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1 INTRODUCTION 

An intricate balance between cell growth and cell death drives the proper 
1 growth, development, and function of most tissues . A vast amount of 

information has accumulated regarding the molecular mechanisms 
governing cell growth, but the mechanisms by which cells regulate their own 
death still remain a matter of great intrigue and have recently begun to 
acquire great importance. One known mechanism, apoptosis, or 
programmed cell death, is a physiological process believed to be responsible 
for the deletion of unwanted cells during organ and tissue development, 
tissue homeostasis and removal of self-reactive immune cells and 
pathologically induced tissue damage. Virus-infected cells are eliminated by 
the interaction with cytotoxic T-lymphocytes that kill the virus infected cells 
by inducing apoptosis 2*3. Cells that have DNA damage undergo apoptosis 
so as to eliminate cells that have accumulated genetic mutations and may 
become cancerous 495. In addition to being activated during development- 
related cell reduction, apoptosis can be triggered in many cell types by 
various stresses, including chemotherapeutic agents, cytokines, ionizing 
radiation, osmotic stress, and expression of viral proteins such as E1A 6 .  

Extensive research within the last few years has revealed that cell death, 
whether at the single cell level, the tissuelorgan level, or the organism level, 
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is as important to life as cell survival. The critical role of apoptosis has been 
recognized in a wide variety of situations including immunomodulation, 
autoimmunity, sepsis, arthritis, inflammatory bowel disease, chronic heart 
failure, periodontal diseases, allograft rejection, neovascularization, obesity, 
tumorigenesis, meningitis, and parturition 7. 

NF-KB is a ubiquitously expressed transcription factor that plays a pivotal 
role in expression of various inducible target genes that regulate apoptosis 

8 among several other vital functions it also controls, cell proliferation, 
differentiation, and immune and inflammatory responses. This factor is a 
member of the Re1 family of proteins, which bind to specific DNA 
sequences. In non-stimulated cells, the heterodimeric NF-KB complexes are 
sequestered in the cytoplasm of most cell types by inhibitory proteins of the 
I& family (Figure 1) '. 

Figure I. Negative regulation of apoptosis by the NF-KB-regulated gene products. 

These inhibitors mask the NF-KB nuclear localization domain and inhibit 
its DNA-binding activity. In response to a large variety of stimuli, the IKB 
inhibitor is rapidly phosphorylated and degraded, thus allowing NF-KB 
nuclear translocation, DNA binding to specific recognition sequences in 

10,ll promoters, and transcription of the target genes . Rel/NF-KB 
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transcription factors are induced in response to a large variety of stimuli and 
regulate a number of genes. The Rel/NF-KB transcription factor family is 
comprised of several structurally related proteins that exist in organisms 
from insects to humans. The vertebrate family includes five cellular 
proteins: c-Rel, RelA, RelB, p501p105, and p521p 100. These proteins can 
form homodimers or heterodimers giving diverse combinations of dimeric 
complexes that bind to DNA target sites, collectively called KB sites, and 
directly regulate gene expression. The most common transcription factor of 
this family is called NF-KB and consists of a pSO/RelA heterodimer. The 
different Rel/NF-KB proteins show distinct ability to form dimers, distinct 
preferences for different KB sites, and distinct abilities to bind to IKB 
inhibitor proteins 12. Thus, different R~~/NF-KB complexes can be induced 
in different cell types and by distinct signals (Figure 2), can interact in 
distinct ways with other transcription factors and regulatory proteins, and 
can regulate the expression of distinct gene sets. Numerous kinases have 
been implicated in the activation of NF-KB induced by different agents 
(Mgure 3). Furthermore, the activation of NF-KB is regulated both 
negatively and positively by other transcription factors and gene products 
(Figure 4). 

PvlHypoxia TNF IL-IpIRANKLILPS LT-pIBAFFICD40L 

Pro-Apoptosis Anti-Apoptosis 

Figure 2. Positive regulation of apoptosis by the NF-KB-regulated gene products. 
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Figure 3. Regulation of NF-KB activation by various protein kinases. 
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Mechanism of apoptosis: Besides dying by necrosis, multicellular 
organisms can initiate a series of events that activate intracellular proteases 
and ultimately result in the destruction of the cell. These are collectively 
known as apoptosis. Apoptotic cells undergo an orderly series of 
biochemical or morphological events including cell shrinkage, mitochondria1 
breakdown, and nuclear DNA fkagmentation 13. The dying cell degrades into 
subcellular membrane-bound vesicles called apoptotic bodies, which are 
ultimately removed by phagocytosis. Apoptosis is a molecular suicide 
program characterized by cytoplasmic shrinkage, nuclear condensation, and 
DNA fkagmentation into 200-base pair fragments 14-17. It is a genetically 
regulated mechanism, and its deregulation can result in multistep 
carcinogenesis 18-20. 

