Chapter 7

Upper-Lipschitz Continuity
of the Solution Map in

Affine Variational
Inequalities

In this chapter we shall discuss two fundamental theorems due to
Robinson (1979, 1981) on the upper-Lipschitz continuity of the so-
lution map in affine variational inequality problems. The theorem
on the upper-Lipschitz continuity of the solution map in linear com-
plementarity problems due to Cottle et al. (1992) is also studied
in this chapter. The Walkup-Wets Theorem (see Walkup and Wets
(1969)), which we analyze in Section 7.1, is the basis for obtaining
these results.

7.1 The Walkup-Wets Theorem

Let A C R™ be a nonempty subset. Let 7: R* — R™ be an affine
operator; that is there exist a linear operator A : R* — R™ and a
vector b € R™ such that 7(z) = Az + b for every z € R". Define

Ay)=7"'y)NA ={z el :7(z)=y} (7.1)
={zeA: Ar+b=y}. '
Definition 7.1. (See Walkup and Wets (1969), Definition 1) A
subset A C R" is said to have property L; if for every affine operator
7: R" — R™ m € N, with dim(ker(7)) = j, the inverse mapping
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y — A(y) is Lipschitz on its effective domain. This means that
there exists a constant £ > 0 such that

A(Y) € A(y) + £y — yl|Bre  whenever A(y) # 0, A(y') # 0.
(7.2)
In the above definition, dim(ker(7)) denotes the dimension of
the affine set
ker(t) = {z € R" : 7(z) = 0}.

The following theorem is a key tool for proving other results in
this chapter.

Theorem 7.1 (The Walkup-Wets Theorem; see Walkup and Wets
(1969), Theorem 1). Let A C R" be a nonempty closed convex set
andlet j€ N, 1 <j<n—1. Then A is a polyhedral convez set if
and only if it has property L;.

In the sequel, we will use only one assertion of this theorem: If A
is a polyhedral convex set, then it has property L;. A detailed proof
of this assertion can be found in Mangasarian and Shiau (1987).

Corollary 7.1. If A C R" is a polyhedral convex set and if T :
R™ — R™ is an affine operator, then there exists a constant £ > 0
such that (7.2), where A(y) is defined by (7.1) for ally € R", holds.
Proof. If j := dim(ker(7)) satisfies the condition 1 < j < n —1,
then the conclusion is immediate from Theorem 7.1. If dim(ker(7)) =
n then ker(r) = R", and we have

_ A ify=0
sw=rwna={g §0

This shows that (7.2) is fulfilled with any ¢ > 0. We now suppose
that dim(ker(r)) = 0. Let 7(z) = Az + b, where A : R* — R™
is a linear operator and b € R™. Since 7 is an injective mapping,
Y :=7(R") is an affine set in R™ with dimY = n, and that n < m.
Likewise, the set Yy := A(R") is a linear subspace of R™ with
dimYy = n. Let A: R — Yy be the linear operator defined by
setting Ax = Az for every x € R". It is easily shown that

I771 ) = 7 )l < A7l = vl
for every y € Y and 3 € Y. From this we deduce that (7.2) is
satisfied with £:= ||[A~!||. O

Remark 7.1. Under the assumptions of Corollary 7.1, for every
y € R™ A(y) is a polyhedral convex set (possibly empty).
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Remark 7.2. The conclusion of Theorem 7.1 is not true if one
chooses 7 = 0. Namely, the arguments described in the final part of
the proof of Corollary 7.1 show that any nonempty set A C R"™ has
property Lo. Similarly, the conclusion of Theorem 7.1 is not valid
it 1 =n.

Corollary 7.2. For any nonempty polyhedral conver set A C R"
and any matriz C € R**" there exists a constant £ > 0 such that

AC,d"y c AC,d") + ¢)|d" — d'|| Bre (7.3)
whenever A(C,d') and A(C,d") are nonempty,; where
ACd) ={xzeA: Cz=d}

for every d € R®.
Proof. Set 7(z) = Cz. Since

A(C,y) =1 y)NA = A(y)

where A(y) is defined by (7.1), applying Corollary 7.1 we can find
¢ > 0 such that the Lipschitz continuity property stated in (7.3) is
satisfied. O

Corollary 7.3. For any nonempty polyhedral convex set A C R",
any matrix A € R™*™ and matriz C' € R°*" there exists a constant
¢ > 0 such that

A(A,C V", d") € A(A,C Y, d) + (6" = V|| + ||d" = d'||) Bre (7.4)
whenever A(A,C,V,d") and A(A,C,b",d") are nonempty; where
AAChd)y:={zeA: Az >b, Cx=d}

for everybe R™ and d € R°.
Proof. Define

~ A -F .
— (m+s)x (n+m)
8 < o ) €R ,

where E denotes the unit matrix in R™*™ and 0 denotes the null
in R¥*™. Let

A={{z,w) e R"x R™: z €A, w>0}
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By Corollary 7.2, there exists ¢ > 0 such that

A(C,6",d") c AC Y, d)+ ()" =) + ||d" — d'||)Brotm  (7.5)

whenever A(C,¥/,d') # @ and A(C,b",d") # 0, where
. - {0 b
A(C,b,d) = {(m,w) eA:C (w) = (d>}_
Since

A(ACbd) ={zeA tJweR", w20, Av—w=b, Cx =d}
= Prpn(A(C, b, d))

where Prpa(z,w) = z for every (z,w) € R® x R™, we see at once
that (7.5) implies (7.4). O

7.2 Upper-Lipschitz Continuity with re-
spect to Linear Variables

The notion of polyhedral multifunction was proposed by Robinson
(see Robinson (1979, 1981). We now study several basic facts con-
cerning polyhedral multifunctions.

