
Chapter 8

MEASURING RELATIVE ATTACK SURFACES

Michael Howard
Security Business Unit
Microsoft Corporation
Redmond, WA

Jon Pincus
Microsoft Research
Microsoft Corporation
Redmond, WA

Jeannette M. Wing
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA

Abstract

Keywords:

We propose a metric for determining whether one version of a system is more
secure than another with respect to a fixed set of dimensions. Rather than count
bugs at the code level or count vulnerability reports at the system level, we count
a system's attack opportunities. We use this count as an indication of the sys-
tem's "attackability ," likelihood that it will be successfully attacked. We de-
scribe a system's attack surface along three abstract dimensions: targets and
enablers, channels and protocols, and access rights. Intuitively, the more ex-
posed the system's surface, the more attack opportunities, and hence the more
likely it will be a target of attack. Thus, one way to improve system security is
to reduce its attack surface.

To validate our ideas, we recast Microsoft Security Bulletin MS02-005 using
our terminology, and we show how Howard's Relative Attack Surface Quotient
for Windows is an instance of our general metric.
Security metrics, attacks, vulnerabilities, attack surface, threat modeling.

COMPUTER SECURITY IN THE 21 CENTURY

1. Introduction
Given that security is not an either-or property, how can we determine that a

new release of a system is "more secure" than an earlier version? What metrics
should we use and what things should we count? Our work argues that rather
than attempt to measure the security of a system in absolute terms with respect
to a yardstick, a more useful approach is to measure its "relative" security.
We use "relative" in the following sense: Given System A, we compare its
security relative to System B, and we do this comparison with respect to a
given number of yardsticks, which we call dimensions. So rather than say
"System A is secure" or "System A has a measured security number N" we
say "System A is more secure than System B with respect to a fixed set of
dimensions."

In what follows, we assume that System A and System B have the same
operating environment. That is, the set of assumptions about the environment
in which System A and System B is deployed is the same; in particular, the
threat models for System A and System B are the same. Thus, it helps to think
of System A and System B as different versions of the same system.

1.1 Motivation
Our work is motivated by the practical problem faced in industry today. In-

dustry has responded to demands for improvement in software and systems
security by increasing effort1 into creating "more secure" products and ser-
vices. How can industry determine if this effort is paying off and how can we
as consumers determine if industry's effort has made a difference?

Our approach to measuring relative security between systems is inspired by
Howard's informal notion of relative attack surface [Howard, 20031. Howard
identified 17 "attack vectors," i.e., likely opportunities of attack. Examples
of his attack vectors are open sockets, weak ACLs, dynamic web pages, and
enabled guest accounts. Based on these 17 attack vectors, he computes a "mea-
sure" of the attack surface, which he calls the Relative Attack Surface Quotient
(RASQ) , for seven running versions of Windows.

We added three attack vectors to Howard's original 17 and show the RASQ
calcuation for five versions of Windows in Figure 8.1. The bar chart suggests
that a default running version of Windows Server 2003 is much more secure
than previous versions with respect to the 20 attack vectors. It also illustrates
that the attack surface of Windows Server 2003 increases only marginally when
IIS is enabled-in sharp contrast to Windows NT 4.0, where enabling IIS (by
installing the "Option Pack") dramatically increased the RASQ, and to Win-
dows 2000, where IIS is enabled by default2. As will be discussed in Section
6.3, these differences in RASQ are consistent with anecdotal evidence for the
relative security of different Windows platforms and configurations.

Windows NT 4 W~ndows 2000 W~ndows Sewer 2003

Q RASQ Ed RASQ w~th IIS enabled

Figure 8.1. Kclativc Attack Surfacc Quotient of Diffcrcnt Versions of Windows [Howard,
20031

1.2 A New Metric: Attackability

Two measurements are often used to determine the security of a system: at
the code level, a count of the number of bugs found (or fixed from one version
to the next); and at the system level, a count of the number of times a system
(or any of its versions) is mentioned in the set of Common Vulnerabilities and
Exposures (CVE) bulletins [CVE], CERT advisories [CERT], etc.

Rather than measure code-level or system-level vulnerability, we consider a
different measure, somewhat in between, which we call attack opportunity, or
"attackability" for short. Counting thc number of bugs found (or fixcd) misscs
bugs that are not found (or fixed), perhaps the very one that is exploited; it
treats all bugs alike when one might be easier to exploit than another, or the
exploit of one may result in more damage than the exploit of another. Instead,
we want a measure-at a higher abstraction level-that gives more weight to
bugs that are more likely to be exploited. Counting the number of times a
system version appears in bulletins and advisories ignores the specifics of the
system configuration that give rise to the exploit: whether a security patch has
been installed, whether defaults are turned off, whether it always runs in sys-
tem administrator mode. Instead, we want a measure-at a lower abstraction
level-that allows us to refer to very specific states (i.e., configurations) of a
system. Given this intermediate viewpoint, we propose that there are certain
system features that are more likely than others to be opportunities of attack.
The counts of these "more likely to be attacked" system features determine a
system's attackability.

112 COMPUTER SECURITY IN THE 21 CENTURY

Further, we will categorize these attack opportunities into different abstract
dimensions, which together define a system's attack surface. Intuitively, the
more exposed the system's surface, the more attack opportunities, and hence
the more likely it will be a target of attack. Thus, one way to improve system
security is to reduce its attack surface.

Suppose now we are given a fixed set of dimensions and a fixed set of attack
opportunities (i.e., system features) for each dimension. Then with respect to
this fixed set of dimensions of attack opportunities, we can measure whether
System A is "more secure" than System B.

In our work, we use state machines to model Systems A and B. Our abstract
model allows Systems A and B to be any two state machines, each of which
interacts with the same state machine model of its environment, i.e., threat
model. In practice, it is more useful and more meaningful to compare two sys-
tems that have some close relationship, e.g., they provide similar functionality,
perhaps through similar APIs, rather than two arbitrary systems. The abstract
dimensions along which we compare two systems are derived directly from
our state machine model: process and data resources and the actions that we
can execute on these resources. For a given attack, which we define to be a se-
quence of action executions, we distinguish targets from enablers: targets are
processes or data resources that an adversary aims to control, and enablers are
all other processes and data resources that are used by the adversary to carry
out the attack successfully. The adversary obtains control over these resources
through communication channels andprotocols. Control is subject to the con-
straints imposed by a system's set of access rights. In summary, our attack
surface's three dimensions are: targets and enablers, channels and protocols,
and access rights. Attackability is a measure of how exposed a system's attack
surface is.

1.3 Contributions and Roadmap

We use a state machine formal framework to support three main contribu-
tions of this paper:

The notion of a system's attacksurface.

A new relative measure of security, attackability.

A model for vulnerabilities as differences between intended and actual
behavior, in terms of pre-conditions and post-conditions (Section 2.2).

