
Chapter 3

LEARNING RULES AND CLUSTERS FOR
ANOMALY DETECTION IN NETWORK TRAFFIC

Philip K. Chan/'^ Matthew V. Mahoney,^ and Muhammad H. Arshad^

Department of Computer Sciences, Florida Institute of Technology

2 Laboratory for Computer Science, Massachusetts Institute of Technology

Abstract: Much of the intrusion detection research focuses on signature (misuse) detection,
where models are built to recognize known attacks. However, signature detec­
tion, by its nature, cannot detect novel attacks. Anomaly detection focuses on
modeling the normal behavior and identifying significant deviations, which could
be novel attacks. In this chapter we explore two machine learning methods that
can construct anomaly detection models from past behavior. The first method
is a mle learning algorithm that characterizes normal behavior in the absence of
labeled attack data. The second method uses a clustering algorithm to identify
outliers.

Keywords: anomaly detection, machine learning, intmsion detection

1. INTRODUCTION

The Intemet is one of the most influential innovations in recent history.
Though most people use the Intemet for productive purposes, some use it as
a vehicle for malicious intent. As the Intemet links more users together and
computers are more prevalent in our daily lives, the Intemet and the computers
connected to it increasingly become more enticing targets of attacks. Com­
puter security often focuses on preventing attacks using usually authentication,
filtering, and encryption techniques, but another important facet is detecting
attacks once the preventive measures are breached. Consider a bank vault,
thick steel doors prevent intmsions, while motion and heat sensors detect in-
tmsions. Prevention and detection complement each other to provide a more
secure environment.

82 Chapter 3

How do we know if an attack has occurred or has been attempted? This
requires analyzing huge volumes of data gathered from the network, host, or
file systems to find suspicious activity. Two general approaches exist for this
problem: signature detection (also known as misuse detection), where we look
for pattems signaling well-known attacks, and anomaly detection, where we
look for deviations from normal behavior. Signature detection works reliably
on known attacks, but has the obvious disadvantage of not being capable of
detecting new attacks. Though anomaly detection can detect novel attacks, it
has the drawback of not being capable of disceming intent; it can only signal
that some event is unusual, but not necessarily hostile, thus generating false
alarms. A desirable system would employ both approaches.

Signature detection methods are more well understood and widely applied.
They are used in both host based systems, such as virus detectors, and in network
based systems such as SNORT [32] and BRO [26]. These systems use a set of
rules encoding knowledge gleaned from security experts to test files or network
traffic for pattems known to occur in attacks. A limitation of such systems is that
as new vulnerabilities or attacks are discovered, the rule set must be manually
updated. Also minor variations in attack methods can often defeat such systems.
For anomaly detection, a model of acceptable behavior can also be specified
by humans as well. For example, firewalls are essentially manually written
policies dictating what network traffic is considered normal and acceptable.

How do security experts discover new unknown attacks? Generally, the
experts identify something out of ordinary, which triggers further investigation.
Some of these investigations result in discovering new attacks, while others
result in false alarms. From their experience, security experts have learned a
model of normalcy and use the model to detect abnormal events. We desire to
endow computers with the capability of identifying unusual events similar to
humans by leaming (data mining) from experience, i.e., historical data.

Since what is considered normal could be different in different environments,
a distinct model of normalcy need to be learned individually. This contrasts to
manually written polices of normal behavior that require manual customization
in each environment. Moreover, since the models are customized to each envi­
ronment, potential attackers would find them more difficult to circumvent than
manually written policies that might be less customized due to inexperienced
system administrators who do not change the default parameters and policies
supplied by the vendors. Our goal is to learn anomaly detectors that can be
customized to individual environments. This goal has a few challenges.

First, anomaly detection is a harder problem than signature detection be­
cause signatures of attacks can be very precise but what is considered normal
is more abstract and ambiguous. Second, classical machine leaming problems
are classification tasks—given examples of different classes, learn a model that
distinguishes the different classes. However, in anomaly detection, we are es-

Learning Rules and Clusters for Anomaly Detection in Network Traffic 83

sentially given only one class of examples (normal instances) and we need to
learn a model that characterizes and predicts the lone class reliably. Since ex­
amples of the other classes are absent, traditional machine learning algorithms
are less applicable to anomaly detection. Third, research in anomaly detection
uses the approach of modeling normal behavior from a (presumably) attack-free
training set. However, clean data for training may not be easy to obtain. Lastly,
to help humans analyze the alerts, anomaly detectors need to be able to describe
the anomalies, though not as precisely as signature detectors are capable.

To meet the second challenge, we propose two methods for leaming anomaly
detectors: rule leaming (LERAD) and clustering (CLAD). CLAD does not
assume the training data are free of attacks—the third challenge. For the last
challenge, our models are not black boxes. Alerts can be explained by rules that
are violated in LERAD or by the centroids of the "near miss" normal clusters
in CLAD. Our experimental results indicate that, though anomaly detection
is a harder problem (the first challenge), our methods can detect attacks with
relatively few false alarms.

This chapter is organized as follows. Section 2 contrasts related techniques
in anomaly detection. Section 3 proposes the LERAD algorithm that learns
the characterization of normal behavior in logical rules. Section 4 describes a
clustering algorithm that can identify behavior far from the normal behavior.
We summarize our findings and suggest improvements in Section 5.