Definition 7.2. If ® : R® — 2" is a multifunction then its graph
and effective domain are defined, respectively, by setting

graph® = {(z,y) € R" x R™ : y € ®(x)},
dom® = {x € R": ®(z) # 0}.

Definition 7.3. A set-valued mapping ® : R* — 28" is called a
polyhedral multifunction if its graph can be represented as the union
of finitely many polyhedral convex sets in R™ x R™.

The following statement shows that the normal-cone operator
corresponding to a polyhedral convex set is a polyhedral multifunc-
tion.

Proposition 7.1. (See Robinson (1981)) Suppose that A C R" is
a nonempty polyhedral convex set. Then the formula

®(z) = Na(z) (z € R")

defines a polyhedral multifunction ® : R — 28",
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Proof. Let m € N, A € R™" and b € R™ be such that A = {z €
R™ : Az >b}. Set I ={1,...,m}. Let

Fo={2eR": Ayz = by, Anat > bna}

be the pseudo-face of A corresponding to an index set oo C I. For
every ¢ € F,, we have

Ta(z) ={veR": Ay > 0}.
(See the proof of Theorem 4.2.) Since
Na(z)={§ € R" : (§,v) <0 Vv € Ta(z)},

we have £ € Na(z) if and only if the inequality (£,v) < 0is a con-
sequence of the inequality system A,v > 0. Consequently, applying
Farkas’ Lemma (see Theorem 3.2) we deduce that £ € Na(z) if and
only if there exist A; > 0,..., A, > 0 such that

§= Z )\i(—AiT)y
i€a

where A; denotes the i—th row of matrix A. (Note that if & = 0
and z € F,, then z € intA; hence £ = 0 for every £ € Na(z).)
Define

Qo = {(2,8) € R* X R* : © € F,, £ € Na(x)}.
Obviously, {2, C graph®. Note that

Qa = {(m7€) € Rn X Rn : Aax - bon AI\ax > b[\aa
=3 ca M(—AT) for some A\, € R*lY,

is a convex set. Here |a| denotes the number of elements in a. It
is easily seen that the topological closure 2, of €2, is given by the
formula

_Qa = {(17,5) € R"x R" : Az = by, Al\aw > b[\a,
£=3ca M(—A;) for some A, € R'fl}
= Pramxnn {(2,€,Aa) € R" x R* x R+ Az = bg,
Apa® 2 bpa, Yo MAY +E =0},

where Prgaxrn(z,€,\o) = (2,€). It is clear that the set in the last
curly brackets is a polyhedral convex set. From this fact, the above
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formula for Q, and Theorem 19.1 in Rockafellar (1970) we deduce
that Q, is a polyhedral convex set (see the proof of Theorem 4.3).
Since A = {J,,; Fa, we have

graph® = | J Q. (7.6)

aCl

aCl

Observe that graph® is a closed set. Indeed, suppose that {(z*, &%)}
is a sequence satisfying (2% £%) — (z,€) € R* x R", and (z*,¢F) €
graph® for every k € N. On account of formula (1.12), we have

(&5 y—aF) <0 VyeA, VkeN.

Fixing any y € A and taking limit as £ — oo, from the last inequal-
ity we obtain (£,y — Z) < 0. Since this inequality holds for each
y € A, we see that € € Na(zZ). Hence (7,€) € graph®. We have
thus proved that the set graph® is closed. On account of this fact,
from (7.6) we deduce that

graph® = U Q.

all

This shows that graph® can be represented as the union of finitely
many polyhedral convex sets. The proof is complete. O

The following statement shows that the solution map of a para-
metric affine variational inequality problem is a polyhedral multi-
function (on the linear variables of the problem).

Proposition 7.2. Suppose that M € R™", A € R™" and C €
R*™ are given matrices. Then the formula

®(q,b,d) = Sol(AVI(M, q, A(b, d))),

where (¢,b,d) € R*"x R™"x R*, A(b,d) :={x € R* : Az > b, Cx =
d} and Sol(AVI(M,q,A(b,d))) denotes the solution set of problem
(6.1) with A = A(b,d), defines a polyhedral multifunction

d:R"x R™ x R® — 28",

Proof. According to Corollary 5.2, © € Sol(AVI(M, ¢, A(b,d))) if
and only if there exist A = (A, ..., Apn) € R™and p = (1, ..., s) €
R? such that

Mz —ATA=CTu+q=0,

Aw>b, Cx=d, >0, (7.7)

M (Az —b) = 0.



7.2 Upper-Lipschitz Continuity w.r.t. Linear Variables 125
Let I = {1,...,m}. For each index set o C I, we define

Qa :Prl({(xu%b7da)‘>ﬂ> : M‘IL‘—ATA—'CTIU/—*'QZO’
Aaﬂf = ba; A]\af[ Z b[\ou (78)
Cx = d, )\a Z 0) )\I\a = O})7

where
Prl(xa qy ba da A? ,U) = (37, Q7 b7 d)

for all (z,q,b,d, A\, ) € R™ x R™ x R™ x R* x R™ x R°. Hence Q,
is a polyhedral convex set. Note that

graph® = U Qa. (7.9)

aCl

Indeed, for each (z,q,b,d) € graph® we have
z € Sol(AVI(M, q, A(b, d))).

