
A Survey on Improving TCP Performance over
Wireless Networks

Xiang Chen. Hongqiang Zhai. Jianfeng Wang. and Yuguang Fang
Department of Electrical and Computer Engineering
University of Florida. Gainesville. FL 3261 1
E-mail: {xchenQecel . zhaiQecel . jf wang0. f ang0 . ece) . uf 1 . edu

Contents

1 Introduction 658

2 Overview of TCP 660
2.1 Basic Functionality of TCP . 661
2.2 State-of-the-Art in Standard TCP 663

2.2.1 Fast Retransmission and Fast Recovery 663
2.2.2 Selective Acknowledgment . 663
2.2.3 Random Early Detection . 664
2.2.4 Explicit Congestion Notification 664

3 TCP in One-Hop Wireless Networks 665
3.1 Challenges . 665

3.1.1 Channel Errors . 665
3.1.2 Mobility . 666
3.1.3 Asymmetry . 666

3.2 Current Solutions . 666
3.2.1 Split-Connection Solutions 667
3.2.2 Proxy-Based Solutions . 670
3.2.3 Link-layer Solutions . 672
3.2.4 End-to-end Solutions . 674

4 TCP in Mobile Ad Hoc Networks 675
4.1 Challenges. 676

4.1.1 Channel Errors . 676
4.1.2 Medium Contention and Collision 676
4.1.3 Mobility . 678
4.1.4 Multi-path Routing . 679
4.1.5 Congestion . 679

4.2 Current Solutions . 679
4.2.1 TCP with Feedback Solutions 680
4.2.2 TCP without Feedback Solutions 683
4.2.3 Lower Layer Enhancement Solutions 685

5 Future Research Directions 688
5.1 TCP Fairness . 688
5.2 Interactions among Different Layers 688
5.3 Compatibility with the Wired Internet 689

6 Conclusions 689

References

1 Introduction

As a result of the advancement of wireless technology and the proliferation of
handheld wireless terminals, recent years have witnessed an ever-increasing
popularity of wireless networks, ranging from wireless Local Area Networks
(WLANs) and wireless wide-area networks (WWANs) to mobile ad hoc net-
works (MANETs). In WLANs (e.g., the Wi-Fi technology) or in WWANs
(e.g., 2.5G/3G/4G cellular networks), mobile hosts communicate with an
access point or a base station that is connected to the wired networks. Ob-
viously, only one hop wireless link is needed for communications between a
mobile host and a stationary host in wired networks. In contrast, there is
no fixed infrastructure such as base stations or access points in a MANET.
Each node in a MANET is capable of moving independently and function-
ing as a router that discovers and maintains routes and forwards packets
to other nodes. Thus, MANETs are multi-hop wireless networks by nature.
Note that MANETs may be connected at the edges to the wired Internet.

Transmission control protocol (TCP) is a transport layer protocol which
provides reliable end-to-end data delivery between end hosts in traditional

wired network environment. In TCP, reliability is achieved by retransmit-
ting lost packets. Thus, each TCP sender maintains a running average of the
estimated round trip delay and the average deviation derived from it. Pack-
ets will be retransmitted if the sender receives no acknowledgment(ACK)
within a certain timeout interval (e.g., the sum of smoothed round trip
delay and four times the average deviation) or receives duplicate acknowl-
edgments. Due to the inherent reliability of wired networks, there is an
implicit assumption made by TCP that any packet loss is due to congestion.
To reduce congestion, TCP will invoke its congestion control mechanisms
whenever any packet loss is detected. Since TCP is well tuned, it has be-
come the de facto transport protocol in the Internet that supports many
applications such as web access, file transfer and email. Due to its wide use
in the Internet, it is desirable that TCP remains in use to provide reliable
data transfer services for communications within wireless networks and for
those across wireless networks and the wired Internet. It is thus crucial that
TCP performs well over all kinds of wireless networks in order for the wired
Internet to extend to the wireless world.

Unfortunately, wired networks and wireless networks are significantly
different in terms of bandwidth, propagation delay, and link reliability. The
implication of the difference is that packet losses are no longer mainly due to
network congestion; they may well be due to some wireless specific reasons.
As a matter of fact, in wireless LANs or cellular networks, most packet losses
are due to high bit error rate in wireless channels and handoffs between
two cells, while in mobile ad hoc networks, most packet losses are due to
medium contention and route breakages, as well as radio channel errors.
Therefore, although TCP performs well in wired networks, it will suffer
from serious performance degradation in wireless networks if it misinterprets
such non-congestion-related losses as a sign of congestion and consequently
invokes congestion control and avoidance procedures, as confirmed through
analysis and extensive simulations carried out in [4, 5, 7, 18-21]. As TCP
performance deteriorates more seriously in ad hoc networks compared to
WLANs or cellular networks, we divide wireless networks into two large
groups: one is called one-hop wireless networks that include WLANs and
cellular networks and the other is called multi-hop wireless networks that
include MANETs.

To understand TCP behavior and improve TCP performance over wire-
less networks, given these wireless specific challenges, considerable research
has been carried out and many schemes have been proposed. As the re-
search in this area is still active and many problems are still wide open, this
chapter serves to pinpoint the primary causes for TCP performance degra-

dation over wireless networks, and cover the state of the art in the solution
spectrum, in hopes that readers can better understand the problems and
hence propose better solutions based on the current ones.

This chapter is organized as follows. We present in Section 2 a brief
overview of TCP congestion control mechanisms and some current perfor-
mance enhancement techniques. As the challenges TCP is facing differ in
one-hop and multi-hop wireless networks and so do the solutions, it is suit-
able to separate them into two sections. Section 3 starts by identifying
the challenges imposed on the standard TCP in one-hop wireless networks,
followed by the classification of some existing solutions according to their
design philosophy. Among the solutions, there are four large categories. The
first class of schemes attempts to improve TCP performance by splitting a
TCP connection into two at the base station or access point. Relying on
an intelligent proxy located at the base station enforcing tasks such as local
retransmission or ACK suppression/regulation, the second class eliminates
the negative effects of wireless links on TCP. The approaches in the third
class aim at hiding the characteristics of wireless links from TCP by provid-
ing a reliable link layer. The last category resolves the problems by slightly
modifying TCP at the end systems, e.g., selective acknowledgment enabling
or fast retransmission. In each class, the solutions are discussed in certain
details. The structure of Section 4 is similar to that of Section 3, except that
TCP performance over MANETs is the focus. Similarly, current solutions
can also be grouped into three camps, according to their design philosophy.
The first camp incorporates network feedback information into their designs
to modify TCP's response to non-congestion-related packet losses while the
second camp attempts to do so without explicit feedback. Unlike the previ-
ous two, the third one starts by tuning the lower layers in order for TCP to
operate normally, while leaving TCP intact. With the understanding that
current solutions fail to improve on some critical issues such as fairness, Sec-
tion 5 gives some suggestions on future research issues. Finally, concluding
remarks are given in Section 6.

2 Overview of TCP

Before we dive into the detailed discussion of questions such as why TCP per-
forms poorly in wireless networks, how TCP performance can be improved, it
is necessary to prepare the reader by presenting an overview of not only the
basic functionality of TCP but also the state-of-the-art in TCP. The basic
functions of TCP as a transport layer protocol include flow control, error re-

covery and congestion control, while the state-of-the-art techniques include
fast retransmission and recovery, selective acknowledgment, etc., mainly fo-
cusing on how to promptly and effectively respond to network congestion.

2.1 Basic Functionality of TCP

It is well known that TCP is a connection-oriented transport protocol that is
aimed at guaranteeing end-to-end reliable ordered delivery of data packets
over wired networks. For this purpose, basic functionalities such as flow
control, error control, and congestion control are indispensable. While these
functions have a clean-cut definition of their own, in practice they are closely
coupled with one another in TCP implementation.

In TCP, a sliding window protocol is used to implement flow control,
in which three windows are used, namely, Congestion Window, Advertised
window, and Transmission Window. Congestion window indicates the max-
imum number of segments (Without causing confusion, the term segment
and packet are used interchangeably henceforth) that the sender can trans-
mit without congesting the network. As shown next in details on congestion
control, this number is determined by the sender based on the feedback from
the network. Advertised window, however, is specified by the receiver in the
acknowledgements it. Advertised window indicates to the sender the amount
of data the receiver is ready to receive in the future. Normally, it equals to
the available buffer size at the receiver in order to prevent buffer overflow.
Transmission window means the maximum number of segments that the
sender can transmit at one time without receiving any ACKs from the re-
ceiver. Its lower edge indicates the highest numbered segment acknowledged
by the receiver. Obviously, to avoid network congestion and receiver buffer
overflow, the size of transmission window is determined as the minimum of
the congestion window and the receiver's advertised window.

