
A FORMAL MODEL FOR PARAMETERIZED
ROLE-BASED ACCESS CONTROL

Ali E. Abdallah and Etienne J. Khayat
Research Institute for Computing,
London South Bank University,
103 Borough Road,
London SEl OAA, U.K.
{ A.Abdallah@lsbu.ac.uk, E.Khayat@lsbu.ac.uk }

Abstract Role-Based Access Control (RBAC) usually enables a higher level view of au-
thorization. In this model, access permissions are assigned to roles and, in turn,
roles are allocated to subjects. The usefulness of the RBAC model is well doc-
umented. It includes simplicity, consistency, scalability and ease of manage-
ability. In practice, however, only limited versions of RBAC seem to have been
successfully implemented, notably in applications such as databases and oper-
ating systems. The problem stems from the fact that most applications require
a finer degree of authorization than what core RBAC models are able to pro-
vide. In theory, current RBAC models can be adapted to capture fine grained
authorizations by dramatically increasing the number of distinct roles in these
models. However, this solution comes at an unacceptably high cost of allocating
low level privileges which eliminates the major benefits gained from having a
high level RBAC model.

This paper presents a methodology for refining abstract RBAC models into new
Parameterized RBAC models which provide finer grain of authorizations. The
semantics of the Parameterized RBAC model is given as a state-based core
RBAC model expressed in the formal specification notation Z. By systemati-
cally applying this methodology the scope of applications of RBAC is substan-
tially extended and the major benefits of having the core model are maintained.

1. Introduction

RBAC is an access control mechanism based on the rationale that access rights
are assigned to roles, rather than to the subjects that perform these roles [1-5].
This approach is attractive for concisely describing authorization, particularly
within organizations, because responsibilities are often assigned to employees
(subjects) based on their duties (roles). RBAC is also very useflil when it is



234 Formal Aspects ofSecurity and Trust

adapted to fit the organizational structure of an institution because it bridges
the gap between its functional requirements and the technical authorization as-
pects of its security policy. Hence, offering a high level view of authorization
and its operational management. However, few examples can be found where
only limited versions of RBAC are applied, namely in databases and in op-
erating systems such as Solaris [7, 8]. The reason for this is that the direct
application of abstract RBAC requires significant expressive power to cater
for access requirements in large organizations. For instance, the way permis-
sions are currently described in RBAC suggest that every role has a unique
set of permissions, which are assigned to its associated subjects or principals.
With this, two different subjects, occupying exactly the same role, will have
identical permissions. This might not be desirable because every subject exer-
cises its permissions in the context of its own duties [9]. This type of definition
makes a successful direct application of RBAC requiring large amount of work
to express access rights. Its success might be more related to the advanced
techniques provided by the implemented application, such as the "views" in
databases [6], rather than the features of the adopted RBAC. To clearly illus-
trate the lack of expressiveness in a direct application of RBAC, consider the
case of online banking. In this case, the clients are the subjects and the bank
accounts are the objects, and the role to describe the clients who have bank ac-
counts is referred to as AccountJtiolder. Although this role applies to all bank
clients, which can reach hundreds of thousands, the access permissions associ-
ated with every client (subject) occupying this role should be different. When
using the online banking service, every client can only access its own account
details, and not those of other clients occupying the role Account-Holder. It is
possible to express the permissions for such clients by directly applying RBAC,
but only at a considerable cost:
Firstly, although roles such as Account-Holder are defined as a single role,
their implementation suggests their instantiation into a large number of roles
to cater for every client, which presents a huge burden on the intellectual man-
ageability of access rights.
Secondly, the direct implementation of RBAC reduces the scalability of the
mechanism in large organisations because instances of role have to be treated
as different roles instead of being grouped under a single definition.
Thirdly, the consistency of the distribution of access rights is affected because
similar roles will have to be treated differently and managed separately.
These advantages, generally associated with RBAC models, can be maintained
if this case study is modelled as a parameterized RBAC. In this model, core
RBAC components, such as roles, would depend on values of a parameter. To
extend RBAC into a parameterized model, data about the values of the pa-
rameters should be provided. New permissions that might be created due to
the parameterization should also be identified. Hence, the construction of the