So there exist A = (A1,...,A\n) € R™ and p = (u1,...,4s) € R’
satisfying (7.7). Let a = {i € I : A;z = b;}. Forevery i € I\, we
have A;z > b;. Then from the equality A\;(A;z — b;) = 0 we deduce
that A; = 0 for every ¢ € I\ a. On account of this remark, we see
that (z,q,b,d, A, 1) satisfies all the conditions described in the curly
braces in formula (7.8). This implies that (z,q,b,d) € Q,. We thus
get
graph® C U Qa-

acCl

Since the reverse inclusion is obvious, we obtain formula (7.9), which
shows that graph® can be represented as the union of finitely many
polyhedral convex sets. O

Theorem 7.2. (See Robinson (1981), Proposition 1) If & : R* —
2F™ 4s a polyhedral multifunction, then there exists a constant £ > 0
such that for every T € R™ there is a neighborhood U of T satisfying

®(z) C ®(2) + ||z — 7| Brm  Vz € Us. (7.10)

Definition 7.4. (See Robinson (1981)) Suppose that ® : R* —
2™ is a multifunction and Z € R" is a given point. If there exist
¢ > 0 and a neighborhood U; of Z such that property (7.10) is valid,
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then ® is said to be locally upper-Lipschitz at  with the Lipschitz
constant /.

The locally upper-Lipschitz property is weaker than the locally
Lipschitz property which is described as follows.

Definition 7.5. A multifunction ® : B — 28" is said to be

locally Lipschitz at & € R™ if there exist a constant £ > 0 and a
neighborhood U; of Z such that

®(z) C ®(u) + L)z — ul|Brm Yz € Ug,Vu € Us.
If there exists a constant £ > 0 such that
®(z) C ®(u) + |z — ul| Bgm

for all z and u from a subset Q C R", then @ is said to be Lipschitz
on §2.

From Theorem 7.2 it follows that if ¢ is a polyhedral multi-
function then it is locally upper-Lipschitz at any point in R™ with
the same Lipschitz constant. Note that the diameter diamU; :=
sup{|ly — z|| : ® € Uz, y € Uz} of neighborhood U; depends on Z
and it can change greatly from one point to another.

Proof of Theorem 7.2.
Since ® is a polyhedral multifunction, there exist nonempty
polyhedral convex sets @}; C R" x R™ (j =1,...,k) such that

graph® = ] Q;, (7.11)
jeJ
where J = {1,...,k}. For each j € J we consider the multifunction
®,; 1 R — 28" defined by setting
®i(z) ={y € R™ : (z,y) € Q;}. (7.12)

Obviously, graph®; = @;. From (7.11) and (7.12) we deduce that

graph® = U graph®;, &(z) = U ().

jeJ jeJ
CLAIM 1. For each j € J there exists a constant £; > 0 such that

(D](x) C CI)J(’U,) + €]||x - UHBRm (713)
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whenever ®;(z) # 0 and ®;(u) # 0. (This means that ®; is Lips-
chitz on its effective domain.)

For proving the claim, consider the linear operator 7 : R" X
R™ — R" defined by setting 7(z,y) = x for every (z,y) € R" x R™.
Let

Qi(z)={z€Q; : 7(2) = z}. (7.14)
By Corollary 7.1, there exists £; > 0 such that

Q;() € Qj(w) + ||z — ul| Braen (7.15)

whenever Q;(z) # 0 and Q;(u) # 0. From (7.12) and (7.14) it
follows that
Q;(z) = {z} x &;(z) Vz e R" (7.16)

In particular, Q,(z) # 0 if and only if ®,(z) # 0. Given any 2 € R",
u € R"andy € ¢;(z), from (7.15) and (7.16) we see that there exist
v € ®(u) such that

Iz, y) = (v, )| < 4lle = ul].

Since ||(z, 1) — (u, )] = (lz —ul® + ly — v||>)*/?, the last inequality
implies that ||y — v| < 4]z — u||. From what has already been
proved, it may be concluded that (7.13) holds whenever ®;(z) # 0
and @, (u) # 0.

We set £ = max{l; : j € J}. The proof will be completed if we
can establish the following fact.

CLAIM 2. For each T € R™ there exists a neighborhood Uz of T such
that (7.10) holds.

Let ¥ € R™ be given arbitrarily. Define
JQZ{jEJIdeOm(I)j}, J1:J\J0

Since dom®; = 7(();), where 7 is the linear operator defined above,
we see that dom®; is a polyhedral convex set. This implies that
the set |J;c; dom®; is closed. (Note that if J; = @ then this set is
empty.) As z ¢ | ics, dom®;, there must exist € > 0 such that the
neighborhood U; := B(Z,€) of Z does not intersect the set

U dom®;.

