
Chapter 7 

Upper-Lipschitz Continuity 
of the Solution Map in 
Affine Variational 
Inequalities 

In this chapter we shall discuss two fundamental theorems due to 
Robinson (1979, 1981) on the upper-Lipschitz continuity of the so- 
lution map in affine variational inequality problems. The theorem 
on the upper-Lipschitz continuity of the solution map in linear com- 
plementarity problems due to Cottle et al. (1992) is also studied 
in this chapter. The Walkup-Wets Theorem (see Walkup and Wets 
(1969)), which we analyze in Section 7.1, is the basis for obtaining 
these results. 

7.1 The Walkup-Wets Theorem 

Let A c Rn be a nonempty subset. Let T : Rn --t Rm be an affine 
operator; that is there exist a linear operator A : Rn -t Rm and a 
vector b E Rm such that T(X) = Ax + b for every x E Rn. Define 

Definition 7.1. (See Walkup and Wets (1969), Definition 1) A 
subset A C Rn is said to have property Cj  if for every affine operator 
T : Rn --t Rm, m E N, with dim(ker(r)) = j ,  the inverse mapping 
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y + A(y) is Lipschitz on its effective domain. This means that 
there exists a constant ! > 0 such that 

A(Y') C A(Y) + lll~' - yllB~n whenever A(y) # 0, A(yf) # 0. 
(7.2) . . 

In the above definition, dim(ker(r)) denotes the dimension of 
the affine set 

ker(r) = { x  E Rn : T(X) = 0). 

The following theorem is a key tool for proving other results in 
this chapter. 

Theorem 7.1 (The Walkup-Wets Theorem; see Walkup and Wets 
(1969), Theorem 1). Let A c Rn be a nonempty closed convex set 
and let j E N ,  1 5 j 5 n - 1. Then A is a polyhedral convex set if 
and only if it  has property Cj .  

In the sequel, we will use only one assertion of this theorem: If A 
is a polyhedral convex set, then it has property C j .  A detailed proof 
of this assertion can be found in Mangasarian and Shiau (1987). 

Corollary 7.1. If A C Rn is a polyhedral convex set and if T : 
Rn t Rm is an af ine  operator, then there exists a constant ! > 0 
such that (7.2), where A(y) is defined by (7.1) for all y E Rn, holds. 
Proof. If j := dim(ker(r)) satisfies the condition 1 5 j 5 n - 1, 
then the conclusion is immediate from Theorem 7.1. If dim(ker(r)) = 
n then ker(r) = Rn, and we have 

This shows that (7.2) is fulfilled with any ! > 0. We now suppose 
that dim(ker(7)) = 0. Let T(X) = Ax + b, where A : Rn + Rm 
is a linear operator and b E Rm. Since T is an injective mapping, 
Y := r (Rn)  is an affine set in Rm with dimY = n, and that n 5 m. 
Likewise, the set & := A(Rn) is a linear subspace of Rm with 
dim& = n. Let 2 : Rn + Yo be the linear operator defined by 
setting x x  = Ax for every x E Rn. It is easily shown that 

for every y E Y and y' E Y. From this we deduce that (7.2) is 
satisfied with ! := 112-' 11. 0 

Remark 7.1. Under the assumptions of Corollary 7.1, for every 
y E Rm, A(y) is a polyhedral convex set (possibly empty). 
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Remark 7.2. The conclusion of Theorem 7.1 is not true if one 
chooses j = 0. Namely, the arguments described in the final part of 
the proof of Corollary 7.1 show that any nonempty set A C Rn has 
property Lo Similarly, the conclusion of Theorem 7.1 is not valid 
if j = n. 

Corollary 7.2. For any nonempty polyhedral convex set A C Rn 
and any matrix C E RSXn there exists a constant ! > 0 such that 

A(C, d") C A(C, dl) + ![Id" - d'll BRn 

whenever A(C, dl) and A(C, dl1) are nonempty; where 

for every d E RS. 
Proof. Set T(X) = Cx. Since 

where A(y) is defined by (7.1), applying Corollary 7.1 we can find 
! > 0 such that the Lipschitz continuity property stated in (7.3) is 
satisfied. 0 

Corollary 7.3. For any nonempty polyhedral convex set A C Rn, 
any matrix A E Rmxn and matrix C E RSXn there exists a constant 
! > 0 such that 

A(A, C, b", d") C A(A, C, b', dl) + !(llbU - blII + [Id" - dlII)BRn (7.4) 

whenever A(A, C, b', d') and A(A, C, b", dl') are nonempty; where 

for every b E Rm and d E RS. 
Proof. Define 

where E denotes the unit matrix in RmXm and 0 denotes the null 
in RSXm. Let 
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By Corollary 7.2, there exists ! > 0 such that 

- - - - 
whenever A(C, b', dl) # 8 and A(C, b", d") # 0, where 

Since 

A(A,C,b,d)  = { x E A :  - - 3 w e R m ,  ~ 2 0 ,  A X - w = b ,  C x = d )  
= PrRn (A(C, b, d)) 

where P r p ( x ,  W) = x for every (x, w) E Rn x Rm, we see at once 
that (7.5) implies (7.4). 