2. RELATED WORK
Anomaly detection is related to biological immunology. Forrest et al. [11]

observe that part of our immune system functions by identifying unfamiliar
foreign objects and attacking them. For example, a transplanted organ is often
attacked by the patient's immune system because the organ from the donor
contains objects different from the ones in the patient, Forrest et al. found that
when a vulnerable UNIX system program or server is attacked (for example,
using a buffer overflow to open a root shell), that the program makes sequences
of system calls that differ from the sequences found in normal operation [12].
Forrest used n-gram models (sequences of n = 3 to 6 calls), and matched them to
sequences observed in training. A score is generated when a sequence observed
during detection is different from those stored during training. Other models
of normal system call sequences have been used, such as finite state automata
[34] and neural networks [13]. Notably, Sekar et al. [34] utilize program
counter information to specify states. Though the program counter carries
limited information about the state of a program, its addition to their model is
different from typical n-gram models that rely solely on sequences of system
calls. Lane and Brodley [18] use instance-based methods and Sequeira and
Zaki [35] use clustering methods for detecting anomalous user commands.

84 Chapter 3

A host-based anomaly detector is important since some attacks (for exam­
ple, inside attacks) do not generate network traffic. However, network-based
anomaly detectors can warn of attacks launched from the outside at an earlier
stage, before the attacks actually reach the host. Current network anomaly de­
tection systems such as eBayes [37], ADAM [4], and SPADE [7] model only
features of the network and transport layer, such as port numbers, IP addresses,
and TCP flags. Models built with these features could detect probes (such as
port scans) and some denial of service (DOS) attacks on the TCP/IP stack, but
would not detect attacks of the type detected by Forrest, where the exploit code
is transmitted to a public server in the application payload.

Network anomaly detectors estimate the probabilities of events, such as that
of a packet being addressed to some port, based on the frequency of similar
events seen during training or during recent history, typically several days.
They output an anomaly score which is inversely proportional to probability.
Anomaly detectors are typically just one component of more comprehensive
systems. eBayes is an anomaly detection component of EMERALD [24], which
integrates the results from host and network-based detectors that use both sig­
nature and anomaly detection. ADAM is a Bayes classifier with categories for
normal behavior, known attacks, and unknown attacks. SPADE is a SNORT
[32] plug-in. Some anomaly detection algorithms are for specific attacks (e.g.,
portscans [36]) or services (e.g., DNS [17]).

Most current anomaly detectors use a stationary model, where the probability
of an event depends on its average rate during training, and does not vary with
time. However, using the average rate could be incorrect for many processes.
Paxson and Floyd [27] found that many network processes, such as the rate
of a particular type of packet, have self-similar (fractal) behavior. Events do
not occur at uniform rates on any time scale. Instead they tend to occur in
bursts. Hence, it is not possible to predict the average rate of an event over a
time window by measuring the rate in another window, regardless of how short
or long the windows are. An example of how a stationary model fails in an
anomaly detector would be any attack with a large number of events, such as a
port scan or a flooding attack. If the detector correctly identifies each packet as
anomalous, then the user would be flooded with thousands of alarms in a few
minutes.

Clustering and related techniques have been used to locate outliers in a
dataset. Knorr and Ng [16] define an outlier as an object where a fraction
p of the dataset is further than distance D from the object, where p and D are
parameters specified by the users. Instead of a global perspective [16], LOF [5]
uses a local perspective and locates outliers with respect to the density in the lo­
cal/neighboring region. They illustrate the inability of conventional approaches
to detect such outliers. LOF has two short-comings: one, their approach is very
sensitive to the choice of MinPts, which specifies the minimum number of

Learning Rules and Clusters for Anomaly Detection in Network Traffic 85

objects allowed in the local neighborhood (similar to k in k-NN, k-Nearest
Neighbor); second, and more importantly, their approach is not well-suited for
very high dimensional data such as network traffic data. Ramaswamy et al.
[31] investigate the problem of finding the top n outliers. They characterize
an outlier by the distance of the fcth-nearest neighbor and their algorithm ef­
ficiently partitions the input space and prunes partitions that cannot contain
the top outliers. Aggarwal and Yu [1] calculate the sparsity coefficient, which
compares the observed and expected number of data points, in "cubes" (spatial
grid cells) generated by projections on the dataset.

3. LEARNING RULES FOR ANOMALY DETECTION
(LERAD)

To build a model for anomaly detection, from a probabilistic perspective,
one can attempt to estimate P{x\Di^oAttacks)•> where x is an instance under
consideration and D^^oAttacks is a data set of instances that do not contain
attacks. Since all the probabilistic estimations are based on the training data set
DNoAttacks, for notation convenience, we use P(x) in lieu of P{X\DNoAttacks)-
Under this model, the smaller P{x) is, the more likely x is anomalous.

Each instance x is represented by values from a set of m attributes ai, a2,...,
am- That is, a; is a tuple of values (ai = I'l, ^2 — ^2^ •--•, dm = Vm)-> where vi
is the value for attribute a .̂ The probability P{x) is hence: P{ai = Vj,a2 =
V2: •••) CLm = Vm) or more concisely, P{vi, f2,..., Vm)- Using the chain rule is
frequently is too computationally expensive. Some researchers assume the at­
tributes to be independent in "Naive" Bayes algorithms [9, 6, 8]. However this
assumption is usually invalid. To incorporate attribute dependence, Bayesian
networks [28] model a subset of the conditional probabilities structured in net­
works, which are selected using prior knowledge. Recent work in Bayesian net­
works attempts to learn the network structures from data. However, Bayesian
networks model the entire distribution of each conditional probability and could
consume significant computational resources.