Apoptosis is brought about by activation of the family of proteins known 
as caspases (cysteinyl, aspartate-specific proteases) 21,22. There are about 14 
caspases involved in the process of apoptosis. Caspases are synthesized as 
proenzymes that are activated by proteolysis at two or three sites to remove 
an N-terminal peptide and divide the proenzyme into large and small 
subunits, which in some cases are joined by a linker domain. The mature 
caspase is a heterotetramer of two large and two small subunits 23,24. All 
caspases are activated by cleavage at a specific aspartate residue and act in a 
cascade. They are ultimately responsible for the proteolysis of the cellular 
subtrates responsible for apoptosis. 

Poly (ADP-ribose) polymerase (PARP) is the most well characterized 
substrate for several caspase in many cell systems. Intact PARP (1 16 kDa) 
is cleaved into two fragments (89 kDa and 24 kDa) during apoptosis 25,26. 
Cleavage of PARP is a valuable indicator of apoptosis, but its biological 
relevance is not known. Caspase-activated deoxyribonuclease (CAD) is a 
cytoplasmic endonuclease whose activation is thought to be responsible for 
generating the oligonucleosomal DNA fragments that are the hallmark of 
apoptosis 27. 

DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme that 
is degraded during apoptosis by caspase-3 28. Degradation of DNA-PK will 
result in a decrease in the capacity of the cell to repair damage of nuclear 
DNA, thus facilitating the breakdown of DNA that is associated with 
apoptosis. Caspase-6 is responsible for degradation of lamin, which are the 
major structural components of the nuclear envelope 29. Cleavage of the 
cytoskeletal proteins fodrin 30, Gas 2 31, and actin 32 during apoptosis may 
induce cell shrinkage and membrane blebbing and alter cell signaling 
pathways. U1-70kDa, a small ribonucleosomal particle that functions in the 
splicing of mRNA transcripts, is cleaved during apoptosis (Figure 1 and 
Figure 2) 33. Caspases also cleave the initiation factors 34. This may inhibit 
translation during apoptosis. Caspases also cleave certain cell-signaling 
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proteins, e.g., and MEKK-1, which are rendered constitutively active and 
pro-apoptotic. In contrast, protein kinase B, which is involved in the anti- 
apoptotic pathway, is cleaved and inactivated by caspases 35. 

A cell is induced to undergo apoptosis either by internal signals arising 
within the cells or external signals triggered by death activators that bind to 
receptors located at the cell surface. Internal signals initiate apoptosis in the 
mitochondria with the release of cytochrome c 36,37. The mitochondrial 
pathway is controlled by the Bcl-2 family of proteins 38. There are 15 
members of the Bcl-2 protein family that share homology in at least one of 
three conserved domains (BHI-BH4) and these may either promote survival 
e.g., Bcl-2, Bcl-xL or promote apoptosis, e.g., Bax, or Bak 39. The Bcl-2 
family of proteins register both positive and negative stimuli and integrate 
them to determine whether the mitochondrial apoptotic pathway is turned on 
or off. Oncogenes encode mutated versions of the signaling proteins that 
control normal cell proliferation e.g., Ras signaling. Another, the Raf 
oncoprotein eventually initiates apoptosis when the cell receives an 
abnormal proliferative signal 40. 

The apoptotic program can also be initiated by the action of extracellular 
messengers, termed death ligands. These bind to the cell surface receptors, 
termed death receptors, that activate intracellular signaling events that begin 
an apoptotic cascade 41,42. Death receptors belong to the TNF receptor 
superfamily that is characterized by a cysteine-rich extracellular ligand- 
binding domain 43. Death receptors contain a consensus module known as 
the death domain that is found in the intracellular portion of the molecule 
and is involved in transducing the apoptotic signal 6. Fas and the TNF 
receptor are the two best-characterized death receptors, the cognate ligands 
for which are FasL and TNF, respectively. 

Among all the known physiological inducers of apoptosis in mammalian 
cells, tumor necrosis factor (TNF) is perhaps the most potent and well 
studied. Many other members of the TNF superfamily also induce 
apoptosis, including LT (lymphotoxin), FasL (fibroblast-associated ligand), 
TRAIL (TNF-related apoptosis-inducing ligand), DR3L (for death receptor 3 
ligand or also known as TWEAK for a weak homologue of TNF), THANK 
(TNF homologue that activates apoptosis, NF-KB and JNK), and VEGI 
(vascular endothelial cell growth inhibitor) 44,45. Whether all these TNF 
family members induce apoptosis by the same mechanism as TNF is not 
known. Besides killer cytokines outlined above, apoptosis is also induced 
by various chemotherapeutic agents. 

Within the last few years, a series of biochemical steps have been 
identified in the apoptotic pathway induced by cytokines and 
chemotherapeutic agents. For instance in TNF-induced apoptosis the TNF 
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receptor is activated, which, through its cytoplasmic death domain, recruits a 
protein called TNF receptor-associated death domain (TRADD), which in 
turn sequentially recruits Fas-associated death domain (FADD) and FADD- 
like ICE (FLICE, also called caspase-8) 4648. The last activates caspase-9, 
which in turn activates caspase-3 (the executioner protease), resulting in 
apoptosis. 

