activated by plasmin 738, 
thrombosponding, MMP-9 and MMP-2 lo. Interestingly, plasminogen is 
converted to plasmin at sites of cell migration and invasion, which may 
result in increased activated TGF-P concentrations at those sites. MMP-9 
and MMP-2 are expressed by malignant cells at sites of cell invasion "'12 

providing another mechanism for activation of latent TGF-P. 
Once TGF-P becomes activated it can then bind to the type I1 receptor 

(TGFBR2), which then phosphorylates the type 1 TGF-P receptor 
(TGFBRl) leading to phosphorylation of its kinase. The next step in the 
signal transduction pathway is the phosphorylation of downstream elements. 
Several intracellular proteins have been shown to interact with the TGF-P 
receptor complex, including FKBP12 13-15, STRAP l6 and TRIP-1 17. The 
current model of induction of signaling responses by TGF-D related factors 
is a linear signaling pathway initiated by the activated TGFBRl and 
resulting in ligand-induced t r ans~r i~ t ion '~~ '~ .  SMAD2 and SMAD3 are 
phosphorylated by TGFBRl and form complexes with SMAD4. Activated 
SMAD complexes enter the nucleus where they regulate transcription of 
target genes through physical interaction and functional cooperation with 
DNA-binding transcription factors and CBP or p300 coactivators. SMAD6 
and SMAD7 inhibit this pathway by interacting directly with TGFBRl and 
preventing SMAD2 and SMAD3 phosphorylation. 

The TGF-B however interacts with other signaling pathways. These 
pathways regulate SMAD-mediated responses but also induce SMAD- 
independent responses20. The TGF-P signaling pathway is tightly regulated 
by other cellular elements and pathways. The activation of the epidermal 
growth factor receptor (EGFR) 21interferony (IFN-y) signaling through 
STATs 22 and tumor necrosis factor a (TNF-a) through activation of NF-KB 
23 , inhibit the TGF-j3 signaling pathway by inducing expression of SMAD7. 
Other pathways that are tightly related to TGF-P include the RASMAPK 
pathway, which is able to inhibit SMAD signaling 24. Furthermore several 
studies show a direct interaction between TGF-j3 and the p38/MAPK 
pathway indicating that TGF-P can activate the p38 pathway independently 
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from the SMADs in mammary cells 2sas well as other cell types including 
prostate 26. 

TGF-j3 is a potent growth inhibitor of several cell types including 
epithelial cells. This inhibition is achieved through the induction of 
expression of CDKN2B (p15*4B) 27,28 and CDKNlA (p21C'P') 29. Other 
mechanisms that lead to cellular growth arrest include the inhibition of MYC 
expression, CDK4 and CDC25A. The inhibitory signal of TGF-P can also 
induce apoptosis in several cell types 30"5. This may be achieved through 
the DAXX adaptor protein which interacts with TGFBR2 36 and through 
increased levels of SMAD3 and SMAD4 37,38. 

2. THE ROLE OF TGF-P IN MAMMARY GLAND 
DEVELOPMENT 

There are several studies that point toward an important role of TGF-P in 
the development of the mammary gland. The morphologic and functional 
development of the breast tissue takes place during the postnatal period. 
During puberty, and with the influence of rising hormone levels, the 
mammary tree is established within an adipose stroma. During this period, 
the end-bud develops, which is the morphologic unit. The end-bud functions 
in extending the ductal epithelial tree. During pregnancy, growth and 
differentiation results in lobuloalveolar differentiation of the epithelium in 
order to produce milk. 

As in most tissues, TGF-P seems to play a dual role in mammary gland 
development. One of the first studies evaluating the role of TGF-P in 
mammary gland development came from Daniel et a1 39, who administered 
exogenous TGF-P via diffusion from miniature inorganic pellets, showing 
that end-buds undergo reversible regression during puberty, whereas 
alveolar buds in pregnancy do not. 

The role of TGF-P in this process is not fully understood. Several studies 
have localized TGF-P as well as its type I, I1 and I11 receptors to the breast 
epithelium and stroma 40-42. Furthermore all three TGF-j3 isoforms seem to 
be expressed in the epithelium during all phases of mammary development 
43. TGFB2 (TGF-P2) is less abundant whereas TGFB3 (TGF-P3) is the only 
isoform present in the myoepithelium. TGFB 1 (TGF-PI) transcription 
decreases during pregnancy but, whereas the expression of the other two 
isoforms increases. 

