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Abstract

Understanding the causes and consequences of spatial heterogeneity in
ecosystem function represents a frontier in both ecosystem and land-
scape ecology. Ecology lacks a theory of ecosystem function that is spa-
tially explicit, and there are few empirical studies from which to infer
general conclusions. We present an organizing framework that clarifies
consideration of ecosystem processes in heterogeneous landscapes; con-
sider when spatial heterogeneity is important; discuss methods for incor-
porating spatial heterogeneity in ecosystem function; and identify
challenges and opportunities for progress. Two general classes of ecosys-
tem processes are distinguished. Point processes represent rates meas-
ured at a particular location; lateral transfers are assumed to be small
relative to the measured response and are ignored. Spatial heterogeneity
is important for point processes when (1) the average rate must be deter-
mined over an area that is spatially heterogeneous or (2) understanding
or predicting the spatial pattern of process rates is an objective, for exam-
ple, to identify areas of high or low rates, or to quantify the spatial pattern
or scale of variability in rates. Lateral transfers are flows of materials,
energy, or information from one location to another represented in a
two-dimensional space. Spatial heterogeneity may be important for
understanding lateral transfers when (1) the pattern of heterogeneity
influences net lateral transfer and potentially the behavior of the whole
system, (2) the spatial heterogeneity itself produces lateral transfers, or
(3) the lateral transfers produce or alter patterns of spatial heterogeneity.
We discuss homogeneous, mosaic, and interacting element approaches
for dealing with space and identify both challenges and opportunities.
Embracing spatial heterogeneity in ecosystem ecology will enhance
understanding of pools, fluxes, and regulating factors in ecosystems; pro-
duce a more complete understanding of landscape function; and improve
the ability to scale up or down.
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Introduction

Understanding the causes and consequences of spatial heterogeneity in
ecosystem function represents a frontier in both ecosystem and landscape
ecology (Turner et al. 2001; Chapin et al. 2002), and it is recognized as
important in a variety of other disciplines; for example, biological oceanog-
raphy (Platt and Sathyendranath 1999), limnology (Soranno et al. 1999), soil
ecology (Burke et al. 1999), conservation (Pastor et al. 1999), and global
change studies (Shugart 1998; Canadell et al. 2000). Ecosystems do not exist
in isolation, and interactions among patches on the landscape influence the
functioning of individual ecosystems and of the overall landscape. Efforts to
estimate the cumulative effect of ecosystem processes at regional and global
scales have contributed to the increased recognition of the importance of
landscape processes in ecosystem dynamics (Chapin et al. 2002). Transfers
among patches, representing losses from donor ecosystems and subsidies to
recipient ecosystems, are important to the long-term sustainability of
ecosystems (Polis and Hurd 1996; Naiman 1996; Carpenter et al. 1999;
Chapin et al. 2002).

Ecology lacks a theory of ecosystem function that is spatially explicit, and
there are few empirical studies from which to infer general conclusions.
Ecosystem ecology focuses on the flow of energy and matter through organ-
isms and their environment. As such, it addresses pools, fluxes, and regulat-
ing factors. Spatially, ecosystem ecology encompasses bounded systems like
watersheds, spatially complex landscapes, and even the biosphere; tempo-
rally, it crosses scales ranging from seconds to millennia (Carpenter and
Turner 1998). From its initial descriptions of the structure and function of a
diverse variety of ecosystems, ecosystem ecology moved toward increas-
ingly sophisticated analyses of function; for example, food web analyses,
biogeochemistry, regulation of productivity, and so forth (Golley 1993; Pace
and Groffman 1998; Chapin et al. 2002). Typically, ecosystem studies are
conducted within a single ecosystem, such as a lake or a forest stand, and
homogeneous sites are generally chosen to minimize the complications
associated with spatial heterogeneity. From ecosystem studies, ecology has
gained an excellent understanding of the mechanisms underlying many
processes and of temporal dynamics in function. However, understanding
patterns, causes, and consequences of spatial heterogeneity in ecosystem
function remains a frontier.

Landscape ecology explicitly addresses the importance of spatial configu-
ration for ecological processes (Turner et al. 2001), and, in North America,
landscape studies were strongly promoted by ecosystem ecologists (Risser
et al. 1984). Landscape ecology often, but not always, focuses on spatial
extents that are much larger than those traditionally studied in ecosystem
ecology. Early research in landscape ecology emphasized methods to
describe and quantify spatial heterogeneity, spatially explicit models to
relate pattern and process, and understanding of scale effects. Indeed, there
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are numerous metrics for quantifying spatial heterogeneity (e.g., Baskent
and Jordan 1995; McGarigal and Marks 1995; Gustafson 1998; Gergel and
Turner 2002), although the functional interpretation of pattern metrics has
proved challenging (Turner et al. 2001). From landscape studies, ecology has
gained new insights into how disturbances create and respond to landscape
pattern and of population dynamics on heterogeneous landscapes. How-
ever, with a few exceptions, the consideration of ecosystem function has
poorly been represented. This is surprising, given the initial strong links
from ecosystem to landscape ecology (e.g., Risser et al. 1984; Turner 1989).
In this paper, we (1) present an organizing framework that clarifies consid-
eration of ecosystem processes in heterogeneous landscapes; (2) consider
when spatial heterogeneity is important; (3) discuss methods for incorpo-
rating spatial heterogeneity in ecosystem function; and (4) identify chal-
lenges and opportunities for progress.

