
Chapter 13 

Continuity of the Optimal 
Value Function in 
Quadratic Programming 

In this chapter we will characterize the continuity property of the 
optimal value function in a general parametric QP problem. The 
lower semicontinuity and upper semicontinuity properties of the op- 
timal value function are studied as well. Directional differentiability 
of the optimal value function in QP problems will be addressed in 
the next chapter. 

13.1 Continuity of the Optimal Value 
Function 

Consider the following general quadratic programming problem with 
linear constraints, which will be denoted by Q P ( D ,  A ,  c, b ) ,  

1 
Minimize f ( x ,  c, D )  := - x T ~ x  + cTx 

2 (13.1) 
subject to x E A ( A ,  b )  := { x  E Rn : Ax > b) 

depending on the parameter c~ = ( D ,  A, c, b)  E R,  where 

The solution set of (13.1) will be denoted by Sol(D,A,  c, b) .  The 
function cp : R + defined by 

cp(w) = inf{f ( x , c ,  D )  : x E A(A, b)).  
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is the optimal value function of the parametric problem (13.1). 

If vTDv 2 0 (resp., vTDv 5 0) for all v E Rn then f (., c, D) 
is a convex (resp., concave) function and (13.1) is a convex (resp., 
concave) QP problem. If such conditions are not required then 
(13.1) is an indefinite QP problem (see Section 1.5). 

In this section, complete characterizations of the continuity of 
the function cp at a given point are obtained. In Section 13.2, suf- 
ficient conditions for the upper and lower semicontinuity of cp at 
a given point will be established. For proving the results, we rely 
on some results due to Robinson (1975, 1977) on stability of the 
feasible region A(A, b) and the Frank-Wolfe Theorem. 

Before obtaining the desired characterizations, we state some 
lemmas. 

Lemma 13.1. Let A E Rmxn, b E Rm. The system Ax 2 b is 
regular if and only if the multifunction A(.) : RmXn x Rm - 2Rn, 
defined by A(A1, b') = {x E Rn : A'x 2 b'), is lower semicontinuous 
at (A, b). 

Proof. Suppose that Ax 2 b is a regular system and xO E Rn is 
such that Ax0 > b. Obviously, A(A, b) is nonempty. Let V be an 
open subset in Rn satisfying A(A, b) n V # 0. Take x E A(A, b) n V. 
For every t E [0, 11, we set 

Since xt + x as t + 0, there is to > 0 such that xto E V. Since 

Axto = (1 - to)Ax + t o ~ x O  > (1 - to)b + tob = b, 

there exists > 0 such that 

for all (A', b') E Rmxn x Rm satisfying 

Thus xt E A(A1, b') for every (A', b') fulfilling (13.2). Therefore A(.) 
is lower semicontinuous at (A, b). 

Conversely, if A(.) is lower semicontinuous at (A, b) then there 
exists 6 > 0 such that Ax 2 b' is solvable for every b' E Rm satisfying 
b' > b and Ilb' - bll < 6. This implies that Ax > b is solvable. Thus 
Ax 2 b is a regular system. 
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Remark 13.1. If the inequality system Ax 2 b is irregular then 
there exists a sequence {(Ak, bk)) in RmXn x Rm converging to (A, b) 
such that, for every k, the system Akx 2 b"as no solutions. This 
fact follows from the results of Robinson (1977). 

Lemma 13.2 (cf. Robinson (1977), Lemma 3). Let A E RmXn. If 
the system Ax 2 0 is regular then, for every b E Rm, the system 
Ax 2 b is regular. 

Proof. Assume that Ax 2 0 is a regular and 3 E Rn is such that 
A% > 0. Setting b = Az, we have b > 0. Let b E Rm be given 
arbitrarily. Then there exists t > 0 such that tb > b. We have 
A(t3) = tA3 = ttb. Therefore A(t3) > b, hence the system Ax 2 b 
is regular. 0 

The set 

is open in RgXn x Rmxn. This fact can be proved similarly as Lemma 
12.5. It is worthy to stress that Lemma 12.5 is applicable only to 
canonical QP problems while, in this chapter, the standard QP 
problems are considered. 

