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RECONSTRUCTION OF MEANING AS A 
DIDACTICAL TASK: THE CONCEPT OF 

FUNCTION AS AN EXAMPLE 

The meaning of a mathematical concept differs in different contexts. We can find 
different practices related to the same mathematical concept, such as the concept of 
function. Physicists have a practice different from that of mathematicians. 
Qualitative functional thinking is necessary in many vocations, however, this is a 
fairly different practice from that of academic sciences with their explicit use of 
symbolic mathematical notation. Commonly, uses will differ even if people use the 
same definition of a concept. However, spheres of practice may also differ with 
regard to definitions of a mathematical concept. The notion of a functional 
relationship between magnitudes may still be much used in physics, whereas 
mathematicians tend to use a more general notion of correspondence between sets. If 
we speak of different meanings of "the same" concept, we can further analyse 
differences and commonalities. How can didactics of mathematics cope with these 
many meaning differences? The mathematics classroom should not be a closed and 
self-reproducing system developing its own concept meanings. Rather, the meanings 
that are to be constituted in the classroom should be related to practices and 
meanings outside school. But what are the important points of orientation? 

All the various spheres of practice (academic mathematics is one of them) in 
which mathematics is used are, in principle, relevant sources of meaning for general 
education. What dimensions of meaning of a concept should curriculum designers 
ideally take into account? The meaning and the importance of the concept within the 
theoretical network of academic mathematics, its historical genesis and 
development, its uses for problem solving inside and outside mathematics, its 
prototypical interpretations, its roots in everyday thinking and language as well as 
different tools and representations for working with the concept are relevant. How 
these sources are exploited and given relative weight to is dependent on the social 
meaning attributed to mathematics education. The social meaning varies. For 
instance, the traditional German Gymnasium had to prepare students for university 
studies, and the traditional German Volksschule had to prepare students for various 
vocations (artisans, workers etc.). The meanings of mathematical concepts that were 
selected for the various student groups differed very much according to the various 
social functions of schools and according to assumptions concerning what these 
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students were able and willing to learn under given societal and schooling 
conditions. 

We know that teachers are important agents in the classroom constitution of 
mathematical meaning. The implementation of curricula by teachers is shaped by 
their beliefs, in particular, by what they consider to be important aspects of a 
concept's meaning. If teachers themselves share some of the rich meanings which 
are implicit in curriculum material and serve as a background for its design, it is 
more probable that the intended meanings of the concepts will be implemented in 
the classroom. If teachers are not explicitly trained or educated in this respect, they 
may tend to base their teaching on the meanings they have acquired elsewhere, 
namely the traditional meanings of school mathematics, or on the meanings of 
concepts they have acquired during their academic studies in mathematics-if they 
have had an academic mathematics education and still consider this orientation the 
most important source for their teaching. When students study academic 
mathematics, they are confronted with meanings of concepts that can be considered 
only as part of the overall meaning landscape. The many uses of the concepts in 
various disciplines and in societal practices (and also in history) can be considered 
as part of a very comprehensive meaning landscape of that concept. But usually, 
these uses and practices are not part of the consciousness of mathematics students, 
professors and educators. 

As mathematics education, however, has to base its curricular decisions on a 
broader picture of mathematics than that of academic mathematics, we consider the 
reconstruction of meaning, the development of a synthesising meaning landscape of 
a mathematical concept to be an important task for the didactics of mathematics that 
could serve as a theoretical background for curriculum design and implementation. 
We will also speak of a didactically reconstructed intended mathematics for schools. 
In this paper, we will argue in favour of a more systematic approach to this problem, 
illustrating and exemplifying our own ideas with regard to the concept of function. 
In some points in educational history, we can well identify interesting attempts to 
construct intended mathematics for schools as a referent for constituting the 
knowledge to be taught in Chevallard's (1985) sense. We will start with discussing 
some attempts below that will also show that it is usually not just "academic 
mathematics" that functions as a referent for constituting knowledge to be taught. 

1. MEANING OF FUNCTIONS IN THE CONTEXT OF DIDACTICALLY 

RECONSTRUCTED MATHEMATICS 

1.  I Examples of didactically reconstructed mathematics 

Reconstructions of meanings of functions were often embedded in more general 
attempts to reconstruct the meaning of mathematics in the context of reform 
attempts in mathematics education. 

