
Chapter 10 

Upper Semicontinuity of 
the KKT Point Set 
Mapping 

We have studied QP problems in Chapters 1-4. Studying various 
stability aspects of QP programs is an interesting topic. Although 
the general stability theory in nonlinear mathematical programming 
is applicable to convex and nonconvex QP problems, the specific 
structure of the latter allows one to have more complete results. 

In this chapter we obtain some conditions which ensure that a 
small perturbation in the data of a quadratic programming prob- 
lem can yield only a small change in its Karush-Kuhn-Tucker point 
set. Convexity of the objective function and boundedness of the 
constraint set are not assumed. Obtaining necessary conditions for 
the upper semicontinuity of the KKT point set mapping will be our 
focus point. Sufficient conditions for the upper semicontinuity of 
the mapping will be developed on the framework of the obtained 
necessary conditions. 

10.1 KKT Point Set of the Canonical 
QP Problems 

Here we study QP problems of the canonical form: 

1 
Minimize f (x) := -xT DX + cTx 

2 (10.1) 
subject to x E A(A, b) := {x E Rn : Ax t: b, x > 01, 
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where D E RgXn, A E Rmxn, c E Rn and b E Rm are given 
data. In the sequel, sometime problem (10.1) will be referred to 
as QP(D,  A, c, b). 

Recall that 3 E Rn is a Karush-Kuhn-Tucker point of (10.1) if 
there exists a vector X E Rm such that 

The set of all the Karush-Kuhn-Tucker points of (10.1) is denoted by 
S(D,  A, c, b). In Chapter 3, we have seen that if 3 is a local solution 
of (10.1) then 3 E S(D,  A,c, b). This fact leads to the following 
standard way to solve (10.1): Find first the set S(D,  A, c, b) then 
compare the values f (x) among the points x E S (D,  A, c, b). Hence, 
one may wish to have some criteria for the (semi)continuity of the 
following multifunction 

In Section 10.2 we will obtain a necessary condition for the up- 
per semicontinuity of the multifunction s(., ., c, b) at  a given point 
(D,  A) E RgXnx Rmxn. In Section 10.3 we study a special class of QP 
problems for which the necessary condition obtained in this section 
is also a sufficient condition for the usc property of the multifunc- 
tion in (10.3). This class contains some nonconvex QP problems. 
Sections 10.4 and 10.5 are devoted to sufficient conditions for the 
usc property of the multifunction in (10.3). In Section 10.5 we will 
investigate some questions concerning the usc property of the KKT 
point set mapping in a general QP problem. 

Note that the upper Lipschitz property of the multifunction 
S(D,  A, ., a )  with respect to the parameters (c, b) is a direct con- 
sequence of Theorem 7.3 in Chapter 7. 

Since (10.2) can be rewritten as a linear complementarity prob- 
lem, the study of continuity of the multifunction (10.3) is closely 
related to the study of continuity and stability of the solution map 
in linear complementarity theory (see Jansen and Tijs (1987), Cot- 
tle et al. (1992), Gowda (1992), Gowda and Pang (1992, 1994a)). 
However, when the data of (10.1) are perturbed, only some compo- 
nents of the matrix M = M(D,  A) (see formula (10.18) below) are 
perturbed. So, necessary conditions for (semi)continuity and sta- 
bility of the Karush-Kuhn-Tucker point set cannot be derived from 
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the corresponding results in linear complementarity theory (see, for 
example, Gowda and Pang (1992)) where all the components of M 
are perturbed. 

10.2 A Necessary Condition for the usc 
Property of S(.) 

We now obtain a necessary condition for S( . ,  a ,  c, b) to be upper 
semicontinuous at a given pair (D ,  A) E Rnsxn x Rmxn. 

Theorem 10.1. Assume that the set S ( D ,  A, c, b) is bounded. If 
the multifunction S(. ,  a ,  c, b) is upper semicontinuous at (D,  A), then 

Proof. Arguing by contradiction, we assume that S ( D ,  A, c, b) is 
bounded, the multifunction S(. ,  ., c, b) is usc at (D,  A), but (10.4) 
is violated. The latter means that there is a nonzero vector 2 E 
S ( D ,  A, 0,O). Hence there exists E Rm such that 

2 2 0 ,  i 2 0 ,  (10.6) 

g T ~ 2  = 0. (10.7) 

Setting 
1 ,. 1 - 

x t = - x ,  A t = ; A ,  f o r e v e r y t ~  (O,l), t 
(10.8) 

we claim that there exist matrices Dt E RgXn and At E Rmxn such 
that Dt + D,  At -t A as t -t 0, and 

xt L 0, At 2 0, (10.10) 

x T ( D ~ x ~  - A T A ~  + C) + A;(A~x~ - b) = 0. (10.11) 

Matrices Dt and At will be of the form 
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where matrices Do and A. are to be constructed. Since 

and 
1 

Atxt - b = - ( A  + tAo )2  - b 
f 

= -A2 + Ao2 - b, 
t 

the following conditions, due to (10.5), imply (10.9): 

1 1 - 
As xt = -2 and At = -A, (10.6) implies (10.10). Taking account of 

t t 
(10.7), we have 

1 = - ( 2 ~ ~ 2  - j . T ~ T ; \  + i T ~ 2  

+-gT ( ~ ~ 2  - ~;fi  + C )  + : P ( A o 2  - b) 
It t 

= - t [ 2 ' ( ~ 0 2  - A; f i  + c)  + i T ( A o 2  - b)] . 

So the following equality implies (10.11) : 

Let i = . . , 2,), where iii > 0 for i E I C ( 1 , .  . . , n} ,  and 2i = 0 
for i $ I .  Since 2 # 0 ,  I must be nonempty. Fixing an io E I ,  we 
define A. as the m x n-matrix whose io-th column is 2i1b,  and 
whose other columns consist solely of zeros. For this A. we have 
Ao2 - b = 0 ,  hence the second inequality in (10.13) is satisfied, and 
condition (10.14) becomes the following one: 
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We have to find a matrix Do E RgXn such that this condition and 
the first inequality in (10.13) are valid. For this purpose it is enough 
to find a symmetric matrix Do such that 

where w := A?A - c E Rn. 
If w = (WI ,  . . . , w,), then we put Do = (dij) , 1 5 i, j 5 n ,  

where 

- -1 d i i :=x i  wi forall ~ E I ,  
dioj = djio := 2 ; ' ~ ~  for all j E {1,2,.  . . , n) \ I, 

and 
dij : = 0  for other pairs (i,j), 15 i , j  5 n. 

A simple direct computation shows that this symmetric matrix Do 
satisfies (10.15). 

We have thus constructed matrices A. and Do such that for 
xt, A t ,  Dt and At defined by (10.8) and (10.12), the conditions 
(10.9)-(10.11) are satisfied. As a consequence, xt E S(Dt , At, c, b). 
Since S(D,  A, c, b) is a bounded set, there exists a bounded open 
set R such that S(D,A,c ,  b) C R. Since Dt --+ D and At 4 A as 
t 4 0, and the multifunction S(-, .,c, b) is usc at (Dl  A), we have 
xt E R for all t sufficiently small. This is a contradiction, because 

1 

Observe also that, in general, (10.4) is not a sufficient condition 
for the upper semicontinuity of S(.) at (D, A, c, b). 
Example 10.1. Consider the problem QP(D,  A, c, b) where 

For each t E (0, I ) ,  let At = [-t, -11. By direct computation using 
(10.2) we obtain 

Thus, for any bounded open set R c R2 containing S(D,  A, c, b) , 
the inclusion 

S(D7 At, c, b) c fl 
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fails to hold for t > 0 small enough. Since At -+ A as t + 0, S( .)  
cannot be usc at (D,  A, c, b). 