Instead of estimating the probability of an instance x, an alternative approach
is to estimate the likelihood of values among the attributes in each instance. That
is, given some attribute values, we estimate the likelihood of some other attribute
values. Again, consider vi, ...,Vm = V axe the values of attributes ai,. . . , a^ of
an instance. Let U cV,W CV, and U OW = ^,WQ would like to estimate:
P{W\U). For example, consider these network packet values: V = {Srclp =
12S.1.2.3, Destip = 12SA.5.Q, SrcPort = 2222, DestPort = 80}. Fur­
ther we consider U = {Srclp = 128.1.2.3, Destip = 128.4.5.6} and W =
{DestPort = SO},hmceP{W\U) is: P{DestPort = SO\SrcIp = 128.1.2.3,
Destlp= 128.4.5.6).

86 Chapter 3

In anomaly detection we seek combinations of U and W with large
P{W\U)—W is highly predictive by U. These combinations indicate pat­
terns in the normal training data and fundamentally constitute a model that
describes normal behavior. If these patterns are violated during detection, we
calculate a score that reflects the severity of the violation and hence the degree of
anomaly. That is, the anomaly score depends on P(--W\U), where W, though
expected, is not observed when U is observed. Finding these patterns could be
computationally expensive since the space of combinations is 0{d^), where d
is the domain size of an attribute and m is the number of attributes. In the next
section we describe our proposed learning algorithm.

LERAD Algorithm

Our goal is to design an efficient algorithm that finds combinations of U
and W with large P{W\U) during training and uses P{-^W\U) to calculate an
anomaly score during detection. The task of finding combinations of U and W
is similar to finding frequent patterns in association rules [2], where U is the
antecedent, W is the consequent, and P{W\U) is the confidence. Algorithms
for finding association rules, for example Apriori [2], typically find all rules
that exceed the user-supplied confidence and support thresholds; consequently,
a large number of rules can be generated. Checking large number of rules
during detection incurs unacceptable amounts of overhead. However, our goal
is different from finding association rules in two fundamental respects. First, the
semantics of our rules are designed to estimate P{-^W\U). Second, we want a
"minimal" set of rules that succinctly describes the normal training data. These
differences are exhibited in our proposed rules and algorithm called LERAD
(LEaming Rules for Anomaly Detection).

Semantics of LERAD Rules. The semantics of LERAD rules seek to
estimate P{-^W\U); in rule form, a LERAD rule is:

U^^W \p = P(-^W\U)l (3.1)

where p denotes P{-^W\U) and reflects the likelihood of an anomaly. These
rules can be considered as anomaly rules. We also extend the semantics of W.
In the consequent instead of allowing a single value for each attribute, our rules
allow each attribute to be an element of a set of values. For example, consider
W = {DestPort € {21,25,80}} (instead of 1^ -= {DestPort = 80}),
P{W\U) is: P(DestPort e {21,25,80}|5rc7p = 128.1.2.^, Destip =
128.4.5.6) and P{-nW\U) becomes: P{DestPort ^ {21,25,80}|5'rc7p =
128.1.2.3, Destip = 128.4.5.6) or in rule form: Srclp = 128.1.2.3, Destip
= 128.4.5.6 => DestPort ^ {21,25,80}. Given U, the set of values for
each attribute in W represents all the values seen in the training data for that
particular attribute. Following the above example, given Srclp = 128.1.2.3

Learning Rules and Clusters for Anomaly Detection in Network Traffic 87

and Destip = 128.4.5.6, DestPort is either 21, 25, or 80 in the normal
training data. This extension allows our models to be more predictive and
conservative so that false alarms are less likely to occur. However, since W
includes all the seen values in training, a simplistic estimation of P{W\U)
would yield 1 and P(-^W\U) 0. Obviously, these estimates are too extreme.
Since event -\W is not observed when event U is observed during training,
estimating P{-^W\U) becomes a "zero-frequency" problem [38].

Zero-frequency Problem. Laplace smoothing is commonly used in the
machine leaming community to handle the zero-frequency problem [25,23,30].
One variant of the technique is to assign a frequency of one, instead of zero, to
each event at the beginning. Hence, all events, observed or not, will have at least
a count of one and none of the events have an estimated probability of zero. That
is, the likelihood of a novel event can be estimated by: P{NovelEvent) =
I^^TLJ where |^ | is the size of the alphabet A of possible values, n is the
total number of observed events and r is the number of unique observed events.
However, Laplace smoothing is appropriate only for the case where A is known,
and for which the apriori distribution over A is uniform. In general, A could
be very large and unknown (for example, the set of all possible strings in the
application payload), and the distribution could be highly skewed toward a few
common values.

Witten and Bell [38] proposed a few estimates for novel events in the context
of data compression that are independent of alphabet size and which do not
assume an apriori uniform distribution; one estimate is:

P(NovelEvent) = - . (3.2)
n

This measures the average rate of novel values in the sample. Eq. 3.2 is used
to estimate p = P{-^W\U) in Eq. 3.1, where n is the number of instances
satisfying the antecedent U and r is the number of unique values in the attribute
of the consequent W, We attempted more sophisticated estimators in initial
experiments for anomaly detection, but Eq. 3.2 seems to perform as effectively
as others and requires the least computation, which is advantageous in mining
large amounts of data.