7.2 Upper-Lipschitz Continuity with re- 
spect to Linear Variables 

The notion of polyhedral multifunction was proposed by Robinson 
(see Robinson (1979, 1981). We now study several basic facts con- 
cerning polyhedral multifunctions. 

Definition 7.2. If @ : Rn + 2Rm is a multifunction then its graph 
and effective domain are defined, respectively, by setting 

Definition 7.3. A set-valued mapping @ : Rn + 2Rm is called a 
polyhedral multifunction if its graph can be represented as the union 
of finitely many polyhedral convex sets in Rn x Rm. 

The following statement shows that the normal-cone operator 
corresponding to a polyhedral convex set is a polyhedral multifunc- 
tion. 

Proposition 7.1. (See Robinson (1981)) Suppose that A c Rn is 
a nonempty polyhedral convex set. Then the formula 

@(x) = NA (x) (x E Rn) 

defines a polyhedral multifunction @ : Rn + 2Rn 
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Proof. Let m E N ,  A E RnXn and b E Rm be such that A = {x E 
Rn : Ax 2 b). Set I = (1,. . . ,m) .  Let 

F, = {x E Rn : A,x = b,, AI\,x > bq,) 

be the pseudo-face of A corresponding to an index set a, C I. For 
every x E F, we have 

(See the proof of Theorem 4.2.) Since 

NA (x) = {J E Rn : (J, V) I 0 'dv E Tn (x) ) , 

we have J E Na(x) if and only if the inequality (J, v) < 0 is a con- 
sequence of the inequality system A,v > 0. Consequently, applying 
Farkas' Lemma (see Theorem 3.2) we deduce that J E Na(x) if and 
only if there exist XI 2 0 , .  . . , A, 2 0 such that 

where Ai denotes the i-th row of matrix A. (Note that if a = 8 
and x E Fa, then x E intA; hence J = 0 for every J E NA(x).) 
Define 

Obviously, R, C graph@. Note that 

R, = {(x, J) E Rn x Rn : A,x = b,, AI\,X > b1\,, 
( = C,,, &(-AT) for some A, E R?'}. 

is a convex set. Here la1 denotes the number of elements in a. It 
is easily seen that the topological closure 2, of R, is given by the 
formula 

where PrRnxRn (x, J ,  A,) = (x, J). It is clear that the set in the last 
curly brackets is a polyhedral convex set. From this fact, the above 
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formula for n, and Theorem 19.1 in Rockafellar (1970) we deduce 
that 2, is a polyhedral convex set (see the proof of Theorem 4.3). 
Since A = UacI Fa, we have 

Observe that graph@ is a closed set. Indeed, suppose that {(xk, Jk))  
k k  is a sequence satisfying (xk, Jk) 4 (3, f)  E Rn x Rn, and (x , J ) E 

graph@ for every k E N. On account of formula (1.12), we have 

Fixing any y E A and taking limit as k t oo, from the last inequal- 
ity we obtain (f, y - Z) < 0. Since this inequality holds for each 
y E A, we see that f E NA(3). Hence (3, f)  E graph@. We have 
thus proved that the set graph@ is closed. On account of this fact, 
from (7.6) we deduce that 

This shows that graph@ can be represented as the union of finitely 
many polyhedral convex sets. The proof is complete. 0 

The following statement shows that the solution map of a para- 
metric affine variational inequality problem is a polyhedral multi- 
function (on the linear variables of the problem). 

Proposition 7.2. Suppose that M E RnXn, A E Rmxn and C E 
RSXn are given matrices. Then the fomnula 

where (q, b, d) E Rn x Rm x RS, A(b, d) := {x E Rn : Ax > b, Cx = 

d) and Sol(AVI(M, q, A(b, d))) denotes the solution set of problem 
(6.1) with A = A(b, d), defines a polyhedral multifunction 

Proof. According to Corollary 5.2, x E Sol(AVI(M, q, A(b, d))) if 
and only if there exist X = (A1, . . . , Am) E Rm and p = (pl ,  . . . , p,) E 
RS such that 

M X - A ~ A - C ~ ~ + ~ = O ,  
Ax 2 b, Cx = d, X > 0, (7.7) 
XT(AX - b) = 0. 
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Let I = { I , .  . . , m). For each index set a c I, we define 

where 

Pr1(x, q,b, d, A,  p) = (x, 9, b, d) 

for all (x, q, b, d, A ,  p) E Rn x Rn x Rm x RS x Rm x RS. Hence Q, 
is a polyhedral convex set. Note that 

graph@ = u Q,. 
a C I  

Indeed, for each (x, q, b, d) E graph@ we have 

x E Sol(AVI(M, q, A(b, d))). 