Jj€N
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Let x € Uz. If 2 ¢ |J;c;, dom®;, then
ota)= (U o) U (U mt0)) -0
J€Jo Jjes1
So the inclusion (7.10) is valid. If z € (J;¢;, dom®;, then we have
o(e) = [J (@) = |J 25(),
JjeJdo Jjedd

where Jj = {j € Jo : € dom®,}. For each j € Jj, according to
Claim 1, we have
®;(z) C D,;(T) + 4il|lz — || Brm C ©(Z) + {||x — T||Brm.
Therefore
O(z) = | J ®;(z) C ®(2) + |z — || Ban.
jeJ
Claim 2 has been proved. O

Remark 7.3. From the proof of Theorem 7.2 it is easily seen that
® is Lipschitz on the set [, ; dom®; with the Lipschitz constant .
Combining Theorem 7.2 with Proposition 7.2 we obtain the next
result on upper-Lipschitz continuity of the solution map in a general
AVI problem where the linear variables are subject to perturbation.
Theorem 7.3. Suppose that M € R**", A € R™" and C € R°**"
are given matrices. Then there exists a constant £ > 0 such that the
multifunction ® : R* x R™ x R® — 28" defined by the formula

®(q,b,d) = Sol(AVI(M, q, A(b,d))),

where (q,b,d) € R* x R™ x R® and A(b,d) := {x € R"* : Az >
b, Cx = dY}, is locally upper-Lipschitz at any point (7,b,d) € R™ x
R™ x R® with the Lipschitz constant £.

Applying Theorem 7.3 to the case where the constraint set A(b, d)
of the problem AVI(M, q, A(b,d)) is fixed (i.e., the pair (b, d) is not
subject to perturbations), we have the following result.

Corollary 7.4. Suppose that M € R™" is a given matriz and
A C R™ is a nonempty polyhedral convex set. Then there exists a
constant £ > 0 such that the multifunction ® : R* — 28" defined by
the formula

®(q) = Sol(AVI(M, q, A)),
where g € R™, s locally upper-Lipschitz at any point § € R™ with
the Lipschitz constant €.
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7.3 Upper-Lipschitz Continuity with re-
spect to all Variables

Our aim in this section is to study some results on locally upper-
Lipschitz continuity of the multifunction ® : R™*™ x R* — 2R"
defined by the formula

®(M, q) = Sol(AVI(M, q, A)),

where Sol(AVI(M, ¢, A)) denotes the solution set of the problem
(6.1). First we consider the case where A is a polyhedral convex
cone. Then we consider the case where A is an arbitrary nonempty
polyhedral convex set.

The following theorem specializes to Theorem 7.5.1 in Cottle et
al. (1992) about the solution map in parametric linear complemen-
tarity problems if A = RT.

Theorem 7.4. Suppose that A C R" is a polyhedral convezr cone.
Suppose that M € R™™ is a given matriz and ¢ € R™ is a given
vector. If M is copositive on A and

g € int ([Sol(AVI(M, 0, A))J¥) , (7.17)

then there erist constants € > 0, § > 0 and £ > 0 such that if
(M,q) € R™™ x R™, M is copositive on A, and if

max{[|M ~ M|, I~ ql}} <e, (7.18)
then the set Sol(AVI(M, q,4)) is nonempty,
Sol(AVI(M,§, A)) C 6B, (7.19)
and
Sol(AVI(M, G, A)) C Sol(AVI(M, q, A))+&(| M — M||+|G—q||) B
Proof. Suppose that M is copositive on A and (7.17) is S@vtfzﬁig)
Since A is a polyhedral convex cone, we see that for every (M,q) €

R™™ x R™ the problem AVI(]\A/f, q,A) is an GLCP. In particular,
AVI(M,0,A) is a GLCP problem and we have

Sol(AVI(M,0,A)) ={ve A : Mve AT, (Mv,v) =0}.
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Since Sol(AVI(M,0,A)) is a closed cone, Lemma 6.4 shows that
(7.17) is equivalent to the following condition

¢"v >0 Yv € Sol(AVI(M,0,A))\ {0}. (7.21)

CrAM 1. There exists € > 0 such that if(]/\\/f,(}') € R™"x R, M is
copositive on A, and if (7.18) holds, then the set Sol(AVI(M,q, A))
18 nonempty.

Suppose Claim 1 were false. Then we could find a sequence
{(MF*,¢*¥)} in R™™ x R" such that M* is copositive on A for every
ke N, (M¥ ¢*) — (M,q) as k — oo, and Sol(AVI(M* ¢* A)) =0
for every k € N. According to Theorem 6.5, we must have

q" ¢ int ([Sol(AVI(M*,0,A))]*) Vk e N.

Applying Lemma 6.4 we can assert that for each k € N there exists
v* € Sol(AVI(M*,0, A))\ {0} such that (¢*)"v* < 0. Then we have

e A, MR e AT, (MR R =0, (7.22)

for every k € N. Without loss of generality we can assume that

k

— = U E€R" o] =1
[lo* ] ’

From (7.22) it follows that

’Uk Uk Q)k 'Uk
—_eA, M eAt (MF_ )=
T For < < llv’“ll’llv’“ll> ’

Taking limits as £ — oo we obtain
e, MveAt, (Mv,v)=0.

This shows that ¥ € Sol(AVI(M, 0, A)). Since (¢*)Tv* < 0, we see
k

that (qk)THZ—k” < Oforevery k € N. Letting k — oo yields ¢'7 < 0.

Since U € Sol(AVI(M,0,A)) \ {0}, the last inequality contradicts
(7.21). We have thus justified Claim 1.

