
Chapter 11 

Lower Semicontinuity of the 
KKT Point Set Mapping 

Our aim in this chapter is to characterize the lower semicontinuity of 
the Karush-Kuhn-Tucker point set mapping in quadratic program- 
ming. Necessary and sufficient conditions for the lsc property of 
the KKT point set mapping in canonical QP problems are obtained 
in Section 11.1. The lsc property of the KKT point set mapping 
in standard QP problems under linear perturbations is studied in 
Section 11.2. 

11.1 The Case of Canonical QP Prob- 
lems 

Consider the canonical QP problem of the form (10.1). The follow- 
ing statement gives a necessary condition for the lower semiconti- 
nuity of the multifunction (10.3). 
Theorem 11.1. Let D E R y n  and A E Rmxn be given. If the 
multifunction S ( D ,  A, ., a )  is lower semicontinuous at (c, b) E Rn x 
Rm, then the set S ( D ,  A, c, b) is finite. 
Proof. Setting 

and s = n + m, we consider the problem of finding a vector x = , \ (:) E Rs satisfying 
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For a nonempty subset a c {1,2, .  . . , s), Ma, denotes the corre- 
sponding principal submatrix of M .  If p E RS, then the column- 
vector with the components (pi)i,, is denoted by p,. 

Let z = (zl, 22,. . . , z,) be a nonzero solution of (11.1), and let 
J = { j .  . zj = 01, I = {i : zi > 0). Since ZJ = 0 and ( M i f q ) ~  = 0, 
we have MIIzI = -&. Therefore, if detMII # 0 then z is defined 
uniquely via q by the formulae 

If I # 0 and detMII = 0, then 

QI := {q E RS : -41 = MIIzI for some z E RS) 

is a proper subspace of Rs. By Baire's Lemma (Brezis (1987), p. 15), 
the union Q := u{QI : I c {1,2,. . . ,s) ,  I # 0, detMII = 0) is 

nowhere dense. So there exists a sequence q" ( :ik ) converging 

to = (:b) such that qk $ Q for all k. 

Fix any x E S (D,  A, c, b) and let e > 0 be given arbitrarily. Since 
the multifunction S(D,  A, ., .) is lsc at (c, b), there exists 6, > 0 such 
that 

x E S(D,  A, c', b') 4- &BRn 

for all (c', b') satisfying max{lld - ell , 11 b' - bll) < 6,. Consequently, 
for each k sufficiently large, there exists xk E S(D, A, ck, bk) such 
that 

k llx - x 1 1  5 &. (11.2) 

Since rk E S(D,  A, ck, bk), there exists hi such that ik := ($) is 

a solution of the LCP problem 

We put Jx = {j : z! = 01, Ik = {i : z! > 0). If Ik = 0 then 
zk = 0. If I k  # 0 then detMIkIk # 0, because qk $ Q. Hence 

Obviously, there exists a subset I C {1,2, . . . , s) and a subsequence 
{ki) of {k) such that Iki = I for all hi. Let Z denote the set of all 
z E RS such that there is a nonempty subset I C {I , .  . . , s)  with 
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the property that detMII # 0, 21 = -Mhl(ijI) and ZJ = 0, where 
J := (1,.  . . , s) \ I. It is clear that Z is finite. From (11.3) it follows - 
that the sequence z/:') converges to a point from the finite set Z := 

Z U (0). For every z = let prl(z) := I. Since prl(z(ki)) = x(") 

and prl(.) is a continuous function, the sequence {x(")) has a limit 
t i n  the finite set 2 := {prl(z) : z E 2). By (11.2), x E 2 +aBRn. 
As this inclusion holds for every E > 0, we have x E 5. Thus 
S(D,  A, c, b) c 2. We have shown that S (D,  A, c, b) is a finite set. 
0 

The following examples show that the finiteness of S (D,  A, c, b) 
may not be sufficient for the multifunction S(.)  to be lower semi- 
continuous at (D, A, c, b). 

Example 11.1. Consider the problem (P,) of minimizing the func- 
tion 

1 

on the set A = {x E R2 : x 2 0, -21 - x2 2 -2). Note that 
A is a compact set with nonempty interior. Denote by S(E) the 
KKT point set of (PC).  A direct computation using (10.2) gives 

1 3 
for E > 0 small enough. For U := {x E R2 : - < XI < -, -1 < 

2 2 
x2 < 1) we have S(E) n U = 0 for every E > 0 small enough. 
Meanwhile, S(0) n U = {(1,0)). Hence the multifunction E I+ S(E) 
is not Isc at e = 0. 