Randomized Algorithm. In the previous sections we have discussed the
semantics of LERAD rules and how P{-iW\U) can be estimated. We now
discuss an efficient algorithm that finds combinations of U and W with low
P{-^W\U) (or high P{W\U)). Our algorithm is based on sampling and ran­
domization. Let D be the entire training data set, DT and Dy be the training
and validation sets respectively such that DT U Dy = D, DT H Dy = 0, and
\DT\ > \Dv\^ and Ds is a random sample of DT such that Ds C DT and

Chapter 3

Table 3.1. Example Training Data Set D = {di} for i = 1..6 (marked by rk in Step 3)

di

di

d2
dz
di
ds
de \

1 ai
1
1

2
2
1
2

a2

2(r2)
2(r2)
6(r i)

7
2
8

as
3
3
3
3
3
3

0-4

4
5
5
5
4

4

1 in subset
1 Ds and £>T

JDS and DT

Ds and Z?T

DT

Dv
1 Dv

Ta^/e 3.2. Rules (r^) Generated by LERAD Steps 1-5

Step 1
r i : * ^ a2 = 2
r2: ax = I => a2 = 2
ra: ai = 1, as = 3 => a2 = 2

' Step 2 (rewritten in Eq.3.1 form)
n : *=>a2 ^{2,6}[p = 2/3]
r2: ai = l = ^ a 2 ^ { 2 } [p = l / 2]
ra: ai = 1, 03 = 3 =^ 02 0 {2}[p = 1/2]

Step 4
r2: ai = l - » a 2 0 { 2 } [p = l / 2]
r i : *=>a2 ^ {2, 6, 7}[p = 3/4]

Step 2
r i : * =^a2 G {2,6}
r2: ai = 1 =^ a2 = 2
rs: ai = 1, as = 3 => a2 = 2

Step 3
r2: ai = 1 =^ a2 ^ {2}[p = 1/2]
n : *=^a2 0{2,6}[p = 2/3]

Steps
ra: ai = 1 :^ 02 ^ { 2 } [p = 1/3]

\Ds\ <C li^rl- ^£; is a separate test/evaluation set disjoint from the training
set D. Our proposed mining algorithm consists of five main steps:

1 generate candidate rules from Ds,
2 evaluate candidate rules from Ds,
3 select a ''minimal" set of candidate rules that covers Ds,
4 train the selected candidate rules on DT, and
5 prune the rules that cause false alarms on Dy

Steps 1-3 intend to select a small and predictive set of rules from a small sample
Ds of the data. The selected rules are then trained on the much larger set DT
in Step 4. The validation set Dy is used to reduce overfitting in Step 5. For
simplicity, we only consider rules that have only one attribute in the consequent.
Further details are in [20].

Step 1. Pairs of instances are randomly chosen from D^. For each pair of
instances, we identify the matching attribute values between the two instances.
Consider di and d2 in Table 3.1 as a random pair, ai = 1, a2 = 2, and as = 3
occur in both instances. The three values are then chosen in random order, e.g.,
a2 = 2,ai = 1, and as = 3; and the candidate rules in Table 3.2 are generatedc
The first value (a2 = 2) is chosen to be in the consequent (W) and the the
later values are iteratively added to the antecedent ([/). In r i , * is a wild card

Learning Rules and Clusters for Anomaly Detection in Network Traffic 89

and matches anything. If the matching attribute values occur often in different
instances, they will likely be found matching again in another randomly chosen
pair of instances and more rules for these matching attribute values will be
generated. That is, the more likely the values are correlated, the more rules will
be generated to describe the correlation (duplicate rules are removed).

Step 2. We evaluate the candidate rules on Ds^ Note that the consequent in
the candidate rules generated from Step 1 has only one value. In Step 2 we add
values to the attribute in the consequent if more values are observed in Ds* di
and (̂ 2 do not change the rules. ^3 causes ri is to be updated because a2 == 6 in
ds; the other two rules are unchanged because the antecedents are not satisfied
for da. The new set of candidate rules are in Table 3.2. We then write the
rules in the form of Eq. 3.1 and estimate p = P{-^W\U) for each rule by using
Eq. 3.2 in Table 3.2.

Step 3, We select a "minimal" subset of candidate rules that sufficiently
describe Ds. Our method is based on two heuristics. First, we prefer rules with
lower p = P{-iW\U). Second, a rule can cover multiple instances in Ds, but
an instance does not need to be covered by more than one rule (more details
later). Hence, we sort the rules based on p and evaluate the rules in ascending
order. For each rule, we mark instances that are covered by the rule. If a rule
cannot mark any remaining unmarked instances, it is removed. That is, we keep
rules with lower p and remove rules that do not contribute to covering instances
not covered by previous rules with lower p values.

Step 4. This step is similar to Step 2, except that the rules are updated based
on DT, instead of D5. 0̂4 does not affect r2 since its antecedent does not match.
However, 7 is added to the consequent of ri and p is updated to 3/4 in Table 3.2.
After Step 4, the rules have been trained from D^.

Step 5. Since all instances in the validation set Dy are normal, an alarm
generated by a rule with any instance in Dy is a false alarm. To reduce overfit-
ting, during Step 5, we remove rules that generate alarms in the validation set.
Using our running example, ^5 is normal according to vi and r2. However, ri
generates an alarm for d^ since a2 = 8 ^ {2, 6, 7}. r2 does not generate an
alarm because ai = 2, which does not satisfy the antecedent of r2. Hence, only
r2 remains in Table 3.2. During Step 5, to fully utilize legitimate training data
in the validation set, we also update p for rules that are not removed. Hence, p
for r2 was updated to 1/3.