CLAIM 2. There exist € > 0 and § > 0 such that if (M,§) €
R x R™, M is copositive on A, and if (7.18) holds, then inclusion
(7.19) is satisfied.
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To obtain a contradiction, suppose that there exist a sequence
{(M*,¢*)} in R™" x R™ and a sequence {z*} in R" such that M*
is copositive on A for every k € N, zF € Sol(AVI(M*, ¢¥, A)) for
every k € N, (M*,¢*) — (M,q) as k — oo, and ||z*| — 4oc0 as
k — co. Since z* € Sol(AVI(MF¥,¢* A)), we see that

e N, M4 gFe At (MEaF 4 gF 2R =0, (7.23)
for every k € N. There is no loss of generality in assuming that

Hw—l’:\l —7€R", |o|=1
From (7.23) it follows that
veEA, MieAt, (Mv,7)=0.
From this we conclude that o € Sol(AVI(M,0,A)). Since
(MFzF 4+ ¢F 2y =0
and since 07A = A and M* is copositive on A, we have
—(")Tak = —(¢F, a*) = (M¥ " %) > 0.

Then

T 1 (( k)T z )
¢ v = lim | (q <0
k=00 [EAd|

This contradicts (7.21). Claim 2 has been proved.

Now we are in a position to show that there exist € > 0, § > 0
and ¢ > 0 such that if (M,q) € R™" x R", M is copositive on A,
" and if (7.18) holds, then Sol(AVI(M,§,A)) # 0 and (7.19), (7.20)
are satisfied.

Combining Claim 1 with Claim 2 we see that there exist € > 0
and & > 0 such that if (M,q) € R x R™, M is copositive on
A, and if (7.18) holds, then Sol(AVI(M,§,A)) # @ and (7.19) is
satisfied. According to Corollary 7.4, for the given matrix M and
vector ¢, there exist a constant £y, > 0 and a neighborhood U, of ¢
such that

Sol(AVI(M, ¢, A)) C Sol(AVI(M, q, A)) + Lulld — ql|Brn  (7.24)
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for every ¢ € U,. Let (M,E]) € R™™ x R" be such that M is

copositive on A and (7.18) holds. Select any 7 € Sol(AVI(M, G, A)).
Setting
g=q+ (M- M)z (7.25)

we will show that
T € Sol(AVI(M, g, A)). (7.26)

Since
(Mz+q,x—2) >0 Vx €A,

using (7.25) we deduce that

0< (Mi+G,z—%) =(Mi+q— Mz+M% z—~7)
= (MZ + g,z — T)

for every z € A. This shows that (7.26) is valid. From (7.18), (7.19)
and (7.25) it follows that

17— all < g =gl + 1M — M{[||z]| < e(1+0).

Consequently, choosing a smaller € > 0 if necessary, we can assert
that g € U, whenever (M,q) € R™"™ x R", M is copositive on A,
(7.18) holds. Hence from (7.24) and (7.26) we deduce that there
exists ¢ € Sol(AVI(M, ¢, A)) such that

[Z=2 <tmllg—al
< (g — gl + M — M]|||z]})
< (7 - qll + 0| M — M)
< Ullg - qll + [|M — M]}),

where ¢ = max{€ys, 0¢5s }. We have thus obtained (7.20). The proof
is complete. O

Our next goal is to establish the following interesting result on
AVI problems with positive semidefinite matrices.

Theorem 7.5. (See Robinson (1979), Theorem 2) Let M € R™ " be
a positive semidefinite matriz, A a nonempty polyhedral convex set
in R*, andq € R™. Then the following two properties are equivalent:

(1) The solution set Sol(AVI(M, q, A)) is nonempty and bounded,
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(ii) There exists € > 0 such that for each M € R™" and each

q € R™ with
maX{HM - MH; ||a—- QH} <E§g, (727>

the set SOl(AVI(M, G, A)) is nonempty.

For proving the above theorem we shall need the following three
auxiliary lemmas in which it s assumed that M € R"*"™ is a positive
semidefinite matriz, A C R"™ is a nonempty polyhedral convex set,
and g € R*. We set MA = {Mz : © € A}

Lemma 7.1. (See, for instance, Best and Chakravarti (1992)) For
any U € R™, if vT M© = 0 then (M + MT)p = 0.

Proof. Consider the unconstrained quadratic program
1
min {f(x) = éxT(M-l- MOz :z e R”}.
From our assumptions it follows that
1
—z-xT(M + M)z =a"Mz >0
=0T Mo
1
- §@T(M + MT)E

for every z € R". Hence 7 is a global solution of the above problem.
By Theorem 3.1 we have

0=Vf@)=(M+ M)y,

which completes the proof. O

Lemma 7.2. The inclusion
q € int((0tA)T — MA) (7.28)
holds if and only if
Vv € 0"A\ {0} 3z € A such that (Mz +q,v) >0. (7.29)

Proof. Necessity: Suppose that (7.28) holds. Then there exists
e > 0 such that

B(g,e) C (0vA)* — MA. (7.30)
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To obtain a contradiction, suppose that there exists o € 0tA \ {0}
such that
(Mz +q,0) <0 VzeA.

By (7.30), for every ¢’ € B(q,¢) there exist w € (0tA)* and z € A
such that ¢ = w — Mz. So we have

(¢ —q,0) > (w,5) >0 V¢ € B(g,¢).

This clearly forces v = 0, which is impossible.

