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. I N T R O D U C T I O N  

It is the purpose o f  this paper  to survey some properties o f  a convergence 
on sets and functions which has received a great deal o f  interest during the 
last two decades. We review some o f  its applications and show why this 
convergence  is convenient.  However ,  we leave apart the application to 
Hami l ton - Jacob i  equations which are dealt with in [63]. W e  also observe  
that when restricted to the space o f  continuous linear functions on a normed 
vector  space X the convergence we consider reduces to convergence for the 
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dual norm; this fact (and the abundance of  terminologies) suggests to call 
this convergence "bounded convergence" or, in short, "b-convergence". 

One of  the reasons of  the success of this convergence lies in its 
compatibility with the usual operations, provided some technical 
assumptions reminiscent to constraint qualification conditions in 
mathematical programming are satisfied. Such conditions already appeared 
in [44] in the finite dimensional case and in our very first investigations 
about this question which motivated our interest ([19], [53]); see also [4], 
[22], [25], [26], [38], [55], [56], [69], [72]. These assumptions involve 
openness or boundedness conditions. This fact justifies the focus we give to 
such questions. 

The main novelty of  the present paper is in the use of a concept of  
asymptotic cone introduced in [60] which bears some uniformity with 
respect to directions in a way reminiscent of the uniformity with respect to 
directions which is involved in the notion of  Fr6chet derivative (or semi- 
derivative [45], [50], also called B-derivative) or in the notion of Fr6chet 
cone in the sense of  [31], [33]. This concept replaces asymptotic 
compactness conditions which were used in [62]. 

As in [62], our methods are essentially geometric. Given an operation * 
and some sort of  variational convergence, in order to prove that 
(f ,  * g,) --~ f * g whenever the sequences of  functions ( f , )  and (g,) are 
such that ( f , )  ~ f ,  (g , )  ~ g ,  we reduce this question to several problems 
of set convergence: images, intersections, products. Each of  these set- 
theoretical results yields a rule for convergence of  functions. In particular, 
convergence of  performance functions and of infimal convolutions are 
deduced from convergence of  images (or sums) of  sets. Such a study may 
have been conducted for other convergences, for instance the ones 
considered in [4], [9], [20], [24], [38], [42], [70], [72]. However, we believe 
bounded convergence is appropriate in such a respect and we do not look for 
completeness. 

Other applications could benefit from our analysis. Regularization 
properties and well-posedness results are already considered in [26], [57]- 
[59], [61]; more attention could be given to nonconvex cases and to 
asymptotic methods. 

The paper is organized as follows. The next section is devoted to 
preliminary material about convergences. The main novelties are contained 
in Section 4: conical enlargements, an expansion property and a notion of  
disjointness at infinity for non convex sets. Section 4 is also focused on the 
new notion of  firm asymptotic cone to a subset of  a normed vector space 
(n.v.s.). There this tool is applied to boundedness properties. These 
properties may play a role in obtaining a priori estimates for solving 
equations. They are crucial for ensuring that convergence properties of 
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families of sets or functions are preserved under usual operations; a short 
account of  this topic is given in section 5. Such properties are used in [63] to 
obtain stability and persistence properties of  explicit solutions to first order 
Hamilton-Jacobi equations. Other applications to the convergence of  
functions are presented in [62] and in [73] where integral functionals and 
well-posedness questions are considered. In section 3 we evoke some other 
applications. 

. B O U N D E D  C O N V E R G E N C E  

Throughout this paper, unless otherwise stated, X and Y are real 
normed vector spaces (n.v.s.), U x (resp. B x ) is the open (resp. closed) unit 
ball of  X and S x is the unit sphere in X .  The closed (resp. open) ball with 
center x and radius r is denoted by B(x,r) (resp. U(x,r)) .  For a subset A 
of  X ,  intA, tea stand for the interior and the closure of  A respectively. 
The product space X x Y is equipped with the max norm. In particular, one 
has Ux× r = U x x Ur , Bxxy = B x × B r . The distance of  x ~ X to a subset E 
of X is d(x ,E)  := inf{d(x, w) : w ~ E}, with d(x ,O)  := oo. The remoteness 
of E is d(O,E). We denote by I? (resp. IR÷) the set of  positive (resp. 
nonnegative) numbers. 

Recall (see [3], [13], [24], [69]...) that a sequence (A.) of  subsets of  X 
is said to converge to a subset A of X in the sense of  Painlev~-Kuratowski 
if lim sup..4. = A = lim inf. A., where lim sup..4, is the set of  limits of  
sequences (x.) such that x k ~ A k for k in an infinite subset K of N and 
lim inf.A, is the set of  limits of  sequences (x.) such that x. E .4. for each 
n ~ 1~. We write (A.)--~ A. Here we focus our attention to a somewhat 
stronger notion, It requires the definition of the excess of  a subset A of X 
over another subset B of  X which is given by 

e(A,B) := sup d(a,B) if A,B ~ O, 
aEA 

with e(A,O) =oo if A ~: O and e(O,B) = 0 for any B. Then, for p e 17, we 
set 

ep(A,B) := e(A n pUx ,B) ,  d~,(A,B):= max(ep(A,B),ep(B,A)). 

It is convenient to write symbolically A a b - lim inf, A if, for each p e P ,  
(e , (A,A, ) )  ---~0 as n--~oo and A D b - l i m  sup, A, i f (eF(A, ,A))---~O for 
each p e ~ .  We write (A,) h )A and we say that (A,) boundedly 
converges (or b-converges) to A or that (A,) converges to A for the 
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bounded (HausdorfJ) topology if A c b - lim inf. A. and 
b - l i m  sup. A. c A. Let us note that cgA c lim inf..4, whenever 
A c b - l i m i n f . A  since then A c l i m i n f . A .  and since l i m i n f . A  is 
closed, On the other hand, when A D b -l im sup..4, then 
cgA D lim sup..4. .  Thus, we get that (A.) --~ cgA when (A.) b ) A. If  X 
is finite dimensional, the reverse implication holds. The choice of the open 
unit ball of  X in what precedes, rather than the closed unit ball, enables one 
to use the equalities 

e r (cgA, B) = ep (A, B) = e (A, cgB) = ep (cgA, cgB). 

These equalities show that we could restrict our attention to the case the 
limit set is closed; then we get uniqueness of  the set A such that 
(.4.) h ~ A and we can write A = b-l i ra .  A.. 

As for other variational convergences, one can pass from these 
convergences of sets to convergences of  functions. Denoting by e p i f  the 
epigraph of  f ,  we set ep(f ,g):=ep(epif ,  epig), Accordingly, for a 
sequence ( f . )  of  functions from X to I~ := 11~ w {-~,+oo} and a function 
f on X ,  we write f > b - l i m  sup . f ,  if e p i f c b - l i m  inf. (epi f . )  and 
f<_b- l im in f . f ,  if e p i f ~ b - l i m s u p ( e p i f . ) .  Of course, writing 
( f . )  b ) f  when (epif . )  b ) e p i f  means that f < b - l i m i n f . f ,  and 
f > b - l i m s u p . f . ;  we say that ( f . )  b-converges to f .  This type of  
convergence which has been thoroughly studied in [4]-[6], [8]-[12], [18]- 
[26], [32], [38], [43], [54]-[58], [68]-[72]... is also called the Attouch-Wets 
convergence, the bounded Hausdorff convergence and the epidistance 
convergence; this last term is justified by the fact that b-convergence on the 
space ~ ( X )  of  closed nonempty subsets of X arises from the distance d 
given by 

d(A,B):=~_,~=2-Pmin{dp(A,B),l}, A, B E ~ ( X ) ,  

where dp (A,B) := max(ep (A, B),ep (B, A)) (see [5], [24]). This convergence 
has been studied (in Hilbert spaces) in analytical terms through the Moreau 
regularization in [8]. Pioneering contributions in this vein are due to 
Choquet, Moreau [46], Mosco [47]; the case of  cones is considered in [28], 
[31], [33], [35]. 

A convenient way of  expressing that a sequence (A.) of  subsets of X b- 
converges to A is: for any bounded sequence (a.) of  A one has 
(d(a., A.)) ~ 0 and for any bounded sequence (a.) of  X such that a. ~ .4. 
for n large enough one has (d(a.,A))---~0 (see [71]). 
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The following result shows how natural bounded convergence is; it also 
justifies the simplification of  terminology we suggest. 