Another interesting observation is the difference in localization between 
latent TGF-P (LTGF-P) and active TGF-P. It has been shown that ionizing 
radiation induces activation of LTGF-P to TGF-P 44. Furthermore radiation 
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induces stromal extracellular matrix (ECM) remodeling, which can be 
blocked by the use of TGF-j3 neutralizing antibodies 45. 

TGF-P has also been shown to suppress the ability of mammary gland 
explants cultured with lactogenic hormones to secrete casein 46. It inhibits 
ductal morphogenesis by mammary epithelial cells and this function can be 
reversed by the use of neutralizing antibodies, which simulate duct 
formation 47. However it seems that this action is dose dependent: picomolar 
concentrations of TGF-P inhibit branching morphogenesis, whereas 
fentomolar concentrations stimulate it 48. 

TGF-P has also been implicated in tumor progression. Overexpression of 
TGF-P1 in the mouse mammary gland inhibits tumorigenesis, while 
interfering with TGF-P receptor function enhances it 49350. Furthermore it has 
been shown that TGF-P receptor levels are diminished in human breast 
cancer cell lines and some primary tumors 5',52. However expression of 
TGF-P is paradoxically increased in late stages of tumor progression 
especially in association with invasion and metastasis 53354. 

2.1 The role of TGF-P in Breast Cancer 

In normal cells TGF-P is a potent growth inhibitor. On the other hand it 
is now appreciated that TGF-P is prooncogenic and that metastases in most 
tumor types require TGF-P activity 55,56. It therefore seems that for every 
action of TGF-P there is a counteraction that TGF-P is capable of performing 
57 

2.1.1 Somatic mutations of the TGF-P pathway 

In an effort to explain the dual role of TGF-P in breast carcinogenesis, 
researchers have tried to find mutations that interfere with its function. 
Experiments in rodents indicate that increased TGF-j3 signaling correlates 
with decreased breast cancer risk. Transgenic mice that express a 
constitutively active form of Tgfbl are resistant to DMBA-induced breast 

49 tumor formation . Furthermore treatment of Tgfbl +/- mice with 
carcinogens results in enhanced tumorigenesis compared with T&l +I+ 
littermates 58. TGFBR2 downregulation is observed in breast cancer and 
seems to be due to a cellular trafficking defect in which most of the 
TGFBR2 remains in the cytosol 59. A TGFBRl tumor specific S387Y 
mutation was reported in 40% of metastatic breast cancers but in a follow-up 
study this finding was not reproduced 60,61. Furthermore, although SMAD4 
mutations have not been found in breast cancer, the MDA-MB-468 breast 
cancer cell line has a homozygous deletion of the gene 62363. Overall somatic 
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mutations in the TGF-P pathway in breast cancer are extremely rare and do 
not seem to contribute to carcinogenesis. 

2.1.2 Germline mutations and polymorphisms of the TGF-P 
pathway 

Recently a TGFBRI germline polymorphism was described, which is 
present in approximately 14% of the population. This common variant 
results from the deletion of three alanines within a 9-alanine stretch of exon 
1 coding sequence and was named TPR-I(6A) because it codes for 6 alanines 
64,65 . In 2003, it was renamed TGFBRI*6A in accordance with the HUGO 
nomenclature. Using a mink lung epithelial cell line devoid of endogenous 
TGFBRI, transiently and stably transfected TGFBRI and TGFBRI *6A cell 
lines were established for functional studies. Compared to TGFBRI, 
TGFBRI*6A was moderately impaired as a mediator of TGF-0 
antiproliferative signals 65966 . The additional findings of an 
overrepresentation of TGFBRI *6A heterozygotes and homozygotes among 
patients with a diagnosis of cancer as compared with the general population 
suggested that TGFBRI *6A might be a new tumor susceptibility allele6'. 
Over the past few years several studies have focused on the cancer risk of 
individuals heterozygous or homozygous for TGFBRI*6A. A meta-analysis 
of seven case-control studies showed that TGFBRI *6A carriers have a 26% 
increased risk for cancer. Breast cancer risk was increased by 48%, ovarian 
cancer risk by 53% and colon cancer risk was increased by 38% 67. A 
second meta-analysis of twelve case control studies has added further 
support to these findings and confirm TGFBRI*GA as the most common 
candidate tumor susceptibility allele reported to date that increases the risk 
of breast, colon and ovarian cancer 68. 