Lemma 13.3. If A(A, b) is nonempty and if Sol(D, A, 0,O) = (0) 
then, for every c E Rn, Sol(D, A, c, b) is a nonempty compact set. 

Proof. Let A(A, b) be nonempty and Sol(D, A, 0,O) = (0). Sup- 
pose that Sol(D, A, c, b) = 0 for some c E Rn. By the Frank-Wolfe 
Theorem, there exists a sequence { x k )  such that Ax" b for every 
k and 

It is clear that Ilx"] -+ + m  as k -f m .  By taking a subsequence if 
necessary, we can assume that 11 xyl-'xk + -f E Rn and 

1 
f (x" c, D) = - ( x ' " ) ~ D x ~  + cTxk < 0 for every k.  (13.4) 

2 

We have 

Letting k --t m, we obtain 3 E A(A, 0). Dividing both sides of the 
inequality in (13.4) by 1 1 ~ ~ 1 1 ~  and letting k -+ m, we get zTD3 5 0. 
Since Illt.ll = 1, we have Sol(D, A, 0,O) # (0). This contradicts the 
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assumption Sol(D, A, 0,O) = (0). Thus Sol(D, A, c, b) is nonempty 
for each c E Rn. 

Suppose, contrary to our claim, that Sol(D, A, c, b) is unbounded 
for some c E Rn. Then there exists a sequence {xk) C Sol(D, A, c, b) 
such that llxkll t 00 as k -+ oo and {Ilxkll-'xk} converges to a 
certain 3 E Rn. Taking any x E A(A, b) , we have 

AX'" 2 b. (13.6) 

Dividing both sides of (13.5) by llxk112, both sides of (13.6) by IIx"I, 
and letting k oo, we obtain 

Thus Sol(D, A, 0,O) # {0), a contradiction. We have proved that, 
for every c E Rn, the solution set Sol(D, A, c, b) is bounded. Fixing 
any 3 E Sol(D, A, c, b) one has 

Sol(D,A,c, b) = {x E A(A, b) : f (x ,c ,  D) = f ( z , c ,  D)). 

Hence Sol(D, A, c, b) is a closed set and, therefore, Sol(D, A, c, b) is 
a compact set. 

We are now in a position to state our first theorem on the con- 
tinuity of the optimal value function cp. This theorem gives a set of 
conditions which is necessary and sufficient for the continuity of cp 
at  a point w = (Dl A, c, b) where cp has a finite value. 

Theorem 13.1. Let (Dl A, c, b) E a. Assume that cp(D, A, c, b) # 
f oo. Then, the optimal value function cp(.) is continuous at (Dl A, c, b) 
if and only if the following two conditions are satisfied: 

(a) the system Ax 2 b is regular, 

(b) Sol(D, A, 0,O) = (0). 

Proof. Necessity: First, suppose that cp(.) is continuous at w := 
(Dl A, c, b) and cp(w) # f oo. If (a) is violated then, by Remark 
13.1, there exists a sequence {(A" bk)) in RmXn x Rm converging 
to (A, b) such that, for every k ,  the system Akx 2 bk has no solu- 
tions. Consider the sequence { ( D l  Ak, c, bk)}. Since A(A" bk) = 0, 
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'p(D,Ak,c, bk)  = +oo for every k .  As p(.) is continuous at w and 
{(Dl A< c, by) converges to w, we have 

lim 'p(D, Ak, c, bk) = p(D,  A, c, b) # foo. 
k+co 

We have arrived at a contradiction. Thus (a) is fulfilled. 
Now we suppose that (b) fails to hold. Then there is a nonzero 

vector z E Rn such that 

1 
Consider the sequence {(D" A, c, b)), where D"= D- -El E is the 

k  
unit matrix in RnXn. F'rom the assumption p(w) # f oo it follows 
that A(A, b) is nonempty. Then from (13.7) we can deduce that 
A(A, b) is unbounded. For every k ,  by (13.7) we have 

Hence, for any x belonging to A(A, b) and for any t > 0, we have 
x + t z  E A(A, b) and 

1 
f (X + tz, C, D ~ )  = -(x + ~ z ) ~ D ~ ( x  + tz)  + cT(x + tz) -+ -00 

2 

as t -+ oo. This implies that, for all k ,  Sol(Dk, A, c, b) = 8 and 
'p(Dk, A, c, b) = -00. We have arrived at a contradiction, because 
'p(-) is continuous at w and 'p(w) # f oo. We have proved that (b) 
holds true. 