Proposition 1. Let f , f .  ~ X* (n ~ N). Then 

epi f c b - l im inf(epi f )  <::> Ilf - L II ~ o <:> epi f = b -lim(epi f .  ). 

Proof. Assume that e p i f  c b - l im in f ( ep i f . ) ,  Let 0 < c < p < 1. For every 
n ~ N  there exists x. ~U x such that plLl<_(x.,f.). Because the sequence 
((x.,(x.,f))) is bounded, it follows that d((x . , (x . , f ) ) ,ep i f . )~O.  Hence 
there exists n. ~ N such that for every n > n. there exists (u.,t.) ~ epif .  
with Ilxo -u.M-< ~ and I<x.f)-t°l_~ ~ It follows that 

pnf.ll<_(x.,L) <_(x. , f . ) - (u. , f . )+ t. - ( x . , f ) + ( x . , f )  
-< I l o l l x . -  u.l+ < +llfll-< ~llf.ll+ ~ +llfll, 

and so ( p -  ~)llf.ll-< ~ +llf l l  for n > n,. Hence ( p -  c)lim supllf:ll-< ~ +l l f l l .  
As e and p are arbitrary such that 0 < 6 < p < l ,  we obtain that 
l imsuplf .~<l[f]  1. Now, let ( p . ) l " l  and ( x . ) c U  x be such that 
p . [ [ f . - f [ [ <  ( f . -  f ) (x . )  for every n, Once again, because the sequence 

( ) ( ) ((x., x . , f  )) is bounded, we have that d((x., x . , f  ),epif.)---~0; there 
exists ( (u . , t . ) ) cX  such that (u.,f.)<_t. for every n, ( [ [ x . - u . ] ) ~ 0  and 
( ( % , f ) - t . ) - ~ O . B u t  

p. I1:. -s l l<-(x°, : .  - f )<_ (x . , : . ) - (u . , : . )+ , . - ( ,<o , f )  
-< II/o11. IIx. -uoll + t. -(x.,f). 

Since ( f . )  is bounded, it follows that (IlL- f[I)->o. Assume now that 
( l [ f . - f i l ) - ->o .  Let ( (x . , t . ) )cepi f  be bounded; in particular, (x,,) is 
bounded. Let s. := max {t,,,(x., f.)}; of course, (x.,s.) ~ ep i f . .  Then 

d((x.,t.), epi f .)  _< [[(x., t . ) -  (x.. h. )ll: s~ - t ~ :  (<x. f.>-,.)+ 
_<(<x.,fo>-<x.,f>)++(<x.,f>-,.)+-<ll/-f.ll.II xoll -~° 

Hence e p i f c b - l i m  in f (ep i f . ) ,  Let now ((x.,s.)) be bounded such that 
(x. ,s .)~epif .  for every n; in particular (%) is bounded, Let 
t. :=max{s.,(x.,f)}; of course, (x.,t.)Eepi f . Then 
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d ( (x . , s . ) , ep i  f )  < II(x., s . ) -  (x., t.)ll = t. - s. = (( ~., f ) -  s. ). 

< - ( ( x . , : ) - I x . , : . } ) + + ( ( x . , : . ) - s . ) < -  : - : .  x . l -~0  

Hence e p i f  ~ b - lim sup(epif . ) .  [] 

The preceding result can be transposed to a somewhat more general (and 
in fact different) case, Here b-convergence of a sequence of  operators 
means b -convergence of  their graphs and ep (S, T) := ep (gph S, gph T). 

Proposition 2. Let X , Y  be normed vector spaces and T , T . ' X - - ~  Y 
(n ~ N) be continuous linear operators. Then 

gph r c b - lim inf (gph T.) ¢:> []T. - TI[ -~ 0 <=> gph T = b -lim(gph 7".). 

Proof, As elsewhere in the paper, the product space X x Y is endowed with 
the box norm. Assume that gph T c b - lim inf(gph T.). Let 0 < e < p < 1. 
For every n ~ N  there exists x. ~ U  x such that p[[T.[[<[[T.x.[]. Because the 
sequence ((x . ,Tx.))  is bounded, it follows that d( (x . ,Tx . ) ,gph  T.)--~O. 
Hence there exists n~ ~ N such that for every n > n~ there exists u. E X 
with IIx. - u.I-- ~ and IVx. - V.u.ll ~_ ~ .  It follows that 

PlIT.II-< IIT.x. II-< liT:. - T.u. II ÷ IIT.u. - Tx, II ÷ IITx. II 

and so (R-~)IIT.II_< ~ ÷ M  for n >n~. Hence ( p - e ) l i m  supI[T.]< e ÷VII. 
Since e and 1 - p  are arbitrarily close to 0, we obtain that 
limsuPllToll_~llTl[. Now,  let (po) l"l  and ( x . ) i n  U x be such that 
P . l l v . - T I l ~ _ l l ( v . - r ) x . t  for every n.  Once again, because the sequence 
((x,,,Tx.)) is bounded, we have that d((x,,,Tx,,),gph T . ) - ~ 0 ;  there exists 
(u.) c X such that (llx. - u ° l ) - ~  0 and (llTx° - Tou.ll) ~ 0.  But 

p.  liT. - TII ~ II(T. - T>x.ff <_ l iT:.  - Y~u. II ÷ [IY~u. - Yx.II 
< T .[x. - u. + T.u. - Tx. , 

Since (T.) is bounded, it follows that (liT. - TII)-~ 0 
Now assume that (lIT. - TI[ ) --~ 0. Let ((x . ,Tx.))  

equivalently, (x.) be bounded), Then 
be bounded (or 
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d((x.,Tx.),gph 1") < II(x.,Tx.)- (x.,T.x.)ll = IITx. - T.x.I I < liT- T.I I , IIx.II ~ O. 

Hence gph T a b - l i m i n f ( g p h  T.), Let now ((x.,T.x.)) be bounded (or 
equivalently, (x.) be bounded). Then 

d((x.,Lx.),gph r) <_ II(x,,ux,)-(x,,rx,)ll = Ilrox, - rx°ll <-lit. - r l l .  IIx, II o. 

Hence gph T D b -l im sup(gph T,). [] 

As noted in [62], b-convergence is a stringent condition. Therefore, it 
may be advisable to use compromises with weaker convergence notions, as 
done in [53], [4], [38]. For simplicity, we do not do that here. 

. A P P L I C A T I O N S  

We devote the present section to some illustrations of the uses of 
bounded convergence; we just give a sample. We refer to [6], [7], [22], [24], 
[30], [49], [63], [73] for other applications. 

3.1 R e i n f o r c e d  t a n g e n c y  

In [2] and its references, approximations of  a subset E of  a n.v.s. X 
around one of its points are considered. Outer firm approximations C of E 
at e ~ E are obtained in requiring that 

1 
C D b - l im sup : ( E  -e ) .  

t ~o .  t 

Clearly, such a set C ,  when closed, contains the tangent cone 
T(E,e) = lim sup,~o.t-~(E-e); but it enjoys better properties. In [17] (see 
also [16]), a notion of  equicirca-tangent cone is introduced in order to prove 
open mapping theorems for multimappings. It involves a notion akin to 

b -  l imin f  l ( E _ e , ) .  
(t,e')--~(O.,e), e'eE t 

Reinforced asymptotic approximation properties which bear some 
analogy with the preceding reinforced tangency will be considered later on. 

Similar notions of  approximations for functions can be defined and used. 
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3.2 Non l inea r  cond i t ion ing  and per turbat ions  

It is not difficult to see that the functional f w-~ my : = i n f f ( X )  from 
~x to ~, is upper semicontinuous when ~x is endowed with the topology 
associated with b-convergence. A more precise and quantitative result can 
be given. Given f : X ~  such that m : : = i n f f ( X )  elR and 
S/ := arg min f u: 0 ,  a nondecreasing function ~o: N+ ~ N+ to {m} is said 
to be a conditioner for f if ~o(0) = 0 and 

Vx e X : d(x, S / )  < (p(f(x) - m:). 

f is said to be well-set if it has a conditioner which is a modulus (i.e. 
~o(t)~0 as t ~ 0 ) .  