In the next section we will study a special class of quadratic 
programs for which (10.4) is not only a necessary but also a suffi- 
cient condition for the upper semicontinuity of S(.) at a given point 
(D,  A, c, b). 

10.3 A Special Case 

We now study those canonical QP problems for which the following 
condition (H) holds: 

(H) There exists 3 E Rn such that AZ > 0, 3 2 0. 

Denote by 3-1 the set of all the matrices A E Rmxn satisfying 

(H). 
The next statement can be proved easily by applying Lemma 3 

from Robinson (1977) and the Farkas Lemma (Theorem 3.2). 

Lemma 10.1. Each one of the following two conditions is equiva- 
lent to (H): 

(i) There exists 6 > 0 such that, for every matrix A' satisfying 
IIA'- All < 6 and for every b E Rn, the system A'x 2 b, x 2 0 
is solvable. 

(ii) For any X E Rn, if 

then X = 0. 

Obviously, (H) implies the existence of an 2 E Rn satisfying 
A2 > 0, 2 > 0. Thus A(A, 0) has nonempty interior. Now suppose 
that (H) is fulfilled and b E Rn is an arbitrarily chosen vector. 
Since A(A, b) + A(A, 0) c A(A, b) and, by Lemma 10.1, A(A, b) 
is nonempty, we conclude that A(A, b) is an unbounded set with 
nonempty interior. Besides, it is clear that there exists Z E Rn 
satisfying 

AZ>b,  Z > 0 .  

The latter property is a specialization of the Slater constraint qual- 
ification (Mangasarian (1969), p. 78), and the Mangasarian-Fro- 
movitz constraint qualification (called by Mangasarian the modi- 
fied Arrow-Hurwicz-Uzawa constraint qualification) (Mangasarian 
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(1969), pp. 172-173). These well-known constraint qualifications 
play an important role in the stability analysis of nonlinear opti- 
mization problems. 

In the sequence, the inequality system Ax 2 b, where A E Rmxn 
and b E Rm, is said to be regular if there exists xO E Rn such that 
Ax0 > b. 

As it has been noted in Section 5.4, a pair (3, X) E Rn x Rm 

satisfies (10.2) if and only if 2 := (; ) is a solution to the following 

linear complementarity problem 

where 

Denoting by Sol(M, q) the solution set of (10.17), we have 

where 7l-1 : Rnfm -+ Rn is the linear operator defined by setting 

7l-1 ( ; ) := x for every (;) E R~+.. 

The notion of Ro-matrix, which is originated to Garcia (1973), 
has proved to be useful in characterizing the upper semicontinuity 
property of the solution set of linear complementarity problems (see 
Jansen and Tijs (1987), Cottle et al. (1992), Gowda (1992), Gowda 
and Pang (1992), Oettli and Yen (1995, 1996a, 1996b)), and in 
studying other questions concerning these problems (see Cottle et 
al. (1992)). Ro-matrices are called also pseudo-regular matrices 
(Gowda and Pang (1 992), p. 78). 
Definition 10.1. (See Cottle et al. (1992), Definition 3.8.7) A ma- 
trix M € Rpxp is called an &-matrix if the linear complementarity 
problem 

has the unique solution x = 0. 
Theorem 10.2. Assume that A E 3-1 and that S (D,  A, c,  b) is 
bounded. If the multifunction S(.,  ., c, b) is upper semicontinuous 
at (D,  A), then M(D,  A) is an Ro-matrix. 
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Proof. Since S ( D ,  A ,  c, b) is bounded and S ( . ,  ., c, b) is usc at 

( D ,  A ) ,  by Theorem 10.1, (10.4) holds. Let 2 = (i) be such 

that 
M i  2 0 ,  i 2 0 ,  i T ~ 2  = 0 ,  (10.20) 

where M = M ( D ,  A ) .  This means that the system (10.5)-(10.7) is 
satisfied. Hence, 2 E S ( D ,  A ,  0,O). Then 2 = 0 by (10.4), and the 
system (10.5)-(10.7) implies 

Since A E W ,  j\ = 0. Thus any f satisfying (10.20) must be zero. So 
M ( D ,  A )  is an Ro-matrix. 

Corollary 10.1. Let A E W .  If for every (c ,  b) E Rn x Rm the 
multifunction S ( - ,  . ,c ,  b) is upper semicontinuous at ( D , A ) ,  then 
M ( D ,  A )  is an %-matrix. 

Proof. Consider problem (10.17), where M = M ( D ,  A )  and q are 
defined via D ,  A ,  c, b by (10.18). Lemma 1 from Oettli and Yen 
(1995) shows that there exists q E Rn+" such that Sol(M,q) is 

bounded. If (2, b)  E Rn x Rm is the pair satisfying q = ($,)  , 

then it follows from (10.19) that S ( D ,  A ,  E ,  b)  is bounded. Since 
S ( . ,  a ,  E ,  b)  is usc at ( D ,  A ) ,  M ( D ,  A )  is an &-matrix by Theorem 
10.2. 0 

The following statement gives a sufficient condition for the usc 
property of the multifunction S( . ) .  

Theorem 10.3. If M ( D , A )  is an Ro-matrix, then for any (c ,  b) E 
Rn x Rm the set S ( D ,  A ,  c, b) is bounded, and the multifunction S ( . )  
is upper semicontinuous at ( D ,  A ,  c, b). If, in addition, S ( D ,  A ,  c, b) 
is nonempty, then there exist constants y > 0 and 6 > 0 such that 

S ( D 1 ,  A', c', b') c S ( D ,  A ,  c, b) 
+y(llD' - Dl1 + //A' - All + I I c '  - c I I  + I/b' - b l l ) B ~ n ,  

(10.21) 
for all (c', b') E Rn x Rm, D' E Rnxn and A' E Rmxn satisfying 
\ID' - Dl1 < 6, llA' - All < 6. 
Proof. Since M ( D , A )  is an Ro-matrix, by Proposition 5.1 and 
Theorem 5.6 in Jansen and Tijs (1987) and the remarks before 
Theorem 2 of in Gowda (1992), Sol(M, q) is a bounded set, and 
the solution map Sol(.) is usc at ( M ,  q). It follows from (10.19) that 



10.3 A Special Case 171 

S ( D ,  A, c, b) is bounded. Let R c Rn be an arbitrary open set 
containing S ( D ,  A, b, c). By the upper semicontinuity of Sol(.) at  
(M,  q), we have 

Sol(M1, q') c R x Rm, (10.22) 

for all (MI, q') in a neighborhood of (M, q) . Using (10.19) and (10.22) 
we get S(D', A', c', b') c R, for all (D', A', c', b') in a neighborhood 
of (D,  A, c, b). 

The upper Lipschitz property described in (10.21) follows from 
a result of Gowda (1992). Indeed, since S ( D ,  A, c, b) is nonempty, 
Sol(M, q) is nonempty. Since M is an Ro-matrix, by Theorem 9 of 
Gowda (1992) there exist yo and So such that 

for all q' E Rn+m and for all M' E R ( ~ + ~ ) ~ ( ~ + ~ )  satisfying 1 1  M' - 
MI1 < So. The inclusion (10.21) follows easily from (10.23) and 
(10.19). 0 

Combining Theorem 10.3 with Corollary 10.1 we get the follow- 
ing result. 

Corollary 10.2. If A E 3-1, then for every (c, b) E Rn x Rm the 
multifunction S(., ., c, b) is upper semicontinuous at (D,  A) if and 
only if M (D,  A) is an Ro-matrix. 