When Does Space Matter? A Conceptual Framework

Ecosystem processes are heterogeneous. The basic causes of this have been
well-known for a long time (Jenny 1941). Heterogeneity is derived from the
abiotic template, including factors such as climate, topography, and sub-
strate. In addition, ecosystem processes vary with the biotic assemblage, dis-
turbance events (including long-term legacies), and the activities of humans
(Chapin et al. 1996; Amundson and Jenny 1997). However, despite this
recognition, most ecosystem ecologists have focused on knowing the mean
rates, in spite of the “noise” that results from spatial heterogeneity.

Organizing Ecosystem Processes

We suggest distinguishing between two general classes of ecosystem process
when considering ecosystem function in heterogeneous landscapes. Point
processes represent rates measured at a particular location (Figure 2.1a).
Lateral transfers are assumed to be small relative to the measured response
and are ignored. Examples of point processes include site-specific measure-
ments of net primary production, net ecosystem production, denitrification,
or nitrogen mineralization. Lateral transfers are flows of materials, energy,
or information from one location to another represented in a two-dimen-
sional space (Figure 2.1b). Examples of lateral transfers include the flow of
nitrogen or phosphorus from land to water or the movements of nutrients
across a landscape by herbivores.

Spatial heterogeneity can be considered in both the drivers and the
ecosystem response variables (Figure 2.2). For the drivers, one can consider
the spatial heterogeneity of the template—which often is multivariate—and
of spatial processes, such as disturbance, that alter the template (Foster et al.
1998). For the process, one can consider the spatial pattern of occurrence
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(a)

(b)

FIGURE 2.1. Schematic illustration of two general classes of ecosystem processes:
(a) point processes and (b) lateral transfers.

(e.g., where denitrification does or does not occur or where there is nutrient
movement; Figure 2.2a) or of the magnitude of the rates (Figure 2.2b). For
lateral transfers, one can consider the actual pathways of flow (Figure 2.2b).
For both point processes and lateral transfers, an aggregate measure of the
function of the heterogeneous system (e.g., total P input to a lake) can be
considered. When seeking general relationships, it is important to be explicit
about both the type of ecosystem process being considered and the variable
or response for which spatial heterogeneity is being considered.

When Is Spatial Heterogeneity Important?

Understanding the relationship between spatial heterogeneity and ecosys-
tem processes is important in at least the following five situations.

(1) For point processes, spatial heterogeneity matters when it is necessary
to know the average rate of a process over an area that is spatially hetero-
geneous. This is of particular importance when there is a nonlinear relation-
ship between the process and a driver that is spatially variable. Although
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(b)

FIGURE 2.2. Spatial heterogeneity can be considered in (a) the occurrence of a
process, (b) the magnitude of the rate or flux and the template, which is usually
multivariate.

this is largely a sampling issue—knowing how to stratify measurements spa-
tially based on the important driver(s)—it is not trivial.

Estimating methane production from a Siberian landscape that is a
mosaic of land and lakes provides an example (Zimov et al. 1997). Lakes
dominate the flux of methane within the landscape, but there is substantial
heterogeneity of CH, flux within lakes. Bubbles of methane that form in ice
over winter give visual evidence of hot spots of methane release from sedi-
ments. Here, the ebullition flux is several orders of magnitude larger than
the diffusive flux, which is the main pathway of CH, flux between areas of
bubbling. Therefore, to estimate the CH, flux from the lake, one must be
aware of these different pathways and the spatial distribution of areas of
ebullition. These hot spots dominate the fluxes of methane within the lake,
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and lakes, in turn, dominate fluxes from landscapes. Estimates of the aver-
age rate of methane flux from this landscape would be inaccurate if the spa-
tial heterogeneity was ignored. This general class of problems is of great
practical importance; ecosystem ecologists remain challenged by develop-
ing regional and global budgets for carbon and nutrient fluxes in heteroge-
neous regions.

(2) Spatial heterogeneity matters when one wants to understand or pre-
dict the spatial pattern of process rates. In so doing, one may want to iden-
tify locations that are qualitatively different in their processing rates from
other areas, or use the spatial pattern or spatial scale of variation as a
response variable of direct interest.