So there exist A = (A1,. . . , A m )  E Rm and p = (p l , .  . . , p s )  E RS 
satisfying (7.7). Let a = {i E I : Aix = bi). For every i E I \ a, we 
have Aix > bi. Then from the equality Ai(Aix - bi) = 0 we deduce 
that Xi = 0 for every i E I \ a. On account of this remark, we see 
that (x, q, b, d, A, p) satisfies all the conditions described in the curly 
braces in formula (7.8). This implies that (x, q, b, d) E Q,. We thus 

get 
graph@ C U Qa. 

a C I  

Since the reverse inclusion is obvious, we obtain formula (7.9), which 
shows that graph@ can be represented as the union of finitely many 
polyhedral convex sets. 

Theorem 7.2. (See Robinson (l98l),  Proposition 1) If Q, : Rn -t 
2Rm is a polyhedral multifunction, then there exists a constant e > 0 
such that for every 3 t. Rn there is a neighborhood U3 of 3 satisfying 

Definition 7.4. (See Robinson (1981)) Suppose that @ : Rn -t 
2Rm is a multifunction and 3 z: Rn is a given point. If there exist 
e > 0 and a neighborhood Uz of Z such that property (7.10) is valid, 
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then @ is said to be locally upper-Lipschitz at 3 with the Lipschitz 
constant !. 

The locally upper-Lipschitz property is weaker than the locally 
Lipschitz property which is described as follows. 

Definition 7.5. A multifunction @ : Rn t 2Rrn is said to be 
locally Lipschitx at 3 E Rn if there exist a constant ! > 0 and a 
neighborhood Uz of Z such that 

@(x) C @(u) +!llx 'dx E U,,Vu E U,. 

If there exists a constant ! > 0 such that 

for all x and u from a subset R C Rn, then @ is said to be Lipschitz 
on 0. 

From Theorem 7.2 it follows that if @ is a polyhedral multi- 
function then it is locally upper-Lipschitz at any point in Rn with 
the same Lipschitz constant. Note that the diameter diamUZ := 
sup{ll y - xll : x E U,, y E U,} of neighborhood UZ depends on 3 
and it can change greatly from one point to another. 

Proof of Theorem 7.2. 
Since @ is a polyhedral multifunction, there exist nonempty 

polyhedral convex sets Qj C Rn x Rm ( j  = 1 , .  . . , k) such that 

where J = (1, . . . , k). For each j E J we consider the multifunction 
Qj : Rn -+ 2Rrn defined by setting 

Obviously, graphaj = Qj. From (7.11) and (7.12) we deduce that 

graph@ = u graph@j, @(a) = U Oj (x). 
j€ J j€ J 

CLAIM 1. For each j E J there exists a constant tj > 0 such that 
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whenever Qj(x) # 0 and Qj(u) # 0. (This means that Qj is Lips- 
chitz on its eflective domain.) 

For proving the claim, consider the linear operator T : Rn x 
Rm t Rn defined by setting T(X, y) = x for every (x, y) E Rn x Rm. 
Let 

Qj(x) = {Z E Qj  : T(.z)=x). (7.14) 

By Corollary 7.1, there exists -ej > 0 such that 

whenever Qj(x) # 0 and Qj(u) # 0. From (7.12) and (7.14) it 
follows that 

Qj  (x) = {x) x Qj (x) YX E Rn. (7.16) 

In particular, Qj  (x) # 0 if and only if (Pj (x) # 0. Given any x E Rn, 
u E Rn and y E (Pj (x), from (7.15) and (7.16) we see that there exist 
v E Q(u) such that 

Since II(x, y) - (u, v)ll = (111 - u1I2 + Ily - V I I ~ ) ~ ' ~ ,  the last inequality 
implies that ( 1  y - vll 5 tj llx - ulI. From what has already been 
proved, it may be concluded that (7.13) holds whenever a j (x )  # 0 
and (Pj(u) # 0. 

We set e = max{lj : j E J ) .  The proof will be completed if we 
can establish the following fact. 

CLAIM 2. For each 5 E Rn there exists a neighborhood U5 of 3 such 
that (7.10) holds. 

Let f E Rn be given arbitrarily. Define 

Since domQj = r (Qj) ,  where T is the linear operator defined above, 
we see that domQj is a polyhedral convex set. This implies that 
the set UjEJ1 dom(Pj is closed. (Note that if J1 = 0 then this set is 
empty.) As f $ UjEJl domQj, there must exist E > 0 such that the 
neighborhood U5 := B(3, E) of 3 does not intersect the set 
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Let x E Uz. If x $! UjtJodomQj, then 

So the inclusion (7.10) is valid. If x E Uj, Jo domQj, then we have 

where JA = {j E Jo : x E domQj). For each j E JL, according to 
Claim 1, we have 

Claim 2 has been proved. 
Remark 7.3. From the proof of Theorem 7.2 it is easily seen that 
Q is Lipschitz on the set njE domQj with the Lipschitz constant Q. 