In contrast to cytokines, chemotherapeutic agents induce cellular 
apoptosis by inducing formation of mitochondrial transition pores, a rapid 
decrease in the mitochondrial transmembrane potential, and release of 
cytochrome c. The latter, in the presence of the protein Apaf-1, activates 
caspase-9, which then activates caspase-3. Several recent studies, however, 
have suggested that these two receptor-mediated and non-receptor-mediated 
pathways initiated by cytokines and chemotherapeutic agents, respectively, 
are not exclusive of each other and share similar steps. 

Most agents that induce apoptosis also activate NF-KB. Thus it is not too 
surprising that almost all cytokines of the TNF superfamily and 
chemotherapeutic agents activate NF-KB. TNF-induced activation of NF-KB 
(primarily consisting of p50 and p65 subunits) involves recruitment of TNF 
receptor-associated factor (TRAF)-2 by TRADD, which then binds to NIK. 
TRADD also binds to receptor-interacting protein (RIP). Either NIK or RIP 
then activate a kinase called I d a  kinase (IKK), which in turn leads to the 
phosphorylation, ubiqutination, and degradation of IKBa (the inhibitory 
subunit of NF-KB), leading to NF-KB activation 48. Some recent studies 
exclude NIK from a role in TNF-induced NF-KB activation. How 
chemotherapeutic agents activate NF-KB is not fully understood, but most 
likely it also involves phosphorylation, ubiqitination, and degradation of 
IKBa. How NF-KB activation is linked with induction of apoptosis by TNF 
and chemotherapeutic agents is the subject of this review. 

Anti-apoptotic effects of NF-KB: Almost five years ago it was shown 
49-52 that TNF-induced apoptosis can be blocked by NF-KB activation . 

Rel/NF-KB transcription factors exercise their anti-apoptotic effects in a 
wide variety of cells to protect them from various apoptotic agents. They 
promote cell survival by inducing the transcription of anti-apoptotic genes 
(Figure 1). Activation of NF-KB either upregulates the activity of anti- 
apoptotic genes or downregulates the activity of apoptotic genes. Inhibition 
of NF-KB nuclear translocation enhances apoptotic killing by cytokines that 
belong to the TNF superfamily, ionizing radiation, overexpression of 
oncoproteins, chemotherapeutic agents, cytokines, phorbol esters, hyperoxia, 
hormones, and micro-organisms (Table 1, at the end of this chapter). 

Some earlier studies showed that the oncogene v-re1 from the avian 
retrovirus reticuloendotheliosis virus strain can block apoptosis 53 in 
chickens. Similarily, v-re1 rendered chicken B-cells resistant to radiation- 
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induced apoptosis 54. A large number of reports have demonstrated the anti- 
apoptotic effect of NF-KB in a wide variety of cell types. The protective role 
of NF-KB has now been shown in a large variety of cell types, including 
human breast carcinoma T-cells 51,55956 , fibroblasts and macrophages 49, 
endothelial cells 57, EBV-infected lyrnphoblastoid cells ", non-small lung 
cancer cells 59, glomerular mesangial cells 60, human ovarian cancer cells 61, 

63 human pancreatic cancer cell lines 62, Ewing sarcoma cells , 
cardiomyocytes 64, mouse embryos 65, and HT1080 fibrosarcoma 52. 

Treatment of RelA-deficient (the transcriptionally active subunit of NF- 
KB) mouse fibroblasts and macrophages with TNF significantly reduced cell 
viability, whereas  el^+'+ cells were unaffected. In addition, reintroduction 
of RelA into  el^-'- fibroblasts enhanced survival, demonstrating that Re1 A 
is required for protection from TNF 49. Another report showed that 
activation of the NF-KB by TNF, ionizing radiation, or daunorubicin protects 
cells from apoptosis, whereas inhibition of NF-KB enhanced apoptotic 
killing by these reagents but not by apoptotic stimuli that do not activate NF- 
KB 52. Van Antwerp et al., however, showed that the sensitivity and kinetics 
of TNF-induced apoptosis are enhanced in a number of cell types expressing 
a dominant-negative I K B ~  (an inhibitor of NF-KB) ". Continued expression 
of v-Re1 is necessary to maintain the viability of transformed lymphoid cells 
and enables primary spleen cells to escape apoptosis in culture 66. 

Liu et al. used the signaling proteins and showed that recruitment of 
FADD to the TNFRl complex mediates apoptosis, that recruitment of RIP 
and TRAF2 mediate NF-KB activation, and that activation of the latter 
protects cells against TNF-induced apoptosis 50. Substoichiometric TFIID 
subunit TAFIIlO5 is essential for activation of anti-apoptotic genes in 
response to TNF-a, serving as a transcriptional co-activator for NF-KB 67. 