We now find necessary and sufficient conditions for M(D, A) to 
be an Ro-matrix. By definition, M = M ( D ,  A) is an %-matrix if 
and only if the system 

has the unique solution (2, 1) = (0,O). 

Proposition 10.1. If M = M(D,  A) is an Ro-matrix then A E 3-1 
and the following condition holds: 

Proof. If 1 E Rm is such that - ~ ~ 1  2 0, 1 2 0, then (0, 1) is a 
solution of the system (10.24)-(10.26). If M is an %-matrix then 
we must have = 0. By Lemma 10.1, A E 3-1. Furthermore, for any 
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2 E Rn satisfying D2 > 0, A2 > 0, 2 > 0 and zTD2 = 0, it is clear 
that (2,O) is a solution of (10.24)-(10.26). If M is an %-matrix 
then (2,O) = (0,O). We have thus proved (10.27). 

The above proposition shows that the inclusion A E 7-1 and the 
property (10.27) are necessary conditions for M = M(D,  A) to be 
an %-matrix. Sufficient conditions for M = M(D,  A) to be an Ro- 
matrix are given in the following proposition. Recall that a matrix 
is said to be nonnegative if each of its elements is a nonnegative real 
number. 

Proposition 10.2. Assume that A E 7-1. The following properties 
hold: 

(i) If A is a nonnegative matrix and D is an %-matrix then 
M (Dl A) is an Ro-matrix. 

(ii) If D a positive definite or a negative definite matrix, then 
M (Dl A) is an &-matrix. 

Proof. For proving (i), let D be an Ro-matrix and let (2, i) be 
a pair satisfying (10.24)-(10.26). Since A is a nonnegative matrix, 
the inequalities D i  - ~~i > 0 and i 2 0 imply D i  2 A*A 2 0. 
Hence (10.24)-(10.26) yield D2 > 0, i > 0, i T D i  = 0. Since 
D is an Ro-matrix, i = 0. This fact and (10.24)-(10.26) imply 
- ~ ~ i  > 0, i > 0. Since A E 'Id, i = 0 by Lemma 10.1. Thus 
(2, i) = (0,O) is the unique solution of (10.24)-(10.26). Hence M 
is an Ro-matrix. We omit the easy proof of (ii). 0 

Observe that in Proposition 10.2(i) the condition that A is a 
nonnegative matrix cannot be dropped. 

Example 10.2. Let n = 2, m = 1, D = diag(1, -I),  A = (1, -1). 
It is clear that D is an Rn-matrix and the condition A E 3-t is 

satisfied with 3 = ( )  Meanwhile, M is not an Rn-matrix. 

Indeed, one can verify that the pair (2, A) ,  where 2 = (1,l) and 
= 1, is a solution of the system (10.24)-(10.26). 

Definition 10.2 (Murty (1972), p. 67). We say that D = (dij) E 
~ n x n  is a nondegenerate matrix if, for any nonempty subset a c 
(1, . . . , n), the determinant of the principal submatrix D,, consist- 
ing of the elements dij (i € a, j E a) of D is nonzero. 

Every nondegenerate matrix is an Ro-matrix (see Cottle et al. 
(1992), p. 180). It can be proved that the set of nondegenerate 
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n x n-matrices is open and dense in Rnxn. F'rom the following simple 
observation it follows that symmetric nondegenerate Ro-matrices 
form a dense subset in the set of all symmetric matrices. 
Proposi t ion 10.3. For any matrix D E RnXn and for any E > 0 
there exists a nonnegative diagonal matrix U' such that D + U q s  
a nondegenerate matrix, and 1IU"II 5 E. 
Proof. The proposition is proved by induction on n. For n = 1, 
if D = [dl, d # 0, then we set UE = [O]. If D = [0] then we set 
U" [E]. Assume that the conclusion of the proposition is true for 
all indexes n < k - 1. Let D = (dij) be a k x Ic-matrix which is 
not nondegenerate. Denote by Dkdl the left-top submatrix of the 
order (k - 1) x (k - 1) of D. By induction, there is a diagonal 
matrix Ui-l = diag(al, . .  . , a k - 1 )  such that every principal minor 
of the matrix Dk-1 + Ui-l is nonzero, and 1 1  Ui-, 1 1  5 E. The required 
matrix U" is sought in the form 

UE = diag(a1, . . . , a k - 1 ,  y), 

where y E R is a parameter. 
From the construction of U 9 t  follows that all the determinants 

of the principal submatrices of D + U" which do not contain the 
element dkk + y, are nonzero. Obviously, there are 2"' principal 
submatrices of D + U" containing the element dkk + y. The deter- 
minant of each one of these submatrices has the form aiy + ,&, 
1 5 i < 2"', where ai and pi are certain real numbers. Moreover, 
ai equals 1 or equals one of the principal minors of Dk-1 + Ui-'. 

Pi So ai # 0 for all i. Since the numbers --, 1 < i < 2"', cannot 
ai 

cover the segment [0, €1, there exists g E [0, e] such that g # -5 
for all i .  From what has already been said, we conclude that for 
U" := diag(al, . . . , a h - ' ,  y) the matrix D + U" is nondegenerate. In 
addition, it is clear that llUEll 5 E. The proof is complete. 

R e m a r k  10.1. The property of being a nondegenerate matrix 
is not invariant under the operation of matrix conjugation. This 
means that even if D is nondegenerate and P is nonsingular, the 
matrix P-' D P  still may have zero principal minors. Examples can 
be found even in R2x2. Consequently, a linear operator with a non- 
degenerate matrix in one basis may have a degenerate matrix in 
another basis. 

It follows from Theorem 10.3 and Proposition 10.2 that the mul- 
tifunction S(.) is usc at (D, A, c, b) if A E 'FI, A is a nonnegative 
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matrix and D is an &-matrix. There are many nonconvex QP 
problems fulfilling these conditions. For example, in the quadratic 
programs whose objective functions are given by the formula 

where c E Rn, 1 < s < n and pi > 0 for all i, D is an &-matrix. 
Proposition 10.3 shows that the set of symmetric Ro-matrices is 
dense in REXn. 

10.4 Sufficient Conditions for the usc 
Property of S ( * )  

Consider problem (10.1) whose Karush-Kuhn-Tucker point set is 
denoted by S ( D ,  A, c, b). A necessary condition for the usc property 
of S( . )  was obtained in Section 10.2. Sufficient conditions for having 
that property were given in Section 10.3 only for a special class of 
QP problems. Our aim in this section is to find sufficient conditions 
for the usc property of the multifunction S(-) which are applicable 
for larger classes of QP problems. 

For a matrix A E Rmxn, the dual of the cone 

is denoted by (A[A])*. By definition, (A[A])* = {J E Rm : AT< 5 
0 VX E A[A]). The interior of (A[A])* is denoted by int (A[A])*. By 
Lemma 6.4, 

int (A[A])* = {J E Rm : XTJ < 0 VX E A[A] \ (0)). 

The proofs of Theorems 10.4-10.6 below are based on some ob- 
servations concerning the structure of the Karush-Kuhn-Tucker sys- 
tem (10.2). It turns out that the desired stability property of the 
set S (D,  A, c, b) depends greatly on the behavior of the quadratic 
form xTDx on the recession cone of A(A, b) and also on the position 
of b with respect to the set int (A[A])*. 