Understanding and predicting the spatial pattern of aboveground net pri-
mary production (ANPP) following the 1988 fires in Yellowstone National
Park, Wyoming, provides an example. Postfire lodgepole pine densities var-
ied from 0 to >500,000 stems ha ™! in response to spatial variation fire sever-
ity and in pre-fire serotiny within the stand, rather than from variation in
soils, topography, or climate (Turner et al. 2004). In turn, ANPP varied from
1 to 15 Mg ha! yr™! 10 years after the fires and was explained primarily by
lodgepole pine sapling density. Compared to “classic” curves of NPP through
time (e.g., depicted by Ryan et al. 1997 for spruce in Russia), these patterns
indicate that the spatial variation observed in a single age class can equal or
exceed the range of mean ANPP through successional time.

The spatial pattern or scale of variation in a process rate may be more
informative than the mean, but few studies have explored this. Approaches
derived from spatial statistics can be particularly useful in evaluating the
scale of spatial variation. For example, the importance of land-use legacies
for contemporary forest ecosystems has received increasing attention (e.g.,
Pearson et al. 1998; Foster et al. 1999; Currie and Nadelhoffer 2002;
Dupouey et al. 2002; Mitchell et al. 2002; Turner et al. 2003). Fraterrigo et al.
(2005) used a cyclic sampling design derived from spatial statistics (Clinger
and Van Ness 1976) to determine whether prior land use influenced the spa-
tial variability of soil chemical properties. Cyclic sampling designs use a
repeated pattern of sampled plots that minimizes the number of samples
but provides sample pairs separated by any distance (Burrows et al. 2002).
Thus, this design is efficient for analyses such as semivariograms, correlo-
grams, and spatial regression. Fraterrigo et al. (2005) hypothesized that soil
properties would vary over fine scales in old-growth forest and over coarse
scales in areas of past agriculture, which would have homogenized local
variation. Results showed that prior land use did homogenize the variability
in forest soils, and that the scales of variation for several response variables
depended on past land use as hypothesized.

(3) If the occurrence or rate of a lateral transfer responds directly to spa-
tial heterogeneity, then the spatial pattern (composition and configuration)
becomes one of the independent variables in the analysis. Many examples
can be found in studies of the flux of nutrients from upland to aquatic
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ecosystems (e.g., Richards et al. 1996; Johnson et al. 1997; Jones et al. 2001).
For example, the amount and arrangement of crop fields and riparian
forests influences the delivery of nitrogen and phosphorus to streams
(Peterjohn and Correll 1984; Reed and Carpenter 2002). Both the amount
and spatial arrangement of land cover types must be considered to predict
nutrient delivery. On boreal shield ridges in northwestern Ontario, the spa-
tial arrangement of Pinus mariana-Pinus banksiana forest islands relative
to patches of lichen, moss, and grass influenced N retention in a 2-yr NO;
addition study (Lamontagne and Schiff 1999). These patches have charac-
teristically different N cycles, with the forest patches being N limited and
the lichen patches N saturated; the location of patches in the landscape was
important for N export from the catchment.

(4) Spatial heterogeneity may also generate lateral transfers. For exam-
ple, clearing of natural vegetation for agriculture in western Australia cre-
ated a new landscape pattern that altered climate. A large block of newly
cleared agricultural land was separated from the original heath vegetation
by a rabbit fence, producing a new patch type that had a higher albedo and
therefore absorbed less solar radiation than the adjacent heath (Chambers
1998). The greater sensible heat flux of the darker native heath vegetation
caused the surface air to warm, become more buoyant, and rise. The rising
air over the heath was replaced by moist air advected from the adjacent
croplands, which in turn was replaced by dry subsiding air from aloft. Thus,
the changes in spatial heterogeneity produced a small-scale circulation cell,
analogous to a land-sea breeze, that increased precipitation by 10% over
the heathlands and reduced it by 30% over the croplands, fundamentally
changing this landscape. At a finer spatial scale, the juxtaposition of sub-
strates with different C:N ratios, such as carbon-rich straw adjacent to nitro-
gen-rich mineral soil, may result in nutrient transfers (Mary et al. 1996).
Fungi transport nitrogen to the log so they can produce enzymes to decom-
pose the log. In these examples, spatial configuration is actually producing
flows, which otherwise would not have occurred. Thus, understanding spa-
tial heterogeneity is fundamental to understanding these lateral transfers
and point processes.