Our "relative" approach has the advantage that security analysts are more
willing and able to give relative rankings of threats and relative values to risk-
mitigation controls, than absolute numbers [Butler, 20031. We also avoid the
need to assign probabilities to attacks.

Measuring Relative Attack Surjirces 113

We view our work as only a first step toward coming up with a meaningful,
yet practical way of measuring (relative) security. By no means do we claim to
have identified "the right" or "all" the dimensions of an attack surface. Indeed,
our use of the word "dimensions" is only meant to be suggestive of a surface;
our dimensions are not orthogonal. We hope with this paper to spark a fruitful
line of new research in security metrics.

In Section 2 we present our formal framework and then in Section 3 we
explain our abstract dimensions of a system's attack surface. To illustrate these
ideas concretely, in Section 4 we recast Microsoft Security Bulletin MS02-
005 in terms of our concepts of targets and enablers. In Section 5 we give an
abstract attack surface measurement function. Again, to be concrete, in Section
6 we revisit Howard's RASQ metric in terms of our abstract dimensions. In
Section 7 we discuss how best to apply and not to apply the RASQ approach.
We close with a review of related work in Section 8 and suggestions for future
work in Section 9.

2. Terminology and Model
Our formal model is guided by the following three terms from Trust in Cy-

berspace [Schneider, 199 11:

A vulnerability is an error or weakness in design, implementation, or
operation.

An attack is the means of exploiting a vulnerability.

A threat is an adversary motivated and capable of exploiting a vulnera-
bility.

We model both the system and the threat as state machines, which we will
call System and Threat, respectively. A state machine has a set of states, a set
of initial states, a set of actions, and a state transition relation. We model an
attack as a sequence of executions of actions that ends in a state that satisfies
the adversary's goal, and in which one or more of the actions executed in an
attack involves a vulnerability.

2.1 State Machines
A state machine, M = (S, I , A, T), is a four-tuple where S is a set of states,

I 5 S is a set of initial states, A is a set of actions, and T = S x A x S is a
transition relation. A state s E S is a mapping from typed resources to their
typed values:

Of interest to us are state resources that are processes and data. A state tran-
sition, (s, a , s'), is the execution of action a in state s resulting in state s'. A

114 COMPUTER SECURITY IN THE 21 CENTURY

change in state means that either a new resource is added to the mapping, a
resource was deleted, or a resource changes in value. We assume each state
transition is atomic.

An execution of a state machine is the alternating sequence of states and
action executions:

where so E I and V i > O . (S ~ - ~ , ail si) E T . An execution can be finite or
infinite. If finite, it ends in a state.

The behavior of a state machine, M, is the set of all its executions. We
denote this set Beh(M). A state s is reachable if either s E I or there is an
execution, e E Beh(M), such that s appears in e.

We will assume that actions are specified by pre- and post-conditions. For
an action, a E A, if a.pre and a.post denote a's pre- and post-condition specifi-
cations, we can then define the subset of the transition relation, T, that involves
only action a as follows:

a.T = { (s , a, st) : S x A x S I a.pre(s) + a.post(s, s t))

We model both the system under attack and the threat (adversary) as state
machines:

system = (S s , I s , As1 T s)
Threat = (ST, IT, AT, TT)

We partition the resources of a state machine, M , into a set of local resources
and a set of global resources, ResM = Resh kJ Res:. We define the com-
bination of the two state machines, ST = System W Threat, by merging all the
corresponding components3:

SST ~ R ~ ~ s T + V ~ ~ S T

IST = IS U IT

A S ~ = A S U A ~

TsT = T s U TT

We identify the global resources of S and the global resources of T such that
ResgT = Resg = Resg and so RessT = Resi kJ Resk kJ ResgT. Finally,
ValsT = Vals U ValT. We extend the definitions of executions, behaviors,
etc. in the standard way.

An adversary targets a system under attack to accomplish a goal:

System-Under-Attack = (System W Threat) x Goal

Measuring Relative Attack Surfices 115

where Goal is formulated as a predicate over states in SST. Note that we make
explicit the goal of the adversary in our model of a system under attack. Exam-
ple goals might be "Obtain root access on host H or "Deface website on server
S." In other contexts, such as fault-tolerant computing, Threat is synonymous
with the system's "environment." Thus, we use Threat to model environmental
failures, due to benign or malicious actions, that affect a system's state.

Intuitively, the way to reduce the attack surface is to ensure that the behavior
of System prohibits Threat from achieving its Goal.

2.2 Vulnerabilities
Vulnerabilities can be found at different levels of a system: implementation,

design, operational, etc. They all share the common intuition that something in
the actual behavior of the system deviates from the intended behavior. We can
capture this intuition more formally by comparing the difference between the
behaviors of two state machines. Suppose there is a state machine that models
the intended behavior, and one that models the actual behavior:

We define the vulnerability difference set, Vul, to be the difference in behaviors
of the two machines:

An execution sequence in Vul arises from one or more differences between
some component of the state machine Actual and the corresponding compo-
nent of Intend, i.e., differences between the corresponding sets of (1) states (or
more relevantly, reachable states), (2) initial states, (3) actions, or (4) transition
relations. We refer to any one of these kinds of differences as a vulnerability.
Let's consider each of these cases:

1. SAct - S~nt # 0
If there is a difference in state sets then there are some states that are defined

for Actual that are not intended to be defined for Intend. The difference may
be due to (1) a resource that is in a state in Actual, but not in Intend or (2)
a value allowed for resource in Actual that is not allowed for that resource in
Intend. (A resource that is not in a state in Actual, but is in Intend is ok.)
The difference may not be too serious if the states in the difference are not
reachable by some transition in TAct. If they are reachable, then the difference
in transition relations will pick up on this vulnerability. However, even if they
are not reachable, it means that if any of the specifications for actions changes
in the future, we must be careful to make sure that the set of reachable states
in Actual is a subset of that of Intend.

116 COIMPUTER SECURITY IN THE 21 CENTURY

2. I ~ c t - I ~ n t # 0
If there is a difference in initial state sets then there is at least one state in

which we can start an execution when we ought not to. This situation can arise
if resources are not initialized when they should be, they are given incorrect
initial values, or when there are resources in an initial actual state but not in
any initial intended state.

3. A ~ c t - A ~ n t # 0
If there is a difference in action sets then there are some actions that can

be actually done that are not intended. These actions will surely lead to un-
expected behavior. The difference will show up in the differences in the state
transition relations (see below).

4. T ~ c t - T'nt # 0
If there is a difference in state transition sets then there is at least one state

transition allowed in Actual that should not be allowed according to Intend.
This situation can arise because either (i) the action sets are different or (ii) the
pre-/post-conditions for an action common to both action sets are different.