The following statement shows that one only gets a one-sided 
perturbation result for the set of minimizers. Other results are given in [ 11 ]. 

Theorem 3. ([57]) Suppose S: is nonempty and bounded Suppose f is 
well-set, with an usc conditioner ~o. Then there exists r > 0 and 6 > 0 such 
that for  any function g : X ~ R u {oo} whose sublevel sets are connected 
satisfying dr ( f ,g)  < 6 one has 

m g - m  z < d ~ ( f , g ) ,  e ( S g , S / ) < d ~ ( f , g ) + ( p ( 2 d ~ ( f , g ) ) .  

3.3 C o n v e r g e n c e  o f  f ixed points 

Following Aubin, given 2 e/?, a complete metric space (X,d), and a 
nonempty subset U of X, one says that F : X ~ X  is pseudo-2-  
Lipschitzian with respect to U if 

e(F(x) n U ,  F(x')) <_ 2d(x ,x ' )  Vx, x' e U. 

The following existence result is close to the Nadler fixed point theorem 
[48]. However, here we use the preceding weakening of the notion of 
Lipschitzian multimapping. 

Proposition 4. ([21]) Let F : X ~ X be a multimapping with closed values 
which is assumed to be pseudo-2-Lispchitzian with respect to some ball 
U(xo,r ) with 2, ~ (0,1), r > (1-2)-td(x0,F(x0)). Then the set ~F of f ixed 

points o f  F is nonempty and 
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d(Xo, ~ F ) <- (1 -- 2)-' d(xo,F(x o)). 

The following result gives a measure of the variation of the sets of fixed 
points of multimappings in terms of the variation of the graphs. Again it is a 
one-sided result. In [21] this result is applied to the variations of the sets of 
solutions to a differential inclusion. 

Proposition 5. ([21]) Let F : X ~ X be a multimapping with closed values 
which is pseudo-2-Lispchitzian with respect to U(xo,r), and 2E(O,1). 
Then for  any s ~ (O,r) and for  any G : X ~ X with 
es(G,F ) < (1- 2)(1 + 2)-I(r - s) , one has 

es (q%, @e) < (1 -- 3,)-' (1 + 2)e~. (G, F). 

3.4 Continuity of the Fenchel transform 

In the sequel we denote by .T(X)  the set of proper lsc functions on X 
with values in ~ u {+oo}. The Fenchel-Legendre conjugate of f e ,T(X) is 

- ( ) f* :X* --~IR, f*(x*)=SUxP ( x*,x - f ( x ) ) ,  

where X" is the topological dual of X .  The continuity of the transform 
f ~ f "  is important for a number of applications ( [22], [27], [32], [63]...). 
It has been mostly studied under convexity assumptions. 

Theorem 6. ([23], [54], [64])Let f , f , , g , g ,  ~ . T ( X )  (neI~) ,  with f , ,  g 
c o n v e x .  

(a) f < b -l im inf'. f .  ~ f "  > b - lim sup.f.* /f sup. d((O,O),epif.) < oo. 
(b) g > b - lim sup. g.  ~ g" < b - lira inf. g.'. 

(c) ( f , ) ___L_> f ~ ( f ~ ) __L_> f "  . 
However some conclusions can be drawn without convexity 

assumptions; note that the following statement can be converted into a 
continuity result in terms of uniform convergence on bounded subsets of the 
transforms. 

Theorem 7. ([64]) Let f ~ .U(X)  be hypercoercive (i.e. 
limlxl]_,~ f ( x ) /  x - oo) and bounded below. Then, for  all q, e E IP there 
exist r, 6 ~ I? such that 
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e r ( f , g ) < a ~ [ V x *  ~ q U  x. g*(x*)> f * ( x ' ) - c ] ~ [ e q ( g * , f * ) < c ] .  

In particular, i f  f < b -l im inf. f .  then f* > b -l im sup. f . ' .  

. B O U N D E D N E S S  PROPERTIES 

We devote the present section to some concepts which will be used as 
key ingredients in some boundedness properties we need. 

4.1 Apart subsets 

Given a nonempty subset E of X and 6 e ~ ,  the conical c -  
enlargement o f  E is the set 

C~ (E )  := {x ~ X : d ( x , E )  < c ll x ll} ~ {O}. 

For a ,f le]O,l[  and y : = a + f l + a f l  one has, whenever OeE ,  

cp (ca (E)) c C~ (E). (1) 

When E :~ {0} is a cone, for a, f l  ~ (0,1), one has the following inclusions: 

~,+ (E c~ S x + aU x ) c C(,_,)_, (E), (2) 

Cp(E) c N + ( E m S  x + f l (1- f l ) - 'Ux) .  (3) 

The notion of  conical enlargement is thus especially useful when dealing 
with cones; for such subsets it is related to the notion of plastering due to 
Krasnoselski ([37]; see also [28], [31], [33], [35]). But it can be used for any 
subset. 

The following definition recalls a notion introduced and used in [41], 
[60] which will be much used in the sequel. 

Definition 8. Two nonempty subsets E, F of  X are said to be 
(asymptotically) apart i f  there exists e ~ ~ such that C c (E) ~ Cc (F) is 
bounded. 

Equivalently, the nonempty subsets E, F of  X are apart if, and only if, 
there is no sequence (x,) such that (llxoll)- oo, (llx.-' II d(x.,E))--, 0, 
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-I (]]x,I d(x,,F))--~O. In the case E and F are cones, several other 
characterizations are given in [41] and [60]; we recall them for the reader's 
convenience. Their simple proofs are consequences of  relations (1)-(3). 

L e m m a  9. ([41]) Given two cones" P,Q in X ,  the following assertions are 
equivalent and hold if and only if P and Q are apart: 

a) thereexist a,f l>O such that C~(P)~Cp(Q)={O}; 

b) there exists y > 0 such that P n C r (Q) = {0}; 

c) thereexists 6 > 0  such that P n ( Q n S  x +6Ux)=O; 

d) there exists g > O  such that (P mS  x + gUx )n(Q n S  x + g U x ) = e ;  

e) there exists i c>0  such that max(d(x,P),d(x,Q))>xiixi[ for each 

x E X ,  

These assertions are satisfied when P, Q are closed, P n O = {0} and one 
of  the following conditions is satisfied." 

0 P (or Q) is locally compact (in particular if span P is finite 
dimensional); 

ii) P (or Q) is weakly locally compact and P and O are convex. 

When P and Q are convex, dual properties can be given in terms of 
polar cones. 

4 .2  B o u n d e d n e s s  a n d  e x p a n s i o n  p r o p e r t i e s  

The preceding notions can be used for studying boundedness questions. 
Let us recall that a multimapping M : W ~ X between two n.v.s, is said to 
be bounding if it transforms any bounded set into a bounded set (sometimes 
M is said to be bounded, but we prefer to avoid any confusion with the case 
the image of M is bounded). Let us say it is quasi-bounding if the 
remoteness of  M is bounded over any bounded subset of  its domain. It is 
easy to give examples showing that the latter condition is less exacting than 
the former one; in particular, the notion of bounding multimapping cannot 
be used when the values of  M are unbounded, in particular when they are 
epigraphs. The following concepts have been used repeatedly but implicitly 
in [53], [62] and explicitly in [60]. In this last reference, by analogy with the 
case of proper maps, a quasi-expanding map was called boundedly proper 
on E .  There is also a certain analogy between expansive maps and 
expanding maps as any expansive map is expanding (but the converse is not 
true). 
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Definition 10. A map F from X to a normed vector apace Y & said to be 
expanding (resp. quasi-expanding) on a subset E o f  X i f  the multimapping 
M : y ~ F -I (y) n E is bounding (resp. quasi-bounding)from Y to X .  It is 

said to be linearly expanding on E i f  there are a ~ ]?, p ~ ]R÷ such that 

IIF(x ll- Ilxll for  all x E \ pU  x . 

It is said to be linearly quasi-expanding on E i f  there are a ~ ~ ,  p E ~+ 
such that 

F(E)  n a r U  r c F (E  n rU x) for  all r > p. 

Let us state easy characterizations of these properties. 