(5) Finally, lateral transfers may produce, amplify, or moderate hetero-
geneity in patterns. The Alaska coastal current is an example of lateral
transfers creating patterns. Ocean waters flow counterclockwise parallel to
the coast while fresh water, derived from orographic precipitation as moist
marine air strikes the coastal mountains, flows from the land to the ocean.
This produces two relatively distinct and stable water masses: a low-density
(warm, low salinity), low-nutrient fresh water mass that is adjacent to and
above a dense eutrophic ocean water mass (Royer 1981). The front between
these two water masses generates conditions that maximize productivity of
phytoplankton, zooplankton, and fish. At this boundary, the oligotrophic
ocean water provides nutrients, and the sharp density gradient minimizes
vertical mixing of phytoplankton out of the photic zone. This boundary is
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readily visible from the air from the high chlorophyll content and the con-
centration of foraging sea birds at the frontal zone. Spatial heterogeneity is
a direct consequence of lateral flows.

The lateral transfers of nutrients by animals can also produce spatial pat-
terns in nutrient pools, cycling rates, and productivity. Anadromous fish
transport large quantities of marine-derived nutrients to streams and lakes.
Otters, bears, and other piscivores move these nutrients to riparian forests,
where they can contribute substantially to productivity (Willson et al. 1998;
Naiman et al. 2002). The characteristic °’N signature of marine-derived
nitrogen is often detectable up to a kilometer from the river, suggesting a
broad corridor of lateral nutrient transfer adjacent to streams with anadro-
mous fisheries. Grazing ungulates also contribute to lateral nutrient transfers.
In Switzerland, for example, the patchy distribution of cattle generated
sharp nutrient gradients between forests and fields (Schutz et al. 2000).
When cattle grazing ceased in national parks, these nutrient gradients
became less pronounced, as native ungulates slowly redistributed these
nutrients into the forests. Even random lateral movements that differ
between predators and prey can generate spatial heterogeneity in ecosystem
processes (Pastor, this volume).

Approaches for Dealing with Spatial Heterogeneity

Given that spatial heterogeneity is frequently important but poorly quanti-
fied, how should we begin to incorporate it into ecosystem studies?
Shugart’s (1998) classification of ecosystem models is also a useful classifi-
cation for our discussion; we also acknowledge a similar classification of
models in Baker’s (1989) review of models of landscape change.

Homogenous Space

The simplest approach has been to assume homogeneity in rates across
space—every point can be represented by the mean value of the rate
(Figure 2.3a). Although this book focuses on spatial heterogeneity, the
assumption of spatial homogeneity remains a valuable starting point or null
model. This assumption is particularly useful for approximating pools or
fluxes to order of magnitude; for some spatial extrapolations; and when
physically averaging a response variable across variability at finer scales
than the scale of interest.

Some processes can be extrapolated to large scales without explicitly con-
sidering landscape interactions. The extrapolation of carbon flux, for exam-
ple, may adequately be represented in the short term from an understanding
of its response to climate, vegetation, and stand age (Chapin et al. 2002: 329).
The simulation of global net ecosystem production (NEP) by the terrestrial
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FIGURE 2.3. Three general approaches to dealing with space: (a) assuming spatial
homogeneity, (b) the mosaic approach, which is often multivariate, and (c) interacting
elements.
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ecosystem model (TEM; McGuire et al. 1995) assumes homogeneity of envi-
ronmental response within biomes to predict global patterns of NEP. This
assumption allows the development of global databases even in areas where
information is sparse or absent. Comparison of the output of these carbon
flux models with seasonal and spatial patterns of atmospheric CO, identifies
areas where assumptions of homogeneity are least justified and where addi-
tional information on spatial heterogeneity is most needed.

Eddy flux towers physically average measurements over an area of about
1 km?. The heterogeneity in carbon fluxes resulting from fine-scale variation
in soil aeration and other important ecosystem controls within the tower
footprint is invisible because of the physical mixing of air. Consequently, the
towers provide an accurate integration of the overall flux from the ecosys-
tem (Davidson et al. 2002). These integrated landscape measures may be
more useful than fine-scale information if extrapolation to large areas is
based on satellite imagery that cannot resolve the fine-scale detail in
ecosystem controls. Similarly, ecosystem ecologists frequently measure soil
parameters and microbial processes on composite samples that physically
average much of the fine-scale heterogeneity present in the ecosystem.

Of course, understanding the situations in which the assumption of spatial
heterogeneity is likely to fail is important. Smithwick et al. (2003) used a
forest process model to explore the assumption that carbon dynamics can
be modeled within homogenous patches (e.g., even-aged forest stands) and
then summed to predict broad-scale dynamics. Their results suggested that
the additive approach might not capture C dynamics in fragmented land-
scapes because of edge-induced effects on tree mortality (primarily due to
wind) and light limitations (Smithwick et al. 2003). This study nicely illus-
trates a systematic approach for identifying the conditions under which the
assumption of spatial heterogeneity may produce erroneous conclusions.