Combining Theorem 7.2 with Proposition 7.2 we obtain the next 
result on upper-Lipschitz continuity of the solution map in a general 
AVI problem where the linear variables are subject to perturbation. 
Theorem 7.3. Suppose that M E RnXn, A E RmXn and C E RsXn 
are given matrices. Then there exists a constant Q > 0 such that the 
multzfunction Q : Rn x Rm x RS -+ 2Rn defined by the formula 

where (q, b,d) E Rn x Rm x RS and A(b,d) := {x E Rn : Ax 2 
b, Cx = d ) ,  is locally upper-Lipschitz at any point (q, z, d) E Rn x 
Rm x Rs with the Lipschitz constant Q. 

Applying Theorem 7.3 to the case where the constraint set A(b, d) 
of the problem AVI(M, q, A (b, d ) )  is fixed (i.e., the pair (b, d )  is not 
subject to perturbations), we have the following result. 
Corollary 7.4. Suppose that M E RnXn is a given matrix and 
A c Rn is a nonempty polyhedral convex set. Then there exists a 
constant Q > 0 such that the multifunction Q : Rn -+ 2Rn defined by 
the formula 

Q(9) = Sol(AVI(M q, A)), 
where q E Rn, is locally upper-Lipschitz at any point tj E Rn with 
the Lipschitz constant Q. 
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7.3 Upper-Lipschitz Continuity with re- 
spect to all Variables 

Our aim in this section is to study some results on locally upper- 
Lipschitz continuity of the multifunction @ : RnXn x Rn --t 2Rn 
defined by the formula 

where Sol(AVI(M, q, A))  denotes the solution set of the problem 
(6.1). First we consider the case where A is a polyhedral convex 
cone. Then we consider the case where A is an arbitrary nonempty 
polyhedral convex set. 

The following theorem specializes to Theorem 7.5.1 in Cottle et 
al. (1992) about the solution map in parametric linear complemen- 
tarity problems if A = R:. 
Theorem 7.4. Suppose that A C Rn is a polyhedral convex cone. 
Suppose that M E Rnxn is a given matrix and q E Rn is a given 
vector. If M is copositive on A and 

q E int ([SO~(AVI(M, 0, A))]+) , (7.17) 

then there exist constants e > 0, 6 > 0 and ! > 0 such that if 
( z ,  9 E RnXn x Rn, R is copositive on A, and if 

then the set s ~ ~ ( A v I ( G ,  F, A)) is nonempty, 

s O ~ ( A V I ( ~ ,  F7 A)) C 6 8 ~ .  , (7.19) 

and 

SO~(AVI(Z,  F, A)) c Sol(AVI(M, q1 A))+e(l lW-~11 + ~ l ~ - q l l ) ~ ~ n .  
(7.20) 

Proof. Suppose that M is copositive on A and (7.17) is satisfied. - 
Since A is a polyhedral convex cone, we see that for every (M,  E 
RnXn x Rn the problem AVI(%, ?,9 A) is an GLCP. In particular, 
AVI(M, 0, A) is a GLCP problem and we have 
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Since Sol(AVI(M, 0, A)) is a closed cone, Lemma 6.4 shows that 
(7.17) is equivalent to the following condition 

q T ~  > 0 'dv E Sol(AVI(M, 0, A)) \ (0). (7.21) 

CLAIM 1. There exists s > 0 such that i f  ( z ,  9 E RnXn x Rn, is 
copositive on A, and if (7.18) holds, then the set S O ~ ( A V I ( ~ ,  F, A)) 
is nonempty. 

Suppose Claim 1 were false. Then we could find a sequence 
{(Mk, qk)) in Rnxn x Rn such that M%S copositive on A for every 
k E N ,  (M" qk) t (M, q) as k -t oo, and sol(Av1(Mk7 qk, A))  = 0 
for every k E N. According to Theorem 6.5, we must have 

qk $ int ([so~(AvI(M~,o,A))]+) 'dk E N. 

Applying Lemma 6.4 we can assert that for each k E N there exists 
vk E Sol(AVI(Mk, 0, A)) \ (0) such that (q"T~k < 0. Then we have 

for every k E N. Without loss of generality we can assume that 

From (7.22) it follows that 

Taking limits as k t oo we obtain 

Zi E A, MU E A', (Mz, 6) = 0. 

k T  k This shows that ij E Sol(AVI(M, 0, A)). Since (q ) v 5 0, we see 
v lc < 0 for every k E N. Letting k t oo yields qTv 5 0. that ( q V T j q  - 

Since Zi E Sol(AVI(M, 0, A)) \ (01, the last inequality contradicts 
(7.21). We have thus justified Claim 1. 