Anomaly Score and Nonstationary Model. During training, a set of
anomaly rules R that "minimally" describes the training data are generated and

90 Chapter 3

their p = P{-^W\U) is estimated. During detection, given an instance x, we
generate an anomaly score if x satisfies any of the anomaly rules (U => ^W),
Let S' C i? be the set of anomaly rules that x satisfies. The anomaly score is
calculated as: AnomalyScore(x) = Ylvk^s ^T' ^here Vk is a rule in S and pk
is the p value of rule Vk^ The reciprocal ofpk reflects a surprise factor that is
large when anomaly has a low likelihood (small p^)-

The p estimate is an aggregate over a stationary training period; however,
recent events can greatly influence current events. Bursty network traffic or OS
activities are common. In intrusion detection we experience that attacks cause
bursty behavior as well. In order to incorporate recent novel events into our
scoring mechanism, we introduce t^ which is the duration since the last novel
value was observed in the consequent of anomaly rule Vk (or when r^ was
satisfied). The smaller tk is, the higher the likelihood that we will see another
novel value. That is, intuitively, we are less surprised if we have observed a
novel value in a more recent past. Hence, we calculate the anomaly score as:

Anomaly S cor e{x) = ^ —. (3.3)

Summary of Current Results

To evaluate LERAD, we use network traffic recorded in tcpdiimp provided
by the DARPA evaluation in 1999 [19,15]. Week 3 inside sniffer traffic (which
contains no attacks) was used for training (D) and Weeks 4 and 5 (DE) were
used for testing. The size of the validation set (|D\/1) was set to be 10% of the
training set (D). We set Ds = 100 samples. LERAD was run five times with
a different random seed. Attributes used in our data sets include IP addresses,
port numbers, length, duration, opening and closing TCP flags, and the first 8
words of the application payload of reassembled inbound client TCP streams.
LERAD is evaluated based on the number of detected attacks with at most 10
false alarms per day.

In our experiments the resulting set of rules usually contains 50 to 75 rules.
Though the rule set is relatively small, LERAD, on the average, detects about
117 attacks out of 201 attacks with at most 10 false alarms per day. Under a
''blind" evaluation (the test set was not available apriori), the original DARPA
participant with the most detections detected 85 attacks [19]. This indicates
LERAD is quite successful in finding highly predictive normal patterns. More
importantly, LERAD detects about 58% of the attacks poorly detected by the
original participants [19]. That is, LERAD increases the overall coverage of
detectable attacks. The total computational overhead is about 30 minutes for
three weeks of training and test data. Much of the overhead is in preprocessing
of the raw data to generate feature values for training and testing. Training and

Learning Rules and Clusters for Anomaly Detection in Network Traffic 91

testing on three weeks of data take less than two minutes. We also analyzed and
categorized why our detected anomalies were successful in detecting attacks.
The more common categories (covering about 70% of the detected attacks) are
unexpected user behavior (e.g., unusual client addresses for servers) and learned
(partial) attack signatures (e.g., unusual input that exploit bugs in software).
Details of our findings are described in [20].

In [22] we tested LERAD on 623 hours of traffic collected on a university
departmental server over a 10 week period. We first used SNORT and manual
inspection to identify six attacks that evaded our gateway firewall: an inside au­
tomated port/security scan which tests for multiple vulnerabilities, three HTTP
worms (Code Red II, Nimda, and Scalper), an HTTP proxy probe, and a DNS
version probe. We evaluated LERAD using two attribute sets: TCP streams as
above, and a simpler set consisting of just the first 32 pairs of bytes (i.e. 16 bit
values) of inbound client IP packets. (To reduce the traffic load, we limited all
packets to 16 per minute per session, and TCP up to the first payload packet).
Lacking clean training data, we simply used each week's data as training for the
following week. Averaged over five runs at 10 false alarms per 24 hours, the
TCP version detects 2.4 attacks and the packet version detects 1.4, for a total of
3.0 (50%) after removing overlap. The probability of detection is highest for
the most malicious attack (the inside scan), and lowest for the two probes.

LERAD is based on our simpler algorithms PHAD and ALAD, which use
fixed rule sets [21]. PHAD was also adapted to detect attacks by modeling
accesses to the Registry in the Windows OS [3].

4. CLUSTERING FOR ANOIMALY DETECTION
(CLAD)

LERAD assumes the training data are free of attacks, however, making sure
the data is clean could be time consuming. We propose to use a clustering
approach to identify "outliers" as anomalous. Our clustering method, CLAD, is
inspired by the work of [10,29], and is related to k-NN. CLAD locates anomalies
by finding local and global outliers with some restrictions, where k-NN and LOF
[5] concentrate mainly on local outliers. One key difference of CLAD from
other clustering algorithms is that clusters are of fixed width (radius) and allows
clusters to overlap (i.e., the clusters are not mutually exclusive). This difference
permits CLAD to process large amounts of data efficiently.

CLAD has two phases: Phase 1 creates the clusters and Phase 2 assigns data
points to additional clusters. Fig. 3.1 illustrates the steps of the 2 phases. Given
a dataset, D, Phase 1 creates clusters of fixed width, W (which will be discussed
later), and assigns data points, d e D,to the created clusters. If a data point is
further away than width W from any existing cluster, the data point becomes
the centroid of a new cluster; otherwise it is assigned to all existing clusters that

92 Chapter 3

Input: Dataset D
Output: Set of clusters C

1 initialize the set of clusters, C, to 0
Phase 1: Creating clusters

2 fox deD
3 f or c e C
4 if distance{dj c) < W, assign d to c
5 if d is not assigned
6 create cluster ĉ with d as the centroid and add ĉ to C

Phase 2: Assigning data points to additional clusters
7 fovdeD
8 for c € C
9 if distance(d^ c) <W and d is not assigned to c

10 assign d toe

Figure 3.1, Overall CLAD Algorithm

are not further away than W. In Phase 1 since data points can only be assigned
to existing clusters, some data points might miss assignment to clusters that are
subsequently created. Phase 2 assigns these data points to additional clusters.
So far our CLAD algorithm is basically the clustering algorithm proposed in
[10, 29], however, the methods significantly diverge on how data points are
represented for calculating distance, how the cluster width is determined, and
how the properties of outliers are decided.