Example 11.2. Consider the problem (FE) of minimizing the func- 
tion 

on the set A = {x E R2 : x 2 0, -XI - 2 2  > -2). Denote by 
S(E) the KKT point set of (FE). Using (10.2) we can show that 
S(0) = { ( l , O ) ,  (0, a)),  and S(E) = {(0,2)) for every E > 0. For 

1 3 
U := {x E R2 : - < x1 < -, -1 < x2 < 1) we h a v e S ( 0 ) n U  = 

2 2 
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{(I, O)}, but S(E) n U = 0 for every E > 0. Hence the multifunction 
E Y Z(E) is not lsc a t  E = 0. 

In the KKT point set S ( D ,  A, c, b) of (10.1) we distinguish three 
types of elements: (1) Local solutions of Q P ( D ,  A, c, b); (2) Lo- 
cal solutions of QP(-D,  A, c, b) which are not local solutions of 
Q P ( D ,  A,c,  b); (3) Points of S (D ,A,  c, b) which do not belong to 
the first two classes. Elements of the first type (of the second type, 
of the third type) are called, respectively, the local minima, the local 
maxima, and the saddle points of (10.1). 

In Example 11.1, ( 1 , O )  E S(0) is a local maximum of (Po) which 
lies on the boundary of A. Similarly, in Example 11.2, ( 1 , O )  E S(0) 
is a saddle point of Fo which lies on the boundary of A. If such 
situations do not happen, then the set of the KKT points is lower 
semicontinuous at the given parameter. 
Theorem 11.2. Assume that the inequality system Ax 2 b, x 2 
0 is regular. If the set S ( D ,  A, c, b) is nonempty, finite, and in 
S ( D , A ,  c, b) there exist no local maxima and no saddle points of 
(10.1) which are on the boundary of A(A, b), then the multifunction 
S(.)  is lower semicontinuous at (D,  A, c, b). 
Proof. For proving the lower semicontinuity of S( . )  a t  (D,  A, c, b) 
it suffices to  show that: For any Z E S ( D ,  A, c, b) and for any neigh- 
borhood U of 3 there exists S > 0 such that S(D1, A', c', b') n U # 0 
for every (Dl, A', c', b') satisfying 

max{llD' - Dl\, IIA' - All, 1 1 ~ '  - ell, Ilb' - bll) < S. 

First, suppose that 5 is a local minimum of (10.1). As S ( D ,  A, c, b) 
is a finite set, 5 is an isolated local minimum. Using Theorem 3.7 
we can verify that,  for any Lagrange multiplier of Z, the second- 
order sufficient condition in the sense of Robinson (1982) is satis- 
fied at  (3, X). According to Theorem 3.1 from Robinson (1982), for 
each neighborhood U of 5 there exists 6 > 0 such that for every 
(Dl, A', c', b') satisfying 

max{IID' - DII, IIA' - All, I I c '  - ell, Ilb' - bll} < 6 

there is a local minimum Z' of the problem QP(D1, A', c', b') belong- 
ing to  U. Since x' E S(D1, A', c', b'), we have S(D1, A', c', b') n U # 0, 
as desired. Now, suppose that 5 is a local maximum or a saddle 
point of (10.1). By our assumption, Z belongs to  the interior of 
A(A, b). Hence V f (z) = 0 2  + c = 0, or equivalently, 

D 5  = -c. (1 1.4) 
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As S(D,  A, c, b) is finite, Z is an isolated KKT point of (10.1). Then 
Z must be the unique solution of the linear system (11.4). Therefore, 
the matrix D is nonsingular, and 

Since the system Ax 2 b, x 2 0 is regular, using Lemma 3 from 
Robinson (1977) we can prove that there exist So > 0 and an open 
neighborhood Uo of 3 such that Uo c A(A1, b') for every (A', b') 
satisfying max{II A' - All, 1 1  b' - bll ) < So. For any neighborhood U of 
3, by (1 1.5) there exists 6 E (0, So) such that, for every (Dl, A', c', b') 
satisfying max{IID1-Dl(, [[A'-All, [Id-ell, IIbl-bll) < S, the matrix 
D' is nonsingular and x' := -(Dl)-lc' belongs to  U n Uo. Since x' 
is an interior point A(A1, b'), this implies that x' E S(D1, A', c', b'). 
(It is easily seen that A' := 0 is a Lagrange multiplier corresponding 
to x'.) We have thus shown that, for every (Dl, A', c', b') satisfying 
max{llD'- Dl[, [[A'-All, 1 1 ~ ' - c I I ,  Ilb'-bll) < 6, S(D', A', c', bl)nU # 
0. The proof is complete. 