A Formal Model for Parameterized Role-Based Access Control 235

Parameterised RBAC (PRBAC) results from the combination of the new com-
ponents as follows:

RBAC+Parameters Data+New Parameterized Permissions => PRBAC (1)

When the direct implementation of the core RBAC results in many drawbacks,
the Parameterised RBAC achieves the same effect and avoids these drawbacks.
Reconsidering the online banking example, the role AccountJtiolder can be
generalised to a parameterized role (AccountJHolder, m), where m is an ac-
count number. This role can later be instantiated to each account to give
the appropriate instances of the permissions. Following this, there will be a
single general parameterized definition for a role. This parameterization can
be repeated to support further levels of granularity by including additional
parameters such as bank branch. In this case, a role would be defined as
{(AccountJHolder, m), m\), where m\ is the bank branch number. This series
of "nested" parameters can be related in a hierarchy that depends on the type
of the used parameters and the way the parameterization is performed. This
hierarchy is not to be confused with the role hierarchy such as job positions in
organisation.
In this paper, we present a rigorous formal model for a parameterized RBAC
[4], in the Z notation [12-14]. We refer to it as PFRBAC because it is derived
from an extension ofFRBAC, a flat RBAC presented in a previous work by the
authors of this paper [5]. Being formal, PFRBAC presents a clear and mathe-
matically concise way for the implementation ofFRBAC. It is detailed in its
modelling of the components and features of a Parameterised RBAC and com-
plete in its presentation of the necessary semantics. With its type of a general
parameterized definition of RBAC components, this model enables a good and
comprehensive intellectual manageability of access rights and provides a con-
sistency in their distribution. The support of a hierarchy of parameters helps
to achieve an extremely fine granularity in access control, which is difficult to
achieve in a non-parameterized RBAC.
The remainder of this paper is structured as follows. Section 2 provides a brief
overview of related work on Parameterised RBAC. The parameterized model
is constructed in Section 3. This section details the derivation of the parameter-
ized concepts from the core ones. It presents the formal state based description
of the model in Z and shows the process of building a nested parameterized
model from an hierarchy of parameters. Section 4 presents a discussion of the
effect of the choice of the parameterized concepts on the expressiveness of the
model and Section 5 concludes the paper.

2. Related Work

There has been few attempts to model the Parameterised RBAC in the con-
texts of many works [9, 11, 15]. One of these attempts included a very useful



236 Formal Aspects ofSecurity and Trust

definition of the parameterized role [11]. This definition was general and very
expressive, however, the rest of this work did not reflect its usefulness because
it was restricted in terms of the presented semantics and did not expand in a
way that enables a useful way of implementing the Parameterised RBAC. This
attempt did not also present full formal semantics of a parameterized RBAC
which treat all its features and concepts, such as the parameterized roles, per-
missions and objects. The relation between the RBAC concepts in this attempt
and the ones in the widely known RBAC models such as [1-5] is not explicit.
Another parameterization of the definition ofrole was presented in [15]. This
work aimed to suit the problem of controlling access to the contents of objects
in RBAC and focused on databases as its area of application. Although this
might be useful in the mentioned applications (databases), it drifts from the
concepts of RBAC models such as the RBAC standard [4], RBAC96 [1] and
FRBAC [5] which consider the object as the primitive unit that can be assigned
access rights and do not model its content. The focus of the parameterized
RBAC to solve a particular problem has undermined the generality of the ap-
proach because of its limited applicability to cases outside the presented scope.
Another definition of role as a series ofpolicy statement and constraints has
been proposed when constructing another solution-specific version of a param-
eterized RBAC [9]. The data type definition for roles has been substituted for
role classes in order to be instantiated. Because of these changes in the con-
cepts, it was difficult see how the commonly known RBAC models, such as the
ones in [1, 4, 5], would fit in this work.
All these attempts did not present a methodology to guide into the param-
eterization of RBAC. The parameterized RBAC concepts have been defined
without specifically mentioning their original RBAC definitions. This makes
it difficult for implementers to derive a Parameterised RBAC from an existing
RBAC model because the parameterization would need a significant amount
of work. It also undermines the advantages of scalability, consistency and ease
of manageability that a Parameterised RBAC offers.