More precisely, for case (ii) where A A ~ ~ = Alnt, consider a given action
a E AInt. If a.TAct - a.Trnt is non-empty then there are some states either in
which we can execute a in Actual and not in Intend or which we can reach as
a result of executing a in Actual and not in Intend. Let aAct.pre and aInt.pre
be the pre-conditions for a in Actual and Intend, respectively, and similarly for
their post-conditions. In terms of pre- and post-conditions, no difference can
arise if

aAct.pre + aInt.pre and

Intuitively, if the "actual" behavior is stronger than the "intended" then we are
safe.

Given that Actual models the actual behavior of the system, then our system
combined with the Threat machine looks like:

System-Under-Attack = (Actual W Threat) x Goal
as opposed to

System-Under-Attack = (Intend W Threat) x Goal

again with the expectation that were Intend implemented correctly, Goal would
not be achievable.

In this paper we focus our attention at implementation-level vulnerabilities,
in particular, differences that can be blamed on an action's pre-condition or
post-condition that is too weak or incorrect. A typical example is in handling
a buffer overrun . Here is the intended behavior, for a given input string, s:

length(s) _< 512 + "process normally" A length(s) > 512 + "report error and ter-
minate"

Meuswing Rekztive Attack Su~faces 117

If the programmer forgot to check the length of the input, the actual behavior
might instead be

length(s) 5 512 + "process normally" A length(s) > 512 =. "execute extracted
payload"

Here "execute extracted payload" presumably has an observable unintended
side effect that differs from just reporting an error.

2.3 Attacks
An attack is the "means of exploiting a vulnerability" [Schneider, 19911. We

model an attack to be a sequence of action executions, at least one of which
involves a vulnerability. More precisely, an attack, k, either starts in an unin-
tended initial state or reaches an unintended state through one of the actions
executed in k. In general, an attack will include the execution of actions from
both state machines, System and Threat.

The difference between an arbitrary sequence of action executions and an
attack is that an attack includes either (or both) (1) the execution of an action
whose behavior deviates from the intended (see previous section) or (2) the
execution of an action, a E AAct - Amt(# 0). In this second case, the
set of unintended behaviors will include behaviors not in the set of intended
behaviors since AAct # AInt.

For a given attack, k, the means of an attack is the set of all actions in k and
the set of all process and data resources accessed in performing each action
in k. These resources include all global and local resources accessed by each
action in k and all parameters passed in as arguments or returned as a result to
each action executed in k.

3. Dimensions of an Attack Surface
We consider three broad dimensions to our attack surface:

Targets and enablers. To achieve his goal, the adversary has in mind
one or more targets on the system to attack. An attack target, or simply
target, is a distinguished process or data resource on System that plays
a critical role in the adversary's achieving his goal. We use the term
enabler for any accessed process or data resource that is used as part of
the means of the attack but is not singled out to be a target.

Channels and protocols. Communication channels are the means by
which the adversary gains access to the targets on System. We allow both
message-passing and shared-memory channels. Protocols determine the
rules of interaction among the parties communicating on a channel.

Access rights. These rights are associated with each process and data
resource of a state machine.

118 COIWPUTER SECURITY IN THE 21 CENTURY

Intuitively, the more targets, the larger the attack surface . The more chan-
nels, the larger the attack surface. The more generous the access rights, the
larger the attack surface.

We now look at each of these dimensions in turn.

3.1 Targets and Enablers
Targets and enablers are resources that an attacker can use or coopt. There

are two kinds: processes and data. Since it is a matter of the adversary's goal
that determines whether a resource is a target or enabler, for the remainder of
this section we use the term targets to stand for both. In particular, a target in
one attack might simply be an enabler for a different attack, and vice versa.

Examples of process targets are browsers, mailers, and database servers.
Examples of data targets are files, directories, registries, and access rights.

The adversary wants to control the target: modify it, gain access to it, or
destroy it. Control means more than ownership; more generally, the adversary
can use it, e.g., to trigger the next step in the attack. Consider a typical worm
or virus attack, which follows this general pattern:

Step 1: Ship an executable-treated as a piece of data-within a carrier to a
target machine.

Step 2: Use an enabler, e.g., a browser, to extract the payload (the executable)
from the carrier.

Step 3: Get an interpreter to execute the executable to cause a state change on
the target machine.

where the attacker's goal, achieved after the third step, may be to modify state
on the target machine, to use up its resources, or to set it up for further attacks.

The prevalence of this type of attack leads us to name two special types of
data resources. First, executables is a distinguished type of data resource in that
they can be interpreted (i.e., evaluated). We associate with executables one or
more eval functions, eval: executable -+ unit.4 Different eval functions might
interpret the same executable with differing effects. Executables can be targets
and controlling such a target includes the ability to call an eval function on it.
The adversary would do so, for example, for the side effect of establishing the
pre-condition of the next step in the attack.

Obvious example types of eval functions include browsers, mailers, appli-
cations, and services (e.g., Web servers, databases, scripting engines). Less
obvious examples include application extensions (e.g., Web handlers, add-on
dll's, ActiveX controls, ISAPI filters , device drivers), which run in the same
process as the application; and helper applications (e.g., CGI scripts), which
run in a separate process from the application.

Meusuring Relutive Attuck Swfaces 119

Carriers are our second distinguished type of data resource. Executables are
embedded in carriers. Specifically, carriers have a function extractpayload:
carrier + executable. Examples of carriers include viruses, worms, Trojan
horses, and email messages.

Part of calculating the attack surface is determining the types and numbers
of instances of potential process targets and data targets, the types and num-
bers of instances of eval functions for executables that could have potentially
damaging side effects; and the types and numbers of instances of carriers for
any executable.

3.2 Channels and Protocols
A channel is a means of communicating information from a sender to a

receiver (e.g., from an attacker to a target machine). We consider two kinds
of channels: message-passing (e.g., sockets, RPC connections , and named
pipes) and shared-memory (e.g., files, directories, and registries). Channel
"endpoints" are processes.

Associated with each kind of channel is a protocol, the rules of exchang-
ing information. For message-passing channels, example protocols include
ftp, RPC, http, and streaming. For shared-memory, examples include proto-
cols that might govern the order of operations (e.g., a file has to be open be-
fore read), constrain simultaneous access (e.g., multiple-readerlsingle-writer
or single-readerlsingle-writer), or prescribe locking rules (e.g., acquire locks
according to a given partial order).

Channels are data resources. A channel shared between System and Threat
machines is an element of ~ e s (& in the combination of the two machines.
In practice, in an attack sequence, the Threat machine might establish a new
message-passing channel, e.g., after scanning host machines to find out what
services are running on port 80.

Part of calculating the attack surface is determining the types of channels,
the numbers of instances of each channel type, the types of protocols allowed
per channel type, the numbers and types of processes at the channel endpoints,
the access rights (see below) associated with the channels and their endpoints,
etc.

3.3 Access rights
We associate access rights with all resources. For example, for data that are

text files, we might associate read and write rights; for executables, we might
associate execute rights. Note that we associate rights not only with files and
directories, but also with channels (since they are data resources) and channel
endpoints (since they are running processes).