Several polymorphisms have been reported within the human TGFBl 
gene. One of them has been extensively studied in relation to breast cancer 
risk. This polymorphism is represented by the substitution of Leucine to 
Proline (T+C) at the loth amino acid position. The Leucine to Proline 
substitution results in higher TGFBl secretion 69. The CC (TGFBI*CC) 
genotype was found by one group of investigators to be associated with a 
64% decreased breast cancer risk in a cohort study of 3,075 white American 
women over age 65 at recruitment 70. In contrast, in a pooled analysis of 
three European case-control studies that included 3,987 cases and 3,867 
controls, the CC genotype was associated with a 21% increased risk of 
breast cancer 69. In a hospital-based study of 232 cases and 172 controls 

' 

conducted in Japan, there was no significant overall association between the 
CC genotype and breast cancer. However, the CC genotype was associated 
with a 65% reduced risk of breast cancer in comparison with the TT 
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genotype among premenopausal women (OR 0.45, 0.20-0.98)~'. Most 
recently, a large multiethnic case control study of 1123 breast cancer cases 
and 23 14 controls from Los Angeles and Hawaii did not find any association 
between the TGFBI *CC polymorphism and breast cancer risk 72. Of major 
interest is the recent report that patients with a diagnosis of breast cancer that 
carry the TGFBI T to C variant have a significantly decreased survival as 
compared with non-carriers73 If confirmed in subsequent studies, this would 
be the first evidence in humans that increased levels of secreted TGFBl are 
associated with more aggressive disease. 

TGF-P, ESTROGENS AND ANTIESTROGENS 

There seems to be a correlation between stage of breast cancer and 
TGFBl serum levels. More specifically individuals with more advanced 
lymph node status, more advanced TNM staging and poorer histologic grade 
have higher TGFB 1 serum levels 74. 

TGFBl serum levels are increased in individuals with metastatic or 
locally advance breast cancer, compared with healthy donors 75 and there 
may be a relationship between these levels and patients' response to therapy. 

TGF-j3 has also been implicated in the regulation of NCOA3, also named 
AIBl (amplified in breast cancer I), a nuclear receptor coactivator gene, 
which is amplified and overexpressed in breast cancer. Experiments with 
TGF-P and TGF-j3 neutralizing antibodies have shown that antiestrogens 
suppress AIB 1 gene expression through TGF-j3 76. 

It is unclear whether TGF-j3 levels change significantly with the 
administration of tamoxifen. A recent study evaluating TGFB 1 and TGFB2 
levels showed that although TGFB 1 levels did not correlate with tamoxifen 

77 treatment, TGFB2 levels increased with tamoxifen administration . 
Antiestrogens have also been shown to inhibit the chemotactic activity of 
TGF-j3 in MCF-7 cells 78. This may point toward the potential benefit of 
combining antiestrogens with direct TGF-j3 inhibitors. 

There is evidence that the TGF-j3 pathway interacts with ESR1, also 
named Estrogen Receptor a (ERa), through crosstalk with SMAD4. More 
specifically, SMAD4 and ESRl form a complex when ESRl binds to the 
estrogen-responsive element within the estrogen target gene promoter. 
Furthermore SMAD4 seems to inhibit antiestrogen-induced luciferase 
activity as well as estrogen downstream target gene transcription in breast 
cancer cells 79. 
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4. MECHANISMS OF TGF-P RESISTANCE IN 
CARCINOGENESIS 