Mosaics

Spatial mosaics are the simplest representation of spatial heterogeneity in
ecological processes (Figure 2.3b). Mosaics are particularly useful for docu-
menting and predicting spatial heterogeneity in point processes and for spa-
tial extrapolation. It is important to recognize that the mosaic represents
not only vegetation or land-cover types; more often, it is a complex multi-
variate mosaic of underlying controls. The rate of a process at a given loca-
tion may depend on many factors, such as vegetation type, soil conditions,
slope, aspect, elevation, or time since disturbance.

Mosaic effects on ecosystem processes can be represented using a “paint-
by-numbers” approach that assumes no interaction among spatial elements.
However, this approach is not trivial; it can be very complicated when the
relationship is nonlinear, there are multiple drivers of a process, or the
distributions of drivers change through time. Practically, regression or clas-
sification and regression tree (CART) techniques are often used with
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empirical data for this approach, with the relationship between a process
rate and its drivers represented at each location across a landscape. The
most common representation of spatial mosaics is a raster, or grid-cell,
approach with resolution (or grain size) appropriate for the process of inter-
est (Turner et al. 2001). Employing this approach requires knowing the spa-
tial distribution of each driver. However, the prediction for each site is
based only on the suite of independent variables associated with that loca-
tion. Ecosystem simulation models can also be used to make predictions
across a landscape mosaic. For example, Running et al. (1989) combined
simulation models with remotely sensed data to predict photosynthesis, leaf
area index, and evapotranspiration rate in grid cells representing the land-
scape of western Montana.

Many studies in which ecosystem process rates are extrapolated spatially
use a mosaic approach. For example, Hansen et al. (2000) predicted rates of
ANPP over the western portion of the Greater Yellowstone Ecosystem using
a multiple regression model in the mosaic; Turner et al. (2004) used multiple
regression within the areas of the 1988 Yellowstone fires to predict spatial
variation in ANPP and leaf area index (LAI) within the burn. Similar
approaches have been used for nitrogen mineralization rates (Fan et al.
1998), denitrification rates (Groffman et al. 1992), and other responses.

A mosaic approach may employ static or dynamic representations of spa-
tial patterns. In the latter case, model estimates at each time step must
account for any changes in spatial pattern that have occurred in at least one
driver. These changes in pattern may result from feedbacks between the
rate of the ecosystem process being measured or predicted and the occur-
rence of events that alter the pattern of the drivers—fire is an example of
this. The point process rate, however, is still predicted without considering
neighbors.

An “advanced paint-by-numbers” approach considers the context of the
landscape surrounding a point at which measurements are made. This vari-
ant of the paint-by-numbers approach uses the characteristics of the point
and the surrounding landscape (i.e., the landscape context) to determine the
behavior of a point. In this case, the spatial distribution/pattern of each of
the important driving variables must be known. The predicted value at a
given site depends not only on the values of the predictor variables at that
site, but also on the values of predictor variables in the surrounding area.
There is a large literature using this approach to understand the effects of
landscape context on the presence and/or abundance of organisms (e.g.,
Pearson 1993; Mazerolle and Villard 1999). The approach has also been use-
ful in estimating ecosystem processes. For example, the concentration of dis-
solved organic carbon in lakes and rivers was predicted by the proportion of
wetlands in the surrounding landscape (Gergel et al. 1999).

Ecosystem and landscape ecology have made reasonable progress in using
the mosaic approach to represent variation in process rates, although the
number of studies explicitly sampling for spatial variance remains relatively
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small. However, this approach is limited in its capacity to address dynamic
space, complex feedbacks, or nonlinearities in responses. These components
require a more dynamic consideration of interacting elements.

Interacting Elements

An interacting element approach is required to address lateral transfers.
Typically, composition and configuration must both be considered. Ecosys-
tem ecology does not yet have a comprehensive or even a well-developed
approach for dealing with lateral transfers (Figure 2.3c). Empirical methods
are frequently used to determine whether and when spatial pattern influ-
ences lateral transfer rates. Often, the response variable is an indicator of
lateral transfer rather than a direct measurement of the transfer rate itself;
for example, NO; concentration in soil water (e.g., lysimeter studies) may be
used to track the movement and fate of N as it is transported from one
ecosystem type to another. Labeled substances may be used as tracers to
track directly the flow paths and rates or areas that differ in the composition
and configuration of land cover types may be compared. Simulation models
are also employed to predict the consequences of alternative spatial arrange-
ments of cover types on lateral transfers. We consider three approaches of
increasing complexity.