Adenovirus E1A protein has inhibited activation of NF-KB and rendered 
cells more sensitive to TNF-induced apoptosis. This inhibition was brought 
about through suppression of IKB kinase (IKK) activity and IKB 
phosphorylation 68. NF-KB can attenuate TNF-a-induced apoptosis without 
de novo protein synthesis in the human pancreatic cancer cell lines MIA 
PaCa-2 and Capan-2. TNF-a-induced apoptosis was blocked by IL-1P, a 
potent inducer of NF-KB activation 62. These findings suggest that de novo 
protein synthesis is dispensible for anti-apoptotic effects of NF-KB and 
support the possibility that NF-KB exerts its anti-apoptotic action through 
protein-protein interaction. 

The NF-KB cascade is important in Bcl-xL expression and for the anti- 
apoptotic effects of the CD28 receptor in primary human C D ~ '  lymphocytes 
56 . HUT-78, a lymphoblastoid T-cell line with constitutive NF-KB activity, 
contains elevated levels of Bcl-xL protein and, similar to proliferating C D ~ +  
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T-cells, is resistant to apoptotic stimuli such as anti-Fas and TNFa. In 
contrast, the same stimuli readily induced apoptosis in Jurkat cells without 
producing any detectable Bcl-xL expression. 

The quinone reductase inhibitors dicoumarol and menadione block 
SAPKIJNK and NF-KB and thereby potentiate apoptosis 69. Javelaud and 
Besancon have demonstrated that the repression of JNK activation by NF- 
KB is involved in the anti-apoptotic effect of this transcription factor in 

63 TNFa-treated Ewing sarcoma cells . Also, NF-KB exercises its anti- 
apoptotic effects through NF-KB-inducing kinases (NIK). NIK induces 
PC12 cell differentiation and prevents apoptosis 70. Cardiomyocytes utilize 
transcription factor NF-KB to activate survival factors in the context of TNF- 
a stimulation. As locally increased levels of TNFa have been detected in 
heart failure,'NF-KB activity is essential for cellular homeostasis in the heart 
64 

NF-KB is required for TNF-mediated induction of the gene encoding 
human cIAP2. When overexpressed in mammalian cells, cIAP2 activates 
NF-KB and suppresses TNF cytotoxicity. Both of these cIAP2 activities are 
blocked in vivo by coexpression of a dominant form of IKB that is resistant 
to TNF-induced degradation ". Functional coupling of NF-KB and cIAP2 
during the TNF response may provide signal amplification loop that 
promotes cell survival rather than death. The IAP genes function to protect 
the cell from undergoing apoptotic death in response to a variety of stimuli. 
The IAP genes hIAPI, hIAP2, and XIAP were found to be strongly 
upregulated upon treatment of endothelial cells with the inflammatory 
cytokines TNFa, IL-lb and LPS, which in turn lead to activation of NF-KB. 
This suggests that xiap represents one of the NF-KB-regulated genes that 
counteracts the apoptotic signals elicited by TNFa and thereby prevents 
endothelial cells from undergoing apoptosis during inflammation 57. 

Treatment of WEH1 23 1 cells with N-tosyl-L-phenylalanine 
chloromethyl ketone, a protease inhibitor that prevents degradation of IKBa, 
or with low doses of pyrrolidine dithiocarbamate selectively inhibited NF- 
KB activation and induced apoptosis 71. Similarly, microinjection of WEHI 
23 1 cells with either IKBa-GST protein or a c-Re1 affinity-purified antibody 
induced apoptosis 71.  

Arlt et al. have shown that under certain conditions the resistance of 
pancreatic carcinoma cells to chemotherapy is due to their constitutive NF- 
KB rather than the transient induction of NF-KB by some anti-cancer drugs 
72 . Exposure of normal keratinocytes to IFN-)I plus TPA produced a 
synergistic activation of NF-KB. They acquired a resistance to W-light- 
induced apoptosis that was dependent on NF-KB because expression of a 

73 dominant negative form of IKBa overcame the resistance . There is 
enough evidence to suggest that activation and proper regulation of NF-KB 
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is essential for acquisition of an apoptotic-resistant phenotype for 
epidermal-derived keratinocytes. Kolenko et al. have demonstrated that 
inhibition of NF-KB activity by cell permeable SN50 peptide in human T 

74 lymphocytes induces caspase-dependent apoptosis . Kawai et al. have 
shown that p53 is involved in NF-KB inactivation and is required for X-ray- 
induced apoptosis in thymic lymphoma cells and normal thymocytes 75. 

Oxidative stress induces apoptosis in human aortic endothelial cells 
through the downregulation of Bcl-2, translocation of bax, and upregulation 
of p53, probably through NF-KB activation. Oxidative stress may play an 
important role in endothelial apoptosis mediated by hypoxia, through the 
activation of NF-KB 76.  NF-KB is a redox-sensitive transcription factor that 
is activated by oxidative insult, and NF-KB activation can protect cells from 
apoptosis. When human alveolar epithelial (A549) cells were exposed to 
hyperoxia, NF-KB was activated and within minutes was translocated to the 
nucleus 77. Reactive oxygen species could act synergistically with TNFa in 
causing cytotoxicity via inhibition of a cytoprotective branch of TNFa 
signaling pathways that starts with NF-KB activation. Ginis et al. have 
demonstrated that Hz02 inhibited TNFa-induced accumulation of p65 in the 
nucleus, although it had no effect on degradation of IKB in the cytoplasm 78. 