Suficiency: Suppose that (a), (b) are satisfied and 

is a sequence converging to w. By Lemma 13.1, assumption (a) 
implies the existence of a positive integer ko such that A(Ak, bk) # 8 
for every k  2 ko. From assumption (b) it follows that the set G 
defined by (13.3) is open. Hence there exists a positive integer 
kl  2 ko such that Sol(Dk, Ak, 0,O) = (0) for every k  2 k l .  By 
Lemma 13.3, Sol(Df A', c" bk) # 8 for every k  2 k l .  Therefore, 
for every k  2 kl there exists xk E En satisfying 
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A%z" 2 bk. (13.9) 

Since cp(w) # f co, the Frank-Wolfe Theorem shows that 

Taking any xO E Sol(D, A, c, b), we have 

By Lemma 13.1, there exists a sequence {y" in Rn converging to 
xO and 

2 bk for every k > kl. (13.12) 

From (13.12) it follows that yk E A(Ak, bk) for k > kl. So 

1 k T  k k k T  k 
d D k ,  Ak, ck, bk) 5 5(Y ) D Y + (c ) Y . (13.13) 

From (13.13) it follows that 

k k k  ~ i r n s u ~ c p ( ~ ~ , ~  , c  , b  ) 
k+oo 

Therefore, taking account of (13.10) and (13.11), we get 

limsup cp(Dk, Ak, c" bk) < p(D,  A, c, b). (13.14) 
k+oo 

We now claim that the sequence {x", k 2 kl, is bounded. Indeed, 
if it is unbounded then, by taking a subsequence if necessary, we can 
assume that llxklI + t as k + t and Jlxkll # 0 for all k > kl. Then 
the sequence { l l ~ ~ l l - ~ x ~ ) ,  k > kl, has a convergent subsequence. 
Without loss of generality we can assume that llxk \l-lxk -+ 2 ,  II2II = 
1. From (13.9) we have 

Letting k + co, we obtain 
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By (13.8) and (13.13), 

Dividing both sides of (13.16) by llxk112 and taking limits as k + co, 
we get 

f T ~ f  5 0. (13.17) 

By (13.15) and (13.17), we have Sol(D, A ,  0,O) # (0 ) .  This contra- 
dicts (b). We have thus shown that the sequence { x k } ,  k 2 k l ,  
is bounded; hence it has a convergent sequence. There is no loss of 
generality in assuming that xk -+ 2 E Rn. By (13.8) and (13.9), 

1 
lim c p ( ~ ~ ,  A" ck, b" = - z T ~ 2  + cT2 = f ( 2 ,  C ,  D ) ,  (13.18) 

k-+w 2 

A2 > b. (13.19) 

&om (13.19) it follows that 2 E A ( A ,  b). Hence 

Therefore, by (l3.18),  

lim c p ( ~ "  c" bk) 2 cp(D, A ,  c, b). 
k'ca 

(13.20) 

Combining (13.14) with (13.20) gives 

lim c p ( ~ ~ ,  ck,  bk) = cp(D, A ,  c, b). 
k' 03 

This shows that cp is continuous at ( D ,  A ,  c, b) .  The proof is com- 
plete. 0 

Example 13.1. Consider the problem Q P ( D ,  A ,  c ,  b)  where m = 
3,  n = 2, 

1 0  

D =  [ a  :I, A =  l o  , c = ( ; ) ,  b= ( g ) .  
1 -2 

It can be verified that cp(D, A ,  c, b) = 0 ,  Sol(D, A, 0,O) = (01, and 
the system Ax  2 b is regular. By Theorem 13.1, cp is continuous at 
( D ,  A ,  c, b). 
Example 13.2. Consider the problem Q P ( D ,  A ,  c ,  b) where m = 
n = 1,  D = [ I ] ,  A = [ O ] ,  c = ( I ) ,  b = (0) .  It can be shown that 
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cp(D, A, c, b) = 0, and the system Ax 2 b is irregular. By Theorem 
13.1, cp is not continuous at (D, A, c, b). 