One can note that in Example 10.1 the solution set Sol (D, A, 0,O) 
is empty. In the following theorem, such "abnormal" situation will 
be excluded. 
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Theorem 10.4. If Sol (D, A, 0,O) = (0) and i f b  E int (A[A])* then, 
for any c E Rn, the multifunction S(.)  is upper semicontinuous at 
(Dl A7 c, b). 
Proof. Suppose the theorem were false. Then we could find an 
open set 0 containing S(D,  A, c, b), a sequence {(D" Ak,ck, bk)} 
converging to (Dl A, c, b) in R:'" x RmXn x Rn x Rm, a sequence 
{xk} with the property that xk E S(Dk,Ak,ck ,  bk) and xk @ 4 for 
every k .  By the definition of KKT point, there exists a sequence 
{A" c Rm such that 

We first consider the case where the sequence of norms ( 1 1  ($5 A') 1 1 )  
is bounded. As the sequences {llx"[} and {IIX"I} are also bounded, 
from {xk} and {A", respectively, one can extract converging sub- 
sequences {xh} and {Xki}. Assume that x" + xO E Rn and Xki + 

X0 E Rm as i -+ m .  From (10.28)-(10.30) it follows that 

Hence xO E S(D,  A, c, b) c 0. On the other hand, since xki @ fl for 
all i and R is open, we have x0 @ R, a contradiction. 

We now turn to the case where the sequence { I l  (xk, X k )  1 1 )  is un- 
bounded. In this case, there exists a subsequence, which is denoted 
again by {Il(x" AX") [ I } ,  such that 11(x" AX") 1 1  -+ oo and 1 1  (x" AX") 1 1  # 0 
for every k .  Let 

Since llxk 1 1  = 1, there is a subsequence of {xk}, which is denoted 
again by {x", such that x" --t E Rnx  Rm, 1 1 ~ 1 1  = 1. Let 2 = (5,X). 
By (10.31), 

Dividing both sides of (10.28) and (10.29) by 11 (x" Ax") 1 1 ,  both sides 
of (10.30) by Il(~{,X")11~,  and taking limits as k + m, we obtain 
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By (10.32) and (10.33), 3 E A(A, 0) = {x E Rn : Ax 2 0, x 2 0). 
Let us suppose for the moment that 3 # 0. It is obvious that (10.34) 
can be rewritten as Z ~ D Z  = 0. If xTDx 2 0 for all x E A(A, 0) then 
3 E Sol (D,  A, O , O ) ,  contrary to the assumption Sol (D,  A, 0,O) = 

(0). If there exists i E A(A, 0) such that i T D i  < 0 then 

because A(A, 0) is a cone. Thus Sol (D,  A, 0,O) = 8, contrary to the 
condition Sol (D, A, 0,O) = (0). Therefore Z = 0. 

As I[(?, X)ll = 1, from (10.32) and (10.33) it follows that X E 
A[A] \ (0). The assumption b E int (A[A])* implies 

Since Il(x<,X)ll + m, 
A" 

+ X and IlXll = II(3, X)II = 1, 
11(x" Ak)II 

IIA"I I m .  Using the obvious identity (X"~(A"~A" (Ak)TAkxk 
we can rewrite (10.30) as the following 

k T  k k k T k -  A k T b k  ( x )  D x  + ( x )  c - (  ) . (10.36) 

If the sequence {xk) is bounded, then dividing both sides of (10.36) 
by Il(xk,Ak)ll and letting k + oo we obtain XTb = 0, contrary to 
(10.35). So the sequence {xk) must be unbounded, and it has a 
subsequence, denoted again by {xk}, such that IIxkll + oo, Ilxkll # 

xk 
0 for all k, and - + i with IIiII = 1. For the sequence {(Ak)Tbk} 

lIxk l l  
there are only two possibilities: 

(a) There exists an integer io such that 

for all k 2 io, and 
(0) For each i there exists an integer > i such that 

If case ( a )  arises, then (10.36) implies 

k T  k k k T k  ( x )  D x  + ( x )  c 5 0  (10.39) 
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for all k 2 io. Dividing both sides of (10.39) by I ~ X " ( ~  and letting 
k -+ m we get 

2 T ~ 2  5 0. (10.40) 

By (10.28) and (10.29), 

Dividing both sides of each of the last two inequalities by llxklI and 
letting k --+ m we obtain 

Since 0 E Sol (D,A,O,O), by (10.40) and (10.41) we have 2 E 
Sol (D, A, O , O ) ,  contrary to the condition Sol (Dl  A, 0,O) = (0). 
Thus case (a) is impossible. If case (P) happens, then by dividing 
both sides of (10.38) by Il(x", Aki)ll and letting i -+ m we obtain 
XTb 2 0, contrary to (10.35). The proof is complete, because neither 
(a) nor (P) can occur. 

Theorem 10.5. If Sol(-D,A,O,O) = (0) and b E -int(A[A])* 
then, for any c E Rn, the multifunction S(.) is upper semicontinuous 
at (D, A, c, b). 

Proof. Except for several small changes, this proof is very similar 
to the proof of Theorem 10.4. Suppose, contrary to our claim, that 
there is an open set R C Rn containing S ( D ,  A, c, b), a sequence 
{(D" Ax", ck, bx")) converging to (D, A, c, b) in RgXn x Rmxn x Rn x 
Rm, a sequence {xk) with x% S(Dk,  Ax", ck, bk) and xk @ R for ev- 
ery k. By the definition of KKT point, there is a sequence {Ak} sat- 
isfying (10.28)-(10.30). If the sequence of ( 1 1  (x" Ax") 1 1 )  is bounded 
then, arguing similarly as in the preceding proof, we will arrive at 
a contradiction. If the sequence {ll(x< Ax")II) is unbounded then, 
without any loss of generality, we can assume that the sequence {~:::~:1,} converges to a certain pair (5, 1) with ( 5 , i )  = 1. 

Dividing both sides of (10.28) and of (10.29) by 1 1  (x" Ax") 1 1 ,  both 
sides of (10.30) by Il(xk, Ak)1I2 and letting k t m we obtain (10.32)- 
(10.34). From (10.34) we have 5T(-D)5 = 0. The assumption 
Sol (- D, A, 0,O) = (0) forces 3 = 0. Thus E A[A] \ (0). Since 
b E -int (A[A])*, we have 
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Since II(xk,X"> -+ oo, 
Xk 

-+ X,  and IlXll = 1, we must 
I I  (xk, Xk)lI 

have IIXklI I oo. Again, rewrite (10.30) in the form (10.36). If the 
sequence{x" is bounded, we can divide both sides of (10.36) by 
II(x5 Ak)II and let k -+ oo to obtain XTb = 0, which contradicts 
(10.42). Thus the sequence {xk} must be bounded, and it has a 
subsequence, denoted again by {x", such that Ilxk 1 1  -+ oo, IlxkII # 

xk 
0 for all k, and - I 2 with IIitII = 1. 

llxk I I  
If there exists an index io such that (10.37) holds, then dividing 

both sides of (10.36) by Il(xk7 Ak)>ll and taking limit as Ic -+ oo we 
have XTb = 0, contrary to (10.42). 

Assume that for each i ,  there exists an integer Ici > i such that 
(10.38) holds. From (10.36) and (10.38) it follows that 

for all i .  Dividing both sides of (10.43) by Ilxki112 and taking limit 
as i -+ oo we get itTD2 2 0 or, equivalently, 

By (10.28) and (10.29), Akixki 2 bki, xki 2 0. Dividing both 
sides of each of the last two inequalities by IlxhlI and taking limits 
we obtain (10.41). Properties (10.41), (10.44), and the inclusion 
0 E Sol (-D, A, 0,O) yield 2 i. Sol (-D, A, O , O ) ,  contrary to the 
condition Sol (-D, A, 0,O) = (0). Thus, in all possible cases we 
have arrived at a contradiction. The proof is complete. 