To notify the sender that data is correctly received, TCP employs a
cumulative acknowledgement mechanism. In other words, upon the receipt
of an ACK, the sender knows that all previously transmitted data segments
with a sequence number less than the one indicated in the ACK are correctly
received at the receiver. In the case that an out-of-order segment (identified
on the basis of sequence numbers) arrives at the receiver, a duplicate ACK is
generated and sent back to the sender. It is important to note that in wired
networks, an out-of-order delivery usually implies a packet loss. If three
duplicate cumulative ACKs are received, the sender will assume the packet is
lost. A packet loss is also assumed if the sender does not receive an ACK for
the packet within a timeout interval called retransmission timeout (RTO),

Transmission number

Figure 1: TCP congestion window dynamics ([44])

which is dynamically computed as the estimated round-trip time (RTT)
plus four times the mean deviation. By retransmitting the lost packet, TCP
achieves reliable data delivery.

It turns out that in wired networks, almost all the packet losses are due
to network congestion rather than transmission errors. Thus, in addition
to retransmission, TCP responds to packet losses by invoking its congestion
control mechanism. TCP congestion control is also based on the sliding
window mechanism described above and consists of two major phases: slow
start and congestion avoidance. In the slow start phase, the initial conges-
tion window size (cwnd) is set to one maximum segment size (MSS) and is
incremented by one MSS on each new acknowledgement. After cwnd reaches
a preset threshold (ssthresh), the congestion avoidance starts and it is in-
creased linearly, i.e., it is increased by one segment for each RTT. Upon a
timeout, ssthresh is set to the half of the current transmission window size
(but at least two segments) and the congestion window is reduced to 1 MSS.
Then slow start mechanism starts again. This procedure is also called the
additive increase and multiplicative decrease algorithm (AIMD, [25]). The
entire congestion control algorithm is illustrated in Fig. 1. Note that the
sender reacts to three duplicate ACKs in a different way, which is described
in fast retransmission and fast recovery in the next subsection.

2.2 State-of-the-Art in Standard TCP

Most of the progress made in TCP is centered on error recovery and con-
gestion control. Representative innovations include fast transmissions and
fast recovery [42], selective acknowledgements [31], random early detection
(RED, [17]) in routers, and explicit congestion notification (ECN, [39]). No-
tice that depending on what features are included, there are several TCP
flavors, including TCP Tahoe, TCP Reno, TCP New Reno, etc. Among
them, TCP Reno is by far most widely deployed. Next, we briefly describe
these innovations in the following.

2.2.1 Fast Retransmission and Fast Recovery

As noted earlier, a packet can be assumed lost if three duplicate ACKs are
received. In this case, TCP performs a fast retransmission of the packet.
This mechanism allows TCP to avoid a lengthy timeout during which no
data is transferred. At the same time, ssthresh is set to one half of the
current congestion window, i.e., cwnd, and cwnd is set to ssthresh plus three
segments. If the ACK is received approximately one round trip after the
missing segment is retransmitted, fast recovery is entered. That is, instead
of setting cwnd to one segment and starting with slow start, TCP sets
cwnd to ssthresh, and then steps into congestion avoidance phase. However,
only one packet loss can be recovered during fast retransmission and fast
recovery. Additional packet losses in the same window may require that the
RTO expire before retransmission.

2.2.2 Selective Acknowledgment

Owing to the fact that fast retransmission and fast recovery can only han-
dle one packet loss from one window of data, TCP may experience poor
performance when multiple packets are lost in one window. To overcome
this limitation, recently the selective acknowledgement option (SACK) is
suggested as an addition to the standard TCP implementation.

The SACK extension adopts two TCP options. One is an enabling op-
tion, which may be sent to indicate that the SACK option can be used upon
connection establishment. The other is the SACK option itself, which may
be sent by TCP receiver over an established connection if SACK option is
enabled through sending the first option.

The SACK option contains up to four (or three, if SACK is used in
conjunction with the Timestamp option used for RTTM [24]) SACK blocks,
which specifies contiguous blocks of the received data. Each SACK block

consists of two sequence numbers which delimit the range of data the receiver
has received and queued. A receiver can add the SACK option to ACKs it
sends back to a SACK-enabled sender. In the event of multiple losses within
a window, the sender can infer which packets have been lost and should be
retransmitted using the information provided in the SACK blocks. A SACK-
enabled sender can retransmit multiple lost packets in one RTT instead of
detecting only one lost packet in each RTT.

2.2.3 Random Early Detection

Random Early Detection (RED) is a router-based congestion control mecha-
nism that seeks to detect incipient congestion and notify some TCP senders
of congestion by controlling the average queue size at the router. To no-
tify the TCP senders of congestion, the router may mark or drop pack-
ets, depending on whether the senders are cooperative. As a response, the
senders should reduce their transmission rate. This is done in two algo-
rithms. The first algorithm is to compute the average queue size by us-
ing exponential weighted moving average. If we denote by avg and q the
average queue size and the current queue size, respectively, then avg =
(1 - wq) x avg + wq x q, where wq is the queue weight. The other algo-
rithm is to compute the packet-marking or packet-dropping probability pa.
If avg falls in between minth and maxth, the packet marking probability
pb = maxp(avg - minth)/(maxth - minth) and the final marking probability
pa = pb/(l - count * pb), where maxp and count are design parameters,
respectively, denoting the maximum value for pb and the number of packets
having arrived since last packet marking or dropping. If avg exceeds maxth,
pa = 1, which means that the router marks or drops each packet that arrives.
Through control over the average queue size prior to queue overflow, RED
succeeds in preventing heavy network congestion and global synchronization
as well as improving fairness. Notice that numerous variants of RED have
been proposed to improve various performance of the original RED [16, 29,
33, and 341.

2.2.4 Explicit Congestion Notification

Most of current Internet routers employ traditional "drop-tail" queue man-
agement. In other words, the routers drop packets only when the queue over-
flows, which could lead to the undesirable global synchronization problem
as well as heavy network congestion. Recently, active queue management
(AQM) mechanisms have been proposed since they can detect congestion

before the queue overflows at the routers and inform TCP senders of the con-
gestion, thereby avoiding some of these problems caused by the "drop-tail"
policy. In the absence of Explicit Congestion Notification (ECN), however,
the only choice that is available to AQM for indicating congestion to end
systems is to drop packets at the routers. With ECN, AQM mechanisms
have an alternative to allow routers to notify end systems of congestion in
the network.

ECN requires some changes to the header of both IP and TCP. In the IP
header, an ECN field with two bits is used. By setting this field to specific
bits, the router can send an indication of congestion to end systems. For
TCP, two new flags in the Reserve field of the TCP header are specified.
By manipulating these two flags, the TCP sender and the TCP receiver can
enable ECN via negotiation during connection setup; the receiver can inform
the sender if it receives congestion indications from intermediate routers; and
the sender can inform the receiver that it has invoked congestion control
mechanisms [39].

3 TCP in One-Hop Wireless Networks

In this section, we focus on TCP performance in one-hop wireless networks,
which typically include wireless LAN and wireless cellular networks. We first
summarize some challenges adversely affecting TCP performance. Then,
some representative schemes proposed to improve TCP performance are
described. Notice that in this chapter we focus on how to improve TCP
performance, so some schemes such as WTCP [41], which attempts to pro-
pose a totally different transport layer protocol, are not presented here since
it is not an improvement scheme based on TCP.

3.1 Challenges

Compared with wired networks, one-hop wireless networks have some in-
herent adverse characteristics that will significantly deteriorate TCP perfor-
mance if no action is taken. In essence, these characteristics include bursty
channels errors, mobility and communication asymmetry.

3.1.1 Channel Errors

In wireless channels, relatively high bit error rate because of multipath fading
and shadowing may corrupt packets in transmission, leading to the losses
of TCP data segments or ACKs. If it cannot receive the ACK within the

retransmission timeout, the TCP sender immediately reduces its congestion
window to one segment, exponentially backs off its RTO and retransmits
the lost packets. Intermittent channel errors may thus cause the congestion
window size at the sender to remain small, thereby resulting in low TCP
throughput.