It is known that adenovirus protein E1B blocks TNF-induced apoptosis, 
whereas E1A enhances TNF-induced apoptosis through unknown 
mechanisms. Recent evidence indicates the effect of these proteins is 
mediated through modulation of NF-KB activation 6'. 

The growth arrest-specific 6 gene product (Gas6) is a growth and 
survival factor related to protein S. Gas6 induces a rapid and transient 
increase in nuclear NF-KB binding activity coupled to transcription 
activation. This plays a central role in promoting survival in NIH 3T3 cells 
79 . MKK6 activates myocardial cell NF-KB and inhibits apoptosis in a p38 
mitogen-activated protein kinase dependent manner Limb girdle 
muscular dystrophy type 2A results in decreased production of calpain 3. 
Calpain 3 is responsible for IKBK turnover. Over expression of IKBa results 
in sequestration of NF-KB outside the nucleus. Myonuclear apoptosis 
occurred because of the downregulation of NF-KB ". 

The stimulation of the CD95- and TRAIL-resistant human pancreatic 
adendcarcinoma cell line Panc TuI with an agonistic anti-CD95 antibody or 
TRAIL activates of protein kinase C and NF-KB. The activation of PKC 
operates directly in a death receptor dependent manner in PancTuI cells and 
pancreatic tumor cells, protecting them from anti-CD95 and TRAIL- 
mediated apoptosis by preventing the loss of A y  and cytochrome c release as 
well as by induction of NF-KB 82. Phannacologic or molecular inhibition of 
the NF-KB pathway blocked cell survival in MCF-7 APO+ cells, while only 
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molecular inhibition induced cytotoxicity in the APO- cells 40. TGF-a 
protected gastric mucosal cells against apoptosis induced by serum depletion 
or sodium butyrate in a dose-dependent manner. This anti-apoptotic effect 
of TGF-a was blocked by pre-treatment with reagents that can potentially 
inhibit NF-KB activation. This suggests that TGF-a plays an antiapoptotic 
role in gastric mucosal cells via the NF-KB-dependent pathway 83. 

Mice deficient in the NF-KB~ gene were challenged with the intracellular 
parasite Toxoplasma gondii. During the chronic phase of the infection, 
susceptibility of NF-KB knockout mice to toxoplasmic encephalitis was 
associated with a reduced capacity of their splenocytes to produce IFN-y 
associated with a loss of C D ~ '  and C D ~ '  T-cells. This loss of T-cells 
correlated with increased levels of apoptosis and with elevated expression of 
the pro-apoptotic molecule Fas by T-cells fi-om infected NF-KB knockout 
mice. This suggests a role of NF-KB in maintenance of T-cell responses 
required for long-term resistance to Toxoplasma gondii 84. 

How NF-KB suppresses apoptosis? Although it is clear that NF-KB 
activation plays a role in suppressing TNF-induced apoptosis, just how is 
only now beginning to emerge. Several genes that may play a role in 
blocking apoptosis and whose expression is regulated by NF-KB have been 
identified, including cellular inhibitors of apoptosis (c1AP)-1 and CLAP-2, 
TRAF-1, and TRAF-2 55,57385. cIAP-1, cIAP-2, and TRAF-1 are known to 
bind to TRAF-2 and TRAF-2 is required for NF-KB activation. Thus, how 
these proteins block apoptosis is not clear. Other reports show that TNF 
induces manganous superoxide dismutase (SOD), whose expression is also 
regulated by NF-KB, and the overexpression of SOD induces resistance to 
TNF-induced apoptosis 86. Also, altered SOD expression in HeLa cells after 
low dose y-irradiation is responsible for NF-KB-mediated cisplatin resistance 
87 . Insulin manifests its antiapoptotic signaling though the activation of the 
NF-KB-dependent survival genes encoding TRAF-2 and SOD ". The TNF- 
inducible zinc finger protein A20 is regulated by NF-KB, and the role of this 
protein in induction of resistance to TNF-induced apoptosis has been 
demonstrated 89,90. The expression of a protein critical in the regulation of 
the cell cycle, cyclin Dl,  is also regulated by NF-KB, and this activity may 
contribute to the cell growth and differentiation function assigned to NF-KB 
91,92 

The prosurvival Bcl-2 homolog Bfl-11A1 is another gene whose 
transcription is regulated by NF-KB and blocks TNF-induced apoptosis 93994. 
There are other studies which show that Bcl-2 activates NF-KB through the 
degradation of the inhibitor IKBa 95. Crawford et al. have demonstrated that 
Bcl-2 overexpression protects photooxidative stress-induced apoptosis of 
photoreceptor cells through NF-KB preservation. It has been known that the 
RasIPI-3WAkt pathway plays a critical role in cell survival. It now appears 
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that this pathway is linked to the activation of IKK, the kinase needed for 
IKBa phosphorylation and NF-KB activation. Akt may also play a 

96,97 cytoprotective role through activation of NF-KB . An NF-KB- 
independent cytoprotective pathway has also been described. The NF-KB 
activation induced by overexpression of TRAF2 was found to be insufficient 
to protect cells from apoptosis induced by TNF and cycloheximide together, 
thus indicating an essential role for additional components in the 
cytoprotective response 98. 