COMPUTER SECURITY IN THE 21 CENTURY

Conceptually we model these rights as a relation, suggestive of Lampson's
orginal access control matrix [Jampson, 19741:

Access 5 Principals x Res x Rights

where Principals = Users U Processes, Res = Processes U Data, and Rights
is left uninterpreted. (Res is the same set of resources introduced in Section
2.) For example, in Unix, Rights = {read, write, execute), in the Andrew
file system, Rights = {read, lookup, insert, delete, write, lock, administer),
and in Windows there are eighteen different rights associated with files and
directories alone; and of course not all rights are appropriate for all principals
or resources. More generally, to represent conditional access rights, we can
extend the above relation with a fourth dimension, Access 5 Principals x Res
x Rights x Conditions, where Conditions is a set of state predicates.

There are shorthands for some "interesting" subsets of the Access relation,
e.g., accounts, trust relationships, and privilege levels, that we usually imple-
ment in practice, in lieu of representing the Access relation as a matrix.

Accounts represent principals, i.e., users and processes. Thus, we view
an account as shorthand for a particular principal with a particular set of
access rights. Accounts can be data or process targets.

There are some special accounts that have default access rights. Exam-
ples are well-known accounts such as guest accounts, and accounts with
"admin" privileges. These typically have names that are easy to guess.

Part of calculating the attack surface is determining the number of ac-
counts, the number of accounts with admin privileges, and the existence
and number of guest accounts, etc. Also, part of calculating the attack
surface is determining for each account if the tightest access rights pos-
sible are associated with it.

A trust relationship is just a shorthand for an expanded access rights ma-
trix. For example, we might define a specific trust relation, Tr 5 Princi-
pals x Principals, where network hosts might be a subset of Principals.
Then we might define the access rights for principal pl to be the same
as or a subset of those for principal p2 if T r (p l , p2). We could do some-
thing similar to represent the "speaks for" relation of Lampson, Abadi,
Burrows, and Wobber [Lampson et al., 19921. In both cases, by mod-
eling access rights as a (flat) ternary relation, however, we lose some
information: the structural relationship between the two principals (A
trusts B or A speaks for B). We choose, however, to stick to the simpler
access rights matrix model because of its prevalence in use.

Privilege levels map a principal to a level in a total or partial order, e.g.,
none < user < root. Associated with a given level is a set of access

Memuring Relutive Attuck Swfaces 121

rights. Suppose we have a function, privlevel: Principals + {none,
user, root), then the rights of principal p would be those associated with
privlevel (p).

Reducing the attack surface with respect to access rights is a special case of
abiding by the Principle of Least Privilege: Grant only the relevant rights to
each of the principals who are allowed access to a given resource.

4. Security Bulletins

To validate our general attack surface model, we described a dozen Mi-
crosoft Security bulletins [MSRC] using our terminology [Pincus and Wing,
20031. The one example we present here illustrates how two different attacks
can exploit the same vulnerability via different channels.

The Microsoft Security Bulletin MS02-005, posted February 11, 2002, re-
ports six vulnerabilities and a cumulative patch to fix all of them. We explain
just the first (see Figures 8.2 and 8.3). The problem is that the processing of an
HTML document (a web page sent. back from a server or HTML email) that
embeds another object involves a buffer overrun . Exploiting this buffer over-
run vulnerability lets the adversary run arbitrary code in the security context of
the user.

We now walk through the template which we use for describing these bul-
letins.

First we specie the vulnerability as the difference in actual from intended
behavior for an action. Here the action is the processing by MSHTML (the
HTML renderer on Microsoft Windows 2000 and Windows XP) of an HTML
document D in a security zone Z. The intended pre-condition is "true," i.e.,
this action should be allowed in all possible states. However, due to a missing
validation check of the action's input, the actual pre-condition is that the length
of the object, X, embedded in D, should be less than or equal to 512 bytes.

The intended post-condition is to display the embedded object as long as
the ability to run ActiveX Controls is enabled for zone Z. The actual post-
condition, due to the non-trivial pre-condition, is that if the length of X is
longer than 5 12 bytes, then the executable E extracted from X is evaluated for
its effects. By referring to the pre- and post-conditions of E, i.e., E.pre and
E.post, we capture E7s effects as if it were evaluated; this makes sense only for
a resource that is an executable, and thus has an eval function defined for it.
Note that most executables, when evaluated, will simply crash the MSHTML
process.

After describing the vulnerability, we give a series of sample attacks, each
of which shows how the vulnerability can be exploited by the adversary. Be-
fore giving some sample attacks for MS02-005a, we explain the parts in our
template that we use to describe each attack.

COMPUTER SECURITY IN THE 21 CENTURY

Action Vulnerability: MSHTML processes HTML document D in zone Z.

Intendedprecondition: true
Act~ralpracondition: D contains <EMBED SRC=X> + lenyth(X) 5 512
lntcndedpostcondition: (one of many clauses)

D contains <EMBED SRC=X> A "Run ActivcX Controls " is enablcd for Z +- display(X)
Actlralpostcondition: (one of many clauses)

D contains <EMBED SRC=X> A "Run ActiveX Controls" is enabled for Z +
[(length(X) > 5 12 A extract-payloado() = E) + (E.pre =$- E.post)
A length(X) 5 512 =+ display()()]

Attack 1: Web server cxccutcs arbitra~y code on client.
Goal: Enable execution of arbitrary code on client.

Resource Table

Resource

HTTPD web server (process)
server-client web connection C (data)

Preconditions

browser B (process)
HTML document D (data)
MSHTML farocess)

rn Victim requests a web page from adversary's site S.

Carrier

Victim's machine imps site S to zone Z.

Y

Victim's machine has "Run ActiveX Controls" security option enablcd for zone Z.

Channel

MP
E
E
T

Adversary creates HTML document D containing an embed tag <EMBED Xs, where
length()() > 5 12 and extract-payloado() = E.

Target/Enabler

E
E

Attack Sequence

1 Web server sends document D to browser B over connection C.

2 R passes D to MSHTML in zone 2.

3 MSHTML processes D in zone Z.

Postconditions

Arbitrary, depending on the payload.

Figure 8.2. Microsoft Security Bulletin MS02-005a: Cu~nulative Patch for Internet Explorer
(1)

Measuring Relative Attack Surfaces

Attack 2: Mail-based attack (HTML email) executing arbitrary code on client.
Goal: Enable execution of arbitrary code on client.

Resource Table

Resource 11 Carrier I Channel I Targe.t/Enabler I
HTTPD web servcr (process)
server-client mail connection C (data)
Outlook Express OE (process)

HTML document D (data)
MSHTML (process)

Preconditions

Victim able to receive mail from attacker.

Victim's IITML email is received in zone Z.