Although the growth of normal epithelial and mesenchymal cells is 
arrested by TGF-P, cancer cells are able to escape this mechanism and 
become TGF-P unresponsive. The mutations mentioned above provide one 
such mechanism. More often, however, loss of responsiveness to the TGF-P 
growth inhibitory effect does not result from inactivating mutations or 
homozygous deletions of members of the TGF-P signaling pathway. One 
mechanism involved in acquired TGF-P resistance involves the upregulation 
of oncogenic expression. One such example is the elevated expression in 
melanoma of the proto-oncogene SKI This correlates with the decreased 
responsiveness to TGF-P, probably due to repression of SMAD-mediated 

81 transcription . SKI as well as SKIL, also named SnoN, are two 
protooncogenes that interact in the nucleus with SMADs and negatively 
regulate them. It has been shown that SMAD2, 3, and 4 bind to different 
regions of SKI and SKIL. Furthermore mutations in the SMAD-binding 
regions of these two protooncogenes impair their ability to promote 

82 carcinogenesis in chicken embryo fibroblasts . It has been shown that 
reduced expression of SKIL significantly correlates with longer distant 
disease-free survival in estrogen receptor-positive breast cancer patients. 
Furthermore high levels of nuclear SKIL are associated lobular histology 
and favorable features, whereas high levels of cytoplasmic SKIL are 
associated with ductal histology and adverse prognostic features 83. Also, 
downregulation of MYC expression by TGF-P, is lost in several cancer cell 
lines 84. Another oncogene, EWSRI, represses TGFBR2 expression and may 
account for decreased responsiveness to TGF-P in cancer cells 

5. THE ROLE OF TGF-P IN CELL CYCLE ARREST 

Although it has been shown that normal mammary epithelial cells are 
sensitive to the growth inhibitory effect of TGF-P, human breast cancer cell 
lines, show a relative resistance to the effect of TGF-P requiring 10 to 100- 
fold more TGF-P to produce an antimitogenic effect, some show complete 
loss of response to TGF-P signaling and some are growth stimulated by 
TGF-P 5',86. The effect of TGF-P in the cell cycle seems to come in a 
discrete period in the G1 phase 87388. TGF-P has been shown to downregulate 
MYC by inhibiting its transcription 89-91. ' MYC is needed for the progression 
from GI to S phase. This downregulations seems to be important in the cell 
cycle arrest caused by TGF-P. This is further emphasized by the fact that 
MYC overexpression seems to be one of the mechanisms responsible for 
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TGF-P resistance 89*92. TGF-P also causes loss of G1 cyclins 93194 and 
regulates CDK2 phosphorylation 93,95. 

So what seems to happen during tumorigenesis that causes the loss of 
TGF-P mediated G1 arrest? One mechanism that seems to contribute to this 
effect is overexpression of cyclins. It has been shown that cyclin Dl gene is 
amplified in 40% of breast cancers 96297. Furthermore there seems to be 
overexpression of CDK4 98 and activation of MYC, which in turn may 
regulate indirectly the expression of CCND1, CCNEl and CCNA2 99~100. 
Finally activation of HRAS, which commonly occurs in human 
malignancies, can increase CCNDl levels, which can provide another 

101-103 mechanism of TGF-P resistance . 

6. INVASION, ANGIOGENESIS AND TUMOR 
METASTASIS 

For a tumor to metastasize, a multistep process has to take place, which 
requires migration and invasion through the stroma, and then migration in 
and out of blood and lymphatic vessels. Increased production of TGF-P 
occurs in several tumor types and frequently correlates with tumor 

104 aggressiveness . The contribution of TGF-P to the invasive behavior of 
tumors has been studied in several mouse models 105-107 . Transgenic 
expression of activated TGFPl in mouse skin epidermis increases the 
conversion to carcinoma Io7. Also, tumor formation and metastasis to bone 
was shown that depend on intact TGFBR2 log. When the transplanted cells 
expressed a partially activated TGFBRI, there was acceleration of bone 
destruction by malignant cells followed by a reduction in survival108. 