Our third sufficient condition for the stability of the Karush- 
Kuhn-Tucker point set can be formulated as follows. 

Theorem 10.6. If S(D,A,O,O) = (0) and A[A] = (0) then, for 
any (c, b) E Rn x Rm, the multifunction S(.) is upper semicontinuous 
at (D, A, c, b). 

Proof. Repeat the arguments in the proof of Theorem 10.4 until 
reaching the system (10.32)-(10.34). Since S(D,  A, 0,O) = {O), 
we have Z = 0, hence (10.32)-(10.34) imply -ATX > 0, X 2 0. 
By llXll = I [ ( ? ,  X)II = 1, one has X E A[A] \ {0}, contrary to the 
assumption that A[A] = (0). 0 
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10.5 Corollaries and Examples 

We now consider some corollaries of the results established in the 
preceding section and give several illustrative examples. 
Corollary 10.3. If A[A] = (0) and if the matrix D is a positive 
definite (or negative definite) then, for any pair (c, b) E Rn x Rm, 
the multifunction S(.) is upper semicontinuous at (D, A, c, b). 
Proof. If D is positive definite, then S(D,  A, 0,O) = Sol(D, A, 0,O) = 
(0). So our assertion follows from Theorem 10.6. 

If D is negative definite, then S(D,  A, 0,O) = Sol (-D, A, 0,O) = 
{O), and again the assertion follows from Theorem 10.6. 

We proceed to show that the condition b E int (A[A])* in The- 
orem 10.4 is equivalent to the regularity of the following system of 
linear inequalities 

Ax > b, x 2 0. (10.45) 

Lemma 10.2. System (10.45) is regular if and only i f  b E int (A[A])*. 

Proof. Assume (10.45) is regular, i.e. there exists xO such that 
Ax0 > b, xO > 0. Let q := Ax0 - b > 0 and let 1 be any vector from 
A[A] \ {0), that is A ~ X  5 0, X > 0, and X # 0. Then 

Hence b E int (A[A])*. 
Conversely, assume that b E int (A[A])*. Suppose for a moment 

that (10.45) is irregular. Since the system Ax > b, x 2 0 has no 
solutions, for any sequence bk t b with bk > b for all k, the systems 

have no solutions. By Theorem 2.7.9 from Cottle et al. (1992), 
which is a corollary of the Farkas Lemma, there exists Xk E Rm 
such that 

-A~x" 0, X" 0, ( ~ " ~ b "  0. (10.46) 

Since Xk # 0, without loss of generality, we can assume that 1IX"I = 
1 for every k, and Xk t 5 with IlXll = 1. Taking limits in (10.46) as 
k t oo we get 

Hence E A[A] \ (01, and the inequality XTb 2 0 contradicts the 
assumption b E int (A[A])*. We have thus proved that (10.45) is 
regular. 
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Corollary 10.4. If (10.45) is regular and if A(A, b) is bounded, 
then the multifunction S( . )  is upper semicontinuous at (D,  A, c, b). 

Proof. Since A(A, b) is nonempty, bounded, and A(A, b)+A(A, 0) C 

A(A, b), we have A(A, 0) = (0). Since (10.45) is regular, by Lemma 
10.2 we have b E int (A[A])*. Applying Theorem 10.4 we get the 
desired result. 0 

We have the following sufficient condition for stability of the 
KKT point set in QP problems with bounded constraint sets. 

Corollary 10.5. If A(A,O) = (0) and XTb # 0 for all X E 
A[A] \ (0) then, for any c E Rn, the multifunction S(.)  is upper 
semicontinuous at (D ,  A, c, b). 

Proof. Obviously, the condition A(A, 0) = (0) implies 

S(D,A,O,O) = Sol(D,A,O,O) = Sol(-D,A,O,O) = A(A,O) = (0). 
(10.47) 

Since A[A] is a convex cone, the assumption XTb # 0 for all X E 
A[A] \ (0) implies that one of the following two cases must occur: 

(i) XTb < 0 for all X E A[A] \ {O), 
(ii) XTb > 0 for all X E A[A] \ (0). 

In the first case, the desired conclusion follows from (10.47) and 
Theorem 10.4. In the second case, the conclusion follows from 
(10.47) and Theorem 10.5. 0 

The following two examples show that the obtained sufficient 
conditions for stability can be applied to  nonconvex QP problems. 

Example 10.3. Consider problem (10.1) where n = 2, m = 1, 

We have A(A, 0) = {0), Sol (D ,  A, 0,O) = (0) and b E int (A[A])*. 
By Theorem 10.4, S(.)  is usc at  (D, A, c, b). 

Example 10.4. Consider problem (10.1) where n = 2, m = 1, 

An easy computation shows that 

S ( D ,  A, 0,O) = (01, Sol (- D,  A, 0,O) = (01, and b E -int (A[A])*. 
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The multifunction S(.)  is usc at (D,  A, c, b) by Theorem 10.5. 

The next two examples show that when the condition b E int (A[A])* 
is violated the conclusion of Theorem 10.4 may hold or may not 
hold, as well. 

Example 10.5. Let D = [ l ] ,  A=[O],  b = ( l ) ,  c= (O) ,  A t=[ - t ] ,  
where t E (0 , l ) .  It is easily seen that 

S (D ,  A, 0,O) = {0), Sol (Dl  A, 0,O) = {O), S (D ,  A, c, b) = 0, 
S ( D ,  A t  c, b) = { f } , A[A] = R+, b $ int (A[A])*, 

We have S ( D ,  A, c, b) c R, where R = 0. Since At -t A and the 
inclusion S ( D ,  At, c, b) c R cannot hold for sufficiently small t > 0, 
S( . )  cannot be usc at (D,  A, c, b). 

Example 10.6. Let D = [-I], A = [-I], b = (I) ,  c = (0). It is 
easy to verify that 

S(D,A,O,O) = {0), Sol(D,A,O,O) = {0), S(D,A,c ,b)  = 0, 
A[A]= R+, b$int(A[A])*. 

The map S(.) is usc at (D,  A, c, b). Indeed, since S(-D, A, 0,O) = 

(0) and b E -int (A[A])*, Theorem 10.5 can be applied. 

The following two examples show that if b $ -int (A[A])* then 
the conclusion of Theorem 10.5 may hold or may not hold, as well. 

Example 10.7. Let D ,  A, c, b be defined as in Example 10.5. In 
this case we have 

As it has been shown in Example 10.5, the map S(.) is not usc at 

(D, A, c, b). 
Example 10.8. Let D = [I], A = [- 11, b = (-I), c = (0). It is a 
simple matter to verify that 

The fact that S( . )  is usc at (D, A, c, b) follows from Theorem 10.4, 
because Sol ( D l  A, 0,O) = (0) and b E int (A[A])*. 
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10.6 USC Property of S(.):  The Gen- 
eral Case 

In this section we obtain necessary and sufficient conditions for the 
stability of the Karush-Kuhn-Tucker point set in a general QP prob- 
lem. 

