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Abstract: Much of the intrusion detection research focuses on signature (misuse) detection, 
where models are built to recognize known attacks. However, signature detec­
tion, by its nature, cannot detect novel attacks. Anomaly detection focuses on 
modeling the normal behavior and identifying significant deviations, which could 
be novel attacks. In this chapter we explore two machine learning methods that 
can construct anomaly detection models from past behavior. The first method 
is a mle learning algorithm that characterizes normal behavior in the absence of 
labeled attack data. The second method uses a clustering algorithm to identify 
outliers. 
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1. INTRODUCTION 

The Intemet is one of the most influential innovations in recent history. 
Though most people use the Intemet for productive purposes, some use it as 
a vehicle for malicious intent. As the Intemet links more users together and 
computers are more prevalent in our daily lives, the Intemet and the computers 
connected to it increasingly become more enticing targets of attacks. Com­
puter security often focuses on preventing attacks using usually authentication, 
filtering, and encryption techniques, but another important facet is detecting 
attacks once the preventive measures are breached. Consider a bank vault, 
thick steel doors prevent intmsions, while motion and heat sensors detect in-
tmsions. Prevention and detection complement each other to provide a more 
secure environment. 
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How do we know if an attack has occurred or has been attempted? This 
requires analyzing huge volumes of data gathered from the network, host, or 
file systems to find suspicious activity. Two general approaches exist for this 
problem: signature detection (also known as misuse detection), where we look 
for pattems signaling well-known attacks, and anomaly detection, where we 
look for deviations from normal behavior. Signature detection works reliably 
on known attacks, but has the obvious disadvantage of not being capable of 
detecting new attacks. Though anomaly detection can detect novel attacks, it 
has the drawback of not being capable of disceming intent; it can only signal 
that some event is unusual, but not necessarily hostile, thus generating false 
alarms. A desirable system would employ both approaches. 

Signature detection methods are more well understood and widely applied. 
They are used in both host based systems, such as virus detectors, and in network 
based systems such as SNORT [32] and BRO [26]. These systems use a set of 
rules encoding knowledge gleaned from security experts to test files or network 
traffic for pattems known to occur in attacks. A limitation of such systems is that 
as new vulnerabilities or attacks are discovered, the rule set must be manually 
updated. Also minor variations in attack methods can often defeat such systems. 
For anomaly detection, a model of acceptable behavior can also be specified 
by humans as well. For example, firewalls are essentially manually written 
policies dictating what network traffic is considered normal and acceptable. 

How do security experts discover new unknown attacks? Generally, the 
experts identify something out of ordinary, which triggers further investigation. 
Some of these investigations result in discovering new attacks, while others 
result in false alarms. From their experience, security experts have learned a 
model of normalcy and use the model to detect abnormal events. We desire to 
endow computers with the capability of identifying unusual events similar to 
humans by leaming (data mining) from experience, i.e., historical data. 

Since what is considered normal could be different in different environments, 
a distinct model of normalcy need to be learned individually. This contrasts to 
manually written polices of normal behavior that require manual customization 
in each environment. Moreover, since the models are customized to each envi­
ronment, potential attackers would find them more difficult to circumvent than 
manually written policies that might be less customized due to inexperienced 
system administrators who do not change the default parameters and policies 
supplied by the vendors. Our goal is to learn anomaly detectors that can be 
customized to individual environments. This goal has a few challenges. 

First, anomaly detection is a harder problem than signature detection be­
cause signatures of attacks can be very precise but what is considered normal 
is more abstract and ambiguous. Second, classical machine leaming problems 
are classification tasks—given examples of different classes, learn a model that 
distinguishes the different classes. However, in anomaly detection, we are es-
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sentially given only one class of examples (normal instances) and we need to 
learn a model that characterizes and predicts the lone class reliably. Since ex­
amples of the other classes are absent, traditional machine learning algorithms 
are less applicable to anomaly detection. Third, research in anomaly detection 
uses the approach of modeling normal behavior from a (presumably) attack-free 
training set. However, clean data for training may not be easy to obtain. Lastly, 
to help humans analyze the alerts, anomaly detectors need to be able to describe 
the anomalies, though not as precisely as signature detectors are capable. 

To meet the second challenge, we propose two methods for leaming anomaly 
detectors: rule leaming (LERAD) and clustering (CLAD). CLAD does not 
assume the training data are free of attacks—the third challenge. For the last 
challenge, our models are not black boxes. Alerts can be explained by rules that 
are violated in LERAD or by the centroids of the "near miss" normal clusters 
in CLAD. Our experimental results indicate that, though anomaly detection 
is a harder problem (the first challenge), our methods can detect attacks with 
relatively few false alarms. 

This chapter is organized as follows. Section 2 contrasts related techniques 
in anomaly detection. Section 3 proposes the LERAD algorithm that learns 
the characterization of normal behavior in logical rules. Section 4 describes a 
clustering algorithm that can identify behavior far from the normal behavior. 
We summarize our findings and suggest improvements in Section 5. 