Changes in the tumor microenvironment are also an integral part of the 
process of metastasis. TGF-j3 seems to play an integrar role in this process. 
Increase protease expression and plasmin activation by tumor cells 1 O!? 

promotes activation of TGF-P from its latent form. Furthermore increased 
levels of activated TGF-P enhance the synthesis of ECM proteins and chemo 
attraction of fibroblasts, which in turn promote tumor growth, invasion and 
angiogenesis '. Evidence of a crucial role for TGF-P in angiogenesis comes 
fkom several observations. Increased expression of TGFBl in transfected 
prostate carcinoma or Chinese hamster ovary cells enhances angiogenesis in 
immunodeficient mice whereas administration of neutralizing antibodies 
against TGFBl strongly reduces tumor angiogenesis 'I0. Re-expression of 
SMAD4 in SMAD4-deficient pancreas cancer cells suppresses tumor 
development primarily by inhibiting angiogenesis 'I1. Also in human breast 
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cancers, high levels of TGFBl m-RNA are associated with increased 
microvessel density 'I2. 

TGF-P has also been shown to induce the expression of VEGF, which is 
a direct stimulant of cell proliferation and migration 'I3. TGFBl is a potent 
chemoattractant for monocytes, which release angiogenic factors 114-117 

Another mechanism by which TGF-P induces cell migration is the induction 
of expression of the matrix metalloproteases MMP-2 and MMP-9 and the 
downregulation of protease inhibitor TIMP in tumor and endothelial cells 
123 . It was recently shown that TGFBl works in conjunction with tenascin-c 
(TN-C) to upregulate MMP-9 expression. Neutralization of TGF-P with a 
specific TGFBl antibody results in decreased expression of MMP-9. 
However, the addition of TN-C upregulates MMP-9 124. 

The role of TGF-P in angiogenesis is further highlighted by the presence 
of the transmembrane glycoprotein endoglin (ENG; CD105). Endoglin is 
primarily expressed in endothelial cells and binds TGFBl and TGFB3, 

125,126 through its association with TGFBR2 . It has been shown that endoglin 
interacts with INHBA (activin-A), BMP7 and BMP2 Inhibition of 
endoglin expression in cultured endothelial cells enhances the ability of 
TGFBl to suppress their growth and migration '27. Exogenous TGFBl has 

128 been shown to up-regulate endoglin expression . In fact, it has been 
suggested that the development of an angiogenic response depends on a 
balance between levels of TGF-P stimulation and endoglin expression 127. 

Furthermore in vivo studies in SCID mice carrying human breast carcinoma 
showed that anti-endoglin monoclonal antibodies produce anti-tumor effect 
probably mediated by angiogenesis inhibition and destruction of tumor- 
associated vasculature 129-131 

Immunohistochemical staining of TGF-P in breast cancer cells from 
lymph node metastases show that there is preferential staining at the edges of 
the tumor 132. TGF-P may play a role in directing metastatic cells to specific 
sites. It has been shown that TGF-P and MAPKl (p38) induce expression of 
PTHLH, a PTH-related protein which directs metastatic cells to the bone 
108,133 . Furthermore it has been shown that mRNA levels of Bone 
Morphogenetic Protein-2 (BMP2), a TGF-P family member with anti- 
proliferative effects in breast cancer cell lines, are significantly decreased in 

134 breast tumor tissue compared with normal breast tissue . This may 
provide a potential mechanism for the metastatic potential of breast cancers 
and their capacity to grow in bone. 
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7. ROLE OF TGF-P IN EPITHELIAL- 
MESENCHYMAL TRANSITION (EMT) 

Another important aspect of the contribution of TGF-P to cancer 
development is its impact on the loss of cell-cell contacts and acquisition of 
fibroblastic characteristics, a process that is commonly referred to as the 
epithelial-mesenchymal transition (EMT). Such transitions occur frequently 
during development and in certain cases are influenced by members of the 
TGF-P family. Indeed, TGF-P stimulation of both non-transformed and 

135-137 carcinoma-derived cell populations in culture leads to reversible EMT . 
Also, expression of TGFPl in the skin of transgenic mice enhances the 
conversion of benign skin tumors to carcinomas and highly invasive spindle- 
cell  carcinoma^'^^ and expression of a dominant-negative TGFBR2 prevents 
squamous carcinoma cells ftom undergoing EMT in response to TGF-P in 
vivo lo6. The crucial role of TGF-P as a mediator of stromal cell dependent 
epithelial carcinogenesis was recently unveiled. Conditional T&2 
inactivation in mouse fibroblasts resulted in intraepithelial neoplasia in 
prostate and invasive squamous cell carcinoma of the forestomach 138. 