Victim's machine has "Run ActiveX Controls " security option enabled for zone Z.

Adversary creates HTML document D containing an embed tag <EMBED X>, where
length(X) > 512 and extractpayload(X) - E.

Adversary creates mail message M with D included, where Z # Restricted Zone.

Attack Sequence

1 Adversary sends HTML message M to victim via email.

2 Victim views (or previews) M in OH.

3 OE passes D to MSHTML in zone Z .

4 MSHTML processes D in zone 2.

Postconditions

Arbitrary, depending on the payload.

Figure 6.3. Microsoft Security Bulletin MS02-005a: Cumulative Patch for Internet Explorer

(11)

124 COMPUTER SECURITY IN THE 21 CENTURY

rn The goal of the attack.

A resource table showing for each resource (data or process) involved in
the attack whether it serves as a carrier ("Y" means "yes; a blank, "no7'),
a channel (if so, "MP" means message-passing ; " S M means shared-
memory; and a blank means it is not a channel), or a target or enabler
("T" means it is a target; " E , an enabler).

rn The pre-condition for the attack. Each clause is a conjunct of the pre-
condition.

rn The attack itself, written as a sequence of actions. The action exploiting
the vulnerability is in boldface. (More formally, we would specify each
action with pre- and post-conditions. For the attack to make sense, the
pre-condition of the attack should imply the pre-condition of the first
action in the attack, the post-condition of the ith action should imply
the pre-condition of the i + 1st action, and the post-condition of the last
action should imply the post-condition of the attack.)

rn The post-condition for the attack. This post-condition corresponds to
the adversary's goal, i.e., the reason for launching the attack in the first
place. It should imply the goal (see first item above).

Let's now return to our example. Since MSHTML is used by both the
browser and the mailer, we give two sample attacks, each exploiting the same
vulnerability just described.

In the first attack (Figure 8.2), the adversary's goal is to run arbitrary code
on the client. As indicated by the resource table for Attack 1, he accomplishes
his goal by using the web server and the client browser as enablers. The server-
client web connection is the message-passing channel by which the attack oc-
curs. The HTML document is the carrier of the payload and the MSHTML
process is the target of attack.

The pre-condition for the attack is that the victim should have requested a
web page from the adversary and should have enabled for zone Z the option to
run ActiveX Controls, and that the adversary's site is mapped to zone Z on the
victim's machine. The attack itself is the sequence of three actions: the web
server sends an HTML document D with an ill-formed embedded object to the
client browser; the browser passes D to the MSHTML process; the MSHTML
processes D as specified in the vulnerability. The post-condition of the attack
is the effect of running the embedded executable.

In the second attack (Figure 8.3), the adversary's goal is the same and the
vulnerability is the same. The means of attack, however, are different. Here,
the enablers are an HTML mail document and the mailer process, i.e., Outlook
Express. Note that people usually consider Outlook Express to be the target,

Meusuring Relative Attuck Sui-fuces 125

but in fact, for this attack, it is an enabler. The channel, carrier, and target are
the same as for the first attack.

The pre-condition is different: the victim needs to be able to receive mail
from the attacker and HTML email received is in zone Z that is not the re-
stricted zone. The attack is a sequence of four actions: the web server sends
an HTML document D with an ill-formed embedded object to the victim via
email; the victim views the HTML document in the mailer process, i.e., Out-
look Express; the mailer process sends D to MSHTML in zone Z; and finally,
the MSHTML processes D as specified in the vulnerability. The post-condition
is as for the first attack, i.e., the effect of running the embedded executable.

5. Analyzing Attack Surfaces
We use our broad dimensions of targets and enablers, communication chan-

nels and protocols, and access rights to guide us in deciding (1) what things
to count, to determine a system's attackability ; (2) what things to eliminate or
reduce, to improve system security; and (3) how to compare two versions of
the same system. In this section we consider briefly the first two items; Section
6 gives a detailed concrete example of all three.

5.1 Measuring the Attack Surface
We can define a measure of the system's attack surface to be some function

of the targets and enablers, the channels associated with each type or instance
of a target and enabler, the protocols that constrain the use of channels, and the
access rights that constrain the access to all resources.

surf = f (targets, enablers, channels, protocols, access rights)

In general, we can define the function f in terms of additional functions
on targets, enablers, channels, and access rights to represent relationships be-
tween these (e.g., the constraints imposed by protocols on channels, and the
constraints imposed by access rights on all resources), or weights of each type
(e.g., to reflect that certain types of targets are more critical than others or to
reflect that certain instances of channels are less critical than others).

We deliberately leave f uninterpreted because in practice what a security an-
alyst may want to measure may differ from system to system. Moreover, defin-
ing a precise f in general, even for a given system, can be extremely difficult.
We leave the investigation of what different types of metrics are appropriate
for f for future work. In Section 6 we give a very simplisticf:

5.2 Reducing the Attack Surface
The concepts underlying our attack surface also give us a systematic way

to think about how to reduce it. We can eliminate or reduce the number of

126 COMPUTER SECURITY IN THE 21 CENTURY

(I) types or instances of targets, processes, enablers, executables, carriers, eval
functions, channels, protocols, and rights; (2) types or instances of vulnera-
bilities, e.g., by strengthening the actual pre- or post-condition to match the
intended; or (3) types or instances of attacks, e.g., through deploying one or
more security technologies.

Principles and rules of thumb that system administrators and software de-
velopers follow in making their systems more secure correspond naturally to
our concepts. For example, the tasks specified in "lockdown instructions" for
improving security of a system frequently include eliminating data and process
targets and strengthening access rights. Consider these examples:

I as an argument to an eval function.
Secure by default. I Eliminate entire types of targets, enablers, and channels;

Colloquial

Turn off macros.
Block attachments in Outlook.

Formal

Eliminate an eval function for one type of data.
Avoid giving any executable (data)

I to match that of the intended behavior.
Change your password every 90 days. 1 Increase the likelihood that the authentication

Check for buffer overrun .

Validate your input.

I I mechanism's vre-condition is satisfied. I

restrict access rights.
Strengthen the post-condition of the actual behavior

to match that of the intended behavior.
Strengthen the pre-condition of the actual behavior

6. An Example Attack Surface Metric
Howard identified a set of 17 RASQ vectors [Howard, 20031 and defined a

simple attack surface function to determine the relative attack surface of seven
different versions of Windows. In Section 6.1 we present 20 attack vectors:
Howard's original 17 plus 3 others we added later. In Section 6.2 we present his
RASQ calculation for all 20 attack vectors in detail. In Section 6.3 we analyze
his RASQ results: we confirm observed behavior reflecting user experience
and lockdown scenarios, but also we point out additional missing elements.