Feature Vectors and Distance Function

Each data point, d, is represented by a feature vector, and a cluster, c, is
represented by its centroid, which is a data point. We use the Euclidean distance
as our distance function:

distance{Yi^Y2) =

\

\yi\

E (^ i 7 - ^ 2 i) ^ (3.4)

where Yi and Y2 are two feature vectors, Yij denotes the jth component of Yi,
and \Yi\ denotes the length of vector Yi.

To obtain a feature vector for a data point, we transform the data points
represented in the input attribute vectors (Xi) into our feature vectors (Yi). We
have two types of transformation depending on whether the input attribute is
continuous or discrete. Discrete attributes are usually problematic for distance
functions. In anomaly detection since values that are observed more frequently

Learning Rules and Clusters for Anomaly Detection in Network Traffic 93

are less likely to be anomalous and we want distance to indicate the difference
in the degree of normalcy (separating normal from abnormal behavior), we
represent a discrete value by its frequency. That is, discrete values of similar
frequency are close to each other, but values of very different frequency are far
apart. As a result, discrete attributes are transformed to continuous attributes.

In our domain continuous attributes, including those transformed from dis­
crete attributes, usually exhibit a power-law distribution—smaller values are
much more frequent than larger values. Distances involving the infrequent
large values are large and "drowns" the distances involving only small values.
To reduce this problem, we use a logarithmic scale. In addition, to discount
variance among values, we quantize the values using the floor operation, after
taking the logarithm. Furthermore, in order to consider each attribute equally,
the values of each attribute are normalized to the range [0,1]. Formally, an input
attribute value, Xij, is transformed to a, feature value, Yij as follows:

Yij = normalize(l\n{Xij + 1)J), (3.5)

where normalize{vj) = {vj — Minj)/{Maxj — Miuj), Vj is a value from
vector component j , and Mirij (Maxj) is the minimum (maximum) value of
component j . To avoid negative and undefined values (when 0 < Xij < 1),
we add 1 to Xij before taking In.

For normalization, we also considered the number of standard deviations
(SD) away from average. However, power-law distributions are one-sided and
heavy-tailed, so standard deviations are not very appropriate for our purpose.
Using SD for normalization resulted in noticeable degradation in performance
in our experiments. Therefore, we revert to simple scaling as a means of nor­
malization.

Cluster Width

The cluster width, W, specifies the local neighborhood of clusters that are
considered close. The width is specified by the user in [29]. CLAD derives the
width from the smallest distances between pairs of data points. To efficiently
calculate the width, CLAD randomly draws a sample, of size s = 1% x \D\,
from the entire dataset, D, and calculates the pair-wise distances. The bottom
1% of the pair-wise distances (i.e., 1% x s{s — l) /2 pairs) are considered the
smallest and their average is the cluster width. That is, CLAD samples pair-
wise distances and uses the average distance of the closest neighbors as W.
Though CLAD has a fixed parameter of 1% for deriving W, it is much less
ad hoc than asking the user to specify W, which becomes a parameter. Our
parameter is similar to specifying k in k-NN methods, but our parameter is
in relative percentage, which is different from the absolute count of k and is
conceptually easier to specify and understand.

94 Chapters

Density^ Inter-cluster Distance, and Anomalies

To determine if a cluster is an outlier, CLAD relies on two properties of a
cluster: density and distance from the other clusters. Since each cluster has the
same W (and hence ''area"), we define the density of cluster Q as the number
of data points, Counti, in ĉ . For the distance from the other clusters, we
calculate the average inter-cluster distance {ICD) between Q and the other
clusters. Formally, we denote ICDi as the ICD of cluster ci and define ICDi
as:

^ \c\
ICDi = 7——r ^ distance(ci^Cj) (3.6)

where C, as similarly defined before, is the set of clusters.
Outliers are generally distant and sparse. A cluster Q is considered distant

if ICDi is more than a standard deviation away from the average ICD. From
our initial experiments, we observe that the distribution of Count exhibits a
power-law distribution; when we use average and SD for Count, the average is
very small and few/no clusters have County one SD smaller than the average.
Hence, instead of using the average we use the median; a cluster Ci is considered
sparse when County is more than one median absolute deviation (MAD) [14]
smaller than the median Count. Interestingly, in our domain an attack could be
composed of many data points (e.g., flooding attacks), and hence dense regions
could be attacks as well. We will discuss this issue further in the next section
when we evaluate CLAD. Accordingly, we define dense clusters, which have
Counti more than one MAD larger than the median Count. More formally,
the set of distant clusters Cdistant-> sparse clusters Csparse^ and dense clusters
Cdense^ are defined as:

Cdistant = {ci e C\ICDi > AVG{ICD) + SD{ICD)}, (3.7)

Csparse = {Q G C\Counti < AVG{Count) - MAD{Count)], (3.8)

Cdense = {Q G C\Counti > AVG(Count) + MAD{Count)], (3.9)

where AVG is the average function. CLAD generates alerts for clusters that
are sparse and distant, or dense and distant. Each cluster is represented by its
centriod.

A sparse cluster/region is essentially a local outlier, i.e., it reflects how many
neighbors are within W. This is similar to k-NN which computes distance to
the closest k neighbors, as discussed previously. Labeling a region distant is
equivalent to saying that the region is a global outlier.