3.1.2 Mobility

Cellular networks are characterized by handoffs due to user mobility. Nor-
mally, handoffs may cause temporary disconnections, resulting in packet
losses and delay. TCP will suffer a lot if it treats such losses as conges-
tion and invokes unnecessary congestion control mechanisms. The handoffs
are expected to be more frequent in next generation cellular networks as the
micro-cellular structure is adopted to accommodate an increasing number of
users. Thing could be worse if TCP cannot handle handoffs gracefully. Sim-
ilar problems may occur in wireless LAN, as mobile users will also encounter
communication interruptions if they move to the edge of the transmission
range of the access point.

3.1.3 Asymmetry

In one-hop wireless networks, the wireless link between a base station and a
mobile terminal in nature is asymmetric. Compared with the base station,
the mobile terminal has limited power, processing capability, and buffer
space. Another asymmetry stems from the vastly different characteristics of
wired links and wireless links. The former is reliable and has large bandwidth
while the latter is error-prone and has limited and highly variable bandwidth.
For example, the bandwidth of a typical Ethernet is lOMbps (100Mbps or
even higher for fast Ethernet) while the highest bandwidth for 3G networks
is only about 2Mbps. Therefore, the wireless link is very likely to become
the bottleneck of TCP connections.

3.2 Current Solutions

The quest to overcome the deficiency of TCP over wireless links has been
courting extensive efforts. Among the various solutions proposed to im-
prove TCP performance, there are four major categories: split-connection
solutions, proxy-based solutions, link-layer solutions, and end-to-end solu-
tions. The split-connection solutions attempt to improve TCP performance
by splitting a TCP connection into two at the base station so that the TCP
connection between the base station and the mobile host can be specially

TCP eonneclm 1

TCP connection 2

Figure 2: I-TCP, splitting a TCP connection into two connections

tuned for the wireless links. Realizing the base station is a critical point,
approaches based on proxy put an implicit or explicit intelligent agent at
the base station, detecting packet losses over wireless links and taking cor-
responding actions (such as duplicate ACK suppression and/or local re-
transmission) to ensure the TCP sender responds correctly. For the third
category, a reliable link layer is built by adopting some link error recovery
mechanisms, seeking to hide link errors from the TCP sender. Unlike the
previous three classes, the end-to-end approaches enhance TCP by using
SACK to quickly recover from multiple packet losses or by predicting in-
coming handoffs to avoid unnecessary congestion control invocation. Next,
some representative schemes in each category are presented.

3.2.1 Spli t -Connection Solut ions

Indirect T C P : Indirect-TCP (I-TCP) [7] protocol proposed by Bakre and
Badrinath suggests that any TCP connection from a mobile host (MH)
to a machine on the fixed network (FH) should be split into two separate
connections: one between the MH and its base station (BS) over the wireless
medium and the other between the BS and the FH over the fixed network,
as shown in the Fig. 2. A packet sent to MH is first received by BS, it
then sends an acknowledgment to FH and then the packet is forwarded to
MH. If MH moves to a different cell while communicating with an FH, the
whole connection information maintained at the current BS is transferred
to the new BS and the new BS takes over thereafter. The FH is unaware of
this indirection and is not affected when this switch occurs. Also, since the
end-to-end connection is split, the TCP connection over the wireless link
can use some wireless-link-aware TCP variation, which may be tailored to
handle wireless channel errors and handoff disruption.

From the above description, we see that I-TCP separates the congestion
control functionality on the wireless link from that on the fixed network,

which enables the two kinds of links to identify different reasons for packet
losses and then take corresponding actions. In addition, since the TCP
connection is broken into two, it is possible for a mobile host to use some
lightweight transport protocol instead of a full TCP/IP suite to communi-
cate with the base station and access the fixed network through the base
station. This feature is desirable since a mobile host, as pointed out earlier,
has limited battery and processing power. The downside of this scheme,
however, is the following. First, I-TCP violates the end-to-end semantics
of TCP acknowledgments, as both the wired part and the wireless part of
a connection have their own acknowledgments. Second, control overhead
is considerable as the base station needs to maintain a significant amount
of state for each TCP connection and all the state information needs to be
transferred to the new base station in the event of a handoff, which could
result in a long delay.

M-TCP: M-TCP [9] is another split-connection approach that breaks
up a TCP connection between a FH and a MH into two parts: one between
the FH and the BS, and the other between the BS and the MH. What
makes it different from I-TCP is that it manages to preserve TCP end-to-
end semantics.

M-TCP is assumed to operate upon the underlying three-level architec-
ture shown in Fig. 3. A mobile host (MH) communicates with the BS in
the cell. Several BSs are controlled by a supervisor host (SH), which, serv-
ing a gateway, is connected to the wired network. The authors opt for this
architecture for two reasons. The first is that the functionalities at a BS
can be transferred to SH, which may reduce the cost of the network as one
SH is in charge of several BSs; the other is that the number of handoffs
is greatly reduced since a MH roaming from one cell to another need not
perform handoffs as long as the two cells are controlled by the same SH.

Another important assumption made by M-TCP is that a relatively re-
liable link layer is operating underneath M-TCP to recover losses such that
the bit error rate over wireless links is low. The implication of this as-
sumption is that TCP performance degradation is mainly due to frequent
disconnections caused by handoffs.

M-TCP operates as follows. Assume that the MH has acknowledged
bytes up to sequence number x, the SH sends an ACK for bytes up to x - 1
to the TCP sender. Note that this is different from I-TCP in that the SH
only sends ACKs to the sender when it receives ACKs from the MH. If the
SH does not receive ACKs beyond x for some time, the SH will assume
this is due to temporary wireless link outage. Therefore, it sends an ACK
for the last byte x with a zero window size. Upon receiving this ACK,

Mobile Host

Figure 3: Three-level architecture underlving M-TCP

the sender will enter into persist mode, freezing all its transmission states
such as RTO and congestion window. When the wireless link is regained,
the MH will notify the SH by sending a greeting packet. The SH, in turn,
informs the sender of this reconnection, allowing the sender to resume its
transmission from the frozen state. Through this way, the adverse efforts
of disconnections on TCP performance are gracefully eliminated since no
congestion control is invoked.

Some comments are in order. First and foremost, while maintaining end-
to-end TCP semantics, M-TCP works well under the wireless environment
where frequent disconnections between the MH and the BS are common.
Second, during handoffs from one domain of SH to the domain of another
SH, little overhead is incurred since compared to I-TCP, a small amount
of state is transferred from the old SH to the new SH. However, in order
to achieve the expected performance improvement, it relies largely on its
underlying link layer to hide the effects of high bit error rate.

3.2.2 Proxy-Based Solutions

SNOOP: Balakrishnan et al. [6] sought to improve TCP performance by
modifying the network-layer software at a BS while preserving end-to-end
TCP semantics. Snoop protocol gets its name because it adds a snooping
module to network layer, which monitors every packet that passes a BS in
either direction. In the following, we describe how snoop module deals with
packet losses in both directions.

If TCP packets are sent from a FH to a MH, the snoop module caches
each packet that has not yet been acknowledged by the MH. Meanwhile,
the snoop module also keeps track of all the acknowledgments sent from
the mobile host. The snoop module determines that a packet loss occurs
by detecting if either it receives a duplicate acknowledgment or its local
timer times out. In this case, the lost packet is retransmitted if it has been
cached. The duplicate acknowledgments, if any, are suppressed. Through
this way, unnecessary congestion control mechanism invocations are avoided
since packet losses due to wireless channel errors are hidden from the FH.

In the case that packets are transmitted from an MH to an FH, since the
MH cannot tell whether a packet loss is due to errors on the wireless link or
due to congestion elsewhere in the network, TCP SACK option is used. At
the BS, when the snoop module notices a gap in the inbound sequence num-
bers of the packets sent from the MH, selective acknowledgements are sent
to the MH. Upon receiving such SACKS, SACK-enabled MH will retransmit
the lost packets for local loss recovery.

SNOOP is also designed to handle handoffs. Several BSs near a MH will
form a multicast group and buffer some latest packets sent from the FH.
Prior to a handoff, the MH will send control messages to determine that a
BS with strongest signal should be the primary one, i.e., the one forwarding
packets to the MH, and that all other BSs just buffer packets. Therefore,
both handoff latency and packet losses are reduced.