Well-known historical examples for such a reconstruction are Felix Klein's 
books on "Elementary mathematics from a higher standpoint" (Klein, 1925a; Klein, 
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1925b; Klein, 1933) where he described and synthesised a view and selected a 
content of mathematics for German Gymnasium teachers, who had already good 
knowledge in mathematics. A value system is implicit in his books. It is related to 
the reform efforts of restructuring school in the direction of giving more emphasis to 
geometrical aspects of meaning (intuition, Anschauung) and to applications. A 
reintroduction of geometrical and visual aspects was regarded as necessary for 
school mathematics and for users of mathematics at the same time. The 
arithmetisation and formalisation that had led to banning geometry from the 
foundations of mathematics was not considered to provide an acceptable basis. A 
particular expression of this reform was the emphasis on "functional thinking" as 
one of the major goals of school mathematics. Functional thinking was considered a 
fundamental idea that should integrate pure and applied aspects of mathematics and 
legitimise the introduction of calculus into the senior secondary curriculum. 
Calculus was considered the top level of functional thinking that should be taught in 
the senior grades of secondary schools but that had to be adequately prepared in 
junior grades prior to that. Klein' s books are a good prototype of reconstructed 
mathematics because they not only develop a "philosophy of mathematics", but 
rather a view of mathematical content from a certain "philosophical" perspective 
that is more or less explicit. Klein introduced some epistemological distinctions, 
namely the distinction between "precision mathematics" and "approximation 
mathematics" as a way to describe the difference between the ideal and exact world 
of mathematics and mathematics applied to reality and to Anschauung. Typically, 
Klein does not just present "school mathematics" but goes far beyond this level with 
regard to the content treated. 

Another big historical event for the function concept in mathematics education 
was the new math reform where functions were reconstructed as examples of the 
general concept of mapping, or as a specific relation. New meanings were derived 
from this embedding, whereas traditional aspects of meaning as "relations between 
magnitudes" were devalued. We can interpret the dozens of books on "new math for 
teachers and parents" as attempts to constitute a type of didactically reconstructed 
mathematics, although the writers would have thought of it just as of an 
elementarised academic mathematics. The latter illusion is quite understandable. If 
we only look at their concept definitions and theorems, then their mathematics will 
often appear only as a subset of academic mathematics. But if we include looking at 
domains of application, at the surrounding conceptual structure of a concept, and at 
the tools and means of representation used with a concept, we begin to see the 
differences. 

A recent example of what I would consider a type of didactically reconstructed 
mathematics is the intended school mathematics constructed for the NCTM 
Standards (National Council of Teachers of Mathematics, 1989). This book, 
however, is already very much concerned with intended school teaching and 
learning processes. Maybe we can consider the book edited by Steen (1990) a 
description of the related didactically reconstructed mathematics as such, and as 
somewhat more separated from teaching and learning methods. The new NCTM's 
didactically reconstructed mathematics and other contemporary ones often make 
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connections to the new humanistic and descriptive views of mathematics that 
include the "social dimension", problem-solving and the investigative nature of 
mathematics. (Davis & Hersh, 1980; Ernest, 1994). It is not clear how far 
mathematicians will see this characterisation of mathematics as an extension of their 
own view, or whether we are faced with an example of an artificial mathematical 
culture whose relation to academic mathematics is still pretty opaque. 

In the context of this reform movement, reconstructions of the meaning of the 
function concept have been performed (Romberg, Fennema & Carpenter, 1993). A 
didactical analysis concerning the meaning of the concept of function in various 
mathematical practices or cultures is however still lacking. This deficiency is 
pointed out by Williams (1993, p. 315) in relation to the above book: "What we 
have instead is a description of a unique ethereal culture that, it can be argued, does 
not currently exist. It is well described by the Curriculum and Evaluation Standards 
for School Mathematics of the National Council of Teachers of Mathematics" (see 
also Biehler, 1994). 

Attempts at reconstructing meanings of the function concept with regard to 
school mathematics after new maths are prevalent in other countries, too. A 
prominent example of the search for meaning is Freudenthal's (1983) Didactical 
Phenomenology of Mathematical Structures. He states as goals of his program: 

Phenomenology of a mathematical concept, structure or idea means describing 
it in relation to the phenomena for which it has been created, and to which it 
has been extended in the learning process of mankind, and, as far as this 
description is concerned with the learning process of the young generation, it 
is didactical phenomenology, a way to show the teacher the places where the 
learners might step into the learning process of mankind. (p. ix) 

From this general approach, he develops a didactical phenomenology of functions 
(pp. 491-578). These reconstructions are related to reform attempts in the 
Netherlands under the conception of realistic mathematics education. 

1.2 Research for meaning reconstruction and the complementarity 
of the function concept 

There have been several studies concerning the meaning of the function concept that 
are not so closely related to reform movements. Vollrath's paper (1989) provides an 
example of synthesising aspects of the meaning of functions that were particularly 
discussed in Germany. Sierpinska's (1992) study on the meaning of functions can 
also be considered as intending a re-construction. She states the objectives of such 
research: 

In our attempt to define the basic conditions for understanding functions we 
shall be guided by an exploration of the reference of the definition of this 
notion. We shall ask ourselves what is this reality this definition refers to, 
what objects are there to be identified, discriminated between, what kind of 
orders can be found that would bring about the enlargement of reality by way 
of insightful generalisations and syntheses. (p. 30). 
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The analysis of regularities in relationships between changing magnitudes 
constitutes an important source of functions, i.e. a central part of its meaning. This is 
substantiated by Sierpinska's (1992) contribution analysing the concept's historical 
development in mathematics, which was related to uses in physics and geometry 
who were major "partners" in development. One of her results is the suggestion that 
"students must become interested in variability and search for regularities before 
examples of well-behaved mathematical elementary functions and definitions are 
introduced." (p. 32). This attitude may constitute an epistemological obstacle for 
teachers who have been "brought up" in a "pure-mathematics-culture". Sfard (1992) 
emphasises the dual nature of mathematical concepts as process and object and 
develops the thesis of the primacy of the operational origin of mathematical 
concepts. Structural notions emerge by reification later. The computational process 
of starting from a number x and calculating a resulting value y is, according to Sfard, 
the major source of the function concept. 