Static Spatial Pattern—-Dynamic Lateral Transfers

The simplest approach to exploring the consequences of spatial pattern for
lateral flows is to evaluate the consequences of a static landscape pattern on
lateral transfers. This approach has been used particularly for studies of
land-water interactions. Shaver et al. (1991), for example, tracked nutrient
flows in a toposequence in Alaska based on the typical configuration of
landscape elements. A comparative empirical approach can be used in
which, for example, the spatial arrangements of land cover in a variety of
watersheds is related to stream nutrient concentrations (e.g., Hunsaker and
Levine 1995; Jones et al. 2001). The flows themselves are not measured
directly, and concentration or loading is the index of magnitude of flow.
Models are also helpful in this arena; for example, Weller et al. (1998)
explored the effects of length, width, and number of gaps in a riparian buffer
on nutrient delivery to a stream by using a simulation model. However,
common to all of these approaches is the absence of feedback from the
lateral transfer to the spatial pattern.

Dynamic Spatial Pattern—-Dynamic Lateral Transfers

Here, spatial patterns are not stationary, and flows are assumed to respond
to changes in the landscape template. Landscapes are constantly altered by
natural disturbances and anthropogenic activities, and temporal changes in
the spatial patterns of drivers can be represented. Horizontal flows respond
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to changes in these spatial patterns. For example, in the watershed of Lake
Mendota, Wisconsin, land cover shifted from agricultural to urban uses
between the 1930s and 1990s. The runoff of water from the terrestrial sur-
face to the lake following storm events has become much more “flashy” dur-
ing this period (Wegener 2001), illustrating how lateral transfers can
respond to dynamic patterns over 60 years. Again, the lateral transfers do
not alter the spatial pattern, but they respond to its temporal change.

Dynamic Spatial Pattern—-Dynamic Lateral Transfers—Feedbacks
Between Pattern and Process

Here, spatial patterns change, altering flows, which, in turn, alter the tem-
plate itself. This complex set of relationships is perhaps most interesting,
but poorly understood; again, both empirical and modeling approaches
are informative. On Isle Royale, for example, moose (Alces alces) selec-
tively browse on hardwood trees and balsam fir (Abies balsamea), which
leads to domination of the landscape by conifers such as spruce. In turn,
spruce domination alters patterns of productivity and nutrient cycling
across the landscape, which then influences moose foraging patterns.
These reciprocal interactions between moose and vegetation have been
elucidated through a combination of intensive studies of moose move-
ment and foraging patterns, vegetation dynamics, and nutrient cycling,
along with models that explore the possible behaviors of the system (e.g.,
Mclnnes et al. 1992; Jeffries et al. 1994; Moen et al. 1997, 1998; Pastor et al.
1999). Similar complex relationships between ungulates and vegetation
patterns have been observed in African landscapes (e.g., Seagle and
McNaughton 1992; Augustine 2003).

In river-floodplain ecosystems, we also see reciprocal interactions
between the water and the land. Floodplains and rivers are linked as inte-
grated ecosystems through the exchange of particulate and dissolved mat-
ter (Tockner et al. 1999). The spatial patterns of geomorphology and
vegetation in a floodplain can influence flooding and flow velocity, at least
in years that are not extreme. Geomorphological and biological processes
are inherently linked in a functional hierarchy (van Coller et al. 2000). A
reciprocal interaction approach has also been used to model fire-vegetation
in interior Alaska (Rupp et al. 2000, 2002). The landscape template (vege-
tation configuration and composition) determine both fire spread and sub-
sequent seed dispersal and regeneration pattern. These processes, in turn,
determine the vegetation template on the landscape, which influences fire
probability and spread. Inclusion of these dynamic interactions allows an
evaluation of potential impacts of external factors on either landscape
pattern (e.g., land-use effects on vegetation pattern) or process (e.g., cli-
mate effects on fire probability). This dynamic approach is particularly
important under circumstances where either pattern or process is undergoing
directional change.
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Challenges and Opportunities

If ecologists have recognized for 60 years that ecosystem processes are spa-
tially heterogeneous (Jenny 1941), why is this topic relatively unexplored?
We suggest there are several fundamental reasons then discuss some
approaches for making sustained progress.

One challenge is that the interface between ecosystem and spatial ecol-
ogy lacks a well developed theory (White and Brown, this volume). There is
relatively little to guide us in our empirical studies, so our developing under-
standing has largely been empirical. However, even in empirical studies, the
form of the relationship between response and driver variables is poorly
understood and may well be nonlinear.

The technical sophistication and costs required to sample many ecosys-
tem processes is relatively high. Sophisticated, expensive equipment is
needed for many biogeochemical analyses, sample analysis is costly, and
field sampling is labor-intensive. Adding the spatial dimension to a study
design can substantially increase the number of samples needed. If a study
attempts to understand spatial variance in rates over a large area, the logis-
tics of conducting the sampling become quite challenging. As is true for
many studies of broad-scale patterns, there are few opportunities to conduct
experiments, although there are many opportunities for studying natural
events or management actions from an experimental viewpoint. Even so,
many people trained in ecosystem process studies lack advanced training in
landscape ecology, spatial statistics, and spatially explicit models. Likewise,
many people trained in landscape ecology lack the technical training in
ecosystem ecology and biogeochemistry to address these questions.