The major merit of this approach is that, it improves TCP performance
through performing local retransmissions across the wireless link without
affecting end-to-end TCP semantics. On the other hand, although TCP
performance during handoffs may be improved, considerable overhead is
incurred for maintaining the multicast BS group and state transfer from one
BS to another. Finally, it is worth noting that special care needs to be taken
to handle the interaction of the snoop module retransmission and TCP end-
to-end retransmission because SNOOP is similar to link-level retransmission
approaches over the wireless links.

Ack Regulator: Since link layer enhancement schemes are shown to
successfully improve TCP performance over wireless link, they have been
adopted in 3G wireless networks. For example, reliable link-layer protocols
such as RLP [49] and RLC [47] are respectively used in 3G1X [48] and UMTS
[46]. However, as pointed out in [I 11, these link layer protocols also introduce
increased delay and rate variability, which may cause bursty ACK arrivals
(called ACK compression [56]) and consequently degrade TCP throughput.
This effect becomes more pronounced as some channel state based scheduling
schemes [8] is used in 3G wireless networks as well.

To reduce such negative effects, Chan and Ramjee ([l l]) proposed a
network-based solution called Aclc Regulator, which is implemented at the
radio network controller (RNC) to regulate the flow of ACKs sent from
the mobile host to the TCP sender. Notice that since most applications
like web browsing mainly use the downlink, this solution is designed for
TCP connections toward the mobile hosts. The key idea is that, the RNC
should control the number of ACKs sent back to the sender each time a data
packet is transmitted to the mobile host or an ACK arrives from the mobile
host, such that there is at most one packet loss due to buffer overflow in one
window of transmitted packets. In this way, the TCP sender operates mainly
in the congestion avoidance phase. In this scheme, the RNC maintains a
data queue for each TCP flow from the sender to the mobile host and an
ACK queue from the mobile host to the sender. By monitoring the current
available buffer space and estimating the number of future incoming data
packets, the RNC decides how many ACKs it should send to the sender
each time. Significant performance improvement has been reported, which,

nevertheless, is achieved at the expense of increased complexity and buffer
space at the RNC.

Advertised Window Control: While a great deal of effort has been
made on the IEEE 802.11 MAC, little research work has been focused on
the interaction of TCP with WLANs. However, to fully understand TCP
behaviors over WLAN is very important, as TCP is the de facto transport
layer protocol for most applications over WLANs.

In [38], the work by Pilosof et al. has shed some light in better under-
standing TCP fairness over WLANs. Through analysis and simulation, it
is discovered that the upstream (from the mobile host to the base station)
and downstream (from the base station to the mobile host) TCP flows do
not fairly share the wireless medium, with a throughput ratio between them
as high as ten times, in favor of upstream flows. They discovered that this
ratio is sensitive to the buffer size at the base station. In particular, TCP
unfairness may fall into four different regions as the buffer size is varying.
Part of the reason is that given the TCP receiver window size, the down-
stream TCP window size fails to reach the receiver window size if some data
packets are lost due to insufficient buffer, while upstream TCP window size
can reach the receive window size because it can tolerate some ACK losses.

Thus, they proposed to modify the receiver's advertised window field in
the ACKs when they pass through the base station. More precisely, given
that there are n TCP flows in the WLANs and the buffer size at the base
station is B, the advertised window size will be set to the minimum of the
original advertised window size and [B/nJ . Simulations and experiments
show that the throughput ratio between upstream and downstream TCP
flows is almost 1 after adopting this change.

3.2.3 Link-layer Solutions

AIRMAIL: Since TCP performance degradation is partly due to the high
bit error rate of the wireless link, it is intuitive to shield TCP from such
errors. With a reliable link-layer protocol in place, unnecessary TCP con-
gestion control invocation due to channel errors can be avoided, and hence
TCP performance is improved. Based on this idea, a reliable link-layer pro-
tocol named AIRMAIL (Asymmetric Reliable Mobile Access In Link-layer)
was proposed in [4]. In AIRMAIL, two well-known link error recovery tech-
niques, i.e., forward error correction (FEC) and automatic repeat request
(ARQ) are employed. Moreover, in order to accommodate the asymmetry
lying between the two ends of a wireless link, i.e., the BS and the MH, AIR-
MAIL purposely devises some asymmetric ARQ error control and window-

based flow control techniques as shown in the following:

Timers are always at the BS regardless of whether it is transmitting
or receiving. Thus all timer-related operations are conducted in the
BS.

The base station receiver sends its status to a mobile transmitter pe-
riodically. However, this is not the case for the mobile receiver to send
its status to the base station transmitter. Rather, the mobile receiver
sends status messages based on an event-driven mechanism. The dif-
ference in the mechanisms of sending status messages is justified by
the power constraint a t the mobile host.

In addition to ARQ, three levels of FEC, namely bit-level FEC, byte-
level FEC, and packet-level FEC, have been employed to provide increased
error correction capability under different mobile environment.

Several comments on AIRMAIL are in order. First, since AIRMAIL
only involves changes at the link layer, no modifications need to be made
to TCP. Obviously, it fits in well with the layered structure of network
protocols. Second, when designing ARQ techniques, AIRMAIL takes into
account the asymmetry between the BS and the MH, a desirable feature
which may relieve the requirement of computing power on the mobile host
and prolong the battery life of the mobile host as well. Third, the draw-
back of AIRMAIL is that it cannot account for temporary disconnections
due to handoff. Thus, even though it succeeds in reducing bit error rate
over wireless links, it can do little to prevent TCP from timing out when an
acknowledgment is not received on time because of long disconnections. In
fact, this observation might apply to various link layer approaches. Finally,
the interaction between link-layer retransmissions and end-to-end retrans-
missions can be complicated, as shown in [14]. It showed that link-layer
retransmission protocols only improve TCP performance when the packet
error rate exceeds a certain threshold. Further study on the interaction is
needed in order to improve TCP performance with the aid of the link-layer
enhancement.

TULIP: TULIP (Transport Unaware Link Improvement Protocol) is
a TCP-unaware link layer protocol that works upon the MAC layer [36].
Because TULIP is targeted for half-duplex wireless links, to avoid collision
between two opposite data streams, it only passes one packet at a time
to the MAC layer. The procedure is described as follows. After receiving
a TCP packet from the upper layer, TULIP passes it to the MAC layer.
When starting to transmit the packet, the MAC layer notifies TULIP by

sending a signal TRANS. Upon reception of TRANS, TULIP starts a timer
At,, which is estimated as the time duration between the beginning of data
packet transmission and the end of the reception of a link-layer ACK (or
a link-layer ACK piggybacked with a data packet). In the case that Atl
is underestimated because of packet length variations, the MAC layer will
inform TULIP by sending another signal WAIT, specifying the additional
time Atz. Readers are referred to [36] for details on how to set At2 as it
involves the specific MAC layer mechanism. To locally recover lost or cor-
rupted packets due to channel errors, a link-layer selective acknowledgment
mechanism is used to retransmit packets, which is assigned high priority
compared to normal data packets in order for fast recovery. Moreover, to
save bandwidth over the wireless link, a mechanism called MAC acceleration
is introduced to piggyback a TCP ACK with the TULIP ACK. Through sim-
ulation it is shown that TULIP achieves a bit better performance compared
to SNOOP in the environment where errors are exponentially distributed
over the wireless channel.

3.2.4 End-to-end Solutions

Fast Retransmission: Fast retransmission is perhaps the simplest end-
to-end scheme to improve TCP performance. Based on the observation
that TCP encounters unacceptably long pauses in communication during
handoffs which cause increased delays and packet losses, fast retransmission
was proposed by Caceres and Iftode to overcome this problem [lo]. The MH
will send duplicate ACKs to the TCP sender immediately after the handoff
process is completed. In this way, the TCP sender can begin retransmission
without waiting for the timeout, hence preventing serious throughput drop.

Selective Acknowledgement: As described earlier, the TCP selective
acknowledgment mechanism can allow a SACK-enabled sender to retrans-
mit in one RTT multiple lost packets in one transmission window and hence
avoid continuous timeouts. However, this mechanism does not distinguish
the reasons for packet losses and still assumes all losses are caused by con-
gestion. Consequently, TCP congestion control procedures are inappropri-
ately called for, which throttles the sender's transmission rate. As shown in
[5] , SACK is useful over the error-prone wireless link where losses occur in
bursts.