11.2 The Case of Standard QP Prob- 
lems 

In this section we consider the following QP problem 

1 
Minimize - x T ~ x  + cTx 

2 
subject to x E A(A, b) 

where A E Rmxn and D E R;Xn are given matrices, b E Rm and 
c E Rn are given vectors, 

A ( A , ~ ) = { x E  Rn : A x 2  b). 

Recall that x E Rn is a Karush-Kuhn-Tucker point of (11.6) if 
there exists X E Rm such that 

The KKT point set (resp., the local solution set, the solution set) of 
(11.6) are denoted by S(D,A,c,b),  (resp., loc(D,A,c,b), 
Sol(D, A, c, b)). 



200 11. Lower Semicontinuity of the KKT Point Set 

We will study the lower semicontinuity of the multifunctions 

(Dl ,  A', c', b') H S ( D 1 ,  A', c', b') (11.7) 

and 
(c', b') H S ( D ,  A ,  c', b'), (11.8) 

which will be denoted by S ( . )  and S ( D ,  A ,  ., .), respectively. It is 
obvious that if (11.7) is lsc at ( D ,  A ,  c, b) E RgXn x Rmxn x Rn x Rm 
then (11.8) is lsc at (c ,  b) E Rn x Rm. 

Necessary conditions for the lsc property of the multifunction 
(11.8) can be stated as follows. 

Theorem 11.3. Let ( D ,  A ,  c, b) E RgXn x Rmxn x Rn x Rm. If the 
multifunction S ( D ,  A ,  ., .) is lower semicontinuous at (c ,  b), then 

(a) the set S ( D ,  A ,  c, b) is finite, nonempty, and 

(b) the system A x  2 b is regular 

Proof. (a) For each index set I c (1 ,  , m ) ,  we define a matrix 
MI E R ( ~ +  l ' l ) x ( n + l z l ) ,  where 111 is the number of elements of I ,  by 
setting 

(If I = 0 then we set MI = D) .  Let 

Qz = { ( U , V ) E  R " X  Itrn : (t) =MI(:) 

for some ( x ,  A) E Rn x Rm , } 
and 

Q = U { Q ~  : I c { I , . . - , m ) ,  detMI = 0) .  

If det MI = 0 then it is clear that QI is a proper linear subspace 
of Rn x Rm. Since the number of the index sets I C ( 1 , .  . . , m )  
is finite, the set Q is nowhere dense in Rn x Rm according to the 
Baire Lemma (see Brezis (1987), p. 15). So there exists a sequence 
{ ( c k ,  bk ) )  converging to the given point (c ,  b) E Rn x Rm such that 
(-ck,  bk) @ Q for all k .  

Fix any It. E S ( D ,  A ,  c, b). Since S ( D ,  A ,  ., .) is lower semicon- 
tinuous at (c ,  b),  one can find a subsequence {(ckl; bb"") of {(c" bk ) )  
and a sequence {xk l )  converging to It. in Rn such that 
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for all kl. As xkl E S ( D ,  A ,  ck1,bk", there exists X k l  E Rm such that 

For every kr ,  let Ik, := {i E { I , .  . . , m} : A? > 0) .  (It may happen 
that Ik, = 0.) Since the number of the index sets I C { I , .  . . , m} 
is finite, there must exist an index set I C ( 1 ,  . . , m) such that 
Ik, = I for infinitely many kl .  Without loss of generality we can 
assume that Ik, = I for all kl.  From (11.9) we deduce that 

We claim that det MI # 0. Indeed, if det MI = 0 then, by (11.10) 
and by the definitions of QI and Q, we have 

contrary to the fact that (-ck,  bk) $4 Q for all k .  We have proved 
that det MI # 0. By (11.10), we have 