6.1 Attack Vectors for Windows
Howard's original 17 RASQ vectors [Howard, 20031 are shown as the first

17 in Figure 8.4. Upon our5 initial analysis of his work, we noted that he
had not considered enablers, such as scripting engines. Thus, we subsequently
added three more attack vectors, shown in italics. Figure 8.4 shows how we
map the 20 attack vectors into our terminology of channels, process targets,
data targets, process enablers, and access rights.

We describe each in more detail below.

Meamring Relative Atfuck Surjaces 127

1 Open sockets: TCP or UDP sockets on which at least one service is
listening. Since one service can listen on multiple sockets and multiple
services can listen on the same socket, this attack vector is a channel
type; the number of channels is independent of the number of services.

2 Open RPC endpoints: Remotely-accessible handlers registered for re-
mote procedure calls with the "endpoint manager." Again, a given ser-
vice can register multiple handlers for different RPC interfaces.

3 Open named pipes: Remotely-accessible named pipes on which at least
one service is listening.

4 Services: Services installed, but not disabled, on the machine. (These
are equivalent to daemons on UNIX systems.)

5 Services running by default: Services actually running at the time the
measurements are taken. Since our measurements are taken when the
system first comes up, these are the services that are running by default
at start-up time.

6 Services running as SYSTEM: Services configured to log on as Local-
System (or System), as opposed to Localservice or some other user.
(Localsystem is in the administrators group.)

7 Active Web handlers: Web server components handling different proto-
cols that are installed but not disabled (e.g., the W3C component handles
http; the nntp component handles nntp).

8 Active ISAPI filters : Web server add-in components that filter partic-
ular kinds of requests. ISAPI stands for Internet Services Application
Programming Interface; it enables developers to extend the functionality
provided by a web server. An ISAPI filter is a dynamic link library (.dll)
that uses ISAPI to respond to events that occur on the server.

9 Dynamic web pages: Files under the web server root other than static
(.html) pages. Examples include .exe files, .asp (Active Server Pages)
files, and .pl (Per1 script) files.

10 Executable vdirs: "Virtual Directories" defined under the web server
root that allow execution of scripts or executables stored in them.

I I Enabled accounts: Accounts defined in local users, excluding any dis-
abled accounts.

12 Enabled accounts in adrnin group: Accounts in the administators group,
excluding any disabled accounts.

COMPUTER SECURITY IN THE 21 CENTURY

13 Null sessions to pipes and shares: Whether pipes or "shares" (directories
that can be shared by remote users) allow anonymous remote connec-
tions.

14 Guest account enabled: Whether there exists a special "guest" account
and it is enabled.

15 Weak ACLs in FS: Files or directories that allow "full control" to ev-
erybody. "Full control" is the moral equivalent of UNIX rwxnvxnvx
permissions.

16 Weak ACLs in Registry: Registry keys that allow "full control" to ev-
erybody.

17 Weak ACLS on shares: Directories that can be shared by remote users
that allow "full control" to everybody. Even if one has not explicitly
created any shares, there is a "default share" created for each drive; it
should be protected so that others cannot get to it.

18 VBScript enabled: Whether applications, such as Internet Explorer and
Outlook Express, are enabled to execute Visual Basic Script.

19 Jscript enabled: As for (l8), except for Jscript.

20 ActiveX enabled: As for (1 8), except for ActiveX Controls.

6.2 Attack Surface Calculation
In Howard's calculation, the attack surface area is the sum of independent

contributions from a set of channels types, a set of process target types, a set
of data target types, a set of process enablers, all subject to the constraints of
the access rights relation, A.

surf A = surf $, + surf $ + surf 2 + surf pA,
This simple approach has a major advantage in that it allows the categories

to be measured independently. This simplification comes at a cost. For ex-
ample, since interactions between services and channels are not considered,
Howard's RASQ calculation fails to distinguish between sockets opened by
a service running as administrator and (less attackable) sockets opened by a
service running as an arbitrary user.

Figure 8.5 gives a table showing each of the four terms in detail. Each term
takes the form of a double summation: for each type (of channel types, chty,
process target types, ptty, data target types, dtty), and process enabler types,
pety, for each instance of that type, a weight, w, for that instance is added

Measuring Relative Attuck Sui$xxs

20 RASQ Attack Vectors
Open sockets
Open RPC endpoints
Open named pipes
Services
Services running by default
Services running as SYSTEM
Active Web handlers
Active ISAPI Filters
Dynamic Web pages
Executable vdirs
Enabled accounts
Enabled accounts in admin group
Null sessions to pipes and shares
Guest account enabled
Weak ACLs in FS
Weak ACLs in Registry
Weak ACLs on shares
VBScript enabled
Jscript enabled
ActiveX enabled

Formal
channels
channels
channels
process targets
process targets, constrained by access rights
process targets, constrained by access rights
process targets
process targets
process targets
data targets
data targets
data targets, constrained by access rights
channels
data targets, constrained by access rights
data targets, constrained by access rights
data targets, constrained by access rights
data targets, constrained by access rights
process enabler
process enabler
process enabler

Figure 8.4. Mapping RASQ Attack Vectors into Our Formalism

130 COMPUTER SECURITY IN THE 21 CENTURY

to the total attack surface. For a given type, 7, we assume we can index the
instances per type such that we can refer to the ith instance by q. For weight
functions, w, that are conditional on the state of the instance (e.g., whether or
not an account is default), we use the notation (cond, vl, vz) where the value
is vl if cond is true and va if cond is false.

For channels, access control is factored into the weights in one very limited
case: Howard gives a slightly lower weight to named pipes compared to the
other channels because named pipes are not generally accessible over the In-
ternet. An alternate, more general approach to modeling this situation would
be to calculate a "local attack surface" and "remote attack surface," each of
which is appropriate for different threats.

For process targets, the weight function for services makes use of the access
rights relation explicitly by referring to whether a service is a default service
or if it is running as administrator.

The influence of the access rights relation is the most obvious for data tar-
gets, since it is used to determine whether an account is in a group with ad-
ministrator privileges and whether it is a guest account. Note that we view an
account as a shorthand for a subset of the access rights, i.e., a particular prin-
cipal with a particular set of rights. Access rights is also used to determine the
value of weakACL on files, registry keys, and shares. The predicate weakACL
is true of its data target if all principals have all possible rights to it, i.e.,"full
control".

The weights for process enablers are the count of the number of applica-
tions that enable a particular form of attack. Here, we consider only two ap-
plications, Internet Explorer and Outlook Express; in general, we would count
others. Script-based attacks, for example, may target arbitrary process or data
targets, but are enabled by applications that process script embedded in HTML
documents. Malicious ActiveX components can similarly have arbitrary tar-
gets, but any successful attack is enabled by an application that allows execu-
tion of the potentially malicious component.

Our reformulation of Howard's original model shows that there are only 13
types of attack targets, rather than 17; in addition, there are 3 types of enablers.