8. ROLE OF TGF-P IN THE IMMUNE SYSTEM 

TGF-f3 plays a direct role in proliferation and differentiation in 
hematopoiesis 139-142 . TGFB1 influences both proliferation and 
differentiation of the uncommitted stem cell precursors and of myeloid 
progenitors 143,144 . Furthermore autocrine production of TGF-j3 by 
hematopoietic stem cells acts to maintain their quiescence 14'. TGF-P can 
also control the expression of the stem cell antigen CD34 146,147 and under 

certain circumstances prohibit differentiation 147,148 . Overall, TGF-P 
preserves self-renewal in primitive stem cells with moderate cell cycle 
blockade while it favors terminal differentiation of mesenchymal precursors 
and cell cycle arrest in terminally differentiated immune effectors. 
Mutations in the TGF-P pathway are very rarely encountered in 
hematopoietic tumors. There are only anecdotal reports of mutations in 

149 150 TGFBRl and TGFBR2 occurring in lymphoid malignancies . 
TGF-P can arrest stimulated B cells in G-1 Is', reduce Ig synthesis, and 

inhibit the switch from membrane-bound to secreted Ig lS2. NK cells lyse 
appropriate tumor cells in vitro 153,154 , are a source of T-cell-cytokines, 
including IFN-y lS5 and should be effective in surveillance against tumor 
cells that have lost expression of MHC lS6. In addition, NK cells can secrete 
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TGF-P 157 which acts by depressing the expansion and generation of 
cytolytic NK cells 158>159. 

Antigen specific CD8+ cells recognize peptides that are presented by 
MHC class I molecules on target cells. This cell-cell interaction causes 
destruction of the target cells mediated by perforin released by the cytotoxic 
CD8+ cells. Therefore any process that causes deactivation of the CD8+ T 
cells can promote growth and evasion of cancer. 

9. ROLE OF TGF-P IN ESCAPING 
IMMUNOSURVEILLANCE 

Tumor escape from immunosurveillance has been demonstrated using 
syngeneic tumors that grow in nude (T cell-less) and SCID (T and B cell- 
less mice) mice but grow only for a limited time in normal mice before they 

160,161 are rejected by tumor specific immunity . However it seems that if a 
large enough tumor is inoculated in the normal mice, this tumor 
progressively grows and the tumor cells no longer expresses the 
immunodominant epitope of the parent tumor l6'. 

Tumors have devised several approaches to escape from 
immunosurveillance. These approaches include: interference with antigen 
processing and presentation, antigenic variation, lack of costimulatory 
signals to T cells, induction of apoptosis and secretion of 
immunosuppressive cytokines. It has been shown that transport associated 
peptide (TAP), a critical component of antigen presentation is 

163,164 downregulated 16' as is the MHC I complex . Also, antigenic peptides 
expressed on the surface of tumor cells can be downregulated. It has also 
been shown that B7, a costimulatory molecule, is not present on the surface 

165,166 of tumor cells, contributing to T cell anergy . However the mechanism 
thought to contribute the most to the escape from immunosurveillance is the 
secretion by tumor cells of cytokines that inhibit immune response. Such 
factors include prostaglandin E2, interleukin-10 but the most potent 
immunosuppressor is TGF-P 167. 

TGF-P inhibits T-cell, NK cells, neutrophils, macrophages and B-cells 
117-123,140,168 . It has also been shown that TGF-P downregulates the 
expression of MHC class I1 antigen, which makes cell surface less 
immunogenic 169-171 . More evidence of the role of TGF-P in as a modulator 
of NK cell activity came from the observation that TGF-P antibodies only 
suppress tumor growth in mice with intact NK function 17'. This observation 
together with the findings that TGF-P may be a mediator of tamoxifen's 
antitumor effect 167,173 suggests a new explanation for tamoxifen resistance: 
the rise of tamoxifen-induced TGF-P secretion may contribute to the 
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emergence of tamoxifen resistance by altering NK cell antitumor cytotoxic 
effects. This hypothesis is supported by the observation that in patients with 
breast cancer and in experimental models, tamoxifen enhances NK function 
167,174-177 . But with prolonged exposure to tamoxifen, inhibition of NK cells 
has been observed 17'. 