These two positions really point to two sources of the notion of function 
admirably expressed by the mathematician Hermann Weyl (my translation, R.B.): 

Historically, the concept of function has a double root. Leading up to it are 
firstly the 'naturally given dependencies' ruling the material world which 
consist, on the one hand, in the fact that states and constitutions of real things 
are changeable in time, and on the other in the causal connection between 
cause and effect. A second root quite independent of the first lies in the 
arithmetico-algebraic operations. According to this, the analysis of old had in 
mind an expression which is formed from the independent variable by 
applying the four species and some less elementary transcedents a finite 
number of times, though these elementary operations have never been clearly 
and completely designated and historical growth has always pushed beyond to 
closely set boundaries without the agents of this development realising this 
every time. The point where these two sources which are at the outset quite 
foreign to one another begin to relate is the concept of the natural law. Its 
essence consists in the very fact that the natural law represents a naturally 
given dependency as a function constructed in a purely conceptual- 
arithmetical way. Galilee's laws of falling bodies are the first important 
examples. The modern growth of mathematics has led to the insight that the 
special algebraic principles of construction on which the analysis of old was 
based are much too narrow for a logico-natural and general development of 
analysis as well as when the role is considered which the function concept has 
to assume for the recognition of the laws governing what happens in the field 
of matter. General logical principles of construction must replace those 
algebraic ones. (Quoted in Weyl, 1917, p. 35-36) 

I have taken the quote from the book of the IDM-Arbeitsgruppe Mathematiklehrer- 
bildung (1981), who used it as an illustration for what they call the complementarity 
of the concept of function. The function concept is an excellent example of the 
complementarity of concepts in mathematics (Otte, 1984). In recent years, the 
didactical analysis of the concept of function has led to a revival of various 
characterisations of complementary aspects of functions. An early reference to the 
complementary aspects of the function concept as a mathematical object and as a 
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thinking tool is Otte and Steinbring (1977). Other complementary characterisations 
are descriptive-relational vs. algorithmic-constructive (Richenhagen, 1990), 
geometrical-set theoretic-extensional vs. algebraic-analytical-intensional (Steiner, 
1969), process and object respectively dynamical mapping vs. static relation (Sfard, 
1992), co-variational versus correspondence aspects (Confrey & Smith, 1994), and, 
similarly, Vollrath (1989) who emphasises the distinction between horizontal 
(correspondence) and vertical (co-variation) aspects of functions. Concepts of 
complementarity have proved useful for empirical and constructive research on 
functions (Dubinsky & Harel, 1992; Romberg, Fennema & Carpenter, 1993). 

2. RECONSTRUCTION OF MEANINGS OF THE CONCEPT OF FUNCTION 

2.1 The context: Developing teachers' knowledge 

I will now go into more detail concerning the function concept. As usual, ideas are 
shaped by the context they were developed in. The following ideas were developed 
in connection with pre-service courses for teachers on "the concept of function and 
functional thinking". The teacher-students already had a good mathematical 
background, but the intention was to enable them to reflect, enrich, and restructure 
the meaning they associated with the concept of function with regard to mathematics 
education. My selection of aspects was to emphasise a teaching of functions with 
technological support, applications outside mathematics and the general idea of 
functional relationship as contrasted to the limited view of functions normally taught 
in school. In particular, I will point to the meaning differences between functions in 
academic mathematics and what I consider as important for school teachers. 

Empirical studies concerning teachers' knowledge of functions have to be based 
on an overall conception of knowledge on functions. For instance, Ruhama Even' s 
(1989, 1990, 1993) empirical study on teachers' knowledge of functions is based on 
an integrative analysis of what is considered as the meaning of the function concept 
in some part of the relevant didactical literature: 

As a result of this integration, six aspects seemed to be critical components of 
subject matter knowledge required to teach functions: 

- What is a function? (including image and definition of the concept 
of function, univalent property of functions, and arbitrariness of 
functions). 

- Different representations of functions. 
- Inverse function and composition of functions. 
- Knowledge about functions of the high school curriculum. 
- Different ways of approaching functions: point-wise, interval-wise, 

globally, and as entities. 
- Different kinds of knowledge and understanding of functions and 

mathematics. (Even, 1989, p. 212) 

Many of Even's detailed results are interesting and point to a need to change teacher 
education in this area. However, her study represents a view of functions from a 
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certain didactical discussion, whose strengths and weaknesses carry over to her 
study. 