6.3 Analysis of Attack Surface Calculation
The results of applying these specific weight functions for five different ver-

sions of Windows are shown in Figure 8.1. As mentioned in the introduction,
the two main conclusions to draw are that with respect to the 20 RASQ at-
tack vectors (1) the default version of a running Windows Server 2003 system
is more secure than the default version of a running Windows 2000 system,
and (2) a running Windows Server 2003 with IIS installed is only slightly less
secure than a running Windows Server 2003 without IIS installed.

Measuring Relative Attuck Surfuces

I endpoint I 0.9 I

s ~ r f , ~ Z!:, w(ci)
chty w(ci)

nainedpipe
nullsession

webhandler

0.8
0.9

s ~ f fl= C p e p t t v ~ 2 1 w(pi)

where de f i i) = (default(pi), 0.8,O.O)
ndm@i) = (run-us-admin(pi), 0.9,O.O)

socket

ptty

dlty
account
file
regkey
share

1 .O

w (P ~)

adg(di) = (di E AdminGro~p, 0.9,O.O)
where

gue(di) = (di.name = "guest", 0.9, 0.0)

service 1 0.4 + def(pi) + adnt(pi)

IE = Internet Explorer
whcrc

OE = Outlook Express

Figure 8.5. Howard's Relative Attack Surface Quoticnt Metric

132 COMPUTER SECURITY Ihr THE 21 CENTURY

While it is too early to draw any conclusions about Windows Server 2003,
the RASQ numbers are consistent with observed behavior in several ways:

Worms such as Code Red and Nimda spread through a variety of mecha-
nisms. In particular, Windows NT 4.0 systems were at far greater risk of
being successfully attacked by these worms if the systems were installed
with IIS than if they were not. This observation is consistent with the
increased RASQ of this less secure configuration.

= Windows 2000 security is generally perceived as being an improvement
over Windows NT 4.0 security [IW, 20011; the differences in RASQ for
the two versions in a similar configuration (i.e., with IIS enabled) reflect
this perception.

Conversely, Windows 2000 (unlike Windows NT 4.0) is shipped with
IIS enabled by default, which means that the default system is actually
more likely to be attacked. This observation is consistent with anecdotal
evidence that many Windows 2000 users (including one author of this
paper) affected by Code Red and Nimda had no idea they were actually
running 11s.

As a sanity check, we also measured the RASQ in two "lockdown" config-
urations: applying IIS security checklists to both NT 4.0 with IIS [MS-IISV~]
and Windows 2000 [MS-IISvS]. Since the tasks specified in the lockdown in-
structions include disabling services, eliminating unnecessary accounts, and
strengthening ACLs, the RASQ unsurprisingly decreases: on Windows NT
4.0, from 598.3 in the default configuration to 395.4 in the lockdown configu-
ration; on Windows 2000, from 342.2 in the default to 305.1. These decreases
are consistent with users' experience that systems in lockdown configurations
are more secure; for example, such configurations were not affected by the
Code Red worm [MSB, 20011.

Our set of 20 attack vectors still misses types and instances, some of which
also need more complex weight functions:

For channels, some IPC mechanisms were not counted; for example
COM is counted if DCOM is enabled, but otherwise it is not.

For process targets, we did not handle executables that are associated
with file extensions that might execute automatically (i.e., "auto-exec")
or be executed mistakenly by a user. Also, we did not count ActiveX
controls themselves as process targets, only as process enablers, i.e.,
whether applications such as IE and OE were set up to invoke them.

a The model treats all instances of each type the same, whereas some in-
stances should probably be weighted differently. For example, a socket

~Mt.u.szrring Relative Attack SurJbces 133

over which several complex protocols are transmitted should be a bigger
contributor to the attack surface than a socket with a single protocol; and
port 80 is well-known attack target that should get a higher weight than
other channel endpoints.

Just as for process targets that are services, for other types of process
targets the weight function should take into consideration the privileges
of the account that the process is executing as. For example, for versions
of IIS 5 5.0, ISAPI filters always run as System, but in IIS 6.0, they run
as Network Service by default.

These missing attack opportunities and refined weight functions suggest po-
tential enhancements to Howard's RASQ model and the attack surface calcu-
lation.

7. Discussion of the RASQ Approach
We have some caveats in applying the RASQ approach naively:

Obtaining numbers for individual attack vector classes is more mean-
ingful than reading too much into an overall RASQ number. It is more
precise to say that System A is more secure than System B because A
has fewer services running by default rather than because A's RASQ is
lower than B's. After all, summing terms with different units does not
"type check". For example, if the number of instances in one attack vec-
tor class is N for System A and 0 for System B, but for a different attack
vector class, the number is 0 for System A and N for System B, then
all else being equal, the systems would have the same RASQ number.
Clearly, the overall RASQ number does not reflect the security of either
A or B with respect to the two different attack vector classes.

The RASQ numbers we presented are computed for a given configura-
tion of a running system. When an RASQ number is lower for System
A than System B because certain features are turned off by default for
System A and enabled by default for System B, that does not mean that
System A is inherently "more secure"; for example, as the owner of Sys-
tem A begins to turn features on over time it can become just as insecure
as System B. On the other hand, if 95% of deployed systems are always
configured as System A initially (e.g., features off by default) and re-
main that way forever, then we could say in some global sense that we
are "more secure" than if those systems were configured as System B.

Do not compare apples to oranges. It is tempting to calculate an RASQ
for Windows and one for Linux and then try to conclude one operating
system is more secure or more attackable than the other. This would be

COMPUTER SECURITY IN THE 21 CENTURY

a big mistake. For one, the set of attack vectors would be different for
the two different systems. And even if the sets of attack vectors were
identical, the threat models differ.

Rather, a better way to apply the RASQ approach for a given system is first
to identify a set of attack vectors, and then for each attack vector class, compute
a meaningful metric, e.g., number of running instances per class. Comparing
different configurations of the same system per attack vector class can illumi-
nate poor design decisions, e.g., too many sockets open initially or too many
accounts with admin privileges. When faced with numbers that are too high or
simply surprising, the system engineer can then revisit these design decisions.

8. Related Work
To our knowledge the notion of "attackability " as a security metric is novel.

At the code level, many have focused on counting or analyzing bugs (e.g.,
[Chou et. al, 2001, Gray, 1990, Lee and Iyer, 1993, Sullivan and Chillarge,
19911) but none with the explicit goal of correlating bug count with system
vulnerability.

At the system level, Browne et al. [Browne et al., 20011 define an analytical
model that reflects the rates at which incidents are reported to CERT. Follow-
on work by Beattie et al. [Beattie et al., 20021 studies the timing of applying
security patches for optimal uptime based on data collected from CVE entries.
Both empirical studies focused on vulnerabilities with respect to their discov-
ery, exploitation, and remediation over time, rather than on a single system's
collective points of vulnerability.