Proposition 11. The map F : X --> Y is expanding on E c X if, and only if, 

Vr ~IP,3q E ~ : E n F - l ( r U r ) c  qU x. 

It is quasi-expanding on E if, and only if, 

Vr ~ ~,3q ~ IP : F(E)  n rUy c F ( E  n qU x). (4) 

Moreover, the mapping F : X ---> Y is expanding on a subset E o f  X if, 
and only if, any sequence (x.) in E is bounded when (F(x.))  is bounded 
It is quasi-expanding on E if, and only if, for  any bounded sequence (y.)  
in F(E)  there exists a bounded sequence (x.) in E such that y. = F(x . )  
for  each n ~ N. 

We also have the following immediate implications. 

Proposition 12. 
(a) I f  F is expanding on E then it is quasi-expanding on E .  
(b) I f  F is linearly expanding on E then it is expanding on E and 

linearly quasi-expanding on E ,  
(c) I f  F is linearly quasi-expanding on E then it is quasi-expanding on 

E .  

For positive homogeneous maps, more can be said. 

Proposition 13. Suppose E is a cone and F is positively homogeneous. 
Then 



Bounded (HausdorfJ) Convergence." Basic Facts and Applications 839 

(a) F is linearly expanding on E if, and only if, it is expanding if, and 
only if, there exists some c e ~  such that E n F - I ( U r ) c c U x  if, 

and only if, there exists some u e IP such that IIF(x)ll > _ ~llxll for  all 

x ~ E.  In such a case one has F -I (0) ~ E = {0}. 
(b) F is linearly quasi-expanding on E if, and only if, it is quasi- 

expanding if, and only if, there exists some c e It ~ such that 

F(E)  ~ U r c F (E  n cU x).  

Moreover,  when 0 e E, F is linearly quasi-expanding if, and only if, F 
is open at 0 at a linear rate from E onto F(E) .  

Example 1. The preceding notions can be illustrated by the case 
X -- Y = R .  In such a case, F is expanding if, and only if, F is coercive in 
the sense that IF(x)l ~ when Ixl-  ~ 

Example 2. Suppose A" X --~ Y is a linear isomorphism, h" IR+ --> ~, is a 
function and F(x)  = h(llxll)A(x) for  x e X .  I f  lim inf,_,® h(r) > O, then F 
is linearly expanding on X .  

The linear expansion property enjoys a useful stability property detected 
in [41] and [60]. 

Lemma 14. I f  F : X --~ Y is Lipschitzian and linearly expanding on a subset 
E o f  X ,  then there is a positive number 6 such that F is linearly 
expanding on C a (E). Moreover, for  any ~ > 0 there exist 6,cr > 0 such 
that F(Ca (E) \ crU x) c C c (F(E)) .  

Let us quote some criteria from [41] and [60, Lemma 8]. 

Lemma 15. Let P be a cone in X and let F be a continuous linear map 
from X to Y, with N : = k e r F .  Each o f  the following conditions is 
sufficient for  F to be linearly expanding on P: 

a) F is open onto its image and N and P are apart; 
b) F is quasi-expanding on P and N and P are apart; 
c) F is quasi-expanding on P, P is closed and N is finite 

dimensional with N n P = {0}; 
d) P is closed, locally compact and N ~ P = {0}; 
e) P is closed, P has a weakly compact base and N n P = {0}. 
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Another connection between the two concepts introduced above is the 
following one (see [41, Lemma 2.2 c] for a quantitative proof in the case E 
and F are cones and [60] in the general case). 

Lemma 16. The subsets E and F o f  X are apart i f  and only i f  the map 
L : (x, y) ~ x - y is linearly expanding on E × F .  

We also need a notion which is a global variant of  a property which has 
been widely used in nonsmooth analysis since its introduction in [34] and its 
use in [50], [52] in which the terminology has been coined. 

Definition 17. A mapping F : X ~ Y between two normed vector spaces is 
said to be metrically regular (resp. asymptotically metrically regular) on a 
subset E o f  X i f  there exists 7 > 0 such that d(x ,N)  <_ YllF x)ll for x E 
(resp for x with Ilxll large enough), where N := F-J(0).  

When the closure of  N contains 0 (in particular when N is nonempty 
and F is positively homogeneous), F is asymptotically metrically regular 
on E whenever F is linearly expanding on E .  When X and Y are 
Banach spaces and F is linear, continuous and surjective F is metrically 
regular on X .  Let us note the following simple facts which clarify some 
relationships between the preceding concepts. 

Lemma 18. Suppose F : X --+ Y is positively homogeneous. Let 
N := F -I (0) and let C be a cone o f  X .  

(a) F is metrically regular on C if, and only if, (d(x, ,N))--~ 0 

whenever (F(x,))  --+ 0 with x, ~ C for  each n. 

(b) Suppose C - N c C and F(x  - w) = F(x) for  any w ~ N, x E C. I f  

F is metrically regular on C then F is linearly quasi-expanding 
on C.  

(c) Suppose C -  N c C and x' - x ~ N whenever x, x' ~ C and 

F ( x ) = F ( x ' ) .  I f  F is quasi-expanding on C then F is metrically 

regular on C.  

Proof. 
(a) If F is not metrically regular on C there exists a sequence (x,) in 

C such that d(x , ,N)  > nllF(x.)ll for each n. Since F is positively 

homogeneous and F ( x , ) ~  O, we may suppose that nllF(x. ll = 1 
for each n. Then (F(x,))--~O and (d(x , ,N))  does not converges 
to 0. The converse is obvious. 
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(b) Suppose there exists y > 0 such that d(x,N) < rl lF(x)ll  for x ~ C. 

Then for any q ~ I?, y ~ F(C) ~ qU r and any x ~ F -I (y) n C one 

can find w e N  such that IIw-xll<rq, so that 
y = F ( x -  w) E F(zqU x n C) by the assumption C - N c C. 

(c) Suppose F is quasi-expanding on C.  Let p ~ I ?  be such that 

F ( C ) n U y  c F ( C n p U x ) .  For each x ~ C  and each q>llF(x)ll 
one has F(q-~x)=F(pu) for some u E C n U x ,  hence 

q-ld(x,N)=d(q-tx ,  N)< q - J x - ( q - l x - p u )  < p as q - l x - p u ~ N ,  

and one gets d(x,N) < PllP(x)ll  . 
[] 

Part (a) of  the preceding lemma can be used to show that if F : X ---> R 
is positively homogenous and if N_ := {x ~ X : F(x) <_ 0}, then F satisfies 
d(x ,N)<yF(x )+  for some y > 0  and each x e  C if, and only if, 
(d(x,,N_))-->O whenever (F(x,)+)-->O with x, e C  for each n, where 
r+ := max(r,0) : it suffices to replace F(.) by F(.)+. 

4.3 F i r m  a s y m p t o t i c  c o n e s  

Let E be a nonempty subset of  the normed vector space X .  We recall 
that the asymptotic cone (sometimes called the recession cone) of  E is the 
cone Eoo := limsup,_,~o t-rE, consisting of all limits of  sequences (t2~x), 
where x, e E  and t, eI? with (t,)--->oo (see [14], [15], [39]-[41], [69], 
[75] for the study of  related properties). 

The following definition, which is the central concept of  [60], will be 
used here instead of  the concept of  asymptotic compactness used in [62] as a 
boundedness criteria. Recall that E is said to be asymptotically compact if 

- I  
for any sequence (x,) of  E such that (llx.ll)-,  the sequence (Ix.II x°) 
has a converging subsequence (see [29], [51], [76] for preliminary 
definitions). 

Definition 19. A cone C o f  X & a firm (outer) asymptotic cone o f  a subset 
E o f  X i f  for  any c>O there exists some r>O such that 
E ~ r U  x c C c(C). 

The following characterizations may be convenient. 

Proposition 20. For a subset E o f  X and a closed cone C in X,  the 
following assertions are equivalent: 

a) C is a firm asymptotic cone o f  E; 
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b) d(x,C /llxll- o as Ilxll   with xeE; 
c) there exists a map h: E--+ C such that d(x,h(x ;llxll-  o as 

I l x l l - ~  with x ~ E. 
Proof. The implications a ) ~ b ) ,  c ) ~ a )  are direct consequences of  the 
definitions. To prove that b) ~ c), given c > 1, for x ~ E we pick h(x) e C 

such that Ilk( x ) -  xll-< cd(x, c) (considering separately the case d(x, C) = 0 

and the case d(x, C) > 0 ). [] 

An interpretation of  the preceding conditions in terms of  bounded 
convergence can be given. 