We have to broaden the perspective. I will describe a more extended meaning 
landscape for mathematics educators. It should also serve as a basis for further 
discussion on which aspects of the landscape are most important for teachers. 

I will briefly discuss exponential functions as an example. Figure 1 contains a 
sketch of a semantic landscape for exponential functions. This is an example that has 
been considered in other recent projects, too (Confrey, 1991; Confrey & Smith, 
1994). The exponential function is to provide a concrete example for important 
relations in the landscape. The network should give an impression of the conceptual 
complexity. I will not explain all individual elements and their importance in detail. 
That would be beyond the scope of this paper. Some comments must suffice. The 
picture contains theoretical mathematical aspects (difference, differential and 
functional equation, isomorphism between addition and multiplication, power series 
and number systems), relations to the dynamical systems and growth and decay 
processes, relations to other growth functions, to discrete models (geometric series), 
computational aspects (tables +slide rules +algorithms), relations to statistics and 
data analysis (curve fitting, log scales, data graphs), domains of application 
(radioactive decay and population explosion) and related general concepts relevant 
in applications (prediction, explanation, and model). 
As compared to the normative view concerning teachers' knowledge on exponential 
functions on which Even (1989) based her study, the content of the above semantic 
network appears to be very ambitious as content for teachers to be learned. 
Compared with what secondary teachers have to learn in mathematics, far away 
from the elementary level, the landscape seems to be quite acceptable. Present 
teacher education does not yet provide sufficient preparation to enable teachers to 
develop such a complex system of meaning for themselves-in the first place. Even 
if all individual elements of the landscape were present in the teacher's mind, it is 
questionable whether he or she sees it as a whole, as a highly interrelated network of 
meaning as a background knowledge and meta-knowledge as a basis for teaching 
exponential functions in school. 

As mathematical teacher education must capitalise on the teachers' ability to 
extend and reorganise their professional knowledge during their future life, we have 
to think of adequate measures to ensure that teachers not only improve their 
practical knowledge of teaching methods by way of experience, but also actively 
extend their mathematical meanings beyond those they have already learned during 
their studies within academic mathematics. 
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Figure 1 : Semantic landscape for exponential functions 
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2.2 The meaning landscape in general 

We need some distinctions concerning the conception of "meaning" that will enable 
us to structure our meaning landscape. I will use a variant of the epistemological 
triangle, which Steinbring (1994) uses to discuss the meaning of mathematical 
concepts. In Figure 2, I have drawn a variant that is most adequate for my current 
purpose. The epistemological triangle is based on the belief that the domains of 
application (a concept's uses inside and outside mathematics) are constitutive for 
what we may call meaning of a concept. Also the relation to other concepts, its role 
within a conceptual structure (a theory) and the tools and representations available 
for working with a concept are constitutive parts of the meaning. These dimensions 
constrain the problems for which the concept can be used. The epistemological 
triangle interpreted that way also implies a time dependence of meaning. Meaning 
may change by new applications, by new conceptual relations, or by new 
representations. I consider conceptualisations of knowledge like the conceptual 
fields (Vergnaud, 1990) and the semanticfields (Boero, 1992) as conceptualisations 
that are similar (see "Meanings of Meaning of Mathematics" in this volume for a 
more detailed account). Table 1 is an attempt to structure elements of a network 
according to the meaning components of the epistemological triangle: relations to 
other concepts (inside and outside mathematics), representations, and applications. I 
have used Sierpinska's (1992) study and Freudenthal's (1983, pp. 491-578) 
phenomenology as one of my sources for developing this "semantic landscape" for 
functions. I have added aspects that come from the practice of using functions in 
connection with statistics (in italics) and related to the new technologies 
(underlined), which are not covered by Freudenthal's and Sierpinska's analyses. 

The discussion of all the elements of the table, the relation between elements and 
what teacher-students do know or should know about that and why cannot be done 
within the scope of this paper. In the following sections, I will only comment on 
some aspects. 

Conceptual 
structure 

Figure 2: A variant of the epistemological triangle 

Domains of 
application 

Representation 
tools 
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2.3 Relations within mathematics 

A didactically reconstructed meaning landscape has to overcome a 
compartmentalisation that is typical for the experience of a mathematics teacher- 
student. Algebra, calculus, differential equations and statistics are different courses 
in the university life of a mathematics student. Moreover, an average stochastics 
course in Germany would probably not cover regression and correlation. It is even 
more likely that students are not aware of the fact that the notions of correlation and 
conditional expectation can be regarded as generalisations of the concept of 
function, as a tool for analysing relations between magnitudes or "variables", as a 
statistician would say. Another generalisation of the operational aspect is that 
functions can be defined by algorithms or computer programs-extending the 
repertoire of algebra and of analytical expressions. 