Remark 13.2. If A(A, b) is nonempty then A(A, 0) is the reces- 
sion cone of A(A, b). By definition, Sol(D, A, 0,O) is the solution 
set of the problem QP(D,  A, 0,O). So, verifying the assumption 
Sol(D, A, 0,O) = (0) is equivalent to solving one special QP prob- 
lem. 

Now we study the continuity of the optimal value function cp(.) 
at a point where its value is infinity. Let a E {+m, -m) and 
p (D,  A, c, b) = a. We say that cp(.) is continuous at (Dl A, c, b) if, 
for every sequence {(D', A< ck, by) c R converging to (D, A, c, b), 

The next theorem characterizes the continuity of cp at  a point 
w = (Dl A, c, b) where cp has the value -m. 

Theorem 13.2. Let(D,A,c ,b)  E R andcp(D,A,c,b) = -m.  
Then, the optimal value function cp is continuous at (D, A, c, b) if 
and only if the system Ax 2 b is regular. 

Proof. Suppose that cp(D, A, c, d) = -m and cp is continuous 
at (Dl  A, c, b) but the system Ax 2 b is irregular. By Remark 
13.1, there exists a sequence {(A" bk)) in RmXn x Rm converging to 
(A, b) such that, for every k, the system Akx 2 b%as no solutions. 
Since A(A< bk) = 0, cp(D, A" c, by = +m for every k. Therefore, 
lim cp(D, c, bk) = +m.  On the other hand, since cp is continuous 

k + w  
at (D,  A, c, b) and since 

we obtain 

+m = lim cp(D, A'", c, b" = =(Dl A, c, b) = -m, 
k--03 

a contradiction. Thus Ax 2 b must be a regular system. 
Conversely, suppose that cp(D, A, c, d) = -m and the system 

Ax 2 b is regular. Let {(Dk, Ak, ck, bk)) c R be a sequence converg- 
ing to (Dl  A, c, b). By the assumption, cp(D, A, c, b) = -m, hence 
there is a sequence {xi) in Rn such that Axi 2 b and 
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By Lemma 13.1, for every i ,  there exists a sequence {yik} in Rn 
with the property that 

A~~~~ 2 bb", 

lim yik = xi. 
k+03 

From (13.23) and (13.24) it follows that 

1 i T  lim sup cp(Db", cb", b y  ) - ( x  ) Dxi + cTxi. 
2 

(13.25) 
b"-+co 

Combining (13.25) with (13.21), we obtain 

This implies that 

lim cp(Dkl A', cb", bb") = -m = p(D,  A ,  C ,  b). 
k+cG 

Thus cp is continuous at ( D l  A ,  c, b). The proof is complete. 0 

The following theorem characterizes the continuity of cp at a 
point w = ( D ,  A ,  c, b) where cp has the value +m. 
Theorem 13.3. Let ( D , A , c , b )  E f2 and cp(D,A,c,b) = f m .  
Then, the optimal value function cp is continuous at ( D l  A , c ,  b) if 
and only if Sol(D, A ,  0,O) = (0 ) .  

Proof. Suppose that cp(D, A ,  c, b) = +m and that cp is continuous 
at ( D ,  A ,  c, b) but Sol(D, A ,  0,O) # (0) .  Then there exists a nonzero 
vector 3 E Rn such that 

Let 3 = ( z ~ ,  . . . ,3,). We define a matrix M E RmXn by setting 
M = [mij], where 

Let 
1 1 
Ic 

k - ~ + i ~ ,  D ~ = D - - E ,  A - 
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where E is the unit matrix in RnXn. Consider the sequence 

A simple computation shows that 

Ak3 > 0 for every k. 