Proposition 21. A cone C of  X is a firm asymptotic cone of  a subset E of  
X if, and only if, b -lim supt_,o o t-rE c C.  

Proof. Suppose C is a firm asymptotic cone of  E .  Given p e ]P we have 
ep(t-JE, C)---~O as t---~oo: otherwise, we could find c > 0 ,  a sequence 
(t,)---~oo and x, e E  such that -' < p  and -' cl(x II d(t, x,, C) > c and then we 
would have IIx°ll_> ct° -~o% and )>ct ,  >cp-'llx, I, a contradiction. 

Conversely suppose ep(t-'E,C)---~O as t -+oo  for each p e ] P .  Given 
>0, let t , > 0  be such that e j ( t -~E,C)<e for t > t , .  Then, for 

x e E \ 6 U  x and for t>llxll we have t - ' x e U  x hence d<t-'x,C)<e and 
d(x,C)<et. Since t is arbitrarily close to Ilxll, we get d(x,C><- llxll and 
x e c , ( c ) .  []  

Of course, the preceding definition does not determine C uniquely: any 
cone D containing C is also a firm asymptotic cone. Thus, one is led to 
take as a firm asymptotic cone a cone which is as small as possible. The 
following result shows a limitation in this direction. 

Proposition 22. I f  C is a closed firm asymptotic cone of  E, then C 
contains the asymptotic cone Eoo of  E .  I f  E is asymptotically compact, 
then E is firmly semi-asymptotable in the sense that E® is a firm 
asymptotic cone of  E .  

Proof. Let v e Eoo \ {0}" there exists a sequence (e,) in E and a sequence 
(t,)---~oo in /P such that (t~'e,)---r v. Then ( l ie .b- ,® and 

d(v, C) : lim d(t ; 'e , ,  C) : lim t : 'd(e, ,  C) : Ilvlllimle.ll-'d(e., c)  = 0, 

so that v e C .  Suppose E is asymptotically compact and the asymptotic 
cone E® of  E is not a firm asymptotic cone of  E .  Then there exist ~ > 0 
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and a sequence (e.) of  E such that (lle.b and d(e.,l:.~)> ckll, Since 
E is asymptotically compact, taking a subsequence if necessary, we may 
suppose that (e./[e.)  has a limit v. Then v~E® and we get a 
contradiction: d ( H - ' e  ., v)>__ d(le.]-'e.,E~o ) > ~ . [] 

Thus, in any finite dimensional space, the asymptotic cone is a firm 
asymptotic cone. On the other hand, in any infinite dimensional normed 
vector space X there exists a set E whose asymptotic cone is not a firm 
asymptotic cone. 

Example 3. Let E be the epigraph o f  a function f : W -~ ]R with nonempty 
domain in a n.v.s. W which is bounded below on bounded sets, and let 
X = W  x R .  I f  f is hypercoercive (i.e., f(x)/llxll oo as Ilxll-  o), then g 
isfirmly asymptotable and E~ = {0} x ~+. 

m 

Example 4. Let E be the epigraph o f  a function f : W--~ IR which is 
bounded below on bounded sets, such that 
liminfll,l_~o~(f(w)-p(w))/llwl[>o, where p 'W- - -~R  is a positively 
homogeneous function and let C be the epigraph o f  p in X = W x R . Then 
C is a firm asymptotic cone o f  E .  In particular, i f  
e= :=lira infiH = the set C :=epi c, llll is a firm asymptotic" 
cone o f  E .  When co~ ~ l? w {+oo}, f is said to be super-coercive. 

Example 5. Suppose there exist a bounded subset B o f  X and a closed 
cone C such that E c B + C. Then C is a firm asymptotic cone to E . 

Some calculus rules can be given (see [60, Prop. 13]). 
A connection between the concept of  firm asymptotic cone and the 

notion of  apart subsets is as follows. 

Proposition 23. ([60, Prop. 17]) Let P and Q be firm asymptotic cones o f  
subsets E and F o f  X respectively. I f  P and Q are apart, then E and 
F are apart. 

4.4 Applications to boundedness properties 

Let us now show that the preceding concepts can be used for the study of  
boundedness properties. We only deal with mappings; boundedness 
properties of  correspondences could be dealt with similarly. The first result 
we give is a simple consequence of  Lemmas 12-14. 

Lemma 24. Let F : X ~ Y be a Lipschitzian, positively homogeneous map 
between two normed vector spaces and let E be a subset o f  X . Suppose K 
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is a f irm asymptotic cone o f  E and that F is expanding on K .  Then F is 
linearly expanding on E .  

The following proposition is closely related. 
Proposition 25. Under the following assumptions, a positively homogeneous 
mapping F : X --~ Y is expanding on a subset E o f  X : 

(a) E has a f irm asymptotic cone K; 

(b) K and N := F -~ (0) are apart; 

(c) F is asymptotically metrically regular on E . 

In fact assumption (a) can be replaced with the following weaker 
condition: 

(a') there exists a e ]? such that E n C~ (N) has a firm asymptotic cone 
K .  

Proof. If  the conclusion does not hold, one can find r e ]?, a sequence 
(x.) of  E such that IIF(x°)ll < r  and (llx.ll)--, oo. In view of  (c), we have 
(lIx.I-Xd(x.,N)) --~ O. Then, dropping a finite number of  terms if necessary, 
we have x. e E n C~, (N) for each n e N.  Then, by assumption (a'), we have 

-X 
(lIx.I d(x . ,K) )  --. O. In view of the characterization given after Definition 8 
of  the property that K and N are apart, we get a contradiction. [] 

The preceding result can be specialized to the case E is a sub-level set 
[ f  < q] of  some function f on X .  It can also be adapted to the case the 
function f has a f i rm asymptotic approximation q9 on some subset S of  
X ; by this we mean that lim infEs, ll+~ o (f(x)- o(x);llxll>_ o 

Corol lary 26. Under the following assumptions, the map F is expanding on 
the sub-level set [ f  < q] : 

(a) there exists f i e ]?  such that f has a f irm asymptotic 

approximation (p on [ f  < q] n Cp(N) which is positively 

homogeneous; 

(b) there exists y el? such that q~(x)> yllxll for each x e f , ( N ~ ,  

(c) F is asymptotically metrically regular on [ f  < q]. 

Proof.  Let a e (0,min{fl, y}) and let 

g := {x e C~(N)'qg(x)< ~llxll~ 

Since K n Cy (N) = {0} the sets K and N are apart. It remains to show that 
K is a firm asymptotic cone to I f  < q] ~ C,~(N). If  it is not the case, one 
can find 6 e ] ?  and a sequence (x,) in [ f  < q] n C, (N) such that 
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and x. f~Cs(K ) for each n e N .  Then, by (a) and (b), there 
exists a sequence (c.) --~ O+ such that 

q > f ( x . )  > ~o(x.)- c. Ix.II (y-  ~ . )k l l ,  

a contradiction. [] 
The preceding proposition can be applied to the case of the sum 

S : X 2 ~ X given by S(x ,y)  = x+ y .  We note that S is metrically regular: 
for any (x,y) ~ X 2 we have 

d((x, y ) ,N)< d((x, y), 1 ( x -  y, y - x ) ) =   llx + yll =  lls( x, y)ll 

Since when P (resp. Q ) is a firm asymptotic cone of  A (resp. B),  the cone 
P × Q is a firm asymptotic cone of  A × B, and since P × Q is apart from 
N := ker S when P and - Q  are apart, as easily seen, we get the following 
result. Another (simple, direct) proof is provided in [60, Prop, 20]; still 
another proof can be derived from Lemmas 14 and 16. 

Proposition 27. Let A and B be two nonempty subsets o f  X and let P 
(resp. Q) be a firm asymptotic cone o f  A (resp. B ). I f  P and - Q  are 
apart then the mapping S : (x, y) ~ x + y is expanding on A x B ,  

5. C O N T I N U I T Y  O F  S O M E  O P E R A T I O N S  

We are in a position to give some persistence and stability results for 
usual operations on sets and functions. 