Generally, differential equations belong to a different cognitive compartment 
than functions, and students are not aware of the intimate historical relations existing 
between the emergence of the function concept and differential equations. The idea 
of an "unknown" function that is characterised by equations was pretty important for 
the constitution of functions as mathematical objects of study. Moreover, there are 
relations relevant to school mathematics that are no longer paid attention to in 
academic mathematics, in which a certain mathematical practice is already assumed. 
The different uses and meanings of variables are a good example: their use as 
unknowns in the context of solving equations, their use in describing rules for 
functions, and their use as symbols that signify variable magnitudes. 

2.4 Representations 

Computers provide plentiful new representations for functions that can be valuable 
for meaning development and for extending the range of applications. A reflection 
about the scope of different representations is something that has to be stimulated in 
teacher education courses. Often however, teachers have not yet become part of a 
practical mathematics culture where computer use for problem solving (similar to 
the practice of engineers) is common. This is why reflection and new experiences 
are necessary. I will discuss some aspects in more detail. 

2.4.1 Language of functions and graphs 
An important didactical idea for developing the function concept beyond 
algebraically defined functions consists in asking students to qualitatively sketch 
curves that describe features of processes (see Hofler, 19 10, for a such an approach 
in history; and Swan, 1982, for a modern conception). Hofler was part of Klein's 
reform movement that intended to put relatively more emphasis again on the 
geometrical aspect of the complementary duality of functions. If students are asked 
by teachers to sketch a curve of the dependence of the water level upon time when 
various bottles are uniformly filled, then teachers should also know how this 
problem could be solved with advanced mathematical means: The sectional area as a 
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function of time or height has to be integrated to get the volume as a function of 
time, and so forth. If spherical bottles are being used, it should be clear how to 
determine the volume of parts of a sphere. Integration in this context is a special 
case of solving a differential equation and teachers should be aware of the relation of 
these elementary integration tasks to differential or difference equations. 

Related concepts in mathematics 

(mathematical) relation 
univalence of relation 
asymmetry of variables 
variables (unknowns) in algebra 
equation 
proportionality 
algorithm 
differential equation 
functional equation 
sequence 
mapping, operator 
correlation 
conditional distribution 
regression 

Representations 

symbolic: 
algebraic equation 
analytical expression 
implicit definition, "properties" 
algorithm 
computer program 
manipulable object in software 
graphs: 
standard Cartesian graph 
computer based Cartesian graphs 
(manipulable scales and zooming) 
various other graphs 
tables: 
standard tables 
interactive spreadsheet tables 
multiple linked representations 

Related concepts in science 
and applications 

law 
causal relation 
dependence 
interdependence, interaction 
[ c curves] 
[c motionlchange in time], change in 

general 
variable magnitudes 
relations between magnitudes 
equation between magnitudes 
data tables 
data graphs 
time series 
strength of a relationship 
machine 
constructed relation 

Applications 

prediction 
description 
interpolation 
extrapolation 
data reduction 
determining (estimating;)parameters 
interpreting parameters 
modelling 
range of validity 
univalence as  an idealisation 
deviation from model 
goodness offit 
dynamical systems 

Table 1 : Elements of the semantic landscape of the function concept 
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The idea of a function as an arbitrary free hand curve underlies this didactical 
approach. It was a central idea in history besides considering functions given by 
expressions. The arbitrariness of the free hand curve is more limited than the 
arbitrariness of the so-called Dirichlet definition of an arbitrary correspondence. 
Klein (1933) intended to mathematise the intuitive notion of "free hand curve" from 
a mathematical point of view. Klein obviously felt that this notion may provide a 
more adequate background for functions in school mathematics than the more 
general definition of Dirichlet. This is an interesting aspect of Klein's didactically 
reconstructed mathematics, which, by the way, did not really survive in history. 

Students may ask their teacher whether it is possible to find a "formula" for 
every free hand curve. Teachers should know something about the problem of 
finding analytical expressions for arbitrary (continuous) curves, i.e., that the concept 
of algebraic formula had to be extended in history in the direction of "analytical 
expressions", which included infinite series, integrals and other things. In the sense 
of the earlier quotation from Hermann Weyl, teachers may begin to appreciate that 
the modern mathematical language, that algorithmic and programming language 
representations of functions have again extended the repertoire of constructive 
building blocks usable to reproduce the various relations that can be found in the 
real world. 

The representation of a curve by a formula is also a relevant question when the 
shape of all kinds of things is to be mathematically expressed: the field of computer 
graphics provides myriads of applications for this basic idea. In summary, teachers 
have to be enabled to add and integrate meaning to functions from their knowledge 
of several separate courses of academic mathematics they may have attended. 

2.4.2 Different representations of functions 
Working with different representations and relating them to each other is regarded as 
a basic element of a meaningful teaching and learning of functions. A "classical" 
aspect is the geometrical meaning of the coefficients of standard functions such as 
parabolas. For instance, Even (1989, pp. 127) assesses teacher-students' knowledge 
in this domain. However, interpreting the "subject matter meaning" of coefficients 
would be a further, often neglected step. Also, more complicated functions are also 
relevant. For instance, the following equation for logistic growth has to be 
interpreted according to the various coefficients (K, for instance, is the level of 
saturation). 