CLAIM 2. There exist E > 0 and b > 0 such that if ( W , a  E 
Rnxn x Rn, z is copositive on A, and if (7.18) holds, then inclusion 
(7.19) is satisfied. 
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To obtain a contradiction, suppose that there exist a sequence 
{(Mk, qk)) in Rnxn x Rn and a sequence {xk) in Rn such that M k  
is copositive on A for every k E N,  xk E Sol(AVI(Mk, qk,A)) for 
every k E N ,  (Mk,q" + (M,q) as k + oo, and Ilxkll + +oo as 
k + oo. Since xk E SO~(AVI(M" qk, A)) ,  we see that 

for every k E N. There is no loss of generality in assuming that 

From (7.23) it follows that 

From this we conclude that fl E Sol(AVI(M, 0, A)). Since 

and since Of A = A and Mk is copositive on A, we have 

Then 

This contradicts (7.21). Claim 2 has been proved. 

Now we are in a position to show that there exist e > 0, S > 0 
and e > 0 such that if (G, 3 E RnXn x Rn, is copositive on A, 
and if (7.18) holds, then SO~(AVI(G, F, A)) # 0 and (7. lg), (7.20) 
are satisfied. 

Combining Claim 1 with Claim 2 we see that there exist e > 0 
and 6 > 0 such that if ( G , $  E Rnxn x Rn, is copositive on 
A,  and if (7.18) holds, then SOI(AVI(G, F, A)) # 0 and (7.19) is 
satisfied. According to Corollary 7.4, for the given matrix M and 
vector q, there exist a constant eM > 0 and a neighborhood U, of q 
such that 
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for every q' E U,. Let ( z ,  ?j) E RnXn x Rn be such that is 
copositive on A and (7.18) holds. Select any 5 E S O ~ ( A V I ( ~ ,  A)). 
Setting 

q = c + ( z - ~ ) ~  (7.25) 

we will show that 

i E Sol(AVI(M, q, A)). (7.26) 

Since 
( Z Z + ~ , X - ~ ) > O  V X E A ,  

using (7.25) we deduce that 

for every x E A. This shows that (7.26) is valid. From (7.18), (7.19) 
and (7.25) it follows that 

Consequently, choosing a smaller E > 0 if necessary, we can assert 
that g E U, whenever (MI, 3 E RnXn x Rn, &? is copositive on A, 
(7.18) holds. Hence from (7.24) and (7.26) we deduce that there 
exists x E Sol(AVI(M, q, A)) such that 

where Q = max{QM, 6QM). We have thus obtained (7.20). The proof 
is complete. 

Our next goal is to establish the following interesting result on 
AVI problems with positive semidefinite matrices. 

Theorem 7.5. (See Robinson (1979), Theorem 2) Let M E Rnxn be 
a positive semidefinite matrix, A a nonempty polyhedral convex set 
in Rn, and q E Rn.  Then the following two properties are equivalent: 

(i) The solution set Sol(AVI(M, q, A)) is nonempty and bounded; 
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(ii) There exists E > 0 such that for each G E RnXn and each 
8 E Rn with 

the set S O ~ ( A V I ( ~ ,  A)) is nonempty. 

For proving the above theorem we shall need the following three 
auxiliary lemmas in which it  is assumed that M E RnXn is a positive 
semidefinite matrix, A C Rn is a nonempty polyhedral convex set, 
and q E Rn.  We set MA = {Mx : x E A). 

Lemma 7.1. (See, for instance, Best and Chakravarti (1992)) For 
any fi E Rn, if ifTM# = 0 then ( M  + MT)fi = 0. 

Proof. Consider the unconstrained quadratic program 

min f ( x )  := I x T ( ~  + M ~ ) X  : x E R ~ J .  I 2 

From our assumptions it follows that 

for every x E Rn. Hence fi is a global solution of the above problem. 
By Theorem 3.1 we have 

which completes the proof. 0 

Lemma 7.2. The inclusion 

q E int((Of A)' - MA) 

holds if and only if 

Vv E 0' A \ (0) 3 x  E A such that (Mx + q, v) > 0. (7.29) 

Proof. Necessity: Suppose that (7.28) holds. Then there exists 
E > 0 such that 

B(q, E) c (OfA)' - MA. (7.30) 
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To obtain a contradiction, suppose that there exists a E O+A \ (0) 
such that 

( M X + ~ , ~  5 0  ~ x E A .  

By (7.30), for every q' E B(q, E )  there exist w E (O+A)+ and x E A 
such that q' = w - Mx. So we have 

This clearly forces fi = 0, which is impossible. 
Sufficiency: On the contrary, suppose that (7.29) is valid, but 

(7.28) is false. Then there exists a sequence {qk) c Rn such that 
qk $ (Of A)+ - M A  for all k E N ,  and qk + q. From this we deduce 
that 

( M A + ~ " ~ ( o + A ) +  = 0 vk E N. 