Freeze-TCP: It is observed that most current TCP schemes require
base stations to monitor the TCP traffic and actively participate in flow
control in order to enhance performance. However, such schemes might be
undesirable or even useless for several reasons. First, to be compatible with

currently existing infrastructure, it is ideal that no modification should be
made to intermediate nodes, since such nodes may belong to other orga-
nizations and hence are unavailable for modification. Second, as network
security is becoming increasingly important, end-to-end traffic is likely to
be encrypted and hence inaccessible to intermediate nodes. As a result,
some schemes such as SNOOP, I-TCP or M-TCP can no longer work in
such scenarios since they all require the base station to access the traffic be-
fore taking actions. Finally, overly relying on mediation at the intermediate
nodes may cause a significant amount of control overhead, creating network
bottlenecks under heavy traffic load.

To overcome these deficiencies, the author in [22] proposed Freeze-TCP,
a true end-to-end TCP enhancement scheme. The key idea of this scheme
is to exonerate the base station from intervening in the end-to-end TCP
connections. By constantly observing its received signal strength, a mo-
bile host can predict a temporary disconnection due to handoffs or fading.
Once such an event is predicted, the mobile host sends an ACK to the TCP
sender with a zero advertised window size. Upon reception of such an ACK,
the sender enters a persist mode. That is, the sender freezes all retrans-
mission timers and sends zero window probes (ZWP) until the mobile host
advertises a non-zero receiving window size. Since ZWPs are sent out with
exponentially backoff, it is possible that the sender remains idle even the
mobile host has recovered from the disconnection. To tackle this problem,
the same technique as in [lo] is employed. Namely, as soon as the mobile
host knows that it has reconnected, it will send three duplicate ACKs to the
sender, forcing the sender to start fast retransmission. The main advantage
of this scheme is that it improves TCP performance without any modifica-
tion to the intermediate nodes. However, it could be easily seen that the
actual performance depends largely on the accuracy with which the mobile
host predicts an impending disconnection.

4 TCP in Mobile Ad Hoc Networks

TCP performance in mobile ad hoc networks is the focus of this section. It is
expected that compared to one-hop wireless networks, TCP will encounter
more serious difficulty in providing end-to-end communications in mobile ad
hoc networks, as MANETs are, in essence, infrastructureless, self-organizing
multi-hop networks, and lacking centralized network management. Next, we
present the main problems in ad hoc networks, followed by recent solutions.

4.1 Challenges

Some salient characteristics of mobile ad hoc networks, which seriously de-
teriorate TCP performance, include the unpredictable wireless channels due
to fading and interference, the vulnerable shared media access due to ran-
dom access collision, the hidden terminal problem and the exposed terminal
problem, and the frequent route breakages due to node mobility. From the
point of view of network layered architecture, these challenges can be broken
down into five categories, i.e., a) the channel error, b) the medium contention
and collision, c) the mobility, d) the multi-path routing, and e) congestion,
whose adverse impacts on TCP is elaborated next.

4.1.1 Channel Errors

The effects of channel errors in ad hoc networks are similar to those in
one-hop wireless networks except that they are more serious, since a TCP
connection now may consist of multi-hop wireless links, unlike the situation
in cellular networks or wireless LAN where only the last hop is wireless.
Accordingly, the congestion window size at the sender may shrink more
dramatically due to channel errors in several wireless hops, resulting in even
lower throughput in ad hoc networks.

4.1.2 Medium Contention and Collision

Contention-based medium access control (MAC) schemes, such as the IEEE
802.11 MAC protocol [9], have been widely studied and incorporated into
many wireless testbeds and simulation packages for wireless multi-hop ad
hoc networks, where the neighboring nodes contend for the shared wireless
channel before transmitting. There are three key problems, i.e., the hidden
terminal problem, the exposed terminal problem, and unfairness. A hidden
node is the one that is within the interfering range of the intended receiver
but out of the sensing range of the transmitter. The receiver may not cor-
rectly receive the intended packet due to collision from the hidden node. An
exposed node is the one that is within the sensing range of the transmitter
but out of the interfering range of the receiver. Though its transmission
does not interfere with the receiver, it could not start transmission because
it senses a busy medium, which introduces spatial reuse inefficiency. The
binary exponential backoff scheme always favors the latest successful trans-
mitter and results in unfairness. These problems could be more harmful in
multi-hop ad hoc networks than in Wireless LAN as ad hoc networks are
characterized by multi-hop connectivity.

MAC protocols have been shown to significantly affect TCP performance
[20, 21, 40, 45, 51, and 541. When TCP runs over 802.11 MAC, as [54]
pointed out, the instability problem becomes very serious. It is shown that
collisions and the exposed terminal problem are two major reasons for pre-
venting one node from reaching the other when the two nodes are in each
other's transmission range. If a node cannot reach its adjacent node for
several times, it will trigger a route failure, which in turn will cause the
source node to start route discovery. Before a new route is found, no data
packet can be sent out. During this process, TCP sender has to wait and
will invoke congestion control algorithms if it observes a timeout. Serious
oscillation in TCP throughput will thus be observed. Moreover, the random
backoff scheme used in the MAC layer exacerbates this [20]. Since large
data packet sizes and back-to-back packet transmissions both decrease the
chance of the intermediate node to obtain the channel, the node has to back
off a random period of time and try again. After several failed tries, a route
failure is reported.

TCP may also encounter serious unfairness problems [20, 40, 45, and 541
for the reasons stated below:

Topology causes unfairness because of unequal channel access oppor-
tunity for different nodes. As shown in Fig. 1, where the small circle
denotes a node's valid transmission range and the large circle denotes
a node's interference range, all nodes in a 7-node chain topology ex-
perience different degree of competitions. There are two TCP flows,
namely flow 1 from node 0 to 1 and flow 2 from node 6 to 2. The
transmission from node 0 to node 1 experiences interference from three
nodes, i.e., nodes 1, 2, and 3, while the transmission from node 3 to
node 2 experiences interference from five nodes, i.e., nodes 0, 1, 2, 4,
and 5. Flow 1 will obtain much higher throughput than flow 2 due to
the unequal channel access opportunity.

The backoff mechanism in the MAC may lead to unfairness as it always
favors the last successfully transmitting node.

0 TCP flow length influences unfairness. Longer flows implies longer
round trip time and higher packet dropping probability, leading to
lower and more fluctuating TCP end-to-end throughput. Through
this chain reaction, unfairness is amplified, as high throughput will
become higher and low one lower.

/
I ,--_ I/ '\ \

/ \ /'--.\
1

\

I
I -4 , ~ c p f i o w 2 \ /' TCP flo 1

\- -\- -

Figure 4: Node interference in a chain topology

4.1.3 Mobility

Mobility may induce link breakage and route failure between two neighbor-
ing nodes, as one mobile node moves out of the other's transmission range.
Link breakage in turn causes packet losses. As we said earlier, T C P can-
not distinguish between packet losses due to route failures and packet losses
due to congestion. Therefore, TCP congestion control mechanisms react
adversely to such losses caused by route breakages [I , 15, and 271. Mean-
while, discovering a new route may take significantly longer time than TCP
sender's RTO. If route discovery time is longer than RTO, TCP sender will
invoke congestion control after timeout. The already reduced throughput
due to losses will further shrink. It could be even worse when the sender and
the receiver of a TCP connection fall into different network partitions. In
such a case, multiple consecutive RTO timeouts lead to inactivity lasting for
one or two minutes even if the sender and receiver finally get reconnected.

Fu et al. conducted simulations considering mobility, channel error, and
shared media-channel contention [19]. They indicated that mobility-induced
network disconnections and reconnections have the most significant impact
on TCP performance comparing to channel error and shared media-channel
contention. T C P NewReno merely achieves about 10% of a reference TCP's
throughput in such cases. As mobility increases, the relative throughput
drop ranges from almost 0% in a static case to 100% in a highly mobile case
(when moving speed is 20mls) . In contrast, congestion and mild channel er-
ror (say 1%) have less visible effect on TCP (with less than 10% performance
drop compared with the reference TCP).

4.1.4 Multi-path Routing

Routes are short-lived due to frequent link breakages. To reduce delay due to
route re-computation, some routing protocols such as TORA [35] maintain
multiple routes between a sender-receiver pair and use multi-path routing
to transmit packets. In such a case, packets coming from different paths
may not arrive at the receiver in order. Being unaware of multi-path rout-
ing, TCP receiver would misinterpret such out-of-order packet arrivals as
congestion. The receiver will thus generate duplicate ACKs that cause the
sender to invoke congestion control algorithms like fast retransmission (upon
reception of 3 duplicate ACKs).