While NF-KB activation blocks apoptosis, it seems that activation of 
apoptosis also blocks NF-KB activation, suggesting a feedback loop. For 
instance, endothelial cells undergo apoptosis when deprived of growth 
factors. The surviving viable cells exhibit increased activity of NF-KB, 
whereas apoptotic cells show caspase-mediated cleavage of the NF-KB 
p651ReIA subunit, resulting in loss of carboxy-terminal transactivation 
domains and a transcriptionally inactive p65 molecule, which itself acts as a 
dominant-negative inhibitor of NF-KB, promoting apoptosis. In contrast an 
uncleavable, caspase-resistant p65 protects the cells from apoptosis. The 
generation of a dominant-negative fragment of p65 during apoptosis may be 
an efficient pro-apoptotic feedback mechanism between caspase activation 
and NF-KB inactivation 99. Similarly apoptosis has been shown to promote a 
caspase-induced amino-terminal truncation of IKBa that functions as a stable 
inhibitor of NF-KB loo, thus further enhancing apoptosis. And Fas, another 
member of the TNF receptor family, was found to induce caspase-3- 
mediated proteolysis of both p50 and p65 subunits of NF-KB in T Jurkat 
cells, thus sensitizing the cells to apoptosis lo'. 

Pro-apoptotic activity of NF-KB: The decision of life or death in 
response to an inducing signal within a cell is dependent upon a delicate 
balance of positive and negative influences. While there are several reports 
that NF-KB activation protects cells from undergoing apoptosis induced by 
TNF or chemotherapeutic agents, there are also reports suggesting that NF- 
KB activation mediates apoptosis in response to a variety of inducers in a 
number of cell types (Table 2, at end of the chapter). For instance, in 
murine clonal osteoblasts NF-KB activation mediated TNF-induced 
apoptosis lo2. The suppression of growth of C ~ 3 4 '  myeloid cells by TNF 
also correlated with NF-KB activation lo3. Apart from this, Fas activates NF- 
KB and induces apoptosis in T-cell lines by signaling pathways distinct from 
those induced by TNFa '04. Human melanoma cells are protected against 
UV-induced apoptosis through downregulation of NF-KB activity and Fas 
expression lo'. Oxidative stress induced apoptosis in human aortic 
endothelial cells through the downregulation of Bcl-2, translocation of bax, 
and upregulation of p53 probably takes place through NF-KB activation. 
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Oxidative stress may play an important role in endothelial apoptosis 
mediated by hypoxia, through the activation of NF-KB 76. That the activation 
of NF-KB is rather required for apoptosis has also been shown for other 
inducers such as H202 lo6,107 . Similarly, H202-induced apoptosis was not 
suppressed by hyperoxia-induced NF-KB activation 77. In pancreatic islets, 
A20 inhibited both apoptosis and NF-KB activation induced by cytokines, 
suggesting that NF-KB may actually mediate apoptosis log. Apoptosis in HL- 
60 cells induced by chemotherapeutic agents such as etoposide or 1-beta-D- 
arabinofuranosylcytosine was also found to require NF-KB activation, 
inasmuch as suppression of NF-KB by PDTC also blocked apoptosis Io9. 

Recently, Stark et al. demonstrated that aspirin induces cell death by an 
active apoptotic process that involves nuclear translocation of NF-KB 
preceding cell death 'lo. Helicobacter pylori induces NF-KB-mediated 
apoptosis in chronic gastritis "I. The apoptosis induced by alphavirus was 
also found to require the activation of NF-KB, since the thiol agents and Bcl- 
2 blocked both activities 'I2. During adenoviral infection, NF-KB mediates 
apoptosis through transcriptional activation of Fas ' I 3 .  Apoptosis in ~ a "  
reperfusion injury of cultured astrocytes was also found to be mediated 
through NF-KB activation 'I4. The cell death-promoting role of NF-KB has 
also been demonstrated in focal cerebral malaria 115, as it has for induction of 
apoptosis by double-stranded-RNA-dependent protein-kinase (PKR) 'I6. Lin 
et al. showed that NF-KB can be proapoptotic or antiapoptotic depending on 
the timing of modulating NF-KB activity relative to the death stimulus 'I7. 
How NF-KB may mediate apoptosis is not clear, but the role of p53 and c- 
myc induction through NF-KB has been demonstrated l18. In addition, NF- 
KB is required for the anti-CD3-mediated apoptosis of double-positive 
thyrnocytes through a pathway that involves the regulation of the 

119 antiapoptotic gene Bcl-xL . c-myc has also been implicated in survival of 
certain cells such as hepatocytes 120. These observations suggest that NF-KB 
activation not only negatively, but also positively regulates apoptosis. This 
idea has been further strengthened by studies on NMRI mice, Wistar rats and 
WI-38 fibroblasts in which aging induced a strong and consistent increase in 
the nuclear binding activity of NF-KB 121. 