2. RELATED WORK 
Anomaly detection is related to biological immunology. Forrest et al. [11] 

observe that part of our immune system functions by identifying unfamiliar 
foreign objects and attacking them. For example, a transplanted organ is often 
attacked by the patient's immune system because the organ from the donor 
contains objects different from the ones in the patient, Forrest et al. found that 
when a vulnerable UNIX system program or server is attacked (for example, 
using a buffer overflow to open a root shell), that the program makes sequences 
of system calls that differ from the sequences found in normal operation [12]. 
Forrest used n-gram models (sequences of n = 3 to 6 calls), and matched them to 
sequences observed in training. A score is generated when a sequence observed 
during detection is different from those stored during training. Other models 
of normal system call sequences have been used, such as finite state automata 
[34] and neural networks [13]. Notably, Sekar et al. [34] utilize program 
counter information to specify states. Though the program counter carries 
limited information about the state of a program, its addition to their model is 
different from typical n-gram models that rely solely on sequences of system 
calls. Lane and Brodley [18] use instance-based methods and Sequeira and 
Zaki [35] use clustering methods for detecting anomalous user commands. 
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A host-based anomaly detector is important since some attacks (for exam­
ple, inside attacks) do not generate network traffic. However, network-based 
anomaly detectors can warn of attacks launched from the outside at an earlier 
stage, before the attacks actually reach the host. Current network anomaly de­
tection systems such as eBayes [37], ADAM [4], and SPADE [7] model only 
features of the network and transport layer, such as port numbers, IP addresses, 
and TCP flags. Models built with these features could detect probes (such as 
port scans) and some denial of service (DOS) attacks on the TCP/IP stack, but 
would not detect attacks of the type detected by Forrest, where the exploit code 
is transmitted to a public server in the application payload. 

Network anomaly detectors estimate the probabilities of events, such as that 
of a packet being addressed to some port, based on the frequency of similar 
events seen during training or during recent history, typically several days. 
They output an anomaly score which is inversely proportional to probability. 
Anomaly detectors are typically just one component of more comprehensive 
systems. eBayes is an anomaly detection component of EMERALD [24], which 
integrates the results from host and network-based detectors that use both sig­
nature and anomaly detection. ADAM is a Bayes classifier with categories for 
normal behavior, known attacks, and unknown attacks. SPADE is a SNORT 
[32] plug-in. Some anomaly detection algorithms are for specific attacks (e.g., 
portscans [36]) or services (e.g., DNS [17]). 

Most current anomaly detectors use a stationary model, where the probability 
of an event depends on its average rate during training, and does not vary with 
time. However, using the average rate could be incorrect for many processes. 
Paxson and Floyd [27] found that many network processes, such as the rate 
of a particular type of packet, have self-similar (fractal) behavior. Events do 
not occur at uniform rates on any time scale. Instead they tend to occur in 
bursts. Hence, it is not possible to predict the average rate of an event over a 
time window by measuring the rate in another window, regardless of how short 
or long the windows are. An example of how a stationary model fails in an 
anomaly detector would be any attack with a large number of events, such as a 
port scan or a flooding attack. If the detector correctly identifies each packet as 
anomalous, then the user would be flooded with thousands of alarms in a few 
minutes. 

Clustering and related techniques have been used to locate outliers in a 
dataset. Knorr and Ng [16] define an outlier as an object where a fraction 
p of the dataset is further than distance D from the object, where p and D are 
parameters specified by the users. Instead of a global perspective [16], LOF [5] 
uses a local perspective and locates outliers with respect to the density in the lo­
cal/neighboring region. They illustrate the inability of conventional approaches 
to detect such outliers. LOF has two short-comings: one, their approach is very 
sensitive to the choice of MinPts, which specifies the minimum number of 
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objects allowed in the local neighborhood (similar to k in k-NN, k-Nearest 
Neighbor); second, and more importantly, their approach is not well-suited for 
very high dimensional data such as network traffic data. Ramaswamy et al. 
[31] investigate the problem of finding the top n outliers. They characterize 
an outlier by the distance of the fcth-nearest neighbor and their algorithm ef­
ficiently partitions the input space and prunes partitions that cannot contain 
the top outliers. Aggarwal and Yu [1] calculate the sparsity coefficient, which 
compares the observed and expected number of data points, in "cubes" (spatial 
grid cells) generated by projections on the dataset. 

3. LEARNING RULES FOR ANOMALY DETECTION 
(LERAD) 

To build a model for anomaly detection, from a probabilistic perspective, 
one can attempt to estimate P{x\Di^oAttacks)•> where x is an instance under 
consideration and D^^oAttacks is a data set of instances that do not contain 
attacks. Since all the probabilistic estimations are based on the training data set 
DNoAttacks, for notation convenience, we use P(x) in lieu of P{X\DNoAttacks)-
Under this model, the smaller P{x) is, the more likely x is anomalous. 