Sufficiency: On the contrary, suppose that (7.29) is valid, but
(7.28) is false. Then there exists a sequence {¢¥} C R" such that
q* ¢ (0YA)* —MA for all k € N, and ¢* — ¢. From this we deduce
that

(MA+ )N (O0fA)Y =0 Vke N.

Since MA +¢* and (0*A)* are two disjoint polyhedral convex sets,
by Theorem 11.3 from Rockafellar (1970) there exists a hyperplane
separating these sets properly. Since (0¥ A)* is a cone, by Theorem
11.7 from Rockafellar (1970) there exists a hyperplane which sepa-
rates the above two sets properly and passes through the origin. So
there exists v* € R™ with ||v¥|| = 1 such that

(W Mz +¢*) <0< @rw) VeeA, Ywe (0FA).  (7.31)

(Actually, the above-mentioned hyperplane is defined by the for-
mula H = {z € R* : (v¥,2) = 0}). Without loss of generality we
can assume that v¥ — o € R", ||5|| = 1. From (7.31) it follows that

(U,Mz+q) <0 VzeA (7.32)

and
(D,w) >0 Ywe (0+A)+. (7.33)

By Theorem 14.1 from Rockafellar (1970), from (7.33) it follows
that € 0YA. Combining this with (7.32) we see that (7.29) is
false, which is impossible. O

Lemma 7.3. (See Gowda-Pang (1994a), Theorem 7) The solution
set Sol(AVI(M, q, A)) is nonempty and bounded if and only if (7.28)
holds.

Proof. Necessity: To obtain a contradiction, suppose that the set
Sol(AVI(M, g, A)) is nonempty and bounded, but (7.28) does not
hold. Then, by Lemma 7.2 there exists o € 0TA \ {0} such that
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(7.32) holds. Select a point z° € Sol(AVI(M, q,A)). For each ¢t > 0,
we set z; = 20 +t0. Since ¥ € 0T A, we have z; € A for every t > 0.
Substituting z; for z in (7.32) we get

(B, Mz® + ) + t{5, MT) <0 Vt > 0.

This implies that (0, M7) < 0. Besides, since M is positive semidef-
inite, we have (o, M7) > 0. So

(v, Moy = 0. (7.34)
By Lemma 7.1, from (7.34) we obtain
(M + M3 =0. (7.35)

Fix any € A. On account of (7.32), (7.34), (7.35) and the fact
that 2° € Sol(AVI(M, ¢, A)), we have

(Mzy+q,z —x;) = (Ma®+q+tMv,z — 2° — o)
= (M2 + q,z — 2% + t(Mv,z — 2°)
—t{Mz° + q,7v) — t* (M7, D)
=0
= (Mz°+ g,z — 2% ~ t (B, Mz + q)
A

Since this holds for every x € A, z; € Sol(AVI(M, ¢, A)). As the last
inclusion is valid for each ¢t > 0, we conclude that Sol(AVI(M, q, A))
is unbounded, a contradiction.

Sufficiency: Suppose that (7.28) holds. We have to show that
the set Sol(AVI(M, ¢, A)) is nonempty and bounded. By (7.28),

ge (0TA)T — MA.

Hence there exist w € (0TA)* and Z € A such that ¢ = w — MZ.
Since MZ 4+ g =w € (0T A)™, for every v € 0T A it holds

(MZ + q,v) = (w,v) > 0.

Since M is a positive semidefinite matrix, we see that both con-
ditions (i) and (ii) in Theorem 6.1 are satisfied. Hence the set
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Sol(AVI(M, q, A)) is nonempty. To show that Sol(AVI(M,q, A)) is

bounded we suppose, contrary to our claim, that there exists a se-

quence {z*} in Sol(AVI(M, q, A)) such that ||z*|| — +oo. There is

no loss of generality in assuming that z* # 0 for each k € N, and
ok

— > P ER", |7=1
Jl*]] ’

Let m € N, A€ R™™ and b € R™ be such that A = {z € R" :
Az > b}. Since Az* > b for every k € N, dividing the inequality
by ||z*| and letting k — oo we obtain A > 0. This shows that
7€ 0T A. We have

(MzF +qz—2") >0 VzeAVEkeN.
Hence

(Mz* + q,z) > (Ma® 2"y + (q,2%) Ve e Avke N. (7.36)
Dividing the last inequality by ||z¥||? and letting & — oo we get
0> (Mu,7). Since M is positive semidefinite, from this we see that
(M0,7) = 0. Thus, by Lemma 7.1 we have

Mo =-M"3. (7.37)

Fix a point z € A. Since (Mz*,z*) > 0 for every k € N, (7.36)
implies that
(Mz* 4+ q,2) > (g,2%) Vk e N.

Dividing the last inequality by ||z*| and letting k — oo we obtain
(Mv,z) > (q,9).
Combining this with (7.37) we can assert that
(Mz +q,7) <0 VzeA.