3. Model for the Parameterized RBAC

The parameterized RBAC model presented in this paper is based on an ex-
tension ofFRBAC [5]. It supports the commonly known RBAC adopted con-
cepts and definitions [1-5], and the results of this paper equally apply to the
core model in the RBAC standard [4]. This section presents the methodology
to construct a parameterized RBAC from FRBAC and a supply of data about
parameters and of newly created permissions (according to (1)). One impor-
tant property of this approach is that the parameterization can be done several
times and successively in order to obtain very fine grained access control. It



A Formal Model for Parameterized Role-Based Access Control 237

turns out that this property of nesting is directly associated with the hierarchy
of data representing the parameters.

3.1 The Flat RBAC

The components of a flat RBAC model are derived from the following en-
tities: ROLE, OBJECT, SUBJECT, PRINCIPAL, OPERATION, TASK, PER-
MISSION, which are respectively the sets (or data types) for all roles, objects,
subjects, principals, operations, tasks andpermissions. The sets of components
of an implemented RBAC model are referred to as: Roles, Objects, Subjects,
Principals, Operations, Tasks and Permissions. For instance, Roles is the set of
roles that are defined in the organisation implementing RBAC. The same anal-
ogy applies to the other components. FRBAC is summarised in the following
schema [5].

Referring back to the online banking example. Subjects would be the clients
and the employees of the bank, and Principals would the set of their associated
usernames. We consider four roles in this example:
Account-Holder, Manager, Clerk, System^Administrator. To illustrate the ini-
tialisation of an RBAC model for the case of the online banking application,
we use this following toy example. We assume that the sets of all accounts and
pin numbers are referred to respectively as Accounts, and Pins. The " ' " sign
is a convention for the initialisation of the components in the Z notation [14].

^FRBAC
Roles : FROLE
Principals : F PRINCIPAL
RoleAllocation : PRINCIPAL -> FROLE
Subjects : P SUBJECT
SubjectAssociation : SUBJECT -> P PRINCIPAL
SubjectRole : SUBJECT - • FROLE
Objects : P OBJECT
Operations : FOPERATION
Tasks : F(OPERATION x FOBJECT)
Permissions : ROLE -> P TASK

dom RoleAllocation — Principals
ran RoleAllocation C Roles
dom SubjectAssociation = Subjects
ran SubjectAssociation C Principals
dom SubjectRole — Subjects
ran SubjectRole C Roles
dom Permissions — Roles
{jY&nPermissions C Tasks



238 Formal Aspects ofSecurity and Trust

Initialisation of an Example State:

Roles'= {Account_Holder, Manager, Clerk, System_Administrator}
Principals'= {c_l, c_2, c_3, c_4, john_l, ema_l, ema_2, denise_l}
RoleAllocation= {(c_l, { Account_Holder}), (c_2, {Account_Holder}), (c_3, {Account_Holder}),

(c_4, {Account_Holder}), (john_l, {Clerk}), (ema_l, {Manager}),
(ema_2, {Manager, Clerk}), (denise_l, {System_Administrator}) }

Subjects'= {Anne Roling, Mike Lowe, John Brown, Ema Thomas, Denise Logan}
SubjectAssociation'= {(AnneRoling, {c_l}),(Mike Lowe, {c_2}),(JohnBrown,{john_l, c_3}),

(Ema Thomas, {ema_l, ema_2}), (Denise Logan, {denise_l, c_4})}
SubjectRole'= {(Anne Roling, {Account_Holder}), (John Brown, {Clerk, Account_Holder}),