Summary of Current Results

As with the evaluation of LERAD, we use the same DARPA 99 dataset to
evaluate CLAD. Connections are similarly reassembled and the first 10 bytes

Learning Rules and Clusters for Anomaly Detection in Network Traffic 95

1

1 1 : •

ill Ml!
\^
lihj'iM

*. • «•
f<'-t\..-'
'jf^-i'/'^'

5'»*f * *
NW. •

5

•

1

i 1
1

. •
1 •!• •*;•: I . . * \ i * '*;*. •*:' .:•

*

Figure 3.2. Count and ICD of clusters for port 25 with CD a. < 20%, b. > 80%

1

i
i ! ! . .

i ;il :::i':ir--
iH;:'*'-.

rf'^.C*!* .r. • .

....

11

!
,
i

J

1 .:•

i • • • •;','

Figure 3.3. Count and ICD of clusters for port 80 with CD a. < 20%, b. > 80%

from the application payload are in the input data. Unlike LERAD, CLAD
does not require an explicit training phase, we combine the normal training
data (Weeks 1 and 3) and test data (Weeks 4 and 5); the additional normal
training data also help reduce the unusually high rate of attacks in the test data.

To improve effectiveness and efficiency, CLAD learns a model for each port
(application protocol). For ports that are rarely used (< 1% of the dataset), we
lump them into one model: "Other." Only clusters that are sparse and distant,
or dense and distant trigger alerts. To make anomaly scores comparable across
models, anomaly scores are normalized to the number of SD's away from the
average ICD.

Density is not used in the anomaly score because it is not as reliable as
ICD. This results from our analysis of how attacks are distributed between
density and ICD on ports 25 and 80, which have the most traffic. Since we
do not have exact labels (attack or normal) for each data point, we rely on
how DARPA/LL counts an alert as a detection of an attack [19]. We define
CD (counted as detection) of a cluster as the percentage of data points in the
cluster, when used to trigger an alert, is counted as a detection of an attack.
This is an indirect rough approximation of the likelihood of an attack present in
the cluster. We plot clusters with CD < 20% (''unlikely anomalies") against

96 Chapter 3

Table 3.3.

Port
Detections

Slumber of detections by CLAD (duplicates are

20
3

21
14

23
17

25
33

53
5

79
8

80
37

110
2

removed in Combined^,

111
1

143
3

Other
14

I

Combined
76

Count and ICD in Fig. 3.2a and similarly for CD > 80% ("likely anomalies")
in Fig. 3.2b. Both Count and ICD are in log scale. As we compare the two
plots, we observe that the likely anomalies occur more often in regions with
larger ICD, and the opposite for unlikely anomalies with smaller ICD. The
same observation cannot be made for Count. This is related to the fact that
some attacks can occur in dense clusters as we explained previously. For port
80 in Fig 3.3, similar observations can be made. The figures also indicate that
sparse and distant, or dense and distant clusters, which we use to trigger alerts,
are likely to detect attacks. Furthermore, for port 80, 96% of the clusters have
CD = 100% or < 9% (similarly for port 25). This indicates that most of the
clusters are near homogeneous and hence our combination of feature vectors,
distance function, and cluster width can sufficiently characterize the data.

Table 3.3 shows the number of attacks detected by models learned for each
port with at most 100 false alarms during the 10 day attack period in Weeks 4 and
5. The combined model detected 76 attacks, after removing duplicate detections
from individual models. As mentioned perviously, the original DARPA partici­
pant with the most detections detected 85 attacks [19], which was achieved by a
signature detector built by hand—unlike CLAD, which is an anomaly detector
with no apriori knowledge of attacks. Compared to LERAD, CLAD detected
fewer detections, but CLAD is handicapped by not assuming the availability of
attack-free training data. However, we seem to detect more attacks than similar
techniques [10, 29], which make similar assumptions, but we cannot claim that
since the datasets are different. Further experimentation would help reduce the
uncertainty.

5. CONCLUDING REIMARKS

We motivated the significance of a machine learning approach to anomaly
detection and have proposed two machine learning methods for constructing
anomaly detectors, LERAD is a learning algorithm that can characterize normal
behavior in logical rules. CLAD is a clustering algorithm that can identify
outliers from normal clusters. We evaluated both methods with the DARPA 99
dataset and show that our methods can detect more attacks than similar existing
techniques.

LERAD and CLAD have different strengths and weaknesses. We would like
to investigate more how one's strengths can benefit the other. Unlike CLAD,
LERAD assumes the training data are free of attacks. This assumption can be
relaxed by assigning scores to events that have been observed during training;

Learning Rules and Clusters for Anomaly Detection in Network Traffic 97

these scores can be related to the estimated probability of observing the seen
events. Unlike CLAD, LERAD is an offline algorithm. An online LERAD
would update the random sample used in the rule generation phase with new
data by a replacement strategy, and additional rules would be constructed that
consider both new and old data.

Unlike LERAD, CLAD does not aim to generate a concise model, which
can affect the efficiency during detection. We plan to explore merging similar
clusters in a hierarchical manner and dynamically determine the appropriate
number of clusters according to the L method [33]. Also, CLAD does not
explain alerts well; we plan to use the notion of "near miss" to explain an alert by
identifying centriods of normal clusters with few attributes contributing much of
the distance between the alert and the normal centroid. We are also investigating
extracting features from the payload, as well as applying our methods to host-
based data.

ACKNOWLEDGMENTS
This research is partially supported by DARPA (F30602-00-1-0603).

REFERENCES
[1] C. Aggarwal and P. Yu. Outlier detection for high dimensional data. In Proc. SIGMOD,

2001.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items
in large databases. In Proc. ACM SIGMOD Conf., pages 207-216, 1993.