Each instance x is represented by values from a set of m attributes ai, a2,..., 
am- That is, a; is a tuple of values (ai = I'l, ^2 — ^2^ •--•, dm = Vm)-> where vi 
is the value for attribute a .̂ The probability P{x) is hence: P{ai = Vj,a2 = 
V2: •••) CLm = Vm) or more concisely, P{vi, f2,..., Vm)- Using the chain rule is 
frequently is too computationally expensive. Some researchers assume the at­
tributes to be independent in "Naive" Bayes algorithms [9, 6, 8]. However this 
assumption is usually invalid. To incorporate attribute dependence, Bayesian 
networks [28] model a subset of the conditional probabilities structured in net­
works, which are selected using prior knowledge. Recent work in Bayesian net­
works attempts to learn the network structures from data. However, Bayesian 
networks model the entire distribution of each conditional probability and could 
consume significant computational resources. 

Instead of estimating the probability of an instance x, an alternative approach 
is to estimate the likelihood of values among the attributes in each instance. That 
is, given some attribute values, we estimate the likelihood of some other attribute 
values. Again, consider vi, ...,Vm = V axe the values of attributes ai,. . . , a^ of 
an instance. Let U cV,W CV, and U OW = ^,WQ would like to estimate: 
P{W\U). For example, consider these network packet values: V = {Srclp = 
12S.1.2.3, Destip = 12SA.5.Q, SrcPort = 2222, DestPort = 80}. Fur­
ther we consider U = {Srclp = 128.1.2.3, Destip = 128.4.5.6} and W = 
{DestPort = SO},hmceP{W\U) is: P{DestPort = SO\SrcIp = 128.1.2.3, 
Destlp= 128.4.5.6). 
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In anomaly detection we seek combinations of U and W with large 
P{W\U)—W is highly predictive by U. These combinations indicate pat­
terns in the normal training data and fundamentally constitute a model that 
describes normal behavior. If these patterns are violated during detection, we 
calculate a score that reflects the severity of the violation and hence the degree of 
anomaly. That is, the anomaly score depends on P(--W\U), where W, though 
expected, is not observed when U is observed. Finding these patterns could be 
computationally expensive since the space of combinations is 0{d^), where d 
is the domain size of an attribute and m is the number of attributes. In the next 
section we describe our proposed learning algorithm. 

LERAD Algorithm 

Our goal is to design an efficient algorithm that finds combinations of U 
and W with large P{W\U) during training and uses P{-^W\U) to calculate an 
anomaly score during detection. The task of finding combinations of U and W 
is similar to finding frequent patterns in association rules [2], where U is the 
antecedent, W is the consequent, and P{W\U) is the confidence. Algorithms 
for finding association rules, for example Apriori [2], typically find all rules 
that exceed the user-supplied confidence and support thresholds; consequently, 
a large number of rules can be generated. Checking large number of rules 
during detection incurs unacceptable amounts of overhead. However, our goal 
is different from finding association rules in two fundamental respects. First, the 
semantics of our rules are designed to estimate P{-^W\U). Second, we want a 
"minimal" set of rules that succinctly describes the normal training data. These 
differences are exhibited in our proposed rules and algorithm called LERAD 
(LEaming Rules for Anomaly Detection). 

Semantics of LERAD Rules. The semantics of LERAD rules seek to 
estimate P{-^W\U); in rule form, a LERAD rule is: 

U^^W \p = P(-^W\U)l (3.1) 

where p denotes P{-^W\U) and reflects the likelihood of an anomaly. These 
rules can be considered as anomaly rules. We also extend the semantics of W. 
In the consequent instead of allowing a single value for each attribute, our rules 
allow each attribute to be an element of a set of values. For example, consider 
W = {DestPort € {21,25,80}} (instead of 1^ -= {DestPort = 80}), 
P{W\U) is: P(DestPort e {21,25,80}|5rc7p = 128.1.2.^, Destip = 
128.4.5.6) and P{-nW\U) becomes: P{DestPort ^ {21,25,80}|5'rc7p = 
128.1.2.3, Destip = 128.4.5.6) or in rule form: Srclp = 128.1.2.3, Destip 
= 128.4.5.6 => DestPort ^ {21,25,80}. Given U, the set of values for 
each attribute in W represents all the values seen in the training data for that 
particular attribute. Following the above example, given Srclp = 128.1.2.3 
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and Destip = 128.4.5.6, DestPort is either 21, 25, or 80 in the normal 
training data. This extension allows our models to be more predictive and 
conservative so that false alarms are less likely to occur. However, since W 
includes all the seen values in training, a simplistic estimation of P{W\U) 
would yield 1 and P(-^W\U) 0. Obviously, these estimates are too extreme. 
Since event -\W is not observed when event U is observed during training, 
estimating P{-^W\U) becomes a "zero-frequency" problem [38]. 