Finally, numerous websites, such as Security Focus [SecurityFocus], and
agencies, such as CERT [CERT] and MITRE [CVE], track system vulnerabil-
ities. These provide simplistic counts, making no distinction between different
types of vulnerabilities, e.g., those that are more likely to be exploited than
others, or those relevant to one operating system over another. Our notion of
attackability is based on separable types of vulnerabilities, allowing us to take
relative measures of a system's security.

9. Future Work
Our state machine model is general enough to model the behavior an adver-

sary attacking a system. We identified some useful abstract dimensions such as
targets and enablers, but we suspect there are others that deserve consideration.
In particular, if we were to represent configurations more explicitly, rather than
as just states of the system (in particular the resources and access rights), then
we can more succinctly define what it means for a process to be running by
default or whether an account is enabled.

Meusuring Relative Attack Surjuc!es 135

Further into the future we imagine a "dial" on the workstation display that
allows developers to determine if they have just increased or decreased the at-
tack surface of their code. We could flag design errors or design decisions that
tradeoff performance for security. For example, consider a developer debating
whether to open up several hundred sockets at boot-up time or to open sockets
on demand upon request by authenticated users. For a long-running server, the
first approach is appealing because it improves responsiveness and is a simpler
design. However, even a simple attack surface calculation would reveal a sig-
nificant increase in the server's attackability ; this potential security cost would
need to be balanced against the benefits.

Measuring security, quantitatively or qualitatively, has been a long-standing
challenge to the community. The need to do so has recently become more
pressing. We view our work as a first step in revitalizing this research area. We
suggest that the best way to begin is to start counting what is countable; then
use the resulting numbers in a qualitative manner (e.g., doing relative com-
parisons). Perhaps over time our understanding will then lead to meaningful
quantitative metrics.

Acknowledgments
This research was done while Jeannette Wing was a Visiting Researcher at

Microsoft Research from September 2002-August 2003. She would like to
thank Jim Lams, Amitabh Srivastava, Dan Ling, and Rick Rashid for hosting
her visit.

This research is also now sponsored in part by the Defense Advanced Re-
search Projects Agency and the Wright Laboratory, Aeronautical Systems Cen-
ter, Air Force Materiel Command, USAF, F336 15-93- 1 - 1330, and Rome Labo-
ratory, Air Force Materiel Command, USAF, under agreement number F30602-
97-2-003 1 and in part by the National Science Foundation under Grant No.
CCR-9523972. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation
thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense Advanced Research
Projects Agency Rome Laboratory or the U.S. Government.

Notes
1 . For example, Microsoft's Trustworthy Computing Initiative, started in January 2002.
2. NT 4.0 measurements were taken on a system where Service Pack 6a had been installed; NT 4.0

with IIS enabled, with both Service Pack 6a and the NT 4.0 Option Pack installed. IIS stands for Internet
Information Server.

136 COMPUTER SECURITY IN THE 21 CENTURY

3. There are more elegant formulations of composing two state machines; we use a simple-minded
approach that basically merges two state machines into one big one. In the extreme, if the local resources
sets are empty, then the two machines share all state resources; if the global resource set is empty, they
share nothing. Thus our model is flexible enough to allow communication through only shared memory,
only message passing, or a combination of the two.

4. Writing the return type of eval as unit is our way, borrowed from ML, to indicate that a function has
a side effect.

5. Pincus and Wing

References

[Chou et. al, 20011 Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallen,
and Dawson Engler (2001). An empirical study of operating systems er-
rors. In ACM Sym-posium on Operating Systems Principles, pages 73-88,
October.

[Gray, 19901 J. Gray (1990). A census of tandem system availability between
1985 and 1990. IEEE Transactions on Software Engineering, 39(4), Octo-
ber.

[Lee and Iyer, 19931 I. Lee and R. Iyer (1993). Faults, symptoms, and soft-
ware fault tolerance in the tandem GUARDIAN operating system. In Pro-
ceedings of the Inter-national Symposium on Fault-Tolerant Computing.

[Sullivan and Chillarge, 19911 M. Sullivan and R. Chillarge (1991). Software
defects and their impact on system 11 8 availability. In Proceedings of the
International Symposium on Fault-Tolerant Computing, June.

[SecurityFocus] Security Focus. http://www.securityfocus.com/vulns/stats.shtml.

[CERT] CERT. CERTICC Advisories. http://www.cert.org/advisories/.

[CVE] MITRE. Common Vulnerabilities and Exposures.
http://www.cve.mitre.org/.

[MS-IISV~] Microsoft TechNet (2001). Microsoft Inter-
net Information Server 4.0 Security Checklist, July.
http://www.microsoft.com/technet/security/tools
/chklist/iischk.asp.

[MS-IISV~] Microsoft TechNet (2000). Secure Internet Informations Services
5 Checklist, June. http://www.microsoft.com/technet/secu~ols/chklist
liis5chk.a~~.

[MSB, 20011 Microsoft TechNet (2001). Microsoft Security Bulletin MSO1-
033, June.
http://www.microsoft.com/technet/securityhulletiS-O 1-033 .asp.

[Jampson, 19741 Butler Lampson (1974). Protection. Operating Systems Re-
view, 8(1): pages 18-24, January.

[IW, 20011 Information Week (2001). Windows 2000 Security Represents a
Quantum Leap, April. http://www.informationweek.com/834/winsec.htm.

Meamring Relative Attuck Swfaces 137

[Howard, 20031 Michael Howard (2003). Fending OR Fu-
ture Attacks by Reducing the Attack Surface, February.
http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dncode/html/secure02 132003 .asp.

[Lampson et al., 19921 Butler Lampson, Martin Abadi, Michael Burrows, and
EdwardWobber (1992). Authentication in distributed systems: Theory and
practice. ACM TOCS, 10(4):265-3 10, Novembe.

[MSRC] Microsoft Security Response Center. Security Bulletins.
http://www.microsofi.com/technet/treeview/?url=/technet/security
/current.asp?frame=true

[Schneider, 19911 Fred B. Schneider (1991). Trust in Cyberspace. National
Academy Press, CSTB study edited by Schneider.

[Butler, 20031 Shawn Butler (2003). Security Attribute and Evaluation
Method. PhD thesis, Carnegie Mellon University, Pittsburgh, PA.

[Beattie et al., 20021 Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wa-
gle, Chris Wright, and Adam Shostack (2002). Timing the application of
security patches for optimal uptime. In 2002 LISA XVI, pages 101-1 10,
November.

[Browne et al., 20011 Hilary Browne, John McHugh, William Arbaugh, and
William Fithen (2001). A trend analysis of exploitations. In IEEE Sympo-
sium on Security and Privacy, May. CS-TR-4200, UMIACS-TR-2000-76.

[Pincus and Wing, 20031 Jon Pincus and Jeannette M. Wing (2003). A Tem-
plate for Microsoft Security Bulletins in Terms of an Attack Surface
Model. Technical report, Microsoft Research, in progress.