Given matrices A E Rmxn, F E Rsxn, D E REXn, and vectors 
c E Rn, b E Rm, d E RS, we consider the following general indefinite 
QP problem QP(D,  A, c, b, F, d) : 

1 
Minimize f (x) := - x T ~ z  + cTx 

2 (10.48) 
subject to x E Rn, Ax 2 b, F x  2 d 

In what follows, the pair (F, d) is not subject to change. So the set 
A(F,d)  := {x E Rn : F x  > d) is fixed. Define A(A,b) = {z E 
Rn : Ax 2 b) and recall (see Definition 3.1 and Corollary 3.2) that 
2 E A(A, b) n A(F, d) is said to be a Karush-Kuhn-'Ihcker point of 
QP(D,  A, c, b, F, d) if there exists a pair (a, V) E Rm x RS such that 

The KKT point set and the solution set of (10.48) are denoted, 
respectively, by S(D,  A, c, b, F, d) and Sol(D, A, c, b, F, d). 

If s = n, d = 0, and F is the unit matrix in RnXn, then problem 
(10.48) has the following canonical form (10.1). In agreement with 
the notation of the preceding sections, we write S ( D ,  A, c, b) instead 
of S (D,  A, c, b, F, d), and Sol(D, A, c, b) instead of Sol(D, A, c, b, F, d) 
if (10.48) has the canonical form. The upper semicontinuity of the 
multifunction 

has been studied in Sections 10.3-10.5. This property can be in- 
terpreted as the stability of the KKT point set S(D,  A, c, b) with 
respect to the change in the problem parameters. In this section 
we are interested in finding out how the results proved in Sections 
10.3-10.5 can be extended to the case of problem (10.48). We will 
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obtain some necessary and sufficient conditions for the upper semi- 
continuity of the multifunction 

p' H S(pl, F ,d) ,  p' = (D',A1,c', b') E RgXn x Rmxn x Rn x Rm. 
(10.50) 

As for the canonical problem, the obtained results can be interpreted 
as the necessary and sufficient conditions for the stability of the 
Karush-Kuhn-Tucker point set S (D,  A, c, b, F, d) with respect to the 
change in the problem parameters. 

Our proofs are based on several observations concerning the sys- 
tem of equalities and inequalities defining the KKT point set. It is 
worthy to stress that the proofs in the preceding sections cannot be 
applied to the case of problem (10.48). This is because, unlike the 
case of the canonical problem (10.1), A(F, d) may fail to be a cone 
with nonempty interior and the vertex 0. So we have to use some 
new arguments. Fortunately, the proof schemes in the preceding 
sections will be useful also for the case of problem (10.48). 

Theorem 10.7 below deals with the case where A(F,  d) is a poly- 
hedral cone with a vertex xO, where xO E Rn is an arbitrarily given 
vector. Theorem 10.8 works for the case where A(F,  d) is an ar- 
bitrary polyhedral set, but the conclusion is weaker than that of 
Theorem 10.7. 

For any M E RTXn and q E RT, the set {x E Rn : M x  2 q) is 
denoted by A(M, q). For F E RSXn and A E Rmxn, we abbreviate 
the set 

to h[A, F] .  Note that 

The next two remarks clarify some points in the assumption and 
conclusion of Theorem 10.7 below. 

Remark 10.2. If there is a point xO E Rn such that F(xO) = d 
then A(F,  d) = xO + A(F, 0). Conversely, for any xO E Rn and any 
polyhedral cone K ,  there exists a positive integer s and a matrix 
F E RSXn such that xO + K = A(F,d), where d := F(xO). 

Remark 10.3. If A(F, d) and A(A, b) are nonempty, then A(F,  0) 
and A(A, 0), respectively, are the recession cones of A(F,  d) and 
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A ( A ,  b). By definition, S ( D ,  A ,  0 ,  0,  F, 0 )  is the Karush-Kuhn-Tucker 
point set of the following QP problem 

Minimize x T ~ x  subject to x E Rn, Ax  2 0 ,  F x  2 0 ,  

whose constraint set is the intersection A ( A ,  0 )  n A ( F ,  0) .  
Theorem 10.7. Assume that the set S (p ,  F, d ) ,  where p = ( D ,  A ,  c, b), 
is bounded and there exists xO E Rn such that F ( x O )  = d. If the mul- 
tifunction (10.50) is upper semicontinuous at p then 

Proof. Suppose, contrary to our claim, that there is a nonzero 
vector 3 E S ( D ,  A ,  O , O ,  F, 0 ) .  B y  definition, there exists a pair 
(u,  E )  E Rm x RS such that 

A z  2 0 ,  ii 2 0 ,  (10.53) 

F 3 2 0 ,  f 2 0 ,  (10.54) 

U ~ A Z  + ZI*F% = 0. (10.55) 

For every t E (0 ,  I),  we set 

where xO is given by our assumptions. We claim that there exist 
matrices Dt E R:Xn, At E Rmxn and vectors ct E Rn, bt E Rm such 
that 

and 
Dtxt - ~ T u t  - F ~ V ~  + ct = 0,  (10.57) 

Atxt 2 b t ,  ut 2 0 ,  (10.58) 

Fxt 2 dl vt 2 0 ,  (10.59) 

u ? ( ~ t x t  - bt) + V : ( F X ~  - d )  = 0. (10.60) 

The matrices Dt, At and the vectors ct, bt will have the following 
representations 
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where the matrices Do, A. and the vectors co, bo are to be con- 
structed. First we observe that, due to (10.54) and (10.56), (10.59) 
holds au tornatically. Clearly, 

Atxt  - bt = ( A  + t A o )  (so + " )  - ( 6  + tbo) 
1 

= t (AoxO - bo) + - A 2  + A0z  + Ax0 - b 
t 

and 

Atxt - bt) + v ,T(Fx~ - d )  
fiT 1 

= - [ t (A0x0 - bo) + :A3 + A02 + Ax0 - b] 

+ Ax0 - b). 

Therefore, by (10.53) and (10.55), if we have 

and 
AOxO - bO = 0 ,  (10.64) 

then (10.58) and (10.60) will be fulfilled. By (10.52), 

Hence, if we have 

and 
D0x0 + co = 0 ,  

then (10.57) will be fulfilled. 
Let 2 = ( z ~ ,  . . . ,z,) , where 3' # 0 for i E I and 2' = 0 for 

i $! I ,  I C ( 1 , .  . . , n). Since 3 f 0 ,  I is nonempty. Fixing an index 
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io E I, we define A. as the m x n-matrix in which the io - th column 
is ~ i , ' ( b  - Ax0), and the other columns consist solely of zeros. Let 
bo = AoxO. One can verify immediately that (10.63) and (10.64) are 
satisfied; hence conditions (10.58) and (10.60) are fulfilled. From 
what has been said it follows that our claim will be proved if we 
can construct a matrix Do E RzXn and a vector co satisfying (10.65) 
and (10.66). Let Do = (dij),  where dij (1 5 i, j < n) are defined by 
the following formulae: 

d . .  22 = 3:' % ( A ~ G  - DXO - c ) ~  b% E I, 
dioj = d 320 = 3-' zo (Arc  - DXO - c ) ~  V j  E {I , .  . . ,n}  \ I, 

and dij = 0 for other pairs ( i ,  j), 1 5 i ,  j 5 n. Here (ATG- DxO- c>k 
denotes the k-th component of the vector ATE - DxO - c. Since Do 
is a symmetric matrix, Do E RgXn. If we define co = -DoxO then 
(10.66) is satisfied. A direct computation shows that (10.65) is also 
satisfied. 