This family of fimctions can be parameterised quite differently, and teacher-students 
have only limited experience in choosing an algebraic representation so as to make it 
better interpretable. Also, how a function as a whole "depends" on its parameters is 
an important dimension of meaning that is needed in various domains of application. 
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2.4.3 Functions and equations 
The following equations express typical relations between quantities in geometry. 

Equations in other domains of application are similar. An example is the basic 
equation in electricity between intensity of current, resistance and voltage: 

An important element of practice consists in interpreting these equations as relations 
between quantities without any unidirectionality of the function concept in the first 
place. Their interpretation as functions, however, is also very important but it is not 
unique. Each equation can be interpreted in various ways. The electricity formula 
can be interpreted, among other things, as 

(I, R) H V, where V = I. R, as a function of two variables 
I H V,  where R  = const., 
V H I, where R  = const., 

v R  H I, where V = const., and I = - 
R 

R H V ,  whereI=const., and V = I - R  

Each interpretation may correspond to a different situation or problem in reality. 
Similar interpretations can be done with the geometrical formulas. There are several 
studies showing that such a flexible functional interpretation of formulas is an 
important prop required to understand the scientific use and meaning of formulas 
(for instance, Kriesi, 1981). This qualification is also relevant in pure mathematics 
where it may pay to see a formula from a new functional perspective. Re-evaluating 
and re-discovering this practice for school mathematics was also an achievement of 
didactical research (see Harten et al., 1986). 

2.4.4 New tools for working with functions 
Software broadens the range of operations that can effectively be performed with 
functions. Geometrical aspects of meaning conquer more importance. Some of the 
necessary shifts and problems in teachers' knowledge in these new conditions have 
been studied by Zbiek (1992). 

Teachers have to be also aware of the following problems. Using software for 
dealing with mathematical notions and theories leads to the problem of a 
"computational transposition" (Balacheff, 1993): there are shifts of meaning due to 
transforming knowledge to another representational system. Software, for instance, 
usually does not handle functions as Platonic objects. They could be represented as 
finite list of numbers or pixels that approximate the exact values. A generating 
algorithm could lie behind it, or not. In addition, every software tool has its own set 
of admissible operations with functions that also determine the "meaning" of 
functions in this context. The computational transposition can be the source of 
"meaning conflicts" when students are working with the software. Winkelmann 
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(1988) provides an instructive overview about the many different implementations 
of functions in various pieces of software. 

2.5 Central historical domains of application 

Motion and curves formed essentially important domains of application in history. 
In the above Table 1, the place of curves and motion could be within mathematics or 
within applications, just as kinematics and geometry have the same status as applied 
mathematics from the point of view of formal symbolic mathematics. This leads to 
the general question what kind of historical knowledge on the development of 
meaning of a concept including epistemological obstacles is helpful and necessary 
for the didactics of mathematics and for teachers. Various approaches to this 
problem can be found elsewhere (Jahnke, Knoche, & Otte, 1996); a particular use of 
a historical context for meaning development is made by Bartolini Bussi (this 
volume). Historical domains of application may contribute to making the state of 
current academic mathematics more understandable than contemporary concept 
applications do, which already depend on that level of development. Teachers' 
knowledge on historical domains of application may have a specific cultural value as 
such and contribute to guaranteeing a cultural continuity in meaning transmission. 

In the literature known to the author, there seems to be a certain bias in the 
historiography of the function concept, namely concentrating on the "pre-history" 
that led to the modern Dirichlet or Peano (set theoretic) definition of functions. From 
the standpoint of applied mathematics, other definitions and meanings were still co- 
existent. Also, the relation to related concepts such as correlative relation as 
contrasted to functional relation seems to be usually neglected in the historiography 
of the function concept. 

2.5.1 Functions and curves 
Curves were one of the key contexts in which the concept of function emerged. The 
univalence requirement and other factors like the relative marginal role of curves in 
new math as compared to other instances of the general concept of "mapping", led 
to a situation where curves and functions became quite separate things in 
mathematics education. Cartesian function graphs are, now, just one representation 
of the concept of function, whereas the idea that the concept of function is used to 
study curves, which are genuine geometrical objects with an existence of their own, 
independent of the concept of function, was nearly forgotten or at least devalued in 
mathematics education. The forgotten meanings and relations had to be 
reconstructed in didactical research (see Weth, 1993). Computers contribute to the 
possibility of using kinematic curves presented by animated computer graphics as a 
new meaningful context for learning the function concept (Stowasser et al., 1994). 
Computer use has also extended the relevance of "curves" in various directions. For 
instance, CAD (computer aided design) uses computer based mathematical 
representations of all kinds of curves and surfaces. In addition, fractal curves have 
added quite a new visual world to ours. 
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2.5.2 Functions and the study of motion 
The historical emergence of the function concept is intimately related to the study of 
motion (kinetically and dynamically). Therefore, concepts of calculus and of 
differential equations were closely related to the new concept of function 
(Youschkevitch, 1976). These meaningful relations were also in the foreground, 
when Felix Klein favoured the reform of school mathematics under the banner of 
functional thinking. The concept of function was seen from the perspective of its 
meaning in calculus and uses of calculus in the sciences. Interestingly, these 
relations have been newly evaluated and re-defined in the didactical value systems 
recently (Kaput, 1993; Kaput, 1994). A newly conceptualised integration of the 
function concept, the study of motion, and preparatory calculus is being developed 
under the heading of "the mathematics of change". Time-dependent functions are 
now considered to be a very important prototype for developing an important 
element of the meaning of functions and also of the concept of a variable 
(Freudenthal, 1983; Weigand, 1988). Interestingly, there was a historical 
controversy about this question whether it makes sense to develop calculus without 
motion: "in point of intellectual conviction and certainty, the fluxional calculus is 
decidedly superior [to the French and German versions]; to think of calculus 
'without motion' was akin to thinking of 'war without bloodshed, gardening without 
spades"' (From 0. Gregory's 1 lth edition of C. Hutton's Course of Mathematics of 
1837; quoted in Howson, 1982, p. 25 1). 