Therefore 

If I = 0 then formula (11.1 1) has the form 

lim xkl = D-I(-c). 
l+w 

From (11.11) it follows that the sequence {A?) converges to some 
X I  2 0 in ~1'1. Since the sequence {x"}  converges to 3, from (11.11) 
and (11.12) it follows that 
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(Recall that MI = D if I = 0). We set 

Z = {(x,X) E Rn x Rm : there exists J c { l , . . + , m )  

such that det M j  # 0 and ( f J )  = MY' (;:)I , 

and 

X = {x E Rn : there exists X E Rm such that (x, A) E Z) . 

F'rom the definitions of Z and X ,  we can deduce that X is a finite 
set (although Z may have infinitely many elements). We observe 
also that Z and X do not depend on the choice of 3. Actually, these 
sets depend only on the parameters (D,  A, c, b). From (11.13) we 
have 3 E X .  Since 5 E S(D,  A, c, b) can be chosen arbitrarily and 
since X is finite, we conclude that S(D,  A, c, b) is a finite set. 

(b) If Ax 2 b is irregular then there exists a sequence {bk) con- 
verging in Rn to b such that A(A, bk) is empty for all k (Robinson 
(l977), Lemma 3). Clearly, S(D,  A, c, by = 0 for all k. As {bk) 
converges to b, this shows that S(D,  A, a ,  a )  cannot be lower semi- 
continuous at (c, b). The proof is complete. 

Examples 11.1 and 11.2 show that finiteness and nonemptiness 
of S (D,  A, c, b) together with the regularity of the system Ax 2 b, 
in general, does not imply that S (D,  A, -, .) is lower semicontinuous 
at (c, b). 

Let (D,  A, c, b) E RgXn x Rmxn x Rn x Rm. Let x E S(D,  A, c, b) 
and let X E Rm be a Lagrange multiplier corresponding to x. We 
define I = {1,2,.  . . , m), 

and 
J = { i  E I : Aix = bi, Xi = 0). (11.15) 

It is clear that K and J are two disjoint sets (possibly empty). 

We now obtain a sufficient condition for the Isc property of the 
multifunction S(D,  A, ., -) at a given point (c, b) E Rn x Rm. 
Theorem 11.4. Let ( D ,  A, c, b) E RgXnx Rmxnx Rnx Rm. Suppose 
that 

(i) the set S(D,  A, c, b) is finite, nonempty, 

(ii) the system Ax 2 b is regular, 



11.2 The Case of Standard Problems 203 

and suppose that for every x E S(D,  A, c, b) there exists a Lagrange 
multiplier X corresponding to x such that at least one of the following 
conditions holds: 

(cl) x E loc(D, A, c, b), 

(c3) J = 0, K # 0, and the system {Ai : i E K) is linearly 
independent, 

(c4) J # 0, K = 0, D is nonsingular and AJD-lA? is a positive 
definite matrix, 

where K and J are defined via (x, A)  by (11.14) and (1 1.15). Then, 
the multifunction S(D,  A, a ,  a )  is lower semicontinuous at (c, b). 

Proof. Since S(D, A, c, b) is nonempty, in order to prove that 
S (D,  A, ., .) is lower semicontinuous at (c, b) we only need to show 
that, for any x E S(D,  A, c, b) and for any open neighborhood Vx of 
x, there exists 6 > 0 such that 

S(D, A, c', b') n V, # 0 (11.16) 

for every (c', b') E Rn x Rm satisfying 11 (c', b') - (c, b) 11 < 6. 
Let x E S(D,A,c ,  b) and let Vx be an open neighborhood of 

x. By our assumptions, there exists a Lagrange multiplier X corre- 
sponding to x such that at least one of the four conditions (c1)-(c4) 
holds. 

We first examine the case where (cl) holds, that is 

x E loc(D, A, c, b). 