(Ema Thomas, {Manager, Clerk}),(Mike Lowe, {Account_Holder}),
(Denise Logan, {System_Administrator, Account_Holder})}

Objects'^ { Accountnumbers: P(N), Accounts: N —»• Account, Pins: N —+ Pin }
Operations'= { Create, Deposit, Withdraw, View, Transfer, Assign, Backup}
Tasks'= { (Create(n:N, a: Account, p:Pin), {Accountnumbers, Accounts, Pins} ),

(Deposit(k:N, n:N),{Accounts}, (Withdraw(k:N, n:N), {Accounts}),
(View(n:N),{Accounts}), (Transfer(k:N, ni, n2:N), {Accounts}),
(Assign(n:N), {Pins}), (Backup, {Accountnumbers, Accounts, Pins}) }

Permissions'- {(Manager, {Create, Deposit, Withdraw, View, Transfer, Assign}),
(Clerk, {View, Deposit, Withdraw}), (Account_Holder, {}),
(System_Administrator, {Backup}) }

3.2 Construction of the Parameterized Model

Parameterizations. By associating privileges with roles instead of prin-
cipals, RBAC offers a scalable means for expressing access control. The size
of the privilege table grows proportionally to the number of roles (which is
usually small) as opposed to the number of principals (which can be very large
indeed). However, in practice, most real applications require a finer grain of
access control. As we have seen in the previous example of a pure RBAC
model of a Bank , we were able to fully specify access control for some roles
such as Manager and Clerk but not for other roles such as Account_Holder.
The privileges of two different customers holding the Account_Holder role
are not identical. Hence, new information needs to be added to the model
to correctly capture the appropriate privileges for this role. To overcome this
limitation, we propose parameterizations of the RBAC model. The effect of
parameterizations is usually to enlarge the size of one of the components of
the pure RBAC model, that is roles, objects, or tasks. This aim is achieved
by the addition of parameters to values in one of the RBAC components or
their attributes, i.e. roles. Hence, in the refined parameterized RBAC model
of a Bank, the Account_Holder role will no longer exist! It will be replaced
by several instances of Account_Holder(m) where m is a parameter (variable)
drawn from an appropriate set of values.



A Formal Model for Parameterized Role-Based Access Control 239

Choice of Pa rame te r s . The choice of parameter and the set of values
from which it can be instantiated is application dependent. The overriding
objective is to be able to adequately and fully capture the privileges of each
role in the refined model. In theory, the values from which a parameter can be
instantiated is just a set of abstract labels and does't have to have any meaning!
The purpose is to refine a single entity (such as a role name) into a set of
labelled (or "colored") alternatives. In practice, however, the parameter may
correspond to the focus of access control (object or subject), may reflect an
underlying concept such as ownership (files and accounts) or the primary key
in a relational database, or may reflect a level in the organizational hierarchical
structure for managing the application (faculty, department, course or module).
Let PARAMETER be the type of the required parameter, say a variable m, and
let Mbe the set values from which it can be drawn in the application. We have:

m : PARAMETER; M: ¥(PARAMETER); m£M (2)

In the banking example, since objects are parameterized by the account num-
bers currently allocated to clients, the set accountnumbers, it will be useful
to use the same values to parameterize the AccountJHolder role. Hence, the
new role Account_Holder(m) denotes the role of holding a specific account,
namely that whose number is m.