Lack of understanding also results, in part, from inherent challenges
related to variance and scale. For example, variance at fine spatial scales is
extremely high for most biogeochemical processes, many of which are regu-
lated by microorganisms. Relatively little is known about how microbial
communities vary through both time and space. Because process rates may
be measured at scales different from those of the controls, noise in the data
can be overwhelming. Sampling adequately to obtain a general trend is
already challenging without the added goal of understanding spatial variation.

Statistical considerations have also prompted ecosystem ecologists to
avoid studies of spatial variation. In an effort to be rigorous, most ecosystem
ecologists design observational or experimental studies that test for statisti-
cal differences between ecosystem types or treatments. This motivates
experimental designs that minimize spatial variation (e.g., one- or two-way
ANOVAs). Pastor (1995 and this volume) argues that this statistical preoc-
cupation has done a disservice to ecosystem ecology, particularly modeling,
where it is often more important to know the shape of a relationship
between control and ecosystem response (e.g., between water availability
and NPP) than to ask a simple yes/no question. Astute spatial sampling
designs that incorporate heterogeneity in presumed control variables can
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provide valuable insights into nonlinearities and thresholds in controls over
ecosystem processes that will never emerge from simple ANOVA designs.

Despite these challenges, there are ways to make progress, as described
below.

Exploit Heterogeneity to Enhance Understanding
of Processes

We urge ecologists to embrace spatial complexity and to treat it as an
opportunity! Variance may be an important clue to our understanding of
processes. For example, the fine-scale variation in microbial activity from
one unit of soil to another could reflect important differences between
processes within versus outside of soil aggregates, just as at larger scales we
know that urine patches differ functionally from the matrix or that lakes dif-
fer from the terrestrial matrix. The extent to which ecosystem ecologists
tend to think of heterogeneity as a nuisance rather than a reflection of
important process controls is still problematic.

The spatial variability in tree N uptake within a small catchment was eval-
uated by Barker et al. (2002) by measuring major fluxes in the N cycle in 50
plots (20 m X 20 m). Results showed that overstory N uptake varied spa-
tially in the watershed with stand structure, although the variance among
different calculations was even greater. Nonetheless, uptake was correlated
with stand structure. These results also underscore the intensive sampling
required and some of the methodological challenges associated with esti-
mating spatial structure in complex processes.

Conduct Studies at Multiple Scales

It is not possible to measure intensively everywhere, so sampling designs
must be strategic. For example, intensive measurements at a small number
of sites based on hypotheses can provide insights into mechanisms. How-
ever, these studies benefit from extensive measurements of simple integra-
tive indices of these mechanisms at a larger number of sites to provide
context. Nested sampling designs (Webster and Oliver 2001) are also useful.
In addition, “smart” sampling designs derived from spatial statistics can
maximize the power of the data. For example, a cyclic sampling design was
used by Burrows et al. (2002) to maximize information about the variance
of vegetation characteristics surrounding an eddy flux tower at Park Falls,
Wisconsin. The data were also used to derive a spatial map of leaf area index
(LAI) along with a map of spatial error measures for the study area (Bur-
rows et al. 2002). Such methods afford the ability to quantify the scales
of variation along with mean values of factors hypothesized to be impor-
tant. Even though there is now a well developed statistical methodology to
assess process controls at multiple scales, it has seldom been applied in
ecosystem studies. The combination of intensive studies with spatially
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extensive measurements can also be used to see how well the knowledge at
fine scales can be applied more broadly.

Use Empirical and/or Simulation Models
for Extrapolation

Modeling can be a powerful tool for exploring the range of conditions
under which a given set of process controls leads to plausible outcomes. The
simulation results can then be tested against field observations. These
extrapolations represent testable hypotheses about our understanding of
the system, and they should be used more widely as such (Miller et al. 2004).
For example, the extrapolation of a hypothesized relationship using paint-
by-numbers can be tested in the field to determine the limits of the validity
of this presumed relationship. Models provide context and permit explo-
ration of more combinations of conditions than we can assess in the field.
Statistical models can also be used to extrapolate to broad scales and can be
tested with remote sensing data and/or extensive field measurements to see
whether they are consistent with predictions.