By Lemma 13.2, for every k the system A% > b is regular. Let z 
be a solution of the system Akx > b. Since A% > 0 and 

for every k, we have 

1 T k  
f ( z  + t ? , ~ ,  Dk) = -(z + t3) D (Z + t3) +cT(z + t 3 )  --+ -m 

2 

as t + oo. Since z + t~ E n(Ak,  b) for every k and for every 
t > 0, Sol(Dk, Ak, c, b) = 0. We have arrived at a contradiction, 
because cp is continuous at (D, A, c, b) and 

-oo = lim c p ( ~ "  Ak, c, b) = cp(D, A, c, b) = +oo. 
k-O0 

Conversely, assume that Sol(D, A, 0,O) = (0) and 

is a sequence converging to (Dl A, c, b). We shall show that 

lim inf cp(Dk , A', ck, bk) = + m .  
k-+m 

Suppose that lim inf cp(Dk, Ak, ck, bk) < +m. Without loss of gen- 
k'co 

erality we can assume that 

lim inf cp(Dk, Ak, ck, bk) = lim c p ( ~ ~ ,  Ak, ck, bk) < + m .  
k+Cw k-O0 

Then, there exist a positive integer kl and a constant y 2 0 such 
that 

cp(D" Ak, ck, bk) l y 

for every k > kl. As Sol(D, A, 0,O) = {0), we can assume that there 
is an positive integer k2 such that Sol(Dk, Ak, 0,O) = (0) for every 
k > k2. By Lemma 13.3 we can assume that 
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for every k 2 k2. Hence there exists a sequence {x" in Rn such 
that, for every k 2 k2, we have 

We now prove that {xk) is a bounded sequence. Suppose, contrary 
to our claim, that the sequence {xk) is unbounded. Without loss of 
generality we can assume that llxkll # 0 for every k and that IIx"I 4 

oo as k -+ oo. Then the sequence {Ilx"l-'x" has a convergent 
subsequence. We can assume that the sequence itself converges to 
a point xO E Rn with llxOll = 1. By (13.27) we have 

hence 
Ax0 2 0. (13.28) 

By dividing both sides of the inequality in (13.26) by 11xkl12 and 
taking the limits as k 4 oo, we get 

From (13.28) and (13.29) we deduce that Sol(D, A, 0,O) # (0). This 
contradicts our assumption. Thus the sequence {xk) is bounded, 
and it has a convergent subsequence. Without loss of generality we 
can assume that {xk) converges to 3 E Rn. Letting k -+ oo, from 
(13.27) we obtain 

Az > b. 
This means that A(A, b) # 0. We have arrived at a contradiction 
because cp(D, A, c, b) = +oo. The proof is complete. 

From Theorems 13.1-13.3 it follows that conditions (a), (b) in 
Theorem 13.1 are sufficient for the function cp(.) to be continuous 
at the given parameter value (D,  A, c, b). 

13.2 Semicontinuity of the Optimal Va- 
lue Function 

As it has been shown in the preceding section, continuity of the op- 
timal value function holds under a special set of conditions. In some 
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situations, only the upper semicontinuity or the lower semicontinu- 
ity of that function is required. So we wish to have simple sufficient 
conditions for the upper semicontinuity and the lower semicontinu- 
ity of cp at a given point. Such conditions are given in this section. 

A sufficient condition for the upper semicontinuity of the func- 
tion cp(.) at a given parameter value is given in the following theo- 
rem. 

Theorem 13.4. Let (Dl A, c, b) E R. If the system Ax > b i s  
regular then p(.) is upper semicontinuous at (Dl A, c, b). 

Proof. As Ax > b is regular, we have A(A, b) # 8. Hence 

Let {(Dk, A', c" bk)) c R be a sequence converging to (Dl  A, c, b). 
Since cp(D, A, c, b) < +cm, there is a sequence {xi) in Rn such that 
Axi > b and 

1 
f (xi, c, D) = - ( x " ~  Dsi  + cTxi 4 cp(D, A, c, b) as i 4 cm. 