M = {«_1, /i_2, w_3, «_4} (3)

Genera t ing refined Roles for Paramete r i sed RBAC. Having
chosen an adequate parameter and identified the range of its possible values,
the next step is to identify what RBAC components, such as objects and roles,
to parameterize. The most useful candidate for parameterizations is usually the
Roles component. The objective is to fully define the privileges for each role
in the model. Those roles for which access control is fiilly defined in the core
RBAC model, however, parameterizations may not be appropriate and will not
bring any benefits. Therefore, not all the values in a core RBAC component
can be parameterized. Hence, our approach is to split the content of each
core RBAC component into two parts: those which will be replaced by the
refined parameterized versions (ParamComponenf) and those which will be left
unchanged (Component — ParamComponent). The process of generating the
Roles component in the Parameterised RBAC model is illustrated in Figure 1.
The set of roles, PRoles, in the new model is derived as:

PRoles = (Roles - ParamRoles) U {ParamRoles x M) (4)

The type for a role in the parameterized RBAC model can be inferred as:



240 Formal Aspects ofSecurity and Trust

Roles

Roles to be parameterised Roles left non—parameterised
(ParamRoles) (Roles-ParamRoles)

Figure 1. Division of Roles for parameterization.

PROLE = ROLE W (ROLE x PÄRAMETER) (5)

For ease of readability, we adopt the following syntactic convention:

(c,m) = c(m) (6)

where m is a parameter and c is an RBAC component such as a role or an object.
In the Banking application, for instance, only the role of AccountJHolder is
to be parameterized; hence, ParamRoles = {Äccount-Holder}. All the other
roles, (Roles - ParamRoles), will migrate unchanged into the parameterized
model. The set PRoles can be calculated as follows:

PRoles = {AccountJHolder{m) \ m G {H_1,H_2,/I_3,WL.4})
U {Manager, Clerk, System-Administrator}

Please note that AccountJHolder is no longer a role in the new model.

Generating Subjects and Principals for Parameterised RBAC.
Subjects refer in general to human users [4, 5] and may not be useful for

parameterizations. Because parameterizations only addresses the issue of fully
capturing access control, it would seem odd to allow the underlying set of
human users to change from the core model. Therefore, we have taken the view
that the Subjects component should remain unchanged after parameterizations.

The same reasoning may not necessarily apply to the generation of the set
Principles, that consists of usernames and public keys acting on behalf of users.
Parameterizations of principles may lead to a classification of usernames upon
which aspects of access control could be determined. Therefore, by analogy
with the role parameterizations, (Figure 1), the PPrincipals component of the
parameterized model can be calculated as follows.

PPrincipals — {Principals—ParamPrincipals) U {ParamPrincipals x M) (8)

The data type of principals in the Parameterised RBAC can be inferred as:

PPRINCIPAL = PRINCIPAL l±) (PRINCIPAL x PARAMETER) (9)

In the banking example, the set of principles remains the same as in the core
model. That is, ParamPrincipals = {}.

PPrincipals — {c_l, c_2, c_3, C-A,johnJ\., emaJi, ema-2, deniseJi } (10)



A Formal Model for Parameterized Role-Based Access Control 241

Genera t ing refined Objects for t h e Parameter i sed RBAC. the
PObjects component of the parameterized model can be calculated as follows.

PObjects = (Objects - ParamObjects) U (ParamObjects x M) (11)

The data type of objects in the Parameterised RBAC can be inferred as:

POBJECT = OBJECT ö {OBJECT x PARAMETER) (12)

In the banking example, the set of objects remains unchanged. That is, ParamObjects

{}•
PObjects = Objects (13)

Genera t ing Permissions for Paramete r i sed RBAC. First the
tasks component in the parameterized model should take into consideration the
changes in the object component. If the object component remains unchanged
then the tasks component will also remain unchanged. Hence, in the banking
example, we have:

PTasks — {(Assign,p : Pins), (Create,a : Accounts), (Deposit,a : Accounts),
(Withdraw, a : Accouni), (Transfer, [a\ : Account, a^ : Accounts]),

(View, a : Accounts)}
(14)

What would only change in this case is the association of these tasks to new
roles (the parameterized ones), which are the permissions. A parameterized
permission relates a parameterized role to its authorized tasks. In a Parame-
terised RBAC, the permissions include 3 types:
Firstly, ParamPermissions, the permissions of RBAC parameterized as a result
of the instantiation of the roles that would be parameterized, associated with
the authorized tasks, and defined as:

ParamPermissions = {{r(m),p) •
{r,p) G Permissions A r G ParamRoles A m G M}

In the online banking example, these permissions are:

ParamPermissions = {(Account_Holder(m), (View,Accounts(m))),
(AccountJrIolder(m), (Withdraw',Accounts(m))), (16)

(AccountJH.older(m), (Transfer, {Account[m), a^ •' Account}))}

Secondly, the permissions of the RBAC model that need not be parameterized,
i.e. the permissions of RBAC whose domain of application is restricted to



242 Formal Aspects ofSecurity and Trust

Roles—ParamRoles. These permissions are defined as: (Roles—ParamRoles?)<3
Permissions. In the online banking case, they are listed as:

PPermissions = Permission U ParamPermissions (17)

Thirdly, new permissions that result due to the required private accesses for
some parameterized components such as roles. Again, the data type of param-
eterized parameters can be deduced as:

PPERMISSION = PROLE x TASK (18)

Genera t ing t h e Paramete r i sed R B A C Model: . As shown in
the previous example, a non-parameterized RBAC cannot capture permissions
such as the one that authorise a bank client to view his own account
(Account-Holder•, (View, a : Accounts)), because it cannot guarantee that a is
exactly the account of the client requesting to view it. In this case, a parame-
terization of RBAC is needed. To be accomplished, this procedure requires the
following entities to be provided:

1 The non-parameterized RBAC model, containing all the declarations and
concepts of RBAC shown in (1) in the schema calledParameterize-RBAC.
Note the Z convention to postfix the symbol "?" after a variable's name
to denote an input, and to postfix the symbol "!" after a variable's name
to denote an output.

2 The list of parameters M, shown in (2).

3 The list of components to be parameterized, namely ParamProles, ParamPrincipals
and ParamObjects respectively defined in (3), (4) and (5). These are
derived from the components of the RBAC model that need to be pa-
rameterized.

4 The newly induced private permissions, referred to as New—Permissions
in (7), which are particular to the instances of the components.

The output Parameterised RBAC (PFRBAC in (8)) would be induced from the
extension ofFRBAC using the schema Parameterize^RBAC. The components
of this model would be named in conformity with RBAC, with the convention
that they would be prefixed by the capital letter P. As demonstrated earlier
on, the set of parameterized roles in the Parameterised RBAC (Proles in (9))
would contain both the parameterized roles of FRBAC (ParamRoles x M),
and the remaining roles ofFRBAC that have not been parameterized (Roles -
ParamRoles). The same reasoning applies to the derivation of principals (PPrincipals
in (12)) and derivation of objects (Pobjects in (17)) of the parameterized model.



A Formal Model for Parameterized Role-Based Access Control 243

_ ParametehzeJR.BA C
(1) AFRBAC?
(2) Ml : FPARAMETER
(3) ParamRolesl : FROLE
(4) ParamPrincipalsl : FPRINCIPAL
(5) ParamObjectsl : FOBJECT
(7) NewJPermissionsl : FPPERMISSION
(8) PFRBACl

(9) PRolesl = (ßofes - ParamRoles?) U (ParamRoles? x M)
(10) dom PRoleAllocation = PPrincipals
(11) ran PRoleAllocation = PÄo/e^
(12) PPrincipalsl = (Principals — ParamPrincipals?)U

(ParamPrincipals? x M)
(13) dom PSubjectAssociation = PSubjects
(14) reniPSubjectAssociation = PPrincipals
(15) dom PSubjectRole = PSubjects
(16) ran PSubjectRole = PRoles
(17) PObjectsl = (Objects - ParamObjects?) U (ParamObjects? x M)
(18) POperations\ = Operations
(19) Prasfo! = T a ^
(20) PPermissions\ = {{Roles — ParamRoles?) <3 Permissions) U

ParamPermissions U New-Permissions!
(21) ParamPermissions = {(r(m),p) • (r,/>) G PermissionsA

r G ParamRoles f\m G M}
(22) dom New—Permissions C (ParamRoles x M)