Since ¥ € (0YA) \ {0}, from the last fact and Lemma 7.2 it follows
that (7.28) does not hold. We have thus arrived at a contradiction.
The proof is complete. 0O

Proof of Theorem 7.5.
We first prove the implication (i) = (ii). To obtain a contradic-
tion, suppose that Sol(AVI(M,gq,A)) is nonempty and bounded,
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while there exists a sequence (M* ¢*) € R™"™ x R™ such that
(M*,¢*) — (M, q) and

Sol(AVI(M* ¢*,A)) =0 Vk€ N. (7.38)
Since A is nonempty, for j € N large enough, the set
Aj=An{zeR": |z|| <j}

is nonempty. Without restriction of generality we can assume that
A; # (0 for every j € N. By the Hartman-Stampacchia Theorem
(Theorem 5.1) we can find a point, denoted by z*7, in the solution
set Sol(AVI(M*, ¢*, A;)). We have

(MF2Fd 4+ g o —2F7) >0 Ve A (7.39)

Note that ‘
|«®9|| =5 Vj e N. (7.40)

Indeed, if ||2*7]| < j then there exists y > 0 such that B(z*, ) C

B(0, 7). Hence from (7.39) it follows that
(MFa*i 4 gF z— ™) >0 Vee AnB(", ).

By Proposition 5.3, this implies that z®/ € Sol(AVI(M*,¢*, A)),
which is impossible because (7.38) holds. Fixing an index j € N
we consider the sequence {z%7}icn. From (7.40) we deduce that
this sequence has a convergent subsequence. There is no loss of
generality in assuming that

lim 2" = 2/, 29 € R", |27| = . (7.41)

k—o0

Letting k — oo we deduce from (7.39) that
(Mz? + g,z —2%) >0 Va €A, (7.42)
On account of (7.41), without loss of generality we can assume that

zJ
— =T € R" |v]=1L1
[l ]|
Let us fix a point € A. It is clear that there exists an index
Jz € N such that z € A; for every j > j,. From (7.42) we deduce
that 4
<ij +q,x - 33]) Z 0 V_] 2 j:r
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Hence
(M3’ + q,2) = (Ma?,27) + (q,27) Vj > jq. (7.43)

As in the last part of the proof of Lemma 7.3, we can show that
7€ (0tA)\ {0} and deduce from (7.43) the following inequality

(Mz +q,7) <0.

Since the latter holds for every x € A, applying Lemma 7.2 we see
that the inclusion (7.28) cannot hold. According to Lemma 7.3, the
last fact implies that the set Sol(AVI(M, ¢, A)) cannot be nonempty
and bounded. This contradicts our assumption.

We now prove the implication (ii) = (i). Suppose that there
exists € > 0 such that if matrix M € R™™ and vector ¢ € R" sat-
isfy condition (7.27) then the set Sol(AVI(M,q, A)) is nonempty.
Consequently, for any ¢ € R" satisfying || — ¢|| < ¢, the set
Sol(AVI(M,q, A)) is nonempty. Let T € Sol(AVI(M,q,A)). For
any v € 0t A we have

(MZ+9)"v=(MZ+q,(T+v)—7)>0.

Hence Mz + g € (0YA)*™. So we have ¢ € (0tA)" — MA. Since
this inclusion is valid for each ¢ satisfying || — ¢|| < &, we conclude
that

g € int((0TAYY — MA).

By Lemma 7.3, the set Sol(AVI(M, ¢, A)) is nonempty and bounded.
The proof is complete. O
Let us consider three illustrative examples.

Example 7.1. Setting A = [0,+c0) C R, M = (-1), and ¢ =
0, we have Sol(AVI(M,q,A)) = {0}. Note that matrix M is not
positive semidefinite. Taking M = M and ¢ = —0, where 0 > 0,
we check at once that Sol(AVI(M,q,A)) = 0. So, for this AVI
problem, property (i) in Theorem 7.5 holds, but property (ii) does
not hold. This example shows that, in Theorem 7.5, one cannot
omit the assumption that M is a positive semidefinite matrix.
Example 7.2. Setting A = (—o0,+00) = R!, M = (0), and ¢ = 0,
we have Sol(AVI(M,q,A)) = A. So property (i) in Theorem 7.5
does not hold for this example. Taking M = (0) and g = 6, where
6 > 0, we have Sol(AVI(M, ¢,A)) = (. This shows that, for the
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AVI problem under consideration, property (ii) in Theorem 7.5 fails
to hold.

Example 7.3. Setting A = [1,+00) C R', M = (0), and ¢ = 0,
we have Sol(AVI(M, q,A)) = A. Taking M = M and § = 6, where
6 > 0, we see that Sol(AVI(M, §,A)) = {1}. But taking M = (—6)
and ¢ = 0, where 6 > 0, we see that Sol(AVI(M, q,A)) = 0. So, for
this problem, both the properties (i) and (ii) in Theorem 7.5 do not
hold.

In connection with Theorem 7.5, it is natural to raise the fol-

lowing open question.
QUESTION: Is it true that property (i) in Theorem 7.5 implies that
there exists ¢ > 0 such that if matrix M € R™™ and vector ¢ € R"
satisfy condition (7.27) then the set Sol(AVI(M, g, A)) is bounded
(may be empty)?

The next example shows that property (i) in Theorem 7.5 does
not imply that the solution sets Sol(AVI(M, g, A)), where (M, q) is
taken from a neighborhood of (M, q), are uniformly bounded.
Example 7.4. (See Robinson (1979), pp. 139-140) Let A =
[0,+c0) C RY, M = (0), and g = 1. It is clear that

Sol(AVI(M, q, A)) = {0}.

Taking M= (—p) and g = 1, where p > 0, we have
Sol(AVI(M, G, A)) = {o, }]i} .

From this we conclude that there exist no ¢ > 0 and § > 0 such
that if matrix M € R'! and vector § € R! satisfy condition (7.27)
then Sol(AVI(M,§,A)) C 6 Bp.