Zero-frequency Problem. Laplace smoothing is commonly used in the 
machine leaming community to handle the zero-frequency problem [25,23,30]. 
One variant of the technique is to assign a frequency of one, instead of zero, to 
each event at the beginning. Hence, all events, observed or not, will have at least 
a count of one and none of the events have an estimated probability of zero. That 
is, the likelihood of a novel event can be estimated by: P{NovelEvent) = 
I^^TLJ where |^ | is the size of the alphabet A of possible values, n is the 
total number of observed events and r is the number of unique observed events. 
However, Laplace smoothing is appropriate only for the case where A is known, 
and for which the apriori distribution over A is uniform. In general, A could 
be very large and unknown (for example, the set of all possible strings in the 
application payload), and the distribution could be highly skewed toward a few 
common values. 

Witten and Bell [38] proposed a few estimates for novel events in the context 
of data compression that are independent of alphabet size and which do not 
assume an apriori uniform distribution; one estimate is: 

P(NovelEvent) = - . (3.2) 
n 

This measures the average rate of novel values in the sample. Eq. 3.2 is used 
to estimate p = P{-^W\U) in Eq. 3.1, where n is the number of instances 
satisfying the antecedent U and r is the number of unique values in the attribute 
of the consequent W, We attempted more sophisticated estimators in initial 
experiments for anomaly detection, but Eq. 3.2 seems to perform as effectively 
as others and requires the least computation, which is advantageous in mining 
large amounts of data. 

Randomized Algorithm. In the previous sections we have discussed the 
semantics of LERAD rules and how P{-iW\U) can be estimated. We now 
discuss an efficient algorithm that finds combinations of U and W with low 
P{-^W\U) (or high P{W\U)). Our algorithm is based on sampling and ran­
domization. Let D be the entire training data set, DT and Dy be the training 
and validation sets respectively such that DT U Dy = D, DT H Dy = 0, and 
\DT\ > \Dv\^ and Ds is a random sample of DT such that Ds C DT and 
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Table 3.1. Example Training Data Set D = {di} for i = 1..6 (marked by rk in Step 3) 

di 

di 

d2 
dz 
di 
ds 
de \ 

1 ai 
1 
1 

2 
2 
1 
2 

a2 

2(r2) 
2(r2) 
6( r i ) 

7 
2 
8 

as 
3 
3 
3 
3 
3 
3 

0-4 

4 
5 
5 
5 
4 

4 

1 in subset 
1 Ds and £>T 

JDS and DT 

Ds and Z?T 

DT 

Dv 
1 Dv 

Ta^/e 3.2. Rules (r^) Generated by LERAD Steps 1-5 

Step 1 
r i : * ^ a2 = 2 
r2: ax = I => a2 = 2 
ra: ai = 1, as = 3 => a2 = 2 

' Step 2 (rewritten in Eq.3.1 form) 
n : *=>a2 ^{2,6}[p = 2/3] 
r2: ai = l = ^ a 2 ^ { 2 } [ p = l / 2 ] 
ra: ai = 1, 03 = 3 =^ 02 0 {2}[p = 1/2] 

Step 4 
r2: ai = l - » a 2 0 { 2 } [ p = l / 2 ] 
r i : *=>a2 ^ {2, 6, 7}[p = 3/4] 

Step 2 
r i : * =^a2 G {2,6} 
r2: ai = 1 =^ a2 = 2 
rs: ai = 1, as = 3 => a2 = 2 

Step 3 
r2: ai = 1 =^ a2 ^ {2}[p = 1/2] 
n : *=^a2 0{2,6}[p = 2/3] 

Steps 
ra: ai = 1 :^ 02 ^ { 2 } [ p = 1/3] 

\Ds\ <C li^rl- ^£; is a separate test/evaluation set disjoint from the training 
set D. Our proposed mining algorithm consists of five main steps: 

1 generate candidate rules from Ds, 
2 evaluate candidate rules from Ds, 
3 select a ''minimal" set of candidate rules that covers Ds, 
4 train the selected candidate rules on DT, and 
5 prune the rules that cause false alarms on Dy 

Steps 1-3 intend to select a small and predictive set of rules from a small sample 
Ds of the data. The selected rules are then trained on the much larger set DT 
in Step 4. The validation set Dy is used to reduce overfitting in Step 5. For 
simplicity, we only consider rules that have only one attribute in the consequent. 
Further details are in [20]. 