5.1 C o n t i n u i t y  o f  s o m e  o p e r a t i o n s  w i t h  sets  

The most obvious results concern products and unions for which a direct 
easy analysis leads to the following statement. 

Proposition 28. ([62, Lemma 21 (e)]) Suppose (A ) b > A, (B.) b > B. 

Then (A. x B.) b > A x B.  I f  A, B, A ,  B. are subsets o f  the same space 

then ( A , ~ B , )  b > A ~ B .  

For intersections, a convexity argument and a qualification condition 
([50], [53], [66], [67], [75]) have to be used. 
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Proposition 29. ([62, Prop. 27 (e)]) Suppose (A, )  b > A, (B, )  b > B 
where A , A , , B , B ,  are closed convex subsets o f  a Banach space X and 
X = R + ( A - B ) . T h e n ( A  r iB , )  b > A n B .  

In fact a quantitative result can be given. Assuming that 

s U  x c A n r U  x - B n r U  x (5) 

for some r , s  ~ ]? (what occurs when X = IR+(A - B ) ) ,  we will show that for 
each p ~ ~ and any A',B' c X we have 

e p( A ' ~  B ' ,A  n B) < p + r + s 
s + max(ep (A', A), ep (B', B)) (ep (A', A) + el, (B', B)), (6) 

and that if p > r and if ep (A, A ') + ep (B, B ') < s, we have 

d.  (A'n 8', A n 8) <_ s-' (p + r + s)(d.  (A ', A) + d,, (8', 8)) (7) 

Proof.  Let x' ~ A '~ B ' n  p U  x and let t > ep (A ', A) + el, (B', B) .  We can find 
y ~ A, z ~ B such that IIy- x'll + II z -  x'l[ < t .  Relation (5) ensures that there 
exists ( a , b ) ~ ( A n r U x ) × ( B n r U x )  such that 

st-l ( z - y ) = a - b. 

Then x := (s + t) -j (sy + ta) = (s + t) -~ (sz + tb) belongs to A c~ B and since 
Ila - x'i < P + r 

IIx- x'! ~ (s + t ) - ' s I y -  x'll + (s + t ) - ' t l la-  x'll < (s + t) ' t(s + p + r). 

Since t is arbitrarily close to ep(A ' ,A )+  ep(B' ,B),  we obtain (6). 
Now let us suppose A' and B' are such that ep (A, A ') + ep (B, B') < t < s .  

Then, for s ' ~  ( t ,s)  we have 

s ' B  x c A n r U  x - B n r U  x c A ' n ( r  + t )U  x - B ' n ( r  + t )U  x + t U  x. 

Using the R~dstrOm's cancellation rule, we get 

(s ' -  t )B  X c cI(A '~  (r + t )U X - B ' ~  (r + t )U x ). 

Then the openness result of  [67, Lemma 1.0] ensures that 
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( s ' -  t)U x c A '~ (r + t)U x - B ' n  (r + t)U x . 

Thus the first part of  the proof can be applied with A, B interchanged with 
A', B' and r, s replacedby r + t  and s ' - t  respectively: 

%(A ~ B,A'c~B') < P + r + s' 
s ,_ t  +ep(A,A,)+ev(B,B,)  (ep(A'A')+% (B'B'))" 

Since s' and t can be chosen arbitrarily close to s and %(A,A')+ %(B,B')  
respectively, we get (7). [] 

Using the diagonal mapping, and the product rule, the preceding 
statement can be considered as a special case of a result about inverse 
images under a continuous linear map (see [62, Lemma 24]). On the other 
hand, the inverse image by a linear continuous map L : X --~ Y of  a subset 
D of Y is obtained as the projection on X of the intersection L n (X x D), 
where L is identified with its graph and Px ]L is an isomorphism from L 
onto X .  In fact, a direct analysis yields a quantitative result which reveals a 
kind of  Lipschitzian behavior. 

Proposition 30. ([19, Cor. 2.4], [62, Lemma 24]) Let D be a closed convex 
subset o f  Y .  Assume 

sU r c L ( r U x ) - D  

for  some r,s > O; this condition is satisfied when X ,  Y are complete and 
Y = R+ ( L ( X ) -  D). Then, for  t E (O,s), p > O, q > max(p[[Ll[,rllL}]+ s) and 
D',D" closed convex subsets o f  Y with dq(D,D')<t ,  du(D,D ) < t  one 
has 

dp(L-'(D'),L-'(D"))<_ P+rs_t dq( D' ,D" ). 

In particular, for  a sequence (D,) o f  closed convex subsets o f  Y one has 

(19.) b >D ~ (L-t(D.)) ~ >L-~(D). 

The study of  b-convergence of images can be eased by the use of the 
criteria for the expansion property we displayed above. Here we introduce a 
slight refinement of  condition (4), and of  conditions (14) and (15) of  [62]. 
We say that a map F : X ~ Y is approximately quasi-expanding on a 
sequence (E,) of subsets of  X if for each s > 0 and each q e 1P there exist 
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p e I ?  and k e n  such that F ( D m ) n q U  Y c F ( D  m n p U x ) + c U y  for each 
m >_ k ,  where D m := U,>_m E,.  This condition is satisfied if F is expanding 
on (E,) in the following sense: for each q e I? there exist p e I? and k e N 
such that D k n F-J(qUv)c  pU x . We also need an extension of  the notion 
of  firm asymptotic cone: we say that K is a firm asymptotic cone to a 
sequence (E,) o f  subsets of  X if for each c > 0  there exist r e l?  and 
k e N such that E, \ rU x c Cc(K ) for n >_ k.  When the sequence (E,)  is 
constant, we recover the definition above. 

Proposit ion 31. Let E ,  E, (n E N) be subsets o f  X and let F :X  --> Y be 
Lipschitzian on bounded sets. 

(a) Suppose that b- l im sup, E, c E.  Then b- l im sup,F(E,) c F(E) 

provided that the map F is approximately quasi-expanding on 
(E.). 

(b) Suppose that E c b - l im inf. E, . Then F(E) c b- l im inf~ F(E.)  

provided F is quasi-expanding on E .  
(c) F(E) c b- l im inf, F(E,)  provided that E c b- l im inf, E,, F is 

positively homogeneous, asymptotically metrically regular on E 
and E has a firm asymptotic cone K which is apart from 

N := F -t (0).  

(d) I f  E = b- l im.  E. and i f  F is positively homogeneous, metrically 

regular on U . E .  and E ,  if  E and (E.) have a firm asymptotic 

cone K which is apart from N := F -I (0), then 

F(E) = b -lim. F(E.) .  

Proof.  (a) (Compare with [62, Prop. 8 (d)] when F is linear,) Let q e I? and 

e > 0 be given. Since F is approximately quasi-expanding on (E.), setting 

Dm:=h~,. Era'we can find p e F  and some k e n  such that 

F ( D m ) n q U r c F ( D m n P U x ) + ½ e U  r for each m>_k, Let n: be the 

Lipschitz rate of  F on (p+l)U x and let 6:=min(c/21¢,l). Let m>_k be 

such that E ~ pU x c E + 6U x for n > m. Then, for n _> m we have 

F(E.)  n qU r c F(D,.) n qU v c F(D,. n pU x) + l e U r  

c F  ( E + f U  x )+leUv c F  ( E)+ eUr . 
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The proof of  part (b) is simpler and is omitted (see [62, Prop. 1 (b)]). Part (c) 
is a consequence of  part (b) and of  Proposition 25. 

(d) It is a consequence of  parts (a) and (c) and of an adaptation of 
Proposition 25 which consists in proving that under the assumptions of  (d) 
the map F is expanding on (E,), and of  course, on E .  If  the conclusion 
does not hold, one can find q e l P ,  a sequence (Xp) of X such that 
xp e E . ( p ) \ p U x ,  F(xv) <q for each p e N ,  with n(p)-->oo as p--->oo, 
Let a e (0,1) be such that C~ (K) ~ C a (N) = {0}. Since F is metrically 
regular on U E., we have (IXpl-'d(Xp,N))--->O, hence xp eC . (N)  for 
p e N large enough. On the other hand, since K is a firm asymptotic cone 
to (E.), we have x. eC~(K) for p e n  large enough. This is a 
contradiction. [] 

The convergence of  sums of  sets is a special case of  the preceding 
statement. 