We have thus constructed matrices Do, A. and vectors co, bo such 
that for xt,  ut, vt, Dt, At, ct, bt defined by (10.56), (10.61) and 
(10.62), conditions (10.57)-(10.60) are satisfied. Consequently, xt E 
S(Dt ,  At, ct, bt, F, d). Since S(p, F, d) is bounded, there is a bounded 
open set R c Rn such that S(p, F, d) c R. Since 

max{llDt - Dll, llAt - All, llct - c I I ,  llbt - bll) + 0 

as t + 0 and the multifunction p' H S(pl, F, d) is usc at p = 
(Dl  A, c, b) ,  xt E for - all sufficiently small t. This is impossible, 

x 
because llxt 1 1  = llxO + 1 1  - oa as t + 0. The proof is complete. 
0 

Remark 10.4. If d = 0 then A(F, d) is a cone with the vertex 
0. In order to verify the assumptions of Theorem 10.7, one can 
choose xO = 0. In particular, this is the case of the canonical prob- 
lem (10.1). Applying Theorem 10.7 we obtain the following nec- 
essary condition for the upper semicontinuity of the multifunction 
(10.49): If S(p), p = (D, A, c, b) is bounded and if the multifunction 
p' H S(pl), p1 = (D1,A',c',b'), is usc a tp ,  then S(D,A,O,O) = (0). 
Thus Theorem 10.8 above extends Theorem 10.1 to the case where 
A(F,  d) can be any polyhedral convex cone in Rn, merely the stan- 
dard cone RT. 

In the sequel, S(D,A)  denotes the set of all x E Rn such that 
there exists u = u(x) E Rm satisfying the following system: 

DX - ATu = 0, AX 2 0, u 2 0, U ~ A Z  = 0. 
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Remark 10.5. From the definition it follows that S(D, A) = 

S(D, A, O , O ,  F, 0), where s = n and F = 0 E Rnxn. 
Theorem 10.8. Assume that A(F,  d) is nonernpty and S(p, F, d), 
where p = (D, A, c, b), is bounded. If the rnultifunction (10.50) is 
upper sernicontinuous at p then 

Remark 10.6. Observe that (10.51) implies (10.67). Indeed, sup- 
pose that (10.51) holds. The fact that 0 E S (D,  A) n A(F, 0) 
is obvious. So, if (10.67) does not hold then there exists 3 E 
S(D,A)  n A(F,O), 5 # 0. Taking a = u(Z), fi = 0 E RS, we 
see at once that the system (10.52)-(10.55) is satisfied. This means 
that Z E S(D,  A, O,0, F, 0) \ (01, contrary to (10.51). Note that, in 
general, (10.67) does not imply (10.51). 
Remark 10.7. If there exists xO such that FxO = d then, of course, 
xO E A(F,d) = {x E Rn : F x  2: d). In particular, A(F,d)  # 8. 
Thus Theorem 10.8 can be applied to a larger class of problems than 
Theorem 10.7. However, Remark 10.6 shows that the conclusion of 
Theorem 10.8 is weaker than that of Theorem 10.7. One question 
still unanswered is whether the assumptions of Theorem 10.8 always 
imply (10.51). 

Proof of Theorem 10.8. 
Assume that A(F, d) is nonempty, S (D,  A, c, b, F, d) is bounded 

and the multifunction S(.,  F, d) is usc at p but (10.67) is violated. 
Then, there is a nonzero vector 3 E S(D,  A) n A(F, 0). Hence there 
exists u E Rm such that 

A3 2 0, F; 0, (10.69) 

U ~ A Z  = 0, (10.70) 

F3 F; 0. (10.71) 

Let xO be an arbitrary point of A(F, d). Setting 

for every t E (0, I),  we claim that there exist matrices 
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and vectors ct E Rn, bt E Rm such that 

as t --+ 0, and 

The matrices Dt,  At and vectors ct, bt are defined by (10.61) and 
(10.62), where Do, Ao, co, bo are constructed as in the proof of 
Theorem 10.7. Using (10.68)-(10.71) and arguing similarly as in 
the preceding proof we shall arrive at a contradiction. 

The following theorem gives three sufficient conditions for the 
upper semicontinuity of the multifunction (10.50). These conditions 
express some requirements on the behavior of the quadratic form 
xT Dx on the cone A(A, 0) n A(F, 0) and the position of the vector 
(b, d) relatively to the set int(A[A, F])*. 
Theorem 10.9. Suppose that one of the following three pairs of 
conditions 

Sol(D, A, O , O ,  F, 0) = {O), (b, d) E int (A[A, F])* , (10.72) 

Sol(-D, A, O , O ,  F, 0) = (01, (b, d) E -int (A[A, F])* , (10.73) 

and 

S(D,  A, O , O ,  F, 0) = {O), int (A[A, F])* = Rm x RS, (10.74) 

is satisfied. Then, for any c E Rn (and also for any b E Rm if 
(10.74) takes place), the multifunction p' I+ S(pl, F, d), where p' = 
(Dl, A', c', b'), is upper semicontinuous at p = (D, A, c, b). 
Proof. On the contrary, suppose that one of the three pairs of 
conditions (10.72)-(10.74) is satisfied but, for some c E Rn (and 
also for some b E Rm if (10.74) takes place), the multifunction p' I+ 

S(pl, F, d) is not usc at p = (D, A, c, b). Then there exist an open 
subset R c Rn containing S(p, F, d), a sequence pk = (D" A', c< bk) 
converging to p in RzXn x Rmxn x Rn x Rm, and a sequence {xk} 
such that, for each k, x% S(pk7 F, d) and xk @ 0. By the definition 
of KKT point, for each k there exists a pair (u" vk) E Rm x RS such 
that 

D%' - ( A ~ ~ U ' "  - FTvk + ck = 0, (10.75) 
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If the sequence {(xk, uk, vk)) is bounded, then the sequences {x", 
{uk} and {vk) are also bounded. Therefore, without loss of gener- 
ality, we can assume that the sequences {x", {uk} and {v" con- 
verge, respectively, to some points xO E Rn, u0 E Rm and v0 E Rs, 
as Ic + oo. Letting k + oo, from (10.75)-(10.78) we get 

Hence xO E S(p,  F, d) C R. On the other hand, since xk f R for each 
Ic, we must have xO $ R, a contradiction. We have thus shown that 
the sequence {(xk, u" vk)) must be unbounded. By considering a 

k k k  subsequence, if necessary, we can assume that 1 1  (x , u , v ) 1 1  -t oo 
and, in addition, ll(xk, u" vk)ll # 0 for all k .  Since the sequence of 
vectors 

is bounded, it has a convergent subsequence. Without loss of gen- 
erality, we can assume that 

k k k  (x , U  , v  + ( z 7 u , ~ ) ~ R n x R m x R S ,  ~ ~ ( z , u , ~ ) ~ ~ = l .  
ll(xk, uk, vk)ll 

(10.79) 
k k k  Dividing both sides of (10.75), (10.76) and (10.77) by Il(x , u , v ) I ] ,  

both sides of (10.78) by Il(xk,uk,v")l12, and letting k + oo, by 
(10.79) we obtain 

DZ - A ~ U  - ~ ~ i j  = 0, (10.80) 

We first consider the case where (10.72) is fulfilled. It is evident 
that (10.80)-(10.83) imply 
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If 5 # 0 then, taking account of the fact that the constraint set 
A(A, 0) n A(F, 0) of QP(D,  A, O , O ,  F, 0) is a cone, one can deduce 
from (10.84) that either Sol(D, A, 0, 0, F, 0) = 0 or 

This contradicts the first condition in (10.72). Thus 5 = 0. Then it 
follows from (10.80)-(10.83) that (ii, U) E A[A, F ]  \ ((0,O)). Since 
(b, d) E int (A[A, F])* by (10.72), 