[3] F. Apap, A. Honig, S. Hershkop, E. Eskin, and S. Stolfo. Detecting malicious software
by monitoring anomalous windows registry accesses. In Proc. Fifth Intl. Symp. Recent
Advances in Intrusion Detection (RAID), 2002.

[4] D. Barbara, N. Wu, and S. Jajodia. Detecting novel network intrusions using bayes estima­
tors. In Proc. SI AM Intl. Conf. Data Mining, 2001.

[5] M. Breunig, H. Kriegel, R. Ng, and J. Sander. Lof: Identifying density-based local outliers.
In Proc. SIGMOD, 2000.

[6] R Clark and T Niblett. The CN2 induction algorithm. Machine Learning, 3:261-285, 1989.

[7] Silicon Defense. SPADE, 2001. http://www.silicondefense.com/software/spice/.

[8] P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier under
zero-one loss. Machine Learning, 29:103-130, 1997.

[9] R. Duda and P. Hart. Pattern classification and scene analysis. Wiley, New York, NY, 1973.

[10] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for
unsupervised anomaly detection: Detecting intrusions in unlabeled data. In D. Barbara and
S. Jajodia, editors. Applications of Data Mining in Computer Security. Kluwer, 2002.

[11] S. Forrest, S. Hofmeyr, and A. Somayaji. Computer immunology. Comm. ACM, 4(10):88-
96, 1997.

[12] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for unix processes,
In Proc. of 1996 IEEE Symp. on Computer Security and Privacy, 1996.

98 Chapters

[13] A. Ghosh, A. Schwartzbard, and M. Schatz. Learning program behavior profiles for in­
trusion detection. In Proc, 1st USENIX Workshop on Intrusion Detection and Network
Monitoring, 1999.

[14] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.

[15] K. Kendall. A database of computer attacks for the evaluation of intrusion detection
systems. Master's thesis, EECS Dept., MIT, 1999.

[16] E. Knorr and T. Ng. Algorithms for mining distance-based outliers in large datasets. In
Proc. VLDB, 1998.

[17] C. Krugel, T. Toth, and E. Kirda. Service specific anomaly detection for network intrusion
detection. In Proc. ACM Symp. on Applied Computing, 2002.

[18] T. Lane and C. Brodley. Temporal sequence learning and data reduction for anomaly
detection. ACM Trans. Information and System Security, 1999.

[19] R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das. The 1999 DARPA off-line intrusion
detection evaluation. Computer Networks, 34:579-595, 2000.

[20] M. Mahoney and P. Chan. Learning models of network traffic for detecting novel
attacks. Technical Report CS-2002-08, Florida Inst, of Tech., Melbourne, FL, 2002.
http://www.cs.fit.edu/'^pkc/papers/cs-2002-08.pdf.

[21] M. Mahoney and P. Chan. Learning nonstationary models of normal network traffic for
detecting novel attacks. In Proc. Eighth Intl. Conf. on Knowledge Discovery and Data
Mining, pages 376-385, 2002.

[22] M. Mahoney and P. Chan. Learning Rules for Anomaly Detection of Hostile Network
Traffic. Technical Report CS-2003-16, Florida Inst, of Tech., Melbourne, FL, 2003.
http://www.cs.fit.edu/'^pkc/papers/cs-2003-16.pdf.

[23] T Mitchell. Machine Learning. McGraw Hill, 1997.

[24] P Neumann and P. Porras. Experience with EMERALD to date. In Proc. 1st USENIX
Workshop on Intrusion Detection and Network Monitoring, pages 73-80, 1999.

[25] T Niblett. Constructing decision trees in noisy domain. In Proc. 2nd European Working
Session on Learning, pages 67-78, 1987.

[26] V. Paxson. Bro: A system for detecting network intruders in real-time. In Proc. 7th USENIX
Security Symp., 1998.

[27] V. Paxson and S. Floyd. The failure of poisson modeling. IEEE/ACM Transactions on
Networking, 3:226-24, 1995.

[28] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1987.

[29] L. Portnoy. Intrusion detection with unlabeled data using clustering. Undergraduate Thesis,
Columbia University, 2000.

[30] F. Provost and P. Domingos. Tree induction for probability-based rankings. Machine
Learning, 2002.

[31] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from
large data sets. In Proc. SIGMOD, 2000.

[32] M. Roesch. Snort - lightweight intrusion detection for networks. In USENIX LISA, 1999.

[33] S. Salvador and P. Chan. Learning states and rules for time-series anomaly de­
tection. Technical Report CS-2003-05, Florida Inst, of Tech., Melbourne, FL, 2003.
http://www.cs.fit.edu/''pkc/papers/cs-2003-05.pdf.

Learning Rules and Clusters for Anomaly Detection in Network Traffic 99

[34] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollinen. A fast automaton-based method for
detecting anomalous program behaviors. In Proc, lEEESymp. Security and Privacy, 2001.

[35] K. Sequira and M. Zaki. ADMIT: Anomaly-based data mining for intrusions. In Proc,
KDD, 2002.

[36] S. Staniford, J. Hoagland, and J. McAlemey. Practical automated detection of stealthy
portscans. / Computer Securityy 2002.

[37] A. Valdes and K. Skinner. Adaptive model-based monitoring for cyber attack detection. In
Proc. RAID, pages 80-92, 2000.

[38] I. Witten and T. Bell. The zero-frequency problem: estimating the probabilities of novel
events in adaptive text compression. IEEE Trans, on Information Theory, 37(4): 1085-1094,
1991.