Corollary 32. Let A, 
(A.) (B.) 
to A and (A.) (resp. 
(A.+B.) >A+B. 

.4., B, B. ( n e N )  be subsets of X such that 
) B. Suppose P (resp. Q) is a firm asymptotic cone 

B and ( B ) )  and P and -Q are apart. Then 

5.2 Continuity of  some operations on functions 

The preceding results can be adapted to epigraphs of  functions in order to 
get results about usual operations. The most immediate application concems 
composition. 

Proposition 33. Let W,Z be two Banach spaces, let A:W--+ Z be a 
continuous linear map and let g be a closed proper convex function on Z 
such that Z = N+dom g + A(W). I f  (g,) is a sequence of closed proper 
convex functions on Z which b-converges to g, then (g, o A) b-converges 
to g o A .  

Proof.  Let X : = W x l ~ ,  Y : = Z × I R ,  let D (resp. D,) be the epigraph of g 
(resp. g , )  and let L : X - ~  Y be given by L(x,r) :-- (A(x),r). Then the 
epigraph of  goA (resp. g, oA) is L-'(D) (resp. L-'(D,)). Since the 
qualification condition of  the statement easily implies that Y = ]R+D + L(X) 
there exist r,s>O such that s U v c L ( r U x ) - D .  Thus the conclusion 
follows from Proposition 30. [] 

The case of  marginal functions can be deduced from the case of  images 
of sets; in particular the convergence of  the infimal convolution of  two 
functions can be derived from the convergence of the sequence of  the sum of  
two sets. 
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As a sample of what can be obtained with functions, let us give a result 
for infimal convolutions and recall the following result for sums (see [18], 
[19], [26], [53], [62], [74], [77]..,); in the finite dimensional case such a 
result has been obtained by McLinden-Bergstrom [44], 

Proposition 34. Suppose that f ,  f . ,  g, g. are closed proper convex functions 
on the Banach space X satisfying 

X = ]R+ (dom f - dom g). 

Then, if ( f . )  b ) f , (g.) b > g one has (f .  + g.) b > f + g . 

For the infimal convolution of  two functions given by 
( fog)(x)  := infw~ x ( f (w)  + g ( x -  w)) we devise a direct proof inspired by 
Corollary 32. 

Proposition 35. Let f , f . , g , g .  be functions on the normed vector space X .  
Suppose that f ,  g are bounded below on bounded subsets and have 
asymptotic firm approximations p, q respectively which are positively 
homogeneous and for which there exist at, fl ~ 17 such that 

p(u)  + q(v) > at min<llull,llvll)- PlIu + vii v u ,  v x (8) 

If f > b -lim sup. f .  and g > b -lim sup. g. ,  then f o g  > b -l im sup . f  ng. . 

Let us note that relation (8) is satisfied whenever there exist y,2. e 
such that q is 2-Lipschitzian and 

p(u)+q(-u)>_Yllull vu x 

In fact, in such a case, for any u, v ~ X we have 

p(u) + q(v) >_ p(u)+ q ( - u ) -  2[lu + vii-> y Ilull- 21lu + vii 

Proof. Let F,F. ,G,G. be the strict epigraphs of f , f . , g , g ,  respectively, so 
that F + G (resp. F. + G. ) is the strict epigraph of f o g  (resp. f Dg.). The 
assertion amounts to show that F + G c b -lim inf. (F. + G.) .  In view of  
Proposition 31 it suffices to show that S:(x,r ,y ,s)~--)(x+y,r+s)  is 
expanding on F x G. Suppose, on the contrary, that there exist s ~ ~ and a 
sequence ((x.,r. ,y. ,s.)) in F × G  such that and 
(l[(x. + y.,r. + s.)ll ) is bounded, Since f and g are bounded below on 
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bounded subsets, 
subsequence. Thus 
such that 

r. + s. > f ( x . ) +  g ( y . ) >  p ( x . ) + q ( y . ) - ~ . l l x . l l - ~ . l [ y . I  I 

>amin(  x. , y . I ) -  f l  x. + y.  - ~  x. - ~  I .1 
Because IIx.ll/llY.ll-~ 1 we obtain the contradiction (r. + s.)---> ~ . 

851 

the sequence (l(x.,yo)ll) cannot have a bounded 
(Ix.I) --> oo and (y.[)  oo .  Then there exist (e.) ---> 0+ 

[] 

REFERENCES 

[1] S. Adly, E. Ernst and M. Th6ra, Stability of the solution set of non-coercive variational 
inequalities, Commun. Contemp. Math. 4 (2002), 145-160. 

[2] A. Agadi and J.-P. Penot, New asymptotic cones and usual tangent cones, submitted. 
[3] H. Attouch, Variational Convergence for Functions and Operators, Pitman, Boston, 

(1984). 
[4] H. Attouch, D. Az6 and G. Beer, On some inverse stability problems for the 

epigraphical sum, Nonlinear Anal. 16 (1991), 241-254. 
[5] H. Attouch, R. Lucchetti and R.. J.-B. Wets, The topology of the p-Hausdorff distance, 

Ann. Mat. Pura Appl. (4) 160 (1991), 303-320. 
[6] H. Attouch, A. Moudafi and H. Riahi, Quantitative stability analysis for maximal 

monotone operators and semi-groups of contractions, Nonlinear Anal. 21 (1993), 697- 
723. 

[7] H. Attouch, J. Ndoutoume and M. Th6ra, Epigraphical convergence of functions and 
convergence of their derivatives in Banach spaces, S6m. Anal. Convexe 20 (1990), 
Exp. No. 9, 45 pp. 

[8] H. Attouch and R. J.-B. Wets, Isometrics for the Legendre-Fenchel transform, Trans. 
Amer. Math. Soc. 296 (1986), 33-60. 

[9] H. Attouch and R. J.-B. Wets, Epigraphical analysis, Ann. Inst. H. Poincar6 Anal. Non 
Lin6aire 6 (suppl.) (1989), 73-100. 

[10] H. Attouch and R. J.-B. Wets, Quantitative stability of variational systems: I. The 
epigraphical distance, Trans. Amer. Math. Soc. 328 (1991), 695--729. 

[11] H. Attouch and R. J.-B. Wets, Quantitative stability of variational systems. II. A 
framework for nonlinear conditioning, SIAM J. Optim. 3 (1993), 359-381. 

[12] H. Attouch and R. J.-B. Wets, Quantitative stability of variational systems. III: e- 
approximate solutions, Math. Programming 61A (1993), 197-214. 

[13] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkh~iuser, Basel, (1990). 
[14] A. Auslender, How to deal with the unboundedness in optimization: theory and 

algorithms, Math. Programming ser. B 31 (1997), 3-19. 
[15] A. Auslender and M. Teboulle, Asymptotic cones and functions in optimization and 

variational inequalities, Springer, New York, 2002. 
[16] D. Az6, An inversion theorem for set-valued maps, Bull. Aust. Math. Soc. 37, No.3 

(1988), 411-414. 
[17] D. Az6 and C.C. Chou, On a Newton type iterative method for solving inclusions, 

Math. Oper. Res. 20, No.4 (1995), 790-800. 



852 Variational Analysis and Appls. 

[18] D. Az6 and J.-P. Penot, Recent quantitative results about the convergence of convex 
sets and functions, Functional analysis and approximation (Bagni di Lucca, 1988), 
Pitagora, Bologna, (1989), 90-110. 

[19] D. Az6 and J.-P. Penot, Operations on convergent families of sets and functions, 
Optimization 21 (1990), 521-534. 

[20] D. Az6 and J.-P. Penot, Qualitative results about the convergence of convex sets and 
convex functions, Optimization and nonlinear analysis (Haifa, 1990), Longman Sci. 
Tech., Harlow, (1992), 1-24. 

[21] D. Az6 and J.-P. Penot, On the dependence of fixed point sets of pseudo-contractive 
multimappings. Applications to differential inclusions, submitted. 

[22] D. Az6 and A. Rahmouni, On primal dual stability in convex optimization, J. Convex 
Anal. 3 (1996), 309-329. 