Step 1. Pairs of instances are randomly chosen from D^. For each pair of 
instances, we identify the matching attribute values between the two instances. 
Consider di and d2 in Table 3.1 as a random pair, ai = 1, a2 = 2, and as = 3 
occur in both instances. The three values are then chosen in random order, e.g., 
a2 = 2,ai = 1, and as = 3; and the candidate rules in Table 3.2 are generatedc 
The first value (a2 = 2) is chosen to be in the consequent (W) and the the 
later values are iteratively added to the antecedent ([/). In r i , * is a wild card 
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and matches anything. If the matching attribute values occur often in different 
instances, they will likely be found matching again in another randomly chosen 
pair of instances and more rules for these matching attribute values will be 
generated. That is, the more likely the values are correlated, the more rules will 
be generated to describe the correlation (duplicate rules are removed). 

Step 2. We evaluate the candidate rules on Ds^ Note that the consequent in 
the candidate rules generated from Step 1 has only one value. In Step 2 we add 
values to the attribute in the consequent if more values are observed in Ds* di 
and (̂ 2 do not change the rules. ^3 causes ri is to be updated because a2 == 6 in 
ds; the other two rules are unchanged because the antecedents are not satisfied 
for da. The new set of candidate rules are in Table 3.2. We then write the 
rules in the form of Eq. 3.1 and estimate p = P{-^W\U) for each rule by using 
Eq. 3.2 in Table 3.2. 

Step 3, We select a "minimal" subset of candidate rules that sufficiently 
describe Ds. Our method is based on two heuristics. First, we prefer rules with 
lower p = P{-iW\U). Second, a rule can cover multiple instances in Ds, but 
an instance does not need to be covered by more than one rule (more details 
later). Hence, we sort the rules based on p and evaluate the rules in ascending 
order. For each rule, we mark instances that are covered by the rule. If a rule 
cannot mark any remaining unmarked instances, it is removed. That is, we keep 
rules with lower p and remove rules that do not contribute to covering instances 
not covered by previous rules with lower p values. 

Step 4. This step is similar to Step 2, except that the rules are updated based 
on DT, instead of D5. 0̂4 does not affect r2 since its antecedent does not match. 
However, 7 is added to the consequent of ri and p is updated to 3/4 in Table 3.2. 
After Step 4, the rules have been trained from D^. 

Step 5. Since all instances in the validation set Dy are normal, an alarm 
generated by a rule with any instance in Dy is a false alarm. To reduce overfit-
ting, during Step 5, we remove rules that generate alarms in the validation set. 
Using our running example, ^5 is normal according to vi and r2. However, ri 
generates an alarm for d^ since a2 = 8 ^ {2, 6, 7}. r2 does not generate an 
alarm because ai = 2, which does not satisfy the antecedent of r2. Hence, only 
r2 remains in Table 3.2. During Step 5, to fully utilize legitimate training data 
in the validation set, we also update p for rules that are not removed. Hence, p 
for r2 was updated to 1/3. 

Anomaly Score and Nonstationary Model. During training, a set of 
anomaly rules R that "minimally" describes the training data are generated and 
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their p = P{-^W\U) is estimated. During detection, given an instance x, we 
generate an anomaly score if x satisfies any of the anomaly rules (U => ^W), 
Let S' C i? be the set of anomaly rules that x satisfies. The anomaly score is 
calculated as: AnomalyScore(x) = Ylvk^s ^T' ^here Vk is a rule in S and pk 
is the p value of rule Vk^ The reciprocal ofpk reflects a surprise factor that is 
large when anomaly has a low likelihood (small p^)-

The p estimate is an aggregate over a stationary training period; however, 
recent events can greatly influence current events. Bursty network traffic or OS 
activities are common. In intrusion detection we experience that attacks cause 
bursty behavior as well. In order to incorporate recent novel events into our 
scoring mechanism, we introduce t^ which is the duration since the last novel 
value was observed in the consequent of anomaly rule Vk (or when r^ was 
satisfied). The smaller tk is, the higher the likelihood that we will see another 
novel value. That is, intuitively, we are less surprised if we have observed a 
novel value in a more recent past. Hence, we calculate the anomaly score as: 

Anomaly S cor e{x) = ^ —. (3.3) 

Summary of Current Results 

To evaluate LERAD, we use network traffic recorded in tcpdiimp provided 
by the DARPA evaluation in 1999 [19,15]. Week 3 inside sniffer traffic (which 
contains no attacks) was used for training (D) and Weeks 4 and 5 (DE) were 
used for testing. The size of the validation set (|D\/1) was set to be 10% of the 
training set (D). We set Ds = 100 samples. LERAD was run five times with 
a different random seed. Attributes used in our data sets include IP addresses, 
port numbers, length, duration, opening and closing TCP flags, and the first 8 
words of the application payload of reassembled inbound client TCP streams. 
LERAD is evaluated based on the number of detected attacks with at most 10 
false alarms per day. 