Laws of motion are different from descriptions of motion as time dependent 
functions. The idea that local causes (forces) "act" at a point to influence the next 
"step" in a particle's movement is a basic idea underlying differential equations and 
dynamic systems in general. It is intimately related to the co-variational aspect of 
functions. 

The historical expulsion of "time" from mathematics is challenged by the above 
suggestions. The current division of labor between disciplines that has brought forth 
new isles of meaning may not be the relevant separation for mathematics at teacher 
education and school level. Even if a reunification may be illusionary, teachers 
should be aware of interfaces, borderlines, and (historical) relationships as a 
background of their teaching in school. 

2.6 Functions as models 

If functions are used in a modelling context, all the concepts I have listed under the 
heading of "applications" and "related concepts in science" become relevant. 
Science teachers may be better acquainted with these concepts, especially if they 
have learned scientific research as a process together with some epistemological 
reflections. For mathematics teachers, however, proof as a condition for truth and 
established knowledge is most important, and the validity of other types of 
knowledge is difficult for them to judge. I will discuss some aspects of this problem 
in more detail. 
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2.6.1 CuweJitting 
Curve fitting can be discussed in a purely mathematical context focusing on methods 
of fitting. Function plotter software has provided new possibilities for doing curve 
fitting easily. Family of curves described by a parameter set (for instance, family of 
parabolas) can be used as a repertoire to select from. Geometrical transformations 
acquire a new relevance in this context, because changing a parameter value into 
another can be interpreted as geometrical transformation of curves. Systems of 
equations for unknown parameters are another aspect. In older books for applied 
mathematics, the distinction whether a function should pass through all points or 
only "near" the points is basic under the unifying topic of fitting curves to data. 
Today, courses in mathematics do not necessarily cover these relations and 
meanings. From the perspective of applied mathematics and the sciences, concepts 
such as interpolation and extrapolation and the notion of the quality offit and range 
ofvalidity are important. 

Relations to statistical methods (regression, methods of least squares) are also 
relevant. If a function fits the data well, on what basis can we extrapolate and how 
far? Teachers should know something about the scientific critique of curve fitting 
when it is practised without models from which the family of functions can be 
derived. Nevertheless, such fitted curves can yield excellent predictions (without 
understanding) in many cases. Even hand-fitted curves may be acceptable for certain 
purposes, there is no need for complicated fitting methods in every case. They may 
unjustifiably suggest the application of scientific methods. In sum, many of the 
above concepts and values do not belong to academic mathematics, but rather to 
practical mathematics, but they are nevertheless highly relevant for mathematics 
teachers. What is the domain of validity of extrapolation and interpolation? Do 
continuous functions describe the "nature" of the relation, or not? Should genuine 
discrete models be used instead? These are some of the components of the teachers' 
system of meaning for functions. 

Teachers should also know something of the problems of using certain classes of 
functions for fitting curves: what are the limitations of polynomials? For many, 
including some software designers, the next "easy" choice beyond linear functions 
would be quadratic functions. However, polynomials are often not adequate and 
Splines are preferable. What is the basic idea of Splines? What about Bezier curves 
that are the underlying curves in many drawing programs? 

In the context of curve fitting, geometrical aspects and geometrical classification 
of functions are acquiring a new meaning. It can be the case that functions having 
different algebraic representations are nevertheless very near to each other in small 
intervals and vice versa. Algebraic "near" is different from geometrical "near". 