We recently showed that doxorubicin and its structural analogues WP63 1 
and WP744, activate NF-KB, and this activation is essential for apoptosis in 
myeloid (KBM-5) and lymphoid (Jurkat) cells (138). Because the 
anthracycline analogue (WP744), most active as a cytotoxic agent, was also 
most active in inducing NF-KB activation and the latter preceded the 
cytotoxic effects, suggests that NF-KB activation may mediate cytotoxicity. 
Second, receptor-interacting protein-deficient cells, which did not respond to 
doxorubicin-induced NF-KB activation, were also protected from the 
cytotoxic effects of all the three anthracyclines. Third, suppression of NF- 
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KB activation by pyrrolidine dithiocarbamate, also suppressed the cytotoxic 
effects of anthracyclines. Fourth, suppression of NF-KB activation by 
NEMO-binding domain peptide, also suppressed the cytotoxic effects of the 
drug. Overall our results clearly demonstrated that NF-KB activation and 
I d a  degradation are early events activated by doxorubicin and its analogues 
and that they play a critical pro-apoptotic role. 

Evidence that apoptosis is unaffected by NF-KB: There are increasing 
reports that NF-KB activation plays little or no role in apoptosis. For 
instance, Cai et al. showed that overexpression of IKBa, an inhibitor of NF- 
KB, in human breast carcinoma MCF7 cells inhibits NF-KB activation but 
not TNF-induced apoptosis. Similarly, in endothelial cells A20 inhibited 
NF-KB activation without enhancing TNF-induced apoptosis 122. LPS- and 
IL-1- induced prolongation in survival of endothelial cells did not require 
NF-KB activation 123. The pro- and anti-apoptotic role of NF-KB appears to 
be determined more by the nature of the death stimulus than by the origin of 
the tissue 'I3. Bone morphogenetic protein (BMP)-2 and -4 inhibited TNF- 
mediated apoptosis by inhibiting caspase-8 activation in C2C12 cells, a 
pluripotent mesenchymal cell line that has potential to differentiate into 
osteoblasts depending on BMP stimulation. The BMPISmad signaling 
pathway can inhibit TNF-mediated apoptosis independently of the pro- 
survival activity of NF-KB. This suggests that BMPs not only stimulate 
osteoblast differentiation but also promote cell survival during the induction 
of bone formation, offering new insight into the biological functions of 
BMPs 124. There are proteins that associate with cytokine receptors such as 
SODD (for silencer of death domain) 12', sentris '26, and c-FLIP 12', that can 
also negatively regulate apoptosis, again independently of NF-KB. 

The redox-sensitive transcription factor Ref-1 plays a critical role in the 
survival of endothelial cells in response to hypoxia and cytokines including 
TNFa. Upregulation of Ref-1 promotes endothelial cell survival in response 
to hypoxia and TNF through NF-KB-independent and NF-KB-dependent 
signaling cascades 128. It has been observed in human non-small-cell lung 
carcinoma that apoptosis induced by topoisomerase poisons, e.g. Etoposide, 
is not mediated by NF-KB but can be manipulated by proteasome inhibitors 
129 . Why NF-KB plays a role in apoptosis induced by some agents and not 
others is not clear but suggests that the apoptotic pathway varies from one 
inducer to another and also perhaps from one cell type to another. 

Conclusion: It is clear that apoptosis is regulated by mitochondria- 
dependent and -independent pathways involving a series of proteins that 
preexist in the cells. Most agents that induce apoptosis, also activate NF-KB 
and the latter suppresses apoptosis in most cases. While it may appear 
paradoxical that the same agent could perform both functions, in reality it is 
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not. The same stress that induces cells to die provokes a self-defense 
response in the cell. How NF-KB plays an antiapoptitic role in some cells, 
pro-apoptotic in others and no role in some requires further understanding. 
It is possible that activation of NF-KB alone is not sufficient to regulate 
apoptosis and that other transcription factors are involved (141). Most NF- 
KB-regulated genes (such as cyclooxygenase-2) play critical roles in 
inflammation, suggesting that inflammation can also negatively regulate 
apoptosis. 