4.1.5 Congestion

It is known that TCP is an aggressive transport layer protocol. Its attempt
to fully utilize the network bandwidth makes ad hoc networks easily go
into congestion. In addition, due to many factors such as route change
and unpredictable variable MAC delay, the relationship between congestion
window size and the tolerable data rate for a route is no longer maintained
in ad hoc networks. The congestion window size computed for the old route
may be too large for the newly found route, resulting in network congestion
if the sender still transmits at the full rate allowed by the old congestion
window size.

Congestion/overload may give rise to buffer overflow and increased link
contention, which degrades TCP performance. As a matter of fact, [28]
showed the capacity of wireless ad hoc networks decreases as traffic and/or
competing nodes arise.

4.2 Current Solutions

As is shown in the previous section, there is a magnitude of research work
on improving TCP performance over one-hop wireless networks. However,
many of these mechanisms are designed for infrastructure-based networks
and depend on the base stations in distinguishing the error losses from con-
gestion losses. Since mobile ad-hoc networks do not have such an infrastruc-
ture, they are hard to be applied in mobile ad-hoc networks directly.

More recently, several schemes have been proposed to improve TCP
performance over mobile ad hoc networks. We classify the schemes into
three groups, based on their fundamental philosophy: TCP with feedback
schemes, TCP without feedback schemes, and TCP with lower layer en-
hancement schemes. Through the use of feedback information to signal

non-congestion-related causes of packet losses, the feedback approaches help
TCP distinguish between true network congestion and other problems such
as channel errors, link contention, and route failures. On the other end of
the solution spectrum, TCP without feedback schemes makes TCP adapt to
route changes without relying on feedback from the network, in light of the
concern that feedback mechanisms may bring about additional complexity
and cost in ad hoc networks. The third group, lower layer enhancement
schemes, starts with the idea that TCP sender should be hidden from any
problems specific in ad hoc networks while lower layers such as routing layer
and MAC layer need to be tailored with TCP's congestion control algorithms
in mind. As expected, this idea guarantees that TCP end-to-end semantics
is maintained for ad hoc networks to seamlessly internetwork with the wired
Internet. In the following, we present some representative schemes according
to the aforementioned taxonomy.

4.2.1 TCP with Feedback Solutions

TCP-F: In the mobile ad hoc networks, topology may change rapidly due
to the movement of mobile hosts. The frequent topology changes result in
sudden packet losses and delays. TCP misinterprets such losses as conges-
tion and invokes congestion, leading to unnecessary retransmission and loss
of throughput. To overcome this problem, TCP-F (TCP-Feedback) [12] was
proposed so that the sender can distinguish between route failure and net-
work congestion. Similar to Freeze-TCP and M-TCP discussed above, the
sender is forced to stop transmission without reducing window size upon
route failure. As soon as the connection is reestablished, fast retransmission
is enabled.

TCP-F relies on the network layer at an intermediate node to detect the
route failure due to the mobility of its downstream neighbor along the route.
A sender can be in an active state or a snooze state. In the active state,
transport layer is controlled by the normal TCP. As soon as an intermediate
node detects a broken route, it explicitly sends a route failure notification
(RFN) packet to the sender and records this event. Upon reception of the
RFN, the sender goes into the snooze state, in which the sender completely
stops sending further packets, and freezes all of its timers and the values
of state variables such as RTO and congestion window size. Meanwhile, all
upstream intermediate nodes that receive the RFN invalidate the particular
route in order to avoid further packet losses. The sender remains in the
snooze state until it is notified of the restoration of the route through a
route reestablishment notification (RRN) packet from an intermediate node.

From SYN-RECVD

From SYN-SENT

Snooze

To CLOSE-WAIT

or route failure
timeout

Figure 5: The TCP-F state machine [12]

Then it resumes the transmission from the frozen state. The state machine
of TCP-F is shown in Fig. 5.

TCP-ELFN: Holland and Vaidya proposed another feedback-based tech-
nique, the Explicit Link Failure Notification (ELFN) [23, 321. The goal is
to inform the TCP sender of link and route failures so that it can avoid re-
sponding to the failures as if congestion occurs. ELFN is based on DSR [26]
routing protocol. To implement ELFN message, the route failure message of
DSR is modified to carry a payload similar to the "host unreachable" ICMP
message. Upon receiving an ELFN, the TCP sender disables its congestion
control mechanisms and enters into a "stand-by" mode, which is similar to
the snooze state of TCP-F mentioned above. Unlike TCP-F using an ex-
plicit notice to signal that a new route has been found, the sender, while on
stand-by, periodically sends a small packet to probe the network to see if
a route has been established. If there is a new route, the sender leaves the
stand-by mode, restores its RTO and continues as normal. Recognizing most
of popular routing protocols in ad hoc networks are on demand and route
discovery/rediscovery is event driven, periodically sending a small packet at
the sender is appropriate to restore routes with mild overhead and without
modification to the routing layer.

Through explicit route failure notification, TCP-EFLN and TCP-F allow
the sender to instantly enter snooze state and avoid unnecessary retransmis-
sions and congestion control which wastes precious MH battery power and
scarce bandwidth. With explicit route reestablishment notification from in-
termediate nodes or active route probing initiated at the sender, these two
schemes enable the sender to resume fast transmission as soon as possible.
But neither of these two considers the effects of congestion, out-of-order

packets, or bit errors, which are quite common in wireless ad hoc networks.
In addition, both TCP-ELFN and TCP-F use the same parameter sets in-
cluding congestion window size and RTO after reestablishment of routes as
those before the route failure, which may cause problems because conges-
tion window size and RTO are route specific. Using the same parameter
sets helps little to approximate the available bandwidth of new route if the
route changes significantly.

ATCP: ATCP (Ad hoc TCP) [30] also utilizes the network layer feed-
back. The idea of this approach is to insert a thin layer called ATCP between
IP and TCP, which ensures correct behavior in the event of route failures
as well as high bit error rate. The TCP sender can be put into a persist
state, congestion control state or retransmit state, respectively, correspond-
ing to the packet losses due to route breakage, true network congestion or
high bit error rate. Note that unlike the previous two feedback-based ap-
proaches, packet corruption caused by channel errors has also been tackled.
The sender can choose an appropriate state by learning the network state
information through explicit congestion notification (ECN) messages and
ICMP "Destination Unreachable" messages.

The state transition diagram for ATCP at the sender is shown in Fig.
6. Upon receiving a "Destination Unreachable" message, the sender enters
into the persist state. The TCP at the sender is frozen and no packets are
sent until a new route is found, so the sender does not invoke congestion
control. Upon receipt of an ECN, congestion control is invoked without
waiting for a timeout event. If a packet loss happens and the ECN flag is
not set, ATCP assumes the loss is due to bit errors and simply retransmits
the lost packet. In case of multi-path routing, upon receipt of duplicate
ACKs, TCP sender does not invoke congestion control, realizing multi-path
routing shuffles the order in which segments are received. So ATCP works
well when the multi-path routing is applied.

ATCP is considered to be a more comprehensive approach in comparison
with TCP-F and TCP- ELFN in that it accounts for more possible sources
of deficiency including bit errors and out of order delivery due to multi-
path routing. Through re-computation of congestion window size each time
after route reestablishment, ATCP may adapt to change of routes. Another
benefit of ATCP is that it is transparent to TCP, and hence nodes with and
without ATCP can interoperate.

In summary, as shown by the simulations, these feedback-based ap-
proaches improve TCP performance significantly while maintaining TCP's
congestion control behavior and end-to-end TCP semantics. However, all
these schemes require that the intermediate nodes have the capability of de-

Receive dup ACK or

Receive

Figure 6: State transition diagram for ATCP at the sender [30]

tecting and reporting network states such as link breakages and congestion.
Enhancement at the transport layer, network layer, and link layer are all
required. It deserves further research on the ways to detect and distinguish
network states in the intermediate nodes.

4.2.2 TCP without Feedback Solutions

Adaptive Congestion Window Limit Setting: Based on the obser-
vation that TCP's congestion control algorithm often over-shoots, leading
to network overload and heavy contention at the MAC layer, Chen et al.
[13] proposed an adaptive congestion window limit (CWL, measured in the
number of packets) setting strategy to dynamically adjust TCP's CWL ac-
cording to the current round-trip hop-count (RTHC) of the path, which can
be obtained from routing protocols such as DSR. More precisely, the CWL
should never exceed the RTHC of the path.