Due to the apparent role of TGF-P in regulating the immune system, 
several investigators have used TGF-P targeted vaccine approaches to 
stimulate the immune system against the tumor cells. In one such approach, 
a TGF-P-targeted vaccine in rat glioma has been reported to result in the 
complete eradication of tumors when an antisense TGF-P construct was 
introduced into resected tumor cells ex vivo and then locally reintroduced 
into the tumor-bearing host 179. Furthermore in a mouse thymoma model, 
tumor cells engineered to secrete soluble TGFBR2, resulted in a suppression 
of tumorigenicity la'. Although so far these approaches have not been 
successfully introduced to clinical practice, they point to the emergence of a 
new concept in cancer imrnunotherapy, in which leukocytes, insensitive to 
TGF-P signals can be genetically engineered and may provide one approach 
against the "tumor firewall" lgl. 

10. IMMUNOTHERAPEUTIC APPROACHES 
TARGETING THE TGF-P PATHWAY 

TGF-P is probably a major cytokine responsible for evading the response 
of the host's immune system. Establishing a population of leukocytes 
insensitive to TGF-P, which would localize at the site of the tumor and exert 
their tumoricidal properties is an appealing approach. Such an approach was 
recently attempted with very encouraging results. Murine melanoma cells 
were transplanted into mice that had hematopoietic precursors rendered 
insensitive to TGF-P via retroviral-mediated gene therapy. Survival of the 
genetically engineered mice at 45 day survival was 70% compared with 0% 
for vector-controlled treated mice la'. Similar experiments using ex vivo 
transfer of an antisense TGF-P construct into isolated tumor cells followed 
by reimplantation into the brain of rats with established glioma has been 
shown to result in complete eradication of the tumors in vivo 179. These 
preliminary results are encouraging. This approach will be tested soon in 
clinical trials to determine its potential usefulness in human cancer. 
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10.1 Soluble protein inhibitors of the TGF-P pathway 

A soluble chimeric protein composed of the extracellular domain of 
TGFBR2 and the Fc portion of the murine IgGl heavy chain (Fc:TGFBR2) 
has been found to interfere with the binding of endogenous TGF-P with its 
receptor. Other cytokine antagonists that use this soluble receptor:Fc fusion 
protein class include Etanercept, the anti-TNF-a antibody which has 
received FDA approval for the treatment of rheumatoid arthritis. This fusion 
protein has shown protection against development of distant metastases in 
animal studies. In one study investigators used mice transplanted with breast 
cancer that were systemically given Fc:TGFBR2. It was shown that soluble 
Fc:TGFBR2 inhibits distant metastases in that experimental model. This 
was achieved not by alterations in cellular proliferation of tumor cells but 
through decreased tumor cell motility and intravasation, inhibition of MMP 
activity and increase in cancer cell apoptosis. Injection of this fusion protein 
for a total of 12 weeks in mice was not accompanied by any obvious toxicity 
183. In another study investigators exposed MMTV-neu transgenic mice (a 
commonly used breast cancer mouse model) to lifelong Fc:TGFBR2. The 
concern was that lifetime exposure to this antibody would have deleterious 
effects in the immune system similar to what was observed in Tgfbl null 
mice that develop lethal multifocal inflammatory syndrome with features 
consistent with autoimmune disease 184,185 . However, prolonged exposure to 
Fc:TGFBR2 conferred protection against metastasis arising from either an 
endogenous primary tumor or from injection of metastatic melanoma cells. 
Furthermore when studying the immune function of these mice the only 
difference observed was a small, clinically insignificant increase with age of 
memory T cell lymphocytes and a higher incidence of benign lyrnphocytic 
infiltrates in the lung, pancreas and kidney These two studies can lead to 
certain conclusions: 1) The use of a neutralizing antibody against the 
TGFBR2. does not spontaneously induce tumors, a phenomenon which had 
been observed in Tgfbl +I- and Tgfbr2 +I- mice 58; 2) Administration of 
Fc:TGFBR2 significantly reduces the incidence of metastases; 3) There 
doesn't seem to be any obvious toxicity with either short-term or long-term 
administration of Fc:TGFBR2. 