Abbreviations used: NF-KB, nuclear factor KB; TNF, tumor necrosis 
factor; I*, inhibitor of NF-KB; TRADD, TNF receptor-associated death 
domain; NIK, NF-*-inducing kinase; TRAF2, TNF receptor-associated 
factor 2; SOD, superoxide dismutase; RIP, receptor interacting proteins; 
SODD, silencer of death domain; FADD, Fas-associated death domain; 
FLICE, FADD-like ICE; c-FLIP, cellular FLICE inhibitory protein; LT, 
lymphotoxin; FasL, fibroblast associated ligand; TRAIL, TNF-related 
apoptosis-inducing ligand; DR3L, death receptor 3 ligand; TWEAK, weak 
homologue of TNF; THANK, TNF homologue that activates apoptosis, NF- 
KB and JNK; JNK, c-jun N-terminal kinase; VEGI, vascular endothelial cell 
growth inhibitor; CLAP, cellular inhibitors of apoptosis; PKR, double- 
stranded-RNA-dependent protein kinase; MEKK, mitogen-activated protein 
kinase/extracellular signal-regulated kinase kinase 

Table I. Anti-apoptotic activity of NF-KB 
Apoptosis Inducing Agent Cell Type Reference 
TNF Re1 A-1- fibroblasts and macrophages 49 
TNF MCF-7 50 
TNF HEF, Jurkat, T24 5 1 
TNFa, radiation, HT1080 52 
daunorubicin 
TNF Jurkat 55 
TNF CD4+ T lymphocytes 56 
TNF Endothelial cells 57 
TNF EBV infected lymphoblastoid cells 5 8 
TNF A549, MCF-7 59 
TNF Glomerular mesangial cells 60 
y-radiation (SK-OV-3.ipl) cells 61 
TNF MIAPaCa-2, Capan-2 62 
TNF Ewing sarcoma cells 63 
TNF Cardiomyocytes 64 
TNF, IL-1 Mouse embryos 65 
v-Re1 inducers HeLa cells, spleen cells 66 
TNF 293 67 
TNF SK-OV-3 .ipl 68 
TNF Human pulmonary macrophages 69 
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Apoptosis Inducing Agent Cell Type Reference 
NIK suppression PC12 70 

blockers) 
TPA and IFN-y Kerationocytes 73 
SN50 (NF-KB blocker) T Lymphocytes 74 
X-ray irradiation Lymphoma cells, Thymocytes 75 
Hyperoxia A549 77 
TNFa and ROI Brain capillary endothelial cells 78 
Gas 6 suppression NIH 3T3 79 
Anisomycin Myocardial cells 80 
Calpain 3 deficiency Myogenic satellite cells 8 1 
Anti-CD95 Panc TuI 82 
Serum depletion, sodium GSM 06 83 
butyrate 
Toxoplasma gondii T-cells 84 
Insulin CHP overexpressing insulin receptor 88 
TNF Prostate carcinoma cells 130 
TGF-P, serum withdrawal, MvlLu and MDCK 131 
anoikis, TNF-a 
Growth factor deprivation Hematopoietic cells 132 
v-Re1 Spleen cells, fibroblasts, C4-1 133 
TRAIL Renal Cell carcinoma 134 
Hyperoxia, TNF-a Lung epithelial cells 135 
TNF Endothelial cells 136 
MCF-7, human breast carcinoma; Panc TuI, human pancreatic adenocarcinoma; A549, 

nonsmall cell lung cancer; SKOV3ip1, human ovarian cancer cell line was generated from 
ascites developed in ndnu mouse by administering an intraperitoneal injection of SK-OV-3, a 

human ovarian carcinoma cell line; MIAPaCa-2 and Capan-2, human pancreatic cancer cell 
lines; HT1080, fibrosarcoma; MvlLu and MDCK, epithelial cells; C4-1 and WEHI 231, B- 
cells; PC12, rat adrenal pheochromocytoma; GSM 06, gastric mucosal cell line. 

Table 2. Pro-Apoptotic Activity of NF-KB 
Inducing Agent Cell Type Reference 
Oxidative stress Aortic endothelial cells 76 
TNFa, HTLV- I 
TaxITNFa 
TNFa 
FaslTNFa 
UV light 
H202 
Etoposide 
Aspirin 
Helicobacter pylori 
Sindbis-virus induction 
Adenovirus 

Osteoblast cell line 

Myeloid leukemic cell lines 
CEM-C7 
Human melanoma 
Jurkat, CEM C7, Oligodendrocytes 
HL-60 and thymocytes 
Colon cancer cells 
Gastric epithelial cells 
AT-3 
Hepatocytes 
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Focal cerebral ischemia ~ e u r o n s  (Mice Ischemic model) 115 
PKR BSC-40,3T3 116 
Kainic acid Rat striaturn 118 
a-CD3 Thyrnocytes from r n I ~ B a  mice 119 
Constitutive enhanced by Immature Rat thymocytes 137 
etoposide 
Doxorubicin KBM-5, SH-SYSY, IMR32 138, 139 
Mullerian Inhibiting T47D, MDA-MB-23 1 140 
substance 
Jurkat, CEM-C7, human T-cells; HI-60, human promyelocytic leukemia; KBM-5, human 
myeloid; SH-SYSY, IMR32, N-type neuroblastoma cells; T47D, MDA-MB-231, numan 
breast: BSC-40, African green monkey kidney cells; AT-3, prostrate carcinoma cell line; 
PKR, doublestranded-RNA-dependent protein pinase. 
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