2.6.2 Univalence offunctions and modelling 
The meaning of univalence as a characterising property of functions is often 
discussed in relation to distinguishing functions from more general relations. In 
history, there have been several reasons for giving up the possibility of multivalent 
symbols such as $. Also, the curve of a circle is no longer considered as a function 
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because it does not satisfy the "vertical line test". However, curves like the circle 
can be modelled as functions on a higher level (as mappings from [0, 11 into the 
plane). Many of the tests with students and teachers Even (1989) refers to are related 
to the univalence in the above context of meaning. But a further important context is 
the use of functions in modelling: Here, univalence is an idealisation or model 
assumption, and there are many cases, where there are several varying values that 
are associated with one value of the independent variable. Concepts and techniques 
from statistics are required for modelling in these situations. A deterministic 
function model (for every x there is exactly one y) has to be epistemologically 
distinguished from a mixed statistical-functional model where for every x several y 
are possible and where we can assume a probability distribution for the possible y's. 
This distribution in general is dependent of the variable x. However, teacher- 
students have usually not had enough experience in adequate domains of application 
to appreciate this. The same applies to many didacticians who have done research on 
the concept of function. In this context, relating functional dependence and 
correlational dependence adds to the meaning of functions. The strength of a 
relationship is a new perspective in addition to the form of a relationship that is 
expressed by usual functions (Biehler, 1995). 

2.7 Various prototypical interpretation 

A classification and identification of prototypical ways of interpreting functions 
(prototypical domains of application) which summarise essential aspects of the 
meaning (s) of functions would be helpful for meaning development. We can 
consider Vollrath's (1989) analysis in this perspective. I will add some aspects that 
are important in the context of modelling and statistics. 

Epistemological distinctions should include that functions can be used to 
express: 

- natural laws, 
- causal relations, 
- constructed relations, 
- descriptive relations, 
- data reductions. 

These distinctions are quite important to avoid misinterpretations. The relation 
between the quantity and price of a certain article is a constructed relation: it is 
imposed by fiat (Davis & Hersh, 1980, pp. 70). Using a parabola to describe the path 
of a cannon ball has the character of a physical (natural) law. Contrary to this use, a 
parabola used in curve fitting may just provide a data summary of the curvature in a 
limited interval. Using functions for describing time dependent processes are 
different from using functions for expressing causal relations: time is not a "cause" 
for a certain movement. Also, scientists have partly abandoned the concept of causal 
relation in favour of mere "functional relation" between two quantities (Sierpinska, 
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1992). This may be due to philosophical reasons but also to simple pragmatical 
ones: If we have a 1-1 correspondence, we can invert the cause-effect functional 
relation to infer the "causes" from the effects. 

In many statistical applications, functions are used to describe structure in a set 
of data that cannot be interpreted as a natural law: "Cartesian curve-fitting uses data 
to determine (comprehend) the structure (curves=laws) governing the universe. 
Statistical orientation uses curves (regularities) to determine (comprehend) the 
structure of concrete sets of data-data about phenomena that are important to 
understand in their own right." (Wainer & Thissen, 1981, p. 195). For instance, the 
graph in Figure 3 shows the synchronic relation between fuel prices and fuel 
consumption per inhabitant and per year in various countries of the world. 

USA 

Fuel prices 1988 in US $ / I 

Figure 3: Fuel consumption and fuel prices in various countries 
(Data from Weizsacker, 1992) 

If we interpret functions in a causal or natural law sense here, i.e., in the sense of 
"when we change x, then this results in the following change of y" this will be 
misleading: we have no direct evidence how the change of fuel price in one country 
would effect its fuel consumption. We would need diachronic data for that purpose. 
The above graph can only indicate some evidence. A second remark concerning the 
above figure: If we exclude North America and Australia from the graph, the rest of 
the data are only weakly correlated. Statistics requires a very flexible practice of 
fitting functions to data: excluding points from an analysis or fitting curves only to 
subsets can be successful tactics. These uses usually are not part of teachers' views 
of the meaning of functions. Functions are often still taught as if probability and 
statistics had never been invented. 

We will finish our analyses of the meanings of the function concept vis-A-vis 
teacher education with these remarks. Although a lot has still to be done in doing 
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further research respectively in synthesising research findings under our perspective 
of meaning reconstruction we hope that we were able to point to important further 
directions and extensions of current work. 

3. SUMMARY AND CONCLUSION 

The paper has started with arguing in favour of the thesis that we can re-interpret 
research and development work in mathematics education as "meaning 
construction" or "meaning reconstruction". The need is related to the differences 
between school and academic mathematics, and the situation that school 
mathematics cannot and should not take over the meaning of concepts in the context 
of academic mathematics. In the second part, we have looked at the concept of 
function as an example. A mathematics teacher in-service education course that 
stimulates enrichment and reorganisation of the meaning teacher-students associate 
with the notion of function, has provided a concrete context. Relevant but often 
neglected elements of a meaning landscape of functions have been sketched. The 
results may help to broaden the background on which we design studies on teachers' 
knowledge and beliefs about functions. 

In addition to this, the paper argued for a systematic approach to the re- 
construction of the meanings of concepts as an important didactical task. A related 
research program should aim at knowledge that is less context-bound than 
knowledge on mathematical meanings that was developed in and for the context of 
designing concrete curricula and teacher education programs in some concrete 
reform movement in a very limited period in history. 
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