Consider the sequence {(uk)Tbk + ( ~ " ~ d ) .  By (10.75) and (10.78), 

If for each positive integer i there exists an integer ki such that 
ki > i and 

(ukd)Tbk + (vki)Td > 0 (10.87) 

then, dividing both sides of (10.87) by 1 1  (xki, ukd, v4) 1 1  and letting 
i -+ m, we have 

iiTb + UTd > 0, 

contrary to (10.85). Consequently, there must exist a positive inte- 
ger io such that 

+ (vk)?'d 5 0 for every k > io. (10.88) 

If the sequence {x" is bounded then, dividing both sides of (10.86) 
k k k  by II(x , u , v ) I [  and letting k + m ,  we get aTb+vTd = 0, contrary 

to (10.85). Thus {xk) is unbounded. We can assume that IIxkII t 

m and Ilxkll # 0 for each k .  Then {A} is bounded. We can 

assume that 
xk 
- -+ 2 with II2II = 1. 
llxk I I  

Combining (10.86) with (10.88) gives 

T k  k k k T  k (X ) D x + (c ) x 5 0 for every k 2 io. ' (10.89) 

Dividing both sides of (10.89) by 1 1 ~ ~ 1 1 ~  and letting k -+ oo, we 
obtain 

2 T ~ 2  < 0. (10.90) 
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By (10.76) and (10.77), 

Dividing both sides of each of the last inequalities by IIxkII and 
letting k -+ oo, we have 

Combining (10.90) with (10.91), we can assert that 

contrary to the first condition in (10.72). Thus we have proved the 
theorem for the case where (10.72) is fulfilled. 

Now we turn to the case where condition (10.73) is fulfilled. We 
deduce (10.84) from (10.80)-(10.83). If Z # 0 then from (10.84) we 
get Sol(- D,  A, 0, 0, F, 0) # {0), which contradicts the first condi- 
tion in (10.73). Thus B = 0. From (10.80)-(10.83) it follows that 
(ti, a) E A[A, F] \ ((0,O)). By the second condition in (lO.73), 

Consider the sequence { ( ~ ~ ) ~ b ' " +  ( ~ ~ ) ~ d ) .  We have (10.86). If there 
exists a positive integer io such that (10.88) is valid then, dividing 
both sides of (10.88) by 11 (xk, uk, vk) 11 and letting k + oo, we obtain 
tiTb + aTd 5 0, contrary to (10.92). Therefore, for each positive 
integer i, one can find an integer ki > i such that (10.87) holds. If 
the sequence {xk) is bounded then, dividing both sides of (10.86) by 

k k k  1 1  (x , u , v ) ) I  and letting k --+ oo, we have i'iTb+.GTd = 0, contrary to 
(10.92). Thus the sequence {xk) is unbounded. We can assume that 

Ilxkll + oo and Ilxk 11 # 0 for all k .  Since the sequence {-I is 
well defined and bounded, without loss of generality, we can assume 
that 

xk 
- -+ 2 with II2II = 1. 
llxkll 

Combining (10.86) with (10.87) gives 

( x ~ ~ ) ~ D ~ ~ x ~ ~  + ( ~ ~ ~ ) ~ x ~ ~  > 0 for all i .  (10.93) 

Dividing both sides of (10.93) by llxki112 and letting i + oo, we 
obtain 2'D2 > 0 or, equivalently, 
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By (10.76) and (10.77), 

Dividing both sides of each of the inequalities in (10.95) by Ilxki\\ 
and letting i t oo, we have 

Combining (10.94) with (10.96) yields Sol(- D ,  A ,  0 ,  0 ,  F, 0 )  # (01, 
contrary to the first condition in (10.73). This proves the theorem 
in the case where (10.73) is fulfilled. 

Now let us consider the last case where (10.74) is assumed. From 
(10.80)-(10.83) we have 3 E S ( D ,  A ,  O , O ,  F,  0) .  By the first condi- 
tion in (10.73), 3 = 0. Then it follows from (10.80)-(10.83) that 

Therefore, ( U ,  a )  E A[A,  F ]  \ ((0,O)).  Since UTii + vTv > 0,  then 
( G , @ )  @ in t (A[A,  F] )* .  This contradicts the second condition in 
(10.74). 

We have thus proved that if one of the pairs of conditions (10.72)- 
(10.74) is fulfilled, then the conclusion of the theorem must hold 
true. 

We now proceed to show how the sufficient conditions (10.72) 
and (10.73) look like in the case of the canonical problem (10.1). 
As in Section 10.4, for any A E Rnxn,  A[A] = { A  E Rm : -ATX 2 
0,  X 2 0 ) .  We have 

int (A[A] )*  = {J E Rm : XT[ < 0 VX E A[A]  \ ( 0 ) ) .  

Lemma 10.3. Suppose that, in problem (10.48), s = n, d = 0 ,  and 
F is the unit matrix in RnXn. Then the following statements hold: 

( a l )  If b E int (A[A])*  then (b, 0 )  E int ( A [ A ,  F] )* ;  
( a z )  If Sol ( D ,  A ,  0,O) = ( 0 )  then Sol ( D ,  A ,  O , O ,  F, 0 )  = (0 ) ;  
( a J )  If b E -int (A[A] )*  then (b, 0 )  E -int ( A [ A ,  F ] ) * ;  
(a4) If Sol ( -D ,  A ,  0,O) = ( 0 )  then Sol ( -Dl  A ,  0 ,  0 ,  F, 0 )  = (0) .  

Proof. If b E int(A[A])* then 

For any ( u ,  v )  E A[A,  F]  \ ( 0 )  we have 
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This yields 
T -A u = v > O  - ) ~ 2 0 ,  u # o ,  

hence u E A[A] \ (0). By (lO.97), bTu + OTv = bTu = uTb < 0. This 
shows that (b, 0) E int(A[A, F])*. Statement (al) has been proved. 
It is clear that (a3) follows from (al). 

For proving (az) and (a4) it suffices to note that, under our 
assumptions, 

and 
Sol(-D,A,O,O) = Sol(-D,A,O,O, F,O). 

0 

We check at once that Theorems 10.4 and 10.5 follow from The- 
orem 10.10 and Lemma 10.3. 

10.7 Commentaries 

The material of this chapter is taken from Tam and Yen (1999, 
2000), Tam (2001a). 

Several authors have made efforts in studying stability proper- 
ties of the QP problems. Daniel (1973) established some basic facts 
about the solution stability of a QP problem whose objective func- 
tion is a positive definite quadratic form. Guddat (1976) studied 
continuity properties of the solution set of a convex QP problem. 
Robinson (1979) obtained a fundamental result (see Theorem 7.6 
in Chapter 7) on the stable behavior of the solution set of a mono- 
tone affine generalized equation (an affine variational inequality in 
the terminology of Gowda and Pang (1994), which yields a fact on 
the Lipschitz continuity of the solution set of a convex QP prob- 
lem. Best and Chakravarti (1990) obtained some results on the 
continuity and differentiability of the optimal value function in a 
perturbed convex QP problem. By using the linear complemen- 
tarity theory, Cottle, Pang and Stone (1992), studied in detail the 
stability of convex QP problems. Best and Ding (1995) proved a 
result on the continuity of the optimal value function in a convex 
QP problem. Auslender and Coutat (1996) established some results 
on stability and differential stability of generalized linear-quadratic 
programs, which include convex QP problems as a special case. Sev- 
eral attempts have been made to study the stability of nonconvex 
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QP problems (see, for instance, Klatte (1985), Tam (1999), Tam 
(2001a, 2001b, 2002)). 

The proof of Theorem 10.1 is based on a construction developed 
by Oettli and Yen (1995, 1996a) for linear complementarity prob- 
lems, homogeneous equilibrium problems, and quasi-complementarity 
problems. 