2 

By Lemma 13.1 and by the regularity of the system Ax 2 b, for 
each i one can find a sequence {yik} in Rn such that Akyik 2 b h n d  

lim y" = xz 
k-+w 

Since yik E A(Ak, by, 

This implies that 

lim sup cp(Dk, A" ck, bk) L f (xi, c,  D). 
k + w  

Taking limits in the last inequality as i 4 cm, we obtain 

limsupcp(~" ck, bk) 6 cp(D, A, c, b). 
k + w  

We have proved that p(.) is upper semicontinuous at (D, A, c, b). 
0 

The next example shows that the regularity condition in The- 
orem 13.4 does not guarantee the lower semicontinuity of cp at 
(D,  A, c, b). 
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Example 13.3. Consider the problem Q P ( D ,  A ,  c, b) where m = 
n = 1,  D = [0],  A = [ I ] ,  c = ( 0 ) ,  b = (0) .  It is clear that 
Ax  > Oisregular,  Sol(D,A,c,b)  = A ( A , b )  = { x  : x > 01, 
and cp(D, A ,  c, b) = 0. Consider the sequence {(D" A ,  c, b)} ,  where 

. We have cp(D"A,c,b) = -00 for every k ,  so 

liminf c p ( ~ ' " , A ,  c, b) < cp(D, A ,  c, b). 
k'co 

Thus cp is not lower semicontinuous at ( D ,  A ,  c, b). 
The following example is designed to show that the regularity 

condition in Theorem 13.4 is sufficient but not necessary for the 
upper semicontinuity of cp at ( D ,  A ,  c, b). 
Example 13.4. Choose a matrix A E Rmxn and a vector b E Rm 
such that A ( A ,  b) = 0 (then the system Ax  2 b is irregular). Fix an 
arbitrary matrix D E REXn and an arbitrary vector c E Rn. Since 
cp(D, A ,  c, b) = +oo, for any sequence {(D" A', ck ,  bk)} converging 
to ( D ,  A ,  c, b),  we have 

lirn sup cp(~5 A', ck,  b y  5 p ( D ,  A ,  c, b). 
k+co 

Thus cp is upper semicontinuous at ( D ,  A ,  c, b). 
A sufficient condition for the lower semicontinuity of the function 

cp(.) is given in the following theorem. 

Theorem 13.5. Let ( D ,  A ,  c, b) E 52. If Sol(D, A ,  0,O) = ( 0 )  then 
c p ( - )  is lower semicontinuous at ( D ,  A ,  c ,  b). 

Proof. Assume that Sol(D, A ,  0,O) = (0). Let 

be a sequence converging to ( D ,  A ,  c, b). We claim that 

lirn inf cp(~5 A', c" bk) > p ( D ,  A ,  C ,  b). 
k+Cc 

Indeed, suppose that 

lim inf c p ( ~ "  A', ck,  b" < <(D,  A ,  c, b). 
k+x 

Without loss of generality we can assume that 

liminf c p ( ~ " ~ ~ , c " b ~ )  = lim c p ( ~ ~ , ~ ~ , c ~ ,  bk).  
k+cc k+co 
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Then there exist an index kl and a real number y such that y < 
d D ,  A, c, b) and 

y(Dk, ck, bk) 5 y for every k > kl. 

Since P(D{ A', ck, bk) < +w, we must have A(Ak, bk) # 0 for every 
k 2 kl. Since Sol(D, A, 0,O) = {0}, there exists an integer k2 2 kl 
such that 

SO~(D]", A'", 0,O) = (0) 

for every k 2 k2. As A(A5 by # 0, by Lemma 13.3 we have 
Sol(Dkl A', c< bk) # 0 for every k 2 k2. Hence there exists a se- 
quence {xk) such that we have A%' 2 b q o r  every k 2 k2, and 

The sequence 1 x 7  must be bounded. Indeed, if {x" is unbounded 
then, without loss of generality, we can assume that IIxkII # 0 for 
every k and Ilxkll t 00 as k -' w .  Then the sequence {IlxkII-'xk} 
has a convergent subsequence. We can assume that this sequence 
itself converges to a vector v E Rn with llvll = 1. Since 

xk 
- 

bk >-  for every k > 162, 
IIxkll - Ilxk l l  

we have Av > 0. On the other hand, since for each k 2 k2 it holds 

we deduce that 
vTDv I 0. 