The following theorem is one of the main results on solution
stability of AVI problems. One can observe that this theorem and
Theorem 7.4 are independent results.

Theorem 7.6. (See Robinson (1979), Theorem 2) Suppose that
A C R™ is a nonempty polyhedral conver set. Suppose that M €
R™™ is a given matriz and g € R"™ is a given vector. If M is a posi-
tive semidefinite matriz and if the solution set Sol(AVI(M, q,A)) is
nonempty and bounded, then there exist constants € >0, 6 > 0 and
¢ > 0 such that of (M,q) € R™"™ x R", M 1s positive semidefinite,
and if .

max{||M — M|, l§—qll} <e, (7.44)
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then the set Sol(AVI(Z/\\Jl,Z}V, A)) is nonempty,

Sol(AVI(M, §, A)) C 6 Bpn, (7.45)
and
Sol(AVI(M,q, A)) C Sol(AVI(M, g, A))+£(|| M = M||+||G—ql|) B

Proof. Since M is positive semidefinite and Sol(AVI(M, ¢, A)) is
nonempty and bounded, by Lemmas 7.2 and 7.3 we have

Vv e 0YA\ {0} 3z € A such that (Mz+q,v) >0. (7.47)

Moreover, according to Theorem 7.5, there exists €o > 0 such that
for each matrix M € R™" and each g € R" satisfying

max{[|M - M[, |7 - qll} < eo,

the set Sol(AVI(M ,q,A)) is nonempty. We claim that there exist
constants ¢ > 0 and § > 0 such that (7.45) holds for every (M, §) €
R™™ x R™ satisfying condition (7.44) and the requirement that M
is a positive semidefinite matrix. Indeed, if the claim were false
we would find a sequence {(M*, ¢¥)} in R™™ x R™ and a sequence
{zF} in R"™ such that MP* is positive semidefinite for every k &,
(M* ¢*) — (M, q), 2¥ € Sol(AVI(M*, ¢*, A)) for every k € N, and
|z*|| — +oo as k — oo. For each z € A, we have

(MFzF +¢F 2~ 2"y >0 VEkeN. (7.48)

Without loss of generality we can assume that z* # 0 for every

k€ N, and
k

1]

It is easily seen that 7 € (07 A)*. From (7.48) it follows that

~ve R, ol =1

(M*z% 4 % ) > (M*2F 2%) + (¢%,2%) VEk e N. (7.49)

Dividing the last inequality by ||z*||* and letting & — oo we get
0> (M7, 0). Since M is positive semidefinite, from this we see that

(M7v,0) = 0. By Lemma 7.1 we have

Mo =—-MTg, (7.50)
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Fix a point z € A. Since M* is positive semidefinite, we have
(MFzk, 2*) > 0 for every k € N. Hence (7.49) implies that

(M*2F + % 2) > (¢F, %) Vke N,
Dividing the last inequality by ||z*|| and letting k — oo we obtain
(M3,2) > (q,5).
Combining this with (7.50) we get
(Mz+q,7) <0 VzeA.

Since € (0TA)*t\ {0}, the last fact contradicts (7.47). Our claim
has been proved. We can now proceed analogously to the proof of
Claim 3 in the proof of Theorem 7.4 to find the required constants
£>0,d>0and >0 O

7.4 Commentaries

As it has been noted in Robinson (1981), p. 206, the class of poly-
hedral multifunctions is closed under finite addition, scalar multi-
plication, and finite composition. This means that if ® : R* — 28"
U:R™— 28 @, R* — 28" (j =1,...,m) are some given poly-
hedral multifuntions and A € R is a given scalar, then the formulae

(AD)(z) = A®(z) (Vz € R™),

(P14 ...+ P)(z) = Py(x) + ... + P(z) (Vz € RY),

and

(Vo ®)(z)=T(P(z)) (VzeR"),

create new polyhedral multifunctions which are denoted by A®, &,+
...+ @, and ¥ o @, respectively.

The proof of Theorem 7.4 is similar in spirit to the proof of
Theorem 7.5.1 in Cottle et al. (1992).

The ‘elementary’ proof of the results of Robinson (see Theorems
7.5 and 7.6) on the solution stability of AVI problems with positive
semidefinite matrices given in this chapter is new. We hope that
it can expose furthermore the beauty of these results. The original
proof of Robinson is based on a general solution stability theorem
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for variational inequalities in Banach spaces (see Robinson (1979),
Theorem 1).

Results presented in this chapter deal only with upper-Lipschitz
continuity properties of the solution map of parametric AVI prob-
lems. For multifunctions, the lower semicontinuity, the upper semi-
continuity, the openness, the Aubin property, the metric regular-
ity, and the single-valuedness are other interesting properties which
have many applications (see Aubin and Frankowska (1990), Mor-
dukhovich (1993), Rockafellar and Wets (1998), and references
therein). It is of interest to characterize these properties of the
solution map in parametric AVI problems (in particular, of the so-
lution map in parametric LCP problems). Some results in this
direction have been obtained (see, for instance, Jansen and Tijs
(1987), Gowda (1992), Donchev and Rockafellar (1996), Oettli and
Yen (1995), Gowda and Sznajder (1996)). We will study the lower
semicontinuity and the upper semicontinuity the solution map of
parametric AVI problems in Chapter 18.