Since S(D,  A, c, b) is finite by (i), loc(D, A, c, b) is finite. So x is 
an isolated local solution of (11.1). Using Theorem 3.7 we can 
verify that, for any Lagrange multiplier X of 3, the second-order 
sufficient condition in the sense of Robinson (1982), Definition 2.1, 
is satisfied at (z, i). By assumption (ii), we can apply Theorem 3.1 
from Robinson (1982) to find an 6 > 0 such that 

Ioc(D, A, c', b') n Vx # 0 

for every (c', b') E Rn x Rn with 1 1  (c', b') - (c, b) 11 < 6. Since 
loc(D, A, c, b) c S(D,  A, c', b'), we conclude that (11.16) is valid 
for every (c', b') satisfying 1 1  (c', b') - (c, b) 1 1  < 6. 
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Consider the case where (c2) holds, that is Aix > bi for every 
i E I. Since X is a Lagrange multiplier corresponding to x, the 
system 

is satisfied. As Ax > b, from this we deduce that X = 0. Hence the 
first equality in the above system implies that Dx = -c. Thus x is 
a solution of the linear system 

Since S ( D ,  A, c, b) is finite, x is a locally unique KKT point of (11.6). 
Combining this with the fact that x is an interior point of A(A, b), 
we can assert that x is a unique solution of (11.17). Hence matrix 
D is nonsingular and we have 

Since Ax > b, there exist S1 > 0 and an open neighborhood U, C V, 
of x such that U, c A(A, b') for all b' E Rm satisfying Ilb' - bll < bl. 
By (11.18), there exists S2 > 0 such that if llc' - c I I  < S2 and 
x' = - D-lc' then x' E U,. Set S = min{S1, 62). Let (c', b') be such 
that [[(c', b') - (c, b)ll < S. Since x' := -D-lc' belongs to the open 
set U, c A(A, b'), we deduce that 

Dx' + c' = 0, Ax' > b'. 

From this it follows that x' E S(D,  A, c', b'). (Observe that A' = 0 
is a Lagrange multiplier corresponding to x'.) We have thus shown 
that (11.16) is valid for every (c', b') E Rn x Rm satisfying 11 (c', b') - 

(c, b) I I  < 6. 
We now suppose that (c3) holds. First, we establish that the 

matrix MK E ~ ( ~ + l ~ l ) ~ ( ~ + l ~ I )  defined by setting 

where I K I denotes the number of elements in K ,  is nonsingular. To 
obtain a contradiction, suppose that MK is singular. Then there 
exists a nonzero vector (v, w) E Rn x ~ 1 ~ 1  such that 
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This implies that 

Since the system {A i  : i E K)  is linearly independent by (c3), from 
(11.19) it follows that v # 0. As A q K x  > bqK and X K  > 0,  there 
exists 63 > 0 such that A q K ( x  + t v )  2 bqK and X K  + tw  2 0 for 
every t E [O,  631. By (1  1.19) , we have 

D ( x  + t v )  - Ag(XK + t w )  + c = 0,  
A ~ ( x + t v ) = b ~ ,  X K + t w 2 0 ,  (11.20) 
AI\K(X + t v )  2 ~ I \ K ,  XI\K = 0 

for every t E [O,  631. From (11.20) we deduce that x+tv E S ( D ,  A ,  c, b) 
for all t E [ O ,  631. This contradicts the assumption that S ( D ,  A ,  c, b) 
is finite. We have thus proved that MK is nonsingular. From the 
definition of K it follows that 

The last system can be rewritten equivalently as follows 

As MK is nonsingular, ( 1  1.21) yields 

So there exists 6 > 0 such that if (c', b') E Rn x Rm is such that 
Il(c', b') - (c ,  b)ll < 6,  then the formula 

defines a vector (x ' ,  X ) K )  E Rn x ~ 1 ~ 1  satisfying the conditions 

We see at once that vector x' defined in this way belongs to the set 

S ( D ,  A ,  c', b') n Vx 
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and A' := (A;(, X i JK) ,  where XiJK = 0, is a Lagrange multiplier 
corresponding to x'. We have shown that (11.16) is valid for every 
(c', b') E Rn x Rm satisfying 1 1  (c', b') - (c, b) 1 1  < 6. 