In our experiments the resulting set of rules usually contains 50 to 75 rules. 
Though the rule set is relatively small, LERAD, on the average, detects about 
117 attacks out of 201 attacks with at most 10 false alarms per day. Under a 
''blind" evaluation (the test set was not available apriori), the original DARPA 
participant with the most detections detected 85 attacks [19]. This indicates 
LERAD is quite successful in finding highly predictive normal patterns. More 
importantly, LERAD detects about 58% of the attacks poorly detected by the 
original participants [19]. That is, LERAD increases the overall coverage of 
detectable attacks. The total computational overhead is about 30 minutes for 
three weeks of training and test data. Much of the overhead is in preprocessing 
of the raw data to generate feature values for training and testing. Training and 
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testing on three weeks of data take less than two minutes. We also analyzed and 
categorized why our detected anomalies were successful in detecting attacks. 
The more common categories (covering about 70% of the detected attacks) are 
unexpected user behavior (e.g., unusual client addresses for servers) and learned 
(partial) attack signatures (e.g., unusual input that exploit bugs in software). 
Details of our findings are described in [20]. 

In [22] we tested LERAD on 623 hours of traffic collected on a university 
departmental server over a 10 week period. We first used SNORT and manual 
inspection to identify six attacks that evaded our gateway firewall: an inside au­
tomated port/security scan which tests for multiple vulnerabilities, three HTTP 
worms (Code Red II, Nimda, and Scalper), an HTTP proxy probe, and a DNS 
version probe. We evaluated LERAD using two attribute sets: TCP streams as 
above, and a simpler set consisting of just the first 32 pairs of bytes (i.e. 16 bit 
values) of inbound client IP packets. (To reduce the traffic load, we limited all 
packets to 16 per minute per session, and TCP up to the first payload packet). 
Lacking clean training data, we simply used each week's data as training for the 
following week. Averaged over five runs at 10 false alarms per 24 hours, the 
TCP version detects 2.4 attacks and the packet version detects 1.4, for a total of 
3.0 (50%) after removing overlap. The probability of detection is highest for 
the most malicious attack (the inside scan), and lowest for the two probes. 

LERAD is based on our simpler algorithms PHAD and ALAD, which use 
fixed rule sets [21]. PHAD was also adapted to detect attacks by modeling 
accesses to the Registry in the Windows OS [3]. 

4. CLUSTERING FOR ANOIMALY DETECTION 
(CLAD) 

LERAD assumes the training data are free of attacks, however, making sure 
the data is clean could be time consuming. We propose to use a clustering 
approach to identify "outliers" as anomalous. Our clustering method, CLAD, is 
inspired by the work of [ 10,29], and is related to k-NN. CLAD locates anomalies 
by finding local and global outliers with some restrictions, where k-NN and LOF 
[5] concentrate mainly on local outliers. One key difference of CLAD from 
other clustering algorithms is that clusters are of fixed width (radius) and allows 
clusters to overlap (i.e., the clusters are not mutually exclusive). This difference 
permits CLAD to process large amounts of data efficiently. 

CLAD has two phases: Phase 1 creates the clusters and Phase 2 assigns data 
points to additional clusters. Fig. 3.1 illustrates the steps of the 2 phases. Given 
a dataset, D, Phase 1 creates clusters of fixed width, W (which will be discussed 
later), and assigns data points, d e D,to the created clusters. If a data point is 
further away than width W from any existing cluster, the data point becomes 
the centroid of a new cluster; otherwise it is assigned to all existing clusters that 
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Input: Dataset D 
Output: Set of clusters C 

1 initialize the set of clusters, C, to 0 
Phase 1: Creating clusters 

2 fox deD 
3 f or c e C 
4 if distance{dj c) < W, assign d to c 
5 if d is not assigned 
6 create cluster ĉ  with d as the centroid and add ĉ  to C 

Phase 2: Assigning data points to additional clusters 
7 fovdeD 
8 for c € C 
9 if distance(d^ c) <W and d is not assigned to c 

10 assign d toe 

Figure 3.1, Overall CLAD Algorithm 

are not further away than W. In Phase 1 since data points can only be assigned 
to existing clusters, some data points might miss assignment to clusters that are 
subsequently created. Phase 2 assigns these data points to additional clusters. 
So far our CLAD algorithm is basically the clustering algorithm proposed in 
[10, 29], however, the methods significantly diverge on how data points are 
represented for calculating distance, how the cluster width is determined, and 
how the properties of outliers are decided. 

Feature Vectors and Distance Function 

Each data point, d, is represented by a feature vector, and a cluster, c, is 
represented by its centroid, which is a data point. We use the Euclidean distance 
as our distance function: 

distance{Yi^Y2) = 

\ 

\yi\ 

E ( ^ i 7 - ^ 2 i ) ^ (3.4) 

where Yi and Y2 are two feature vectors, Yij denotes the jth component of Yi, 
and \Yi\ denotes the length of vector Yi. 