Although there have not been any reports of tumor formation with the 
use of antibodies against the TGF-P pathway, there are some concerns given 
the "two faces" of TGF-P in carcinogenesis. In a recent study it was shown 
that TGF-P signaling impairs Neu-induced mammary tumorigenesis while at 
the same time promoting pulmonary metastasis 3. When investigators 
crossed mice expressing activated forms of Neu receptor tyrosine kinase that 
selectively couple to Grb2 or Shc signaling pathways the activated type I 
receptor increased the latency of mammary tumor formation but also 
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enhanced the frequency of extravascular lung metastases. Furthermore 
expression of the dominant negative type I1 receptor decreased the latency of 
Neu-induced mammary tumor formation while significantly reducing the 
incidence of extravascular lung metastases. Maybe one way to avoid these 
effects would be to couple an antibody against the TGF-P pathway with a 
cytotoxic agent. These results, although encouraging, need to be validated in 
clinical trials to show whether in vivo alteration of TGF-P signaling is a 
feasible approach for the treatment of human malignancies. 

10.2 Small molecule inhibitors of TGF-P 

The first specific inhibitor of the TGF-P pathway is the compound SB- 
431542 lS7. This compound acts as a competitive inhibitor in the TGFBRl 
ATP binding site and inhibits in vitro phosphorylation. TGFBRl 
phosphorylation of SMAD2 and SMAD3 is inhibited by the administration 
of SB-431542. Furthermore it has been shown that this small molecule 
kinase inhibitor is specific the only other weakly inhibited kinase was MAP 
kinase p38a lss. Due to its similarity a p38 MAPK inhibitor (SB-203580) 
has also been shown to inhibit TGFBRl at high concentrations lS9. SB- 
431542 has also been shown to inhibit TGFB1-induced generation of 
collagen Ial (col Ial), a matrix marker 190. 

11. CONCLUSIONS 

The role of TGF-P in breast cancer development is complex. In early 
carcinogenesis TGF-P acts as a growth inhibitor. However, later on, TGF-P 
acts as a prooncogenic cytokine promoting metastasis and escape from 
immunosurveillance. So far therapeutic approaches using the TGF-P 
pathway have been met with great enthusiasm. The use of monoclonal 
antibodies, small molecule kinase inhibitors or gene therapy to block the 
TGF-P signal has lead to delayed development of metastatic disease and 
prolonged survival in murine models of carcinogenesis. These observations, 
together with the fact that there was no observed toxicity give us hope that in 
the future we will be able to test these molecules in clinical trials. For the 
time being, however, understanding the mechanisms behind the dual role of 
TGF-P in cancer development, as well as the potential role of TGF-P in 
prevention or delaying of cancer development need to be elucidated. 

Epidemiologic data indicate that naturally occurring common variants of 
the TGF-P signaling pathway modulate breast cancer risk and outcome. 
There is growing evidence that TGFBRl*6A may contribute to the 
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development of a sizeable proportion of breast cancers. Ongoing studies that 
assess TGF-P signaling through the prism of its functionally relevant 
common variants, TGFBRI *6A and TGFBI *CC, will identify subgroups of 
individuals with increased or decreased breast cancer risk based on the 
expected level of signaling. It is anticipated that these variants, in particular 
TGFBRl*6A, will become part of the overall breast cancer risk assessment. 
We foresee that these TGF-j3 pathway variants will account for a proportion 
of familial breast cancer cases. While we predict that individuals with 
overall decreased TGF-P signaling will be more prone to develop certain 
forms of cancer, we believe that the tumors of these individuals will behave 
less aggressively because they will not benefit as much from the 
prooncogenic properties of the TGF-j3 signaling pathway. On the other 
hand, individuals with higher baseline TGF-P signaling may have more 
aggressive tumors. 

TGF-j3 signaling will become a target for cancer therapies. Candidates 
for these therapies will include patients with aggressive tumors exhibiting 
intact TGF-j3 signaling. Small inhibitory molecules and anti-TGF-j3 
antibodies will enter the clinical arena either as adjuvant, second or third line 
therapies in metastatic cancers. TGF-P will become a bona fide molecular 
target in the next five years. 
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