[23] G. Beer, Conjugate convex functions and the epi-distance topology, Proc. Amer. Math. 
Soc. 108 (1990), 117-126. 

[24] G. Beer, Topologies on Closed and Convex Sets, Kluwer, Dordrecht, (1993). 
[25] G. Beer and R. Lucchetti, Convex optimization and the epi-distance topology, Trans. 

Amer. Math. Soe. 327 (1991), 795-813. 
[26] G. Beer and R. Lucchetti, The epi-distance topology: continuity and stability results 

with applications to convex optimization problems, Math. Oper. Res. 17 (1992), 715- 
726. 

[27] L. Contesse and J.-P. Penot, Continuity of the Fenchel correspondence and continuity 
of polarities, J. Math. Anal. Appl. 156 (1991), 305-328. 

[28] J. Dane~ and J. Durdill, A note on the geometric characterization of differentiability, 
Comm. Math. Univ. Carolin. 17 (1976), 195-204. 

[29] J.-P. Dedieu, C6ne asymptote d'un ensemble non convexe. Application 
l'optimisation, C. R. Acad. Sci. Paris 287 (1977), 501-503. 

[30] A. Dontchev and T. Zolezzi, Well-posed Optimization Problems, Lecture Notes in 
Maths 1543, Springer-Verlag, Berlin, (1993). 

[31] J. Durdill, On the geometric characterization of differentiability I, Comm. Math. Univ. 
Carolin. 15 (1974), 521-540; II, idem, 727-744. 

[32] A. Eberhard and R. Wenczel, Epi-distance convergence of parametrised sums of 
convex functions in non-reflexive spaces, J. Convex Anal. 7 (2000), 47-71. 

[33] M. Fabian, Theory of Fr6chet cones, Casopis Pro P~stivani Mat., 107 (1982), 37-58. 
[34] A.D. Ioffe, Regular points of Lipschitz functions, Trans. Amer. Math. Soc. 251 (1979), 

61-69. 
[35] T. Kato, Perturbation theory for linear operators, Springer Verlag, Berlin (1966). 
[36] D. Klatte, On quantitative stability for non-isolated minima, Control Cybem. 23 (1994), 

183-200. 
[37] M. A. Krasnoselskii, Positive solutions of operator equations, Noordhoff, Groningen 

(1964). 
[38] J. Lahrache, Stabilit6 et convergence dans les espaces non r6flexifs, S6m. Anal. 

Convexe 21 (1991), Exp. No. 10, 50 pp. 
[39] D.T. Luc, Recession maps and applications, Optimization 27 (1993), 1-15. 
[40] D.T. Luc, Recessively compact sets: properties and uses, Set-Valued Anal. 10 (2002), 

15-35. 
[41] D.T. Luc and J.-P. Penot, Convergence of asymptotic directions, Trans. Amer. Math. 

Soc. 353 (2001), 4095--4121. 
[42] R. Lucchetti and A. Pasquale, A new approach to a hyperspace theory, J. Convex Anal. 

1 (1994), 173-193. 



Bounded (Hausdorff) Convergence." Basic Facts and Applications 853 

[43] R. Lucchetti and A. Torre, Classical convergences and topologies, Set-Valued Anal. 2 
(1994), 219-241. 

[44] L. McLinden and R. C. Bergstrom, Preservation of convergence of convex sets and 
functions in finite dimensions, Trans. Amer. Math. Soc. 268 (1981), 127-142. 

[45] F. Mignot, Contr61e dans les in6quations variationelles elliptiques, J. Funct. Anal. 22 
(1976), 130-185. 

[46] J.-J. Moreau, Intersection of moving convex sets in a normed space, Math. Scand. 36 
(1975), 159-173. 

[47] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, 
Adv. Math. 3 (1969), 510-585. 

[48] S.B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488. 
[49] T. Pennanen, R. T. Rockafellar, M. Th~ra, Graphical convergence of sums of monotone 

mappings, Proc. Amer. Math. Soc. 130 (2002), 2261-2269. 
[50] J.-P. Penot, On regularity conditions in mathematical programming, Math. Prog. Study 

19 (1982), 167-199. 
[51] J.-P. Penot, Compact nets, filters and relations, J. Math. Anal. Appl., 93 (1983), 400- 

417. 
[52] J.-P. Penot, Differentiability of relations and differential stability of perturbed 

optimization problems, SIAM J. Control Optim. 22 (1984), 529-551. 
[53] J.-P. Penot, Preservation of persistence and stability under intersections and operations, 

Part I: Persistence, J. Optim. Theory Appl. 79 (1993), 525-550; Part 11: Stability, idem, 
551-561. 

[54] J.-P. Penot, The cosmic Hausdorff topology, the bounded Hausdorff topology and 
continuity of polarity, Proc. Amer. Math. Soc., 113 (1991), 275-285. 

[55] J.-P. Penot, Topologies and convergences on the space of convex functions, Nonlinear 
Anal. 18 (1992), 905-916. 

[56] J.-P. Penot, On the convergence of subdifferentials of convex functions, Nonlinear 
Anal. 21 (1993), 87-101. 

[57] J.-P. Penot, Conditioning convex and nonconvex problems, J. Optim. Theory Appl. 90 
(1996), 535-554. 

[58] J.-P. Penot, Metric estimates for the calculus of multimappings, Set-Valued Anal. 5 
(1997), 291-308. 

[59] J.-P. Penot, What is quasiconvex analysis? Optimization 47 (2000), 35-110. 
[60] J.-P. Penot, A metric approach to asymptotic analysis, Bull. Sci. Maths,. 
[61] J.-P. Penot and C. Z,'ilinescu, Approximation of functions and sets, in Approximation, 

Optimization and Mathematical Economics, M. Lassonde ed., Physica-Verlag, 
Heidelberg, (2001), 255-274. 

[62] J.-P. Penot and C. Z~ilinescu, Continuity of usual operations and variational 
convergences, Set-Valued Anal. 11 (2003), 225-256. 

[63] J.-P. Penot and C. Z,'ilinescu, Persistence and stability of solutions to Hamilton-Jacobi 
equations, preprint, Univ. of Pau, June 2000. 

[64] J.-P. Penot and C. Z~ilinescu, Fenchel-Legendre transform and variational 
convergences, preprint, 2003. 

[65] H. R~dstrOm, An embedding theorem for spaces of convex sets, Proc. Amer. Math. 
Soc. 3 (1952), 165-169. 

[66] S. M. Robinson, Stability theory for systems of inequalities, Part I : linear systems, 
SIAM J. Numer. Anal., 12 (1975), 754-769. 

[67] S.M. Robinson, Regularity and stability for convex multivalued functions, Math. Oper. 
Res. 1 (1976), 130-143. 



854 Variational Analysis and Appls. 

[68] R. T. Rockafellar and R. J.-B. Wets, Cosmic convergence, in: Optimization and 
Nonlinear Analysis, A. Ioffe et al. eds., Pitman Notes 244, Longman, Harlow, 1992, 
249-272. 

[69] R.T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1997. 
[70] Y. Sonntag and C. Z~linescu, Set convergences. An attempt of classification, Trans. 

Amer. Math. Soc. 340 (1993), 199-226. 
[71] Y. Sonntag and C. Z,'ilinescu, Set convergences: a survey and a classification, Set- 

Valued Analysis 2 (1994), 339-356. 
[72] T. Str6mberg,'The operation of infimal convolution, Dissert. Math. 352 (1996), 1-58. 
[73] S. Villa, AW-convergence and well-posedness of non convex functions, J. Convex 

Anal. (2003), to appear. 
[74] C. Z~.linescu, On convex sets in general position, Linear Algebra Appl. 64 (1985), 191- 

198. 
[75] C. Z~linescu, Stability for a class of nonlinear optimization problems and applications, 

in Nonsmooth Optimization and Related Fields, F.H. Clarke et al. eds., Plenum Press, 
London and New York (1989), 437--458. 

[76] C. Z,'ilinescu, Recession cones and asymptotically compact sets, J. Optim. Theory 
Appl., 77 (1993), 209-220. 

[77] C. Z~ilinescu, Convex Analysis in General Vector Spaces, World Scientific, Singapore 
(2002). 