To obtain a feature vector for a data point, we transform the data points 
represented in the input attribute vectors (Xi) into our feature vectors (Yi). We 
have two types of transformation depending on whether the input attribute is 
continuous or discrete. Discrete attributes are usually problematic for distance 
functions. In anomaly detection since values that are observed more frequently 
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are less likely to be anomalous and we want distance to indicate the difference 
in the degree of normalcy (separating normal from abnormal behavior), we 
represent a discrete value by its frequency. That is, discrete values of similar 
frequency are close to each other, but values of very different frequency are far 
apart. As a result, discrete attributes are transformed to continuous attributes. 

In our domain continuous attributes, including those transformed from dis­
crete attributes, usually exhibit a power-law distribution—smaller values are 
much more frequent than larger values. Distances involving the infrequent 
large values are large and "drowns" the distances involving only small values. 
To reduce this problem, we use a logarithmic scale. In addition, to discount 
variance among values, we quantize the values using the floor operation, after 
taking the logarithm. Furthermore, in order to consider each attribute equally, 
the values of each attribute are normalized to the range [0,1]. Formally, an input 
attribute value, Xij, is transformed to a, feature value, Yij as follows: 

Yij = normalize(l\n{Xij + 1)J), (3.5) 

where normalize{vj) = {vj — Minj)/{Maxj — Miuj), Vj is a value from 
vector component j , and Mirij (Maxj) is the minimum (maximum) value of 
component j . To avoid negative and undefined values (when 0 < Xij < 1), 
we add 1 to Xij before taking In. 

For normalization, we also considered the number of standard deviations 
(SD) away from average. However, power-law distributions are one-sided and 
heavy-tailed, so standard deviations are not very appropriate for our purpose. 
Using SD for normalization resulted in noticeable degradation in performance 
in our experiments. Therefore, we revert to simple scaling as a means of nor­
malization. 

Cluster Width 

The cluster width, W, specifies the local neighborhood of clusters that are 
considered close. The width is specified by the user in [29]. CLAD derives the 
width from the smallest distances between pairs of data points. To efficiently 
calculate the width, CLAD randomly draws a sample, of size s = 1% x \D\, 
from the entire dataset, D, and calculates the pair-wise distances. The bottom 
1% of the pair-wise distances (i.e., 1% x s{s — l) /2 pairs) are considered the 
smallest and their average is the cluster width. That is, CLAD samples pair-
wise distances and uses the average distance of the closest neighbors as W. 
Though CLAD has a fixed parameter of 1% for deriving W, it is much less 
ad hoc than asking the user to specify W, which becomes a parameter. Our 
parameter is similar to specifying k in k-NN methods, but our parameter is 
in relative percentage, which is different from the absolute count of k and is 
conceptually easier to specify and understand. 
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Density^ Inter-cluster Distance, and Anomalies 

To determine if a cluster is an outlier, CLAD relies on two properties of a 
cluster: density and distance from the other clusters. Since each cluster has the 
same W (and hence ''area"), we define the density of cluster Q as the number 
of data points, Counti, in ĉ . For the distance from the other clusters, we 
calculate the average inter-cluster distance {ICD) between Q and the other 
clusters. Formally, we denote ICDi as the ICD of cluster ci and define ICDi 
as: 

^ \c\ 
ICDi = 7——r ^ distance(ci^Cj) (3.6) 

where C, as similarly defined before, is the set of clusters. 
Outliers are generally distant and sparse. A cluster Q is considered distant 

if ICDi is more than a standard deviation away from the average ICD. From 
our initial experiments, we observe that the distribution of Count exhibits a 
power-law distribution; when we use average and SD for Count, the average is 
very small and few/no clusters have County one SD smaller than the average. 
Hence, instead of using the average we use the median; a cluster Ci is considered 
sparse when County is more than one median absolute deviation (MAD) [14] 
smaller than the median Count. Interestingly, in our domain an attack could be 
composed of many data points (e.g., flooding attacks), and hence dense regions 
could be attacks as well. We will discuss this issue further in the next section 
when we evaluate CLAD. Accordingly, we define dense clusters, which have 
Counti more than one MAD larger than the median Count. More formally, 
the set of distant clusters Cdistant-> sparse clusters Csparse^ and dense clusters 
Cdense^ are defined as: 

Cdistant = {ci e C\ICDi > AVG{ICD) + SD{ICD)}, (3.7) 

Csparse = {Q G C\Counti < AVG{Count) - MAD{Count)], (3.8) 

Cdense = {Q G C\Counti > AVG(Count) + MAD{Count)], (3.9) 

where AVG is the average function. CLAD generates alerts for clusters that 
are sparse and distant, or dense and distant. Each cluster is represented by its 
centriod. 

A sparse cluster/region is essentially a local outlier, i.e., it reflects how many 
neighbors are within W. This is similar to k-NN which computes distance to 
the closest k neighbors, as discussed previously. Labeling a region distant is 
equivalent to saying that the region is a global outlier. 