Since M A  + q%nd (O+A)+ are two disjoint polyhedral convex sets, 
by Theorem 11.3 from Rockafellar (1970) there exists a hyperplane 
separating these sets properly. Since (O+A)+ is a cone, by Theorem 
11.7 from Rockafellar (1970) there exists a hyperplane which sepa- 
rates the above two sets properly and passes through the origin. So 
there exists vk E Rn with llvkll = 1 such that 

(v" M x  + qk) 5 0 5 (vk, w) tlx E A, tlw E (Of A)'. (7.31) 

(Actually, the above-mentioned hyperplane is defined by the for- 
mula H = {x E Rn : (vk, Z )  = 0)). Without loss of generality we 
can assume that vk 4 V E Rn, 1 1 ~ 1 1  = 1. From (7.31) it follows that 

and 
(8, w) 2 0 vw E (O+A)+. (7.33) 

By Theorem 14.1 from Rockafellar (1970), from (7.33) it follows 
that fi E O+A. Combining this with (7.32) we see that (7.29) is 
false, which is impossible. 

Lemma 7.3. (See Gowda-Pang (1994a), Theorem 7) The solution 
set Sol(AVI(M, q, A))  is nonernpty and bounded if and only if (7.28) 
holds. 

Proof. Necessity: To obtain a contradiction, suppose that the set 
Sol(AVI(M, q, A)) is nonempty and bounded, but (7.28) does not 
hold. Then, by Lemma 7.2 there exists V E O+A \ (0) such that 
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(7.32) holds. Select a point xO E Sol(AVI(M, q, A)).  For each t > 0, 
we set xt = xO + tG. Since f l  E O+A, we have xt E A for every t > 0. 
Substituting xt for x in (7.32) we get 

This implies that (a, M5) 5 0. Besides, since M is positive semidef- 
inite, we have (5, MU) 2 0. So 

(5, MU) = 0. (7.34) 

By Lemma 7.1, from (7.34) we obtain 

Fix any x E A. On account of (7.32), (7.34), (7.35) and the fact 
that xO E Sol(AVI(M, q, A)), we have 

50 
-t ( (M + ~ ~ 1 5 ,  xO) - 

Since this holds for every x E A, xt E Sol(AVI(M, q, A)). As the last 
inclusion is valid for each t > 0, we conclude that Sol(AVI(M, q, A)) 
is unbounded, a contradiction. 

Suficiency: Suppose that (7.28) holds. We have to show that 
the set Sol(AVI(M, q, A)) is nonempty and bounded. By (7.28), 

q E (O+A)+ - MA. 

Hence there exist w E (O+A)+ and 3 E A such that q = w - MZ. 
Since MZ + q = w E (Of A)+, for every v E O+A it holds 

Since M is a positive semidefinite matrix, we see that both con- 
ditions (i) and (ii) in Theorem 6.1 are satisfied. Hence the set 
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Sol(AVI(M, q, A)) is nonempty. To show that Sol(AVI(M, q, A))  is 
bounded we suppose, contrary to our claim, that there exists a se- 
quence {x" in Sol(AVI(M, q, A)) such that 11x"1 1 +m. There is 
no loss of generality in assuming that xk # 0 for each k E N ,  and 

Let m E N ,  A E Rmxn and b E Rm be such that A = {x E Rn : 
Ax 2 b}. Since Axk 2 b for every k E N ,  dividing the inequality 
by Ilxkll and letting k --+ oo we obtain A i  2 0. This shows that 
8 E O+A. We have 

Hence 

k k  ( M X ~  + q, x) 2 (Mx , x ) + (q, xk) 'dx E A 'dk E N. (7.36) 

Dividing the last inequality by 11x"12 and letting k -+ oo we get 
0 2 ( M i ,  v) . Since M is positive semidefinite, from this we see that 
( M i ,  i) = 0. Thus, by Lemma 7.1 we have 

Fix a point x E A. Since ( M X ' , X ~ )  2 0 for every k E N ,  (7.36) 
implies that 

( M X ~  + q, x) 2 (q, x" 'dk E N. 

Dividing the last inequality by IlxkII and letting k -+ oo we obtain 

Combining this with (7.37) we can assert that 

Since i E (OtA) \ {O}, from the last fact and Lemma 7.2 it follows 
that (7.28) does not hold. We have thus arrived at a contradiction. 
The proof is complete. 

Proof of Theorem 7.5. 
We first prove the implication (i) * (ii). To obtain a contradic- 

tion, suppose that Sol(AVI(M, q, A)) is nonempty and bounded, 
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while there exists a sequence (Mk,qk)  E Rnxn x Rn such that 
(Mk7 qk) + (M7 q) and 

Since A is nonempty, for j E N large enough, the set 

is nonempty. Without restriction of generality we can assume that 
Aj  # 0 for every j E N. By the Hartman-Stampacchia Theorem 
(Theorem 5.1) we can find a point, denoted by xkj, in the solution 
set SO~(AVI(M"~~" ,~) ) .  We have 

Note that 
llxkliIl = j 'dj E N. (7.40) 