Finally, suppose that (c4) holds. In this case, we have 

DX + c = 0, Ajx = b j ,  X j  = 0, A q j x  > b q j ,  XI\j = 0. 
(11.22) 

To prove that there exists 6 > 0 such that (11.16) is valid for every 
(c', b') E Rn x Rm satisfying 1 1  (c', b') - (c, b) 1 1  < 6, we consider the 
following system of equations and inequalities of variables (2, p) E 
Rn x Rm: 

Since D is nonsingular, (11.23) is equivalent to the system 

By (11.22), AI\ JX > bI\ j .  Hence there exist 64 > 0 and an open 
neighborhood Ux c V, of x such that AI\jz 2 bi\J for any z E U, 
and (c', b') E Rn x Rm satisfying 11 (c', b') - (c, b) 11 < 64. Consequently, 
for every (c', b') satisfying 1 1  (c', b') - (c, b) 11 < 64, the verification of 
(11.16) is reduced to the problem of finding x E Ux and p~ E RIJl 
such that (1 1.24) holds. Here I JI denotes the number of elements in 
J .  We substitute z from the first equation of (11.24) into the first 
inequality and the last equation of that system to get 

Let S := AjD-lA; and q' := -b', - AJD-'c'. We can rewrite 
(1 1.25) as follows 

SPJ + 4' 2 0, PJ 2 0, ( p ~ ) ~ ( S p j  + 9') = 0. (11.26) 

Problem of finding p~ E ~ 1 ~ 1  satisfying (11.26) is the linear comple- 
mentarity problem defined by the matrix S E RIJIXIJl and the vector 
q' E ~ 1 ~ 1 .  By assumption (c4), S is a positive definite matrix, that 
is yTSy > 0 for every y E ~ 1 ~ 1  \ (0). Then S is a P-matrix. The 
latter means that every principal minor of S is positive (see Cottle 
et al. (1992), Definition 3.3.1). According to Cottle et al. (1992), 
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Theorem 3.3.7, for each q' E RIJI, problem (11.26) has a unique 
solution p J E RIJI. Since D is nonsingular, from (11.22) it follows 
that 

AJD-l(-C) - bJ = 0. 

Setting q = -bJ - AJD-lc we have q = 0. Substituting q' = q = 0 
into (11.26) we find the unique solution pJ = 0 = Xj. By Theorem 
7.2.1 from Cottle et al. (1992), there exist Q > 0 and e > 0 such 
that for every q' E RIJl satisfying Ilq' - qll < e we have 

Therefore 

From this we conclude that there exists 6 E (0, S4] such that if (c', b') 
satisfies the condition 1 1  (c', b') - (c, b) 1 1  < S, then the vector 

where p J is the unique solution of (11.26), belongs to U,. From the 
definition of p~ and z we see that system (11.24), where p q j  := 0, 
is satisfied. Then x E S(D,  A, c', b'). We have thus shown that, for 
any (c', b') satisfying Il(cl, b') - (c, b) 11 < S, property (11.16) is valid. 

The proof is complete. 0 

To verify condition (cl) ,  we can use Theorem 3.5. 
We now consider three examples to see how the conditions (c1)- 

(c4) can be verified for concrete QP problems. 

Example 11.3. (See Robinson (1980), p. 56) Let 

1 2  1 
2 - XI for all x = (xl, 5 2 )  E R2. (11.27) f (x) = -XI - -x2 

Consider the QP problem 

For this problem, we have 
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For any feasible vector x = (xl, 2 2 )  of (11.28), we have xl 2 21x21. 
Therefore 

2 1 2  1 2  2 3 2 f (x) + - = -xi - -x2 - X I  + - > -2; - XI + - > 0. (11.29) 
3 2 2 3 - 8  3 - 

4 2 2 
For 2 := (t, :) and i := (- --), we have f (2 )  = f (2 )  = -- 

3 '  3 3'  
Hence from (11.29) it follows that 2 and 2 are the solutions of 
(11.28). Actually, 

Setting E = ( 1 , O )  we have 2 E S(D,  A, c, b) \ loc(D, A, c, b). Note 
that ?; := (0,O) is a Lagrange multiplier corresponding to 2. We 
check at once that conditions (i) and (ii) in Theorem 11.4 are sat- 
isfied and, for each KKT point x € S(D,  A, c, b), either (cl) or (c2) 
is satisfied. Theorem 11.4 shows that the multifunction S(D,  A, -, -) 
is lower semicontinuous at (c, b). 

Example 11.4. Let f ( a )  be defined by (1 1.27). Consider the QP 
problem 

For this problem, we have 

Let 2, i, E be the same as in the preceding example. Note that - 
X := (0,0,O) is a Lagrange multiplier corresponding to E. We have 

S(D, A, c, b) = {E, 2,  i), Sol(D, A,  c, b) = loc(D, A, c, b) = {z, 2). 