Be Creative About When and How to Use Discrete versus
Continuous Representations of Space

There are a variety of ways in which space may be represented in both driv-
ers and response variables. The two most common representations of spatial
heterogeneity include categorical maps and point data (Gustafson 1998). In
categorical maps, variables are mapped in space, and both composition and
configuration can be quantified. A wide variety of metrics is available to
quantify such patterns (e.g., McGarigal and Marks 1995). Although categor-
ical maps are often created from continuous data (e.g., forest cover is often
mapped based on the proportion of a cell occupied by trees), this approach
ignores spatial variation within the units (Gustafson 1998). Point-data
analysis, in contrast, assumes the system property is spatially continuous,
and an area is sampled to generate spatially referenced information about
the system. Analysis techniques include trend-surface analysis, various tech-
niques that address spatial autocorrelation (e.g., correlograms, semivari-
ograms), and interpolation. Platt and Sathyendranath (1999) correctly note,
however, that universal functions for continuous variation of environmental
properties generally have not been discovered.

Careful consideration of how and why space should be represented is cru-
cial, and the representation of heterogeneity should match the question and
be scaled correctly. Point data are required for interpolation methods (e.g.,
kriging) or for using scales of variation as a response variable. However, a
categorical approach might simplify the analysis of biogeochemical hot
spots by eliminating the need to treat all variation in processing rates. For
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example, one might predict locations where a process like denitrification
occurs in a floodplain (or where the rate exceeds some meaningful thresh-
old) rather than predicting the actual rates. We echo Gustafson’s (1998) plea
for moving beyond the patch-based view of spatial heterogeneity and for
recognition of the complementarity between categorical and continuous
representations of space.

Collaborate and Explore Other Bodies of Theory

Intra- and interdisciplinary collaboration often produces new insights, and
we encourage ecologists to look beyond their research specialty. What
theories developed in other disciplines within or outside of ecology might
be helpful? Percolation theory (Stauffer 1985; Stauffer and Aharony 1992),
a branch of physics, offered new modeling and analysis techniques that were
applied in landscape ecology (Gardner et al. 1987) and led to new insights
about crucial thresholds in connectivity (With and King 1997). Within ecol-
ogy, there is an extensive body of literature on source-sink dynamics for
populations—might that theory be relevant for lateral transfers of matter or
energy? Gases and particulates emitted from managed or natural ecosys-
tems (sources) can be transported great distances, altering the recipient
(sink) ecosystems. Boerner and Kooser (1989) studied redistribution of leaf
litter within a 73-ha watershed in Ohio and used donor and sink terminol-
ogy. Donor sites lost 4.5-5.7 kaha ! yr ™! of N and 0.3-0.5 kg ha ! yr ! of P
through redistributed litter; sink areas received subsidies of 2.2-6.1 kg ha™*
yr 1 N and 0.2-0.4 kg ha™! yr ™! of P. Pastor (this volume) also suggests that
cross-fertilization between ecosystem ecology and evolutionary studies is
likely to produce new understanding about ecosystem function in time and
space.

Looking Ahead

Understanding spatial heterogeneity has been referred to as “the final fron-
tier” in other areas within ecology (e.g., Kareiva 1994). Although new chal-
lenges will continually arise, understanding the causes and consequences of
ecosystem function in heterogeneous landscapes is a challenge that will be
present for some time. Methods to quantify spatial heterogeneity abound;
gaining a functional understanding of spatial pattern should be the priority
rather than the development of new pattern metrics. If knowledge of spatial
heterogeneity and ecosystem function improves, it is appropriate to con-
sider the significance of this enhanced understanding. There are at least
three areas in which advances will be significant to our science.

First, understanding of pools, fluxes, and regulating factors in ecosystems
will be enhanced—and this defines the purview of ecosystem ecology. By
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understanding heterogeneity, what causes it, and when it matters, we will
have a much better understanding of fundamental ecosystem processes.
Broad-scale estimates of biogeochemical processes, which are key for under-
standing regional to global phenomena, require spatial understanding (e.g.,
Groffman et al. 1992). Factors such as disturbance frequency and size, species
distributions, and exotic species invasions that are inherently spatial may
influence not only the magnitude but also the sign of currently observed
ecosystem fluxes within the next century (Canadell et al. 2000). Second, we
will gain a more complete understanding of landscape function. At present,
there is greater knowledge about how certain populations respond to pat-
terns, the role of disturbance dynamics, and even the perceptions and effects
of humans. However, this list conspicuously excludes knowledge of ecosys-
tem function in both natural and anthropogenic landscapes. Indeed, under-
standing spatial heterogeneity and disturbance is one of the key needs for
global studies (Schimel et al. 1997). Third, the ability to scale up or down will
be improved. Using spatial models and spatial extrapolations as hypotheses
should help identify the domains through which certain relationships do and
do not scale (Miller et al. 2004). Ultimately, these gains should lead to
improved predictions of changes in regional systems that involve multiple
feedbacks between pattern and process at multiple scales.
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