The rationale behind this scheme is very simple, as shown in the fol-
lowing. It is known that to fully utilize the capacity of a network, a TCP
flow should set its CWL to the bandwidth-delay product (BDP) of the cur-
rent path, where a path's BDP is defined as the product of the bottleneck
bandwidth of the forward path and the packet transmission delay in a round
trip. On the other hand, the CWL should never exceed the path's BDP in
order to avoid network congestion. In ad hoc networks, if we assume the
size of a data packet is S and the bottleneck bandwidth along the forward
and return paths is the same and equal to bwmi,, it can be easily seen that
the delay at any hop along the path is less than the delay at the bottleneck

link, i.e., S/bwmin. Since the size of a TCP acknowledgement is normally
smaller than that of the data packet, according to the definition of the BDP,
we know BDP <= RTHC x S . Therefore, the CWL, which is bounded by
the path's BDP, should never exceed the RTHC of the path.

This upper bound can be further tightened when the IEEE 802.11 MAC
layer protocol is adopted. In fact, it is shown that, in a chain topology,
a tighter upper bound exists, which is approximately 115 of the RTHC of
the path. According to this tighter upper bound, the maximum RTO is set
to a relatively small value of 2 seconds, which enables TCP to probe the
route quickly should it break (due to false link failure). Simulation results
showed that this simple but useful strategy is able to improve TCP-Reno
performance by 8% to 16% in a dynamic MANET.

TCP-DOOR: TCP-DOOR [50] attempts to improve TCP performance
by detecting and responding to out-of-order (000) packet delivery events
and thus avoiding invoking unnecessary congestion control. By definition,
000 occurs when a packet sent earlier arrives later than a subsequent
packet. In ad hoc networks, 000 may happen multiple times in one TCP
session because of route changes.

In order to detect 000, ordering information is added to TCP ACKs
and TCP data packets. 000 detection is carried out at both ends: the
sender detects the Out-of-Order ACK packets and the receiver detects the
Out-of-Order data packets. If the receiver detects 000, it should notify the
sender, considering the fact that it is the sender who takes congestion control
actions. Once the TCP sender knows of an 000 condition, it may take one
of the two responsive actions: temporarily disabling congestion control and
instant recovery during congestion avoidance. The first action means that,
whenever an 000 condition is detected, TCP sender will keep its state
variables such as RTO and the congestion window size constant for a time
period TI. The second action means that, if during the past time period T2,
the TCP sender has already entered the state of congestion avoidance, and it
should recover immediately to the state prior to such congestion avoidance.
The main reason is the detection of 000 condition implies that a route
change event has just occurred.

However, 000 can be detected only after a route has recovered from
failures. As a result, TCP-DOOR is less accurate and responsive than a
feedback-based approach that is able to determine whether congestion or
route errors occur, and hence report to the sender at the very beginning.
Furthermore, it may not work well with multi-path routing since multi-path
routing may cause 000 as well. Therefore, it is concluded that TCP-DOOR
may work as an alternative to the feedback-based approach to improve TCP

performance over ad hoc network, if the latter is not available.
Fixed RTO: In TCP congestion control, TCP doubles the RTO and re-

transmits the oldest unacknowledged packet when the retransmission timer
expires. Although this exponential backoff mechanism of the RTO could
handle network congestion gracefully, it is no longer suitable in MANETs
when the loss of packets or ACKs is caused by temporary route breakages,
a s discussed earlier. In such a case, the RTO should be recalculated, if pos-
sible, according to the new route instead of being doubled. Furthermore,
when the new route is established, TCP sender should start the transmission
immediately instead of waiting for the expiration of retransmit timer.

In the fixed RTO approach [15], no feedback from lower layers is needed.
Rather, a heuristic is employed to distinguish route failures and congestion.
When timeouts occur consecutively, i.e., an ACK is not received before the
second RTO expires, the sender assumes a route failure rather than network
congestion takes place. Therefore, the unacknowledged packet is retrans-
mitted again without doubling the RTO. The RTO remains fixed until the
route is re-established and the retransmitted packet is acknowledged. By
adopting this strategy, the TCP sender avoids waiting for a long period of
time before attempting to retransmit. This fast retransmission would force
routing protocol especially like AODV [37] and DSR to repair routes fast,
which in turn leads to a large congestion window on average and high TCP
throughput. Actually, this technique complements TCP-DOOR.

4.2.3 Lower Layer Enhancement Solutions

Routing Layer Enhancement: A framework termed Atra, due to Anan-
tharaman et al., aims to improve TCP performance over ad hoc networks
by enhancing routing layers [3]. Three mechanisms, called Symmetric Route
Pinning (SRP), Route Failure Prediction (RFP), and Proactive Route Er-
rors (PRE), are introduced to minimize the probability of route failures, to
predict route failures in advance, and to minimize the latency in convey-
ing route failure information to source, respectively. Since asymmetric path
would increase the probability of route failure for a connection, in the first
mechanism, the ACK path of a TCP connection is always kept the same as
the data path. Based on the progression of signal strengths of packet recep-
tions from the concerned neighbor, the second mechanism enables the node
to predict the occurrence of link failure more accurately. Finally, with PRE,
when a link failure is detected, all sources that have used the link in the past
certain period are informed of the link failure. This mechanism reduces the
latency involved in the route failure information delivery and consequently

reduces the number of packet losses and also triggers early alternate route
computations.

Link Layer Enhancement: Fu et al. [18] have discussed the inter-
action between TCP and 802.11 MAC. Their studies reveal two interesting
results. First, given a specific network topology and flow pattern, there ex-
ists a TCP window size, say W*, at which TCP throughput is maximized
since the best spatial reuse can be achieved; further increasing the win-
dow size will reduce throughput. However, the standard TCP protocol does
not operate around W*, typically with an average window much larger than
W*. As a result, TCP experiences throughput reduction due to reduced spa-
tial reuse and increased packet loss. In the simulated scenarios, 4% to 21%
throughput reduction from maximum throughput is observed. Second, most
packet drops experienced by TCP are not due to buffer overflow, but due to
link-layer contention that are incurred by hidden terminals. They showed
that contention drops exhibit a load-sensitive loss feature: as the injected
TCP packets exceed W* and further increase, the link dropping probabil-
ity becomes non-negligible and increases accordingly; after the injected TCP
packets exceed another threshold W, the link dropping probability saturates
and flattens out. It turns out that the link-layer dropping probability is not
significant enough to make the average TCP window oscillate around W*,
which subsequently leads to suboptimal TCP throughput.

Therefore, two link layer techniques were proposed in [18] to improve
TCP efficiency: a Link-RED (Random Early Detection) algorithm to tune
the wireless link's packet dropping probability and an adaptive link-layer
pacing scheme to reduce the medium contention. The Link-RED algo-
rithm attempts to maintain the optimum congestion window size at the
TCP sender. At the link layer each node measures the average number
of the retries for recent packet transmissions. Normally, when the TCP
sender increases the congestion window size and injects more packets into
the network, this average number will increase, as more packets will aggra-
vate medium contention. The head-of-line packet is dropped from the buffer
or marked as congested with a probability calculated based on this average
number. Once it detects packet losses or the congestion flag in the ACKs,
the TCP sender invokes the congestion control algorithm that could help
maintain the congestion window size around the optimum value and hence
improve TCP's throughput.

The goal of adaptive link-layer pacing is to alleviate the medium con-
tention especially when the congestion window size exceeds the optimum
value. It is enabled from within the Link-RED algorithm. When a node
(which just sends a packet) notices its average number of retries is less than

a predefined threshold, it calculates its backoff time as usual. Otherwise, it
increases the backoff period by an interval equal to the transmission time of
the previous data packet, and backs off accordingly.

Neighborhood RED: As described in the previous subsection on chal-
lenges, TCP exhibits serious unfairness in ad hoc networks as a result of
the combination of MAC-inherent problems such as medium contention, the
hidden terminal problem, and the exposed terminal problem. As these prob-
lems are likely to exist in nodes which are located in a neighborhood, Xu et
al. [53] proposed a scheme named neighborhood RED (NRED) that seeks to
improve TCP fairness from the point of view of a neighborhood. By defini-
tion, a node's neighborhood consists of the node itself and the nodes which
can interfere with this node's signal. To make things simpler, a node's neigh-
borhood considered in the scheme comprises the node itself and its one-hop
and two-hop neighbors.

The key idea of NRED is that each node forms a distributed queue of
a neighborhood based on the individual queues maintained at every node
located in the node's neighborhood, and the RED scheme can be applied
to the distributed queue to address the fairness issue, as it has proven to
be effective, in wired networks, in improving fairness among TCP flows by
controlling average queue size at routers.