3.3 The Nesting Property of the Parameterised
RBAC Model

This work presents a methodology for parameterizing RBAC components
in order to deduce a Parameterised RBAC model. The resulting model, which
is also an RBAC model, can be fiirther parameterized in order to achieve an
additional level of granularity. The components of the new model would now
depend on two parameters as shown in Figure 2. This figure depicts a hierar-
chy of parameters data. In it, we use the tree notation whereby a filled square
denotes a leaf and a circle denotes a node with children. This parameteriza-
tion can be repeated successively, and in a nested way, as long as required to
achieve the required access control granularity. In this way, new parameterized
RBAC model would be devised following the parameters' hierarchy, as shown
in Figure 2. However, there can be another way of nesting parameters; which
is by using the cross product of the set of parameters M and the RBAC com-



244 Formal Aspects ofSecurity and Trust

Corresponding
Model

FRBAC

Leve.2 ,

1. A' JLV*-»^Tk.V-' |

T
DPDDA n

\ Level3

\ Level 4

PFRBAC3

\

4

Non parameterised
RBAC model

RBAC with highest
Leve! Parameter

RBAC with Two
Paramaters

RBAC with Three
Paramaters

RBAC with Four
Paramaters

Figure 2. The nesting of the parameterized models following the level of the appropriate
parameters.

ponents at every level. This means that we would parameterize all components
at every level. In this type of nesting parameterization the order of parame-
ters is not important. For instance, if in the online banking example both roles
Account—Holder(branch(accounti)) and Account-Holder(account\(branch))
are considered the same. The nesting by cross product results in a number of
redundant parameterized RBAC components at every level, which might not
be necessarily needed. This is prevented when using our methodology of pa-
rameterization because it enables the choice of parameters at every level of the
parameters' tree. Also, it enables to parameterize only'the required compo-
nents such as roles, objects and principals. This reduces the number of param-
eterized components at every level and eases the manageability of the access
rights.

4. Discussion
Two of the main advantages of RBAC are the simplification of access rights

management and the presentation of a high level view of security in an organ-
isation. However, in its current form, RBAC does not seem to have enough
power to express a wide range of security requirements and capture fine access
control granularity when put into application. These features can be accounted
for by extending RBAC to the Parameterised RBAC, in order to support param-
eters, as shown earlier on in this work. The Parameterised RBAC provides finer
granularity by creating instances of RBAC components according to the con-
texts of their use. With this, it can cater for special security requirements such
as the support of private access rights for each of the instances of the same role,
and the differentiation between the access rights of subjects associated with the
same role. Providing very fine granularity can however complicate the access
control list (ACL) because it involves handling access rights for a significantly



A Formal Model for Parameterized Role-Based Access Control 245

higher number of roles, which is due to the instantiation of the RBAC roles.
This undermines the advantage of the simplicity of access rights management,
for which RBAC is known. It seems there is a tradeoff between simplifying
the management of access rights and providing fine granularity; and between
providing a higher view of security, and parameterizing RBAC concepts to in-
crease the expressive power of the Parameterised RBAC. Providing a balance
between these advantages in a Parameterised RBAC model is greatly affected
by the way the parameterization is performed. More specifically, this balance
depends on two factors:

• The choice of the parameterized RBAC concepts: this involves deciding
which RBAC concepts, such as roles, objects and principals, are to be
parameterized.

• The type of parameters: the parameters according to which the param-
eterization would be performed are often related to the environment or
context where the Parameterised RBAC is applied. As seen earlier on,
parameters can be faculty names and unit names in a university, or a
department name in a commercial organisation.