Summary of Current Results 

As with the evaluation of LERAD, we use the same DARPA 99 dataset to 
evaluate CLAD. Connections are similarly reassembled and the first 10 bytes 
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Figure 3.2. Count and ICD of clusters for port 25 with CD a. < 20%, b. > 80% 
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Figure 3.3. Count and ICD of clusters for port 80 with CD a. < 20%, b. > 80% 

from the application payload are in the input data. Unlike LERAD, CLAD 
does not require an explicit training phase, we combine the normal training 
data (Weeks 1 and 3) and test data (Weeks 4 and 5); the additional normal 
training data also help reduce the unusually high rate of attacks in the test data. 

To improve effectiveness and efficiency, CLAD learns a model for each port 
(application protocol). For ports that are rarely used (< 1% of the dataset), we 
lump them into one model: "Other." Only clusters that are sparse and distant, 
or dense and distant trigger alerts. To make anomaly scores comparable across 
models, anomaly scores are normalized to the number of SD's away from the 
average ICD. 

Density is not used in the anomaly score because it is not as reliable as 
ICD. This results from our analysis of how attacks are distributed between 
density and ICD on ports 25 and 80, which have the most traffic. Since we 
do not have exact labels (attack or normal) for each data point, we rely on 
how DARPA/LL counts an alert as a detection of an attack [19]. We define 
CD (counted as detection) of a cluster as the percentage of data points in the 
cluster, when used to trigger an alert, is counted as a detection of an attack. 
This is an indirect rough approximation of the likelihood of an attack present in 
the cluster. We plot clusters with CD < 20% (''unlikely anomalies") against 
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Table 3.3. 

Port 
Detections 

Slumber of detections by CLAD (duplicates are 

20 
3 

21 
14 

23 
17 

25 
33 

53 
5 

79 
8 

80 
37 

110 
2 

removed in Combined^, 

111 
1 

143 
3 

Other 
14 

I 

Combined 
76 

Count and ICD in Fig. 3.2a and similarly for CD > 80% ("likely anomalies") 
in Fig. 3.2b. Both Count and ICD are in log scale. As we compare the two 
plots, we observe that the likely anomalies occur more often in regions with 
larger ICD, and the opposite for unlikely anomalies with smaller ICD. The 
same observation cannot be made for Count. This is related to the fact that 
some attacks can occur in dense clusters as we explained previously. For port 
80 in Fig 3.3, similar observations can be made. The figures also indicate that 
sparse and distant, or dense and distant clusters, which we use to trigger alerts, 
are likely to detect attacks. Furthermore, for port 80, 96% of the clusters have 
CD = 100% or < 9% (similarly for port 25). This indicates that most of the 
clusters are near homogeneous and hence our combination of feature vectors, 
distance function, and cluster width can sufficiently characterize the data. 

Table 3.3 shows the number of attacks detected by models learned for each 
port with at most 100 false alarms during the 10 day attack period in Weeks 4 and 
5. The combined model detected 76 attacks, after removing duplicate detections 
from individual models. As mentioned perviously, the original DARPA partici­
pant with the most detections detected 85 attacks [19], which was achieved by a 
signature detector built by hand—unlike CLAD, which is an anomaly detector 
with no apriori knowledge of attacks. Compared to LERAD, CLAD detected 
fewer detections, but CLAD is handicapped by not assuming the availability of 
attack-free training data. However, we seem to detect more attacks than similar 
techniques [10, 29], which make similar assumptions, but we cannot claim that 
since the datasets are different. Further experimentation would help reduce the 
uncertainty. 

5. CONCLUDING REIMARKS 

We motivated the significance of a machine learning approach to anomaly 
detection and have proposed two machine learning methods for constructing 
anomaly detectors, LERAD is a learning algorithm that can characterize normal 
behavior in logical rules. CLAD is a clustering algorithm that can identify 
outliers from normal clusters. We evaluated both methods with the DARPA 99 
dataset and show that our methods can detect more attacks than similar existing 
techniques. 

LERAD and CLAD have different strengths and weaknesses. We would like 
to investigate more how one's strengths can benefit the other. Unlike CLAD, 
LERAD assumes the training data are free of attacks. This assumption can be 
relaxed by assigning scores to events that have been observed during training; 
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these scores can be related to the estimated probability of observing the seen 
events. Unlike CLAD, LERAD is an offline algorithm. An online LERAD 
would update the random sample used in the rule generation phase with new 
data by a replacement strategy, and additional rules would be constructed that 
consider both new and old data. 

Unlike LERAD, CLAD does not aim to generate a concise model, which 
can affect the efficiency during detection. We plan to explore merging similar 
clusters in a hierarchical manner and dynamically determine the appropriate 
number of clusters according to the L method [33]. Also, CLAD does not 
explain alerts well; we plan to use the notion of "near miss" to explain an alert by 
identifying centriods of normal clusters with few attributes contributing much of 
the distance between the alert and the normal centroid. We are also investigating 
extracting features from the payload, as well as applying our methods to host-
based data. 
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