Indeed, if IlxhiII < j then there exists p > 0 such that B(xhj, p) C 

B(0, j ) .  Hence from (7.39) it follows that 

By Proposition 5.3, this implies that x"j E Sol(AVI(Mk, qk,  A)), 
which is impossible because (7.38) holds. Fixing an index j E N 
we consider the sequence { x ~ T ~ ) ~ ~ N .  From (7.40) we deduce that 
this sequence has a convergent subsequence. There is no loss of 
generality in assuming that 

lim xkj = xj, xj  E Rn, llxj 11 = j .  k+CG 
(7.41) 

Letting k -+ rn we deduce from (7.39) that 

( M X ~  + q , x  -x j )  > 0 'dx E .Aj. (7.42) 

On account of (7.41), without loss of generality we can assume that 

Let us fix a point x E A. It is clear that there exists an index 
j, E N such that x E Aj for every j > j,. F'rom (7.42) we deduce 
that 

(Mxi + q,x - xj) > 0 'dj > jz. 
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Hence 

As in the last part of the proof of Lemma 7.3, we can show that 
E (O+A) \ (0) and deduce from (7.43) the following inequality 

(Mx + q, 5)  I 0. 

Since the latter holds for every x E A, applying Lemma 7.2 we see 
that the inclusion (7.28) cannot hold. According to Lemma 7.3, the 
last fact implies that the set Sol(AVI(M, q, A)) cannot be nonempty 
and bounded. This contradicts our assumption. 

We now prove the implication (ii) + (i). Suppose that there 
exists E > 0 such that if matrix W E RnXn and vector E Rn sat- 
isfy condition (7.27) then the set SO~(AVI(%, ?? A)) is nonempty. 
Consequently, for any E Rn satisfying - qll < E ,  the set 
Sol(AVI(M, F, A)) is nonempty. Let Z t. Sol(AVI(M, if, A)). For 
any v E O+A we have 

Hence MZ + E (O+A)+. So we have q E (O+A)+ - MA. Since 
this inclusion is valid for each F satisfying [IF- qll < el we conclude 
that 

q E int((0'A)' - MA). 

By Lemma 7.3, the set Sol(AVI(M, q, A)) is nonempty and bounded. 
The proof is complete. 

Let us consider three illustrative examples. 

Example 7.1. Setting A = [O, +oo) c R1, M = (-I), and q = 

0, we have Sol(AVI(M, q, A)) = (0). Note that matrix M is not - 
positive semidefinite. Taking M = M and if = -0, where 8 > 0, 
we check at once that S O ~ ( A V I ( ~ ,  F, A))  = 0. So, for this AVI 
problem, property (i) in Theorem 7.5 holds, but property (ii) does 
not hold. This example shows that, in Theorem 7.5, one cannot 
omit the assumption that M is a positive semidefinite matrix. 

Example 7.2. SettingA = (-oo,+oo) = R1, M = (O), andq=O,  
we have Sol(AVI(M, q, A)) = A. So property (i) in Theorem 7.5 
does not hold for this example. Taking MI = (0) and lf = 8,  where 
0 > 0, we have S O ~ ( A V I ( ~ , ~ ~ ,  A)) = 0. This shows that, for the 
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AVI problem under consideration, property (ii) in Theorem 7.5 fails 
to hold. 
Example 7.3. Setting A = [l,+oo) c R1, M = (O),  and q = 0, - 
we have Sol(AVI(M, q, A)) = A. Taking M = M and F = 0, where 
6 > 0, we see that S O ~ ( A V I ( ~ ,  6 A)) = {I). But taking a = (-0) 
and y = 0, where 6 > 0, we see that S O ~ ( A V I ( ~ ,  F, A))  = 0. So, for 
this problem, both the properties (i) and (ii) in Theorem 7.5 do not 
hold. 

In connection with Theorem 7.5, it is natural to raise the fol- 
lowing open question. 
QUESTION: IS it true that property (i) in Theorem 7.5 implies that 
there exists E > 0 such that if matrix a E Rnxn and vector E Rn 
satisfy condition (7.27) then the set sO~(AVI(W, F, A)) is bounded 
(may be empty)? 

The next example shows that property (i) in Theorem 7.5 does 
not imply that the solution sets S O ~ ( A V I ( ~ ,  F, A)), where (z, lj) is 
taken from a neighborhood of (M, q), are uniformly bounded. 
Example 7.4. (See Robinson (1979), pp. 139-140) Let A = 
[0, +oo) C R1, M = (0)) and q = 1. It is clear that 

Sol(AVI(M, q, A)) = (0) - 
Taking M = (-,u) and F =  1, where ,u > 0, we have 

From this we conclude that there exist no E > 0 and S > 0 such 
that if matrix E RIX1 and vector E R1 satisfy condition (7.27) 
then s ~ ~ ( A v I ( ; ~ ~ ,  A)) c 6 ~ ~ 1 .  