5. Conclusion

This paper has the proposed a rigorous formal model for the Parameter-
ized RBAC (PFRBAC). One strength of this model lies in the methodology
that is used to migrate from the direct implementation of an RBAC model,
which suffers the drawbacks of inconsistency of access rights distribution, dif-
ficulty of intellectual manageability and the weak scalability of the model, into
a parameterized RBAC which achieves the same results without bearing these
drawbacks. This parameterized implementation of RBAC is very important for
realistic applications because it achieves extremely fine grained access control
granularity. Another strength of PFRBAC is its completeness in terms of in-
vestigating all the concepts and semantics of a Parameterised RBAC and sup-
porting all the definitions and features of the well-known RBAC models in [1,
2, 4, 5]. The formalisation of PFRBAC in the Z notation makes it clear to
understand and eliminates ambiguities at the application phase.

References

[1] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, "Role-Based Access Control Models,"
IEEE Computer, vol. 29, no. 2, pp. 38-47, Nov. 1996.

[2] R. Sandhu, D. Ferraiolo, and R. Kuhn, "The NIST Model for Role-Based Access Control:
Towards A Unified Standard" in Proc. ofthe 5th ACM workshop on Role-Based Access
Control. Technical University of Berlin, Berlin, Germany: ACM Press, June 2000, pp.
47-63.



246 Formal Aspects ofSecurity and Trust

[3] D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, and R. Chandramouli, "Proposed NIST
Standard for Role-Based Access Control," ACM Transactions on Information and System
Security (TISSEC), vol. 4, no. 3, pp. 224-274, 2001.

[4] American National Standard for Information Technology, "Role Based Access Control"
Draft BSR INCITS 359, Apr. 2003. Online: http://csrc.nist.gov/rbac/rbac-std-ncits.pdf.

[5] E. Khayat and A. Abdallah, "A Formal Model for Flat Role-Based Access Control," in
Proc. ofthe ACS/IEEE International Conference on Computer Systems and Applications.
Tunis, Tunisia: IEEE Press, July 2003.

[6] R. Elmasri and S. Navathe. Fundamentals ofDatabase Systems. Addison-Wesley, 2003.

[7] Sun Microsystems. RBAC in the Solaris Operating Systems. White Paper, April 2001.
http://wwws.sun.com/software/whitepapers/wp-rbac/wp-rbac.pdf.

[8] T. Chalfant. Role Based Access Control and Secure Shell-A Closer Look
At Two Solaris™ Operating Environment Secuhty Features, June 2003.
http://www.sun.eom/solutions/blueprints/0603/817-3062.pdf.

[9] E. Lupu and M. Sloman, "Reconciling Role Based Management and Role Based Access
Control," in Proceedings ofthe 2nd ACM workshop on Role-based Access Control. Fair-
fax, Virginia, USA: ACM Press, Nov. 1997, pp. 135-141.

[10] D. Gollmann, Computer Secuhty. John Wiley & Sons, 1999.

[11] T. Jaeger, T. Michailidis, and R. Rada, "Access Control in a Virtual University," in Proc.
of the 8th International IEEE Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterphses, California , USA, June 1999, pp. 135-140.

[12] L. Bottaci and J. Jones, Fortnal Specification Using Z: A Modeling Approach. Interna-
tional Thomson Computer Press, 1995.

[13] J. Bowen, Formal Specification & Documentation Using Z: A Case Study Approach. In-
ternational Thomson Computer Press, 1996.

[14] I. Toyn (Ed.), "Information Technology-ZFormal Specification Notation-Syntax, Type Sys-
tem and Semantics" Consensus Working Draft 2.7, Oct. 2001.

[15] L. Giuri and P. Iglio, "Role Templates for Content-Based Access Control," in Proc. ofthe
2ndACM Workshop on Role-BasedAccess Control. Fairfax, Virginia, USA: ACM Press,
Nov. 1997, pp. 153-159.

[16] Jean Bacon, Ken Moody and Walt Yao. A model of OASIS role-based access control and
its support for active security. ACMTrans. Inf. Syst. Security. 5(4): 492-540 (2002)

[17] Andras Belokosztolszki, David M. Eyers and Ken Moody. Policy Contexts: Controlling
Information Flow in Parameterized RBAC. POLICY2003: 99-110.