Clearly, for x = 2 and x = 2, assumption (cl)  is satisfied. It is 
easily seen that, for the pair (E,X), we have K = 0, J = {3). Since 
A j  = (1 0) and D-I = D, we get AjD-lA: = 1. Thus (c4) is 
satisfied. By Theorem 11.4, S(D,  A, ., -) is lower semicontinuous at 
(c, b). 
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Example 11.5. Let f (x) be as in (11.27). Consider the QP prob- 
lem 

For this problem, we have 

Let Z = (2, -I), 2 = (2, I), E = (2,O). Note that 1 := (0,0,1) is 
a Lagrange multiplier corresponding to E. For x = Z _and x = 2, 
we see at once that (cl) is satisfied. For the pair (Z, A), we have 
K = (31, J = 0. Since 

assumption (c3) is satisfied. According to Theorem 11.4, S (D,  A, a ,  a )  

is lower semicontinuous at (c, b). 
The idea of the proof of Theorem 11.4 is adapted from Robinson 

(1980), Theorem 4.1, and the proof of Theorem 11.2. In Robinson 
(1980), some results involving Schur complements were obtained. 

Let (Dl  A, c, b) E R:Xn x Rmxn x Rn x Rm. Let x E S(D,  A, c, b) 
and let X E Rm be a Lagrange multiplier corresponding to x. We 
define K and J by (11.14) and (11.15), respectively. Consider the 
case where both the sets K and J are nonempty. If the matrix 

is nonsingular, then we denote by Sj the Schur complement (see 
Cottle et al. (1992), p. 75) of MK in the following matrix 

D -A; -A? [: ; ; ] E ~ ~ ~ + ~ ~ l + l J l ~ ~ ~ ~ + l ~ l + l J l ~ ~  

This means that 
Sj = [AJ O]MG~[AJ o ] ~ .  

Note that Sj is a symmetric matrix (see Robinson (1980)) p. 56). 
Consider the following condition: 
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(c5) J # 0, K  # 0, the system {Ai : i E K )  is linearly in- 
dependent, vTDv # 0 for every nonzero vector v satisfying 
AKv = 0, and SJ is positive definite. 

Modifying some arguments of the proof of Theorem 11.4 we can 
show that if J # 0, K  # 0, the system {Ai : i E K )  is linearly 
independent, and vTDv # 0 for every nonzero vector v satisfying 
AKv = 0, then MK is nonsingular. 

It can be proved that the assertion of Theorem 11.4 remains valid 
if instead of (c1)-(c4) we use (c1)-(c3) and (c5). The method of 
dealing with (c5) is similar to that of dealing with (c4) in the proof 
of Theorem 11.4. Up to now we have not found any example of 
QP problems of the form (11.1) for which there exists a pair (x, A),  
x E S ( D ,  A, c, b) and X is a Langrange multiplier corresponding 
to x,  such that (c1)-(c4) are not satisfied, but (c5) is satisfied. 
Thus the usefulness of (c5) in characterizing the 1sc property of the 
multifunction S(D,  A, a ,  a )  is to be investigated furthermore. This is 
the reason why we omit (c5) in the formulation of Theorem 11.4. 

We observe that the sufficient condition in Theorem 11.2 for the 
lsc property of the following multifunction 

(Dl, A', c', b') -+ S(D1, A', d l  b'), (11.30) 

where (Dl, A', c', b') E RgXn x Rmxn x Rn x Rm, can be reformulated 
equivalently as follows. 

Theorem 11.5. Let (Dl  A, c, b) E RgXn x Rmxn x Rn x Rm. Suppose 
that 

(i) the set S(D,  A, c, b) is finite, nonempty, 

(ii) the system Ax 2 b is regular, 

and suppose that for every x E S(D,  A, c, b) at least one of the 
following conditions holds: 

(cl) x E loc(D, A, c, b), 

Then, multifunction (11.30) is lower semicontinuous at (D, A, c, b). 

It is easy to check that (c2) in the above theorem is equivalent 
to (c2) in Theorem 11.4. 
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11.3 Commentaries 

The material of this chapter is taken from Tam and Yen (1999) and 
Lee et al. (2002b, 2002~). 