The following theorem is one of the main results on solution 
stability of AVI problems. One can observe that this theorem and 
Theorem 7.4 are independent results. 
Theorem 7.6. (See Robinson (1979), Theorem 2) Suppose that 
A c Rn is  a nonempty polyhedral convex set. Suppose that M E 
RnXn is  a given matrix and q E Rn is a given vector. If M is  a posi- 
tive semidefinite matrix and i f  the solution set Sol(AVI(M, q, A))  is 
nonempty and bounded, then there exist constants E > 0, 6 > 0 and 
! > 0 such that if ( a ,  E RnXn x Rn, is  positive semidefinite, 
and i f  

m a x m -  MIL [IF-911) < E .  (7.44) 
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then the set s ~ ~ ( A v I ( W ,  A)) is nonempty, 

SO~(AVI(%, if, A)) c 6 8p, (7.45) 

and 

S O ~ ( A V I ( ; ~ ~ ,  if, A)) c sol(AVI(M, q, a ) ) + e ( l l F -  + I I F ~ I I ) B R ~ .  
(7.46) 

Proof. Since M is positive semidefinite and Sol(AVI(M, q, A)) is 
nonempty and bounded, by Lemmas 7.2 and 7.3 we have 

b'v E O'A \ (0) 32 E A such that (Mx + q,  v) > 0. (7.47) 

Moreover, according to Theorem 7.5, there exists EO > 0 such that 
for each matrix E RnXn and each if E Rn satisfying 

the set S O ~ ( A V I ( ~ ,  if, A)) is nonempty. We claim that there exist 
constants E > 0 and 6 > 0 such that (7.45) holds for every ( F ,  @) E 

A* 

Rnxn x Rn satisfying condition (7.44) and the requirement that M 
is a positive semidefinite matrix. Indeed, if the claim were false 
we would find a sequence {(Mk, q"} in RnXn x Rn and a sequence 
{xk) in Rn such that Mk is positive semidefinite for every k E,  

k k ( M  ,q  ) -+ (M,q), xk E S O ~ ( A V I ( M ~ , ~ ~ , A ) )  for every k E N ,  and 
lIxkll -+ +m as k + 00. For each x E A, we have 

Without loss of generality we can assume that xk # 0 for every 
k E N, and 

It is easily seen that B E (Of A)+. From (7.48) it follows that 

Dividing the last inequality by llxk112 and letting k -t oo we get 
0 2 (Mfi, Z). Since M is positive semidefinite, from this we see that 
(MB,Z) = 0. By Lemma 7.1 we have 
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Fix a point x E A. Since Mk is positive semidefinite, we have 
(Mkxk,  x" ) 0 for every k E N. Hence (7.49) implies that 

Dividing the last inequality by llxkll and letting k + oo we obtain 

Combining this with (7.50) we get 

(Mx + q, 8 )  5 0 'dx E A. 

Since 8  E (O+A)+ \ (01, the last fact contradicts (7.47). Our claim 
has been proved. We can now proceed analogously to  the proof of 
Claim 3 in the proof of Theorem 7.4 to find the required constants 
E > O ,  S>Oand!>O. 0 

7.4 Commentaries 

As it has been noted in Robinson (1981), p. 206, the class of poly- 
hedral multifunctions is closed under finite addition, scalar multi- 
plication, and finite composition. This means that if @ : Rn -t 2Rm, 
Q : Rm + 2RS, aj : Rn + 2Rm ( j  = 1 , .  . . ,m) are some given poly- 
hedral multifuntions and X E R is a given scalar, then the formulae 

(X@)(x) = X@(x) (trx E Rn), 

create new polyhedral multifunctions which are denoted by A@, al+ 
. . . + @,+ and Q o @, respectively. 

The proof of Theorem 7.4 is similar in spirit to the proof of 
Theorem 7.5.1 in Cottle et al. (1992). 

The 'elementary' proof of the results of Robinson (see Theorems 
7.5 and 7.6) on the solution stability of AVI problems with positive 
semidefinite matrices given in this chapter is new. We hope that 
it can expose furthermore the beauty of these results. The original 
proof of Robinson is based on a general solution stability theorem 



142 7. Upper-Lipschi tz Continuity of the Solution Map 

for variational inequalities in Banach spaces (see Robinson (1979), 
Theorem 1). 

Results presented in this chapter deal only with upper-Lipschitz 
continuity properties of the solution map of parametric AVI prob- 
lems. For multifunctions, the lower semicontinuity, the upper semi- 
continuity, the openness, the Aubin property, the metric regular- 
ity, and the single-valuedness are other interesting properties which 
have many applications (see Aubin and Frankowska (1990), Mor- 
dukhovich (1993), Rockafellar and Wets (1998), and references 
therein). It is of interest to characterize these properties of the 
solution map in parametric AVI problems (in particular, of the so- 
lution map in parametric LCP problems). Some results in this 
direction have been obtained (see, for instance, Jansen and Tijs 
(l987), Gowda (l992), Donchev and Rockafellar (l996), Oettli and 
Yen (1995), Gowda and Sznajder (1996)). We will study the lower 
semicontinuity and the upper semicontinuity the solution map of 
parametric AVI problems in Chapter 18. 