Combining all the above we get v E Sol(D, A, 0,O) \ (01, a contra- 
diction. We have thus proved that the sequence {xk} is bounded. 
Without loss of generality we can assume that xk -+ 3 E Rn. Since 
Akxk > bk for every k, we get AZ > b. Since 

we have 
f(Z, C, D) = L T D ~  + cTa 5 7. 

2 
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As y < cp(D, A ,  c, b), we see that f (3, c, D )  < p ( D ,  A ,  c, b). This is 
an absurd because 3 E A ( A ,  b). We have thus proved that cp(.) is 
lower semicontinuous at ( D ,  A ,  c, b) . 0 

The next example shows that the condition Sol(D, A ,  0,O) = ( 0 )  
in Theorem 13.5 does not guarantee the upper semicontinuity of cp 
at ( D ,  A ,  c, b). 
Example 13.5. Consider the problem Q P ( D ,  A ,  c, b) where m = 

n = 1, D = [I], A = [ O ] ,  c  = (O),b = (0) .  It is clear that 
Sol(D, A ,  0,O) = (0 ) .  Consider the sequence { ( D ,  A ,  c, bk) ) ,  where 

1 
bk = (-1). We have cp(D, A ,  c, b) = 0 and cp(D, A ,  c, bk) = +m for 

k 
all k (because A ( A ,  b k )  = 0 for all k ) .  Therefore 

lim sup cp(D, A ,  c, bk) = +m > 0 = cp(D, A ,  c, b). 
k+w 

Thus cp is not upper semicontinuous at ( D ,  A ,  c, b). 
The condition Sol(D, A ,  0,O) = (0) in Theorem 13.5 is sufficient 

but not necessary for the lower semicontinuity of cp at ( D ,  A ,  c, b) .  

Example 13.6. Consider the problem Q P ( D ,  A ,  c, b) where m = 
n = 1, D = [ - I ] ,  A = [ I ] ,  c  = ( l ) , b  = (0) .  It is clear that 
Sol(D, A ,  0,O) = 0.  Since p(D,A ,c ,  b) = -m, for any sequence 
{ ( D k ,  A k ,  ck,  bk ) )  converging to ( D ,  A ,  c, b),  we have 

k k k  lim inf c p ( ~ ' " ,  A , c , b ) 2 p(D,  A ,  c, b). 
k+co 

Thus cp is lower semicontinuous at ( D l  A ,  c, b). 

13.3 Commentaries 

The results presented in this chapter are due to Tam (2002). 
Lemma 13.1 is a well-known fact (see, for example, Robinson 

(1975), Theorem 1, and Bank et al. (1982), Theorem 3.1.5). 
In Best and Chakravarti (1990) and Best and Ding (1995) the 

authors have considered convex quadratic programming problems 
and obtained some results on the continuity and differentiability of 
the optimal value function of the problem as a function of a parame- 
ter specifying the magnitude of the perturbation. In Auslender and 
Coutat (1996), similar questions for the case of linear-quadratic pro- 
gramming problems were investigated. Continuity and Lipschitzian 
properties of the function p(D,  A ,  ., .) (the matrices D and A are 
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fixed) were studied in Bank et al. (1982), Bank and Hansel (1984), 
Klatte (1985), Rockafellar and Wets (1998). 

We have considered indefinite QP problems and obtained several 
results on the continuity, the upper and lower semicontinuity of the 
optimal value function cp at a given point w .  In comparison with the 
preceding results of Best and Chakravarti (1990), Best and Ding 
(1995), the advantage here is that the quadratic objective function 
is allowed to be indefinite. 

The obtained results can be used for analyzing algorithms for 
solving the indefinite QP problems. 