The NRED scheme boils down to three algorithms, namely, Neighborhood
Congestion Detection (NCD), Neighborhood Congestion Notification (NCN),
and Distributed Neighborhood Packet Drop (DNCP). Instead of counting on
each node actively advertising its own queue size information and then mea-
suring the neighborhood queue size, which may cause a large amount of
overhead or even aggravate congestion, NCD intelligently gets around the
difficult task by monitoring channel utilization. Normally, channel utiliza-
tion can serve as an indicator of the queue size, based on the observation
that channel utilization around a node is likely to increase when the queues
at its neighboring nodes build up. An early congestion is assumed to take
place as the channel utilization exceeds a certain threshold. If congestion is
detected, the node will calculate the packet dropping probability and send
it in a NCN packet to its neighbors, provided certain conditions are met in
order to avoid "overreaction". The neighbors, upon the reception of such
notification, will drop some packets according to DNCP.

Simulation studies show that the NRED can improve TCP fairness to
some extent in ad hoc networks. However, the price paid is that the aggre-
gate throughput in the network is actually reduced, which shows there is
still room for further improvement.

5 Future Research Directions

At this point, after we discussed the challenges and visited some repre-
sentative solutions, it is well recognized that in order for TCP to deliver
a comparable performance in wireless networks to that in wired networks,
quite a few critical issues need to be addressed. Note that compared with
its one-hop counterparts, ad hoc networks require more efforts to handle as
things are much more complicated. In this section we discuss some of these
open issues for which searching for a better solution demands special efforts.
It is worthy noting that we do not mean to list all. Rather, we concentrate
on those that we believe are most important.

5.1 TCP Fairness

TCP unfairness becomes pronounced in wireless LANs [38]. In mobile ad
hoc networks, the unfairness problem is more severe. It is shown that in a
mobile ad hoc network with multiple flows, the throughput can be signif-
icantly different among competing flows. This phenomenon is particularly
evident when comparing flows of short paths to those of long paths [20].
Compared with the considerable effort paid to improve TCP end-to-end
throughput, fairness is a critical issue that deserves more attention. In fact,
this insufficiency can be seen from the number of proposed scheme targeted
for fairness: among all the schemes we present in this chapter, only Adver-
tised Window Control and Neighborhood RED address this issue, although
a few schemes have touched upon fairness. Since bandwidth over wireless
links is very limited bandwidth compared with that over wired links, it is
crucial for every flow to fairly share the bandwidth in wireless networks.
Therefore, more mature approaches are highly expected.

5.2 Interactions among Different Layers

Layered network architecture brings a myriad of advantages. At the same
time, it requires a close look at the interactions among different layers when
designing a good scheme. Currently, many solutions are focused on one spe-
cific layer, attempting to isolate the problem and solve it. It is true that
TCP might perform better with a highly effective and efficient link layer or
routing layer, e.g., an MAC protocol which can quickly resolve medium con-
tentions, or a mobility-aware routing protocol which can gracefully handling
route changes. However, this approach may be problematic or even coun-
terproductive, as suggested in [14]. Furthermore, as many factors such as

bursty channel errors, medium access contention, and route breakage are all
contributing to TCP throughput deterioration in mobile ad hoc networks, a
unified solution is justified which takes into account the interaction among
different layer. We thus argue that a cross-layer approach seems more de-
sirable and promising.

5.3 Compatibility with the Wired Internet

For the purpose of internetworking with the wired Internet as required in
future pervasive mobile computing, whatever TCP is designed for ad hoc
networks should be fully compatible with the Internet. This quest for com-
patibility translates into two requirements for future research. First, TCP's
end-to-end semantics must be maintained. Second, TCP performance should
be considered when TCP connections span both the wired networks and mo-
bile ad hoc networks.

6 Conclusions

As the assumption made by TCP that any packet loss is due to network con-
gestion is no longer valid in wireless networks, TCP performs poorly in such
networks. In this chapter, we point out the major reasons for this perfor-
mance degradation. In particular, factors such as error-prone wireless chan-
nels and handoffs result in the poor TCP performance over one-hop wireless
networks, while, aside from these factors, other factors such as medium ac-
cess contention, frequent route changes, and breakages are considered to lead
to the poor TCP performance over multi-hop wireless networks. Compared
with one-hop wireless networks, we can see it is more difficult to make TCP
perform well in multi-hop wireless networks.

This chapter presents the state-of-the-art in recent efforts to improve
TCP performance. Given the reasons, almost all the proposed schemes at-
tempt to achieve better TCP performance with either of the two ideas: TCP
should be capable of distinguishing non-congestion-related packet losses from
congestion caused packet losses such that corresponding actions can be taken
to deal with the losses; or non-congestion-related losses should be reduced
such that TCP can work normally without any modifications. Interestingly
enough, there seems little study attempting to combine these two ideas.

Again, we choose to present the proposed schemes after separating those
for one-hop wireless networks from those for multi-hop wireless networks for
the purpose of clarity. In the realm of one-hop wireless networks, there are

four groups of schemes, i.e., split-connection approaches, proxy-based ap-
proaches, link-layer enhancement approaches, and end-to-end approaches.
According to [5], a TCP-aware reliable link-layer protocol such as SNOOP
performs best. However, TULIP is claimed to deliver better performance
than SNOOP under some circumstances. In case of frequent and long dis-
connections, M-TCP appears to perform well. In the realm of multi-hop
wireless networks, there are also three groups of schemes, namely, TCP
with feedback approaches, TCP without feedback approaches, and lower
layer enhancement approaches. In conclusion, feedback-based schemes seem
to be able to react more quickly to non-congestion-related packet losses,
thus to be more effective in enhancing TCP performance [50]. However,
the price to be paid is that they are more difficult to implement, for they
require end nodes and intermediate nodes to cooperate with each other. On
the other hand, approaches without feedback information are relatively sim-
ple to implement, although the performance gain may not be high enough.
Meanwhile, some solutions by enhancing the link layer and routing layer
shed insights into how to reduce non-congestion-related losses in order to
improve TCP performance.

Finally, although some encouraging improvements have been reported by
employing the proposed schemes, none of them can work well in all scenarios
and meet all the challenges mentioned. Therefore, there is still much work
to be done in the near future. To serve as guidance for future research,
some critical issues regarding improving TCP performance and fairness are
identified.

References

[I] A. Ahuja, S. Agarwal, J . P. Singh and R. Shorey, Performance of TCP
over different routing protocols in mobile ad-hoc networks, IEEE Vehic-
ular Technology Conference 2000 Vo1.3 pp. 2315-2319.

[2] I. Ali, R. Gupta, S. Bansal, A. Misra, A. Razdan and R. Shorey, Energy
efficiency and throughput for TCP traffic in multi-hop wireless networks,
IEEE INFOCOM'02 (New York 2002).

[3] V. Anantharaman, S.-J. Park, K. Sundaresan and R. Sivakumar, TCP
performance over mobile ad-hoc networks: a quantitative study, To
appear in Wireless Communications and Mobile Computing Journal
(WCMC), Special Issue on Performance Evaluation of Wireless Net-
works (2003).

[4] E. Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani and R. D. Gitlin,
AIRMAIL: a link-layer protocol for wireless networks, ACM Wireless
Networks (Feb. 1995).

[5] H. Balakrishnan, V. Padmanabhan, S. Seshan and R. Katz, A compar-
ison of mechanisms for improving TCP performance over wireless links,
Proceedings of A CM SIGCOMM796 (Aug. 1996).

[6] H. Balakrishnan, S. Seshan and R. H. Katz, Improving reliable transport
and handoff performance in cellular wireless networks, ACM Wireless
Networks (Dec. 1995).

[7] A. Bakre and B. R. Badrinath, I-TCP: indirect TCP for mobile
hosts, Proc. 15th International Conf. On Distributed Computing systems
(ICDCS) (May 1995).

[8] P. Bhagwat, P. Bhattacharya, A. Krishna and S. K. Tripathi, Enhancing
throughput over wireless LANs using channel state dependent packet
scheduling, IEEE INFOCOM'96 (San Francisco, Mar. 1996).

[9] K. Brown and S. Singh, M-TCP: TCP for mobile cellular networks, ACM
computer communication review Vo1.27 No.5 (Oct. 1997).

[lo] R. Caceres and L. Iftode, Improving the performance of reliable trans-
port protocols in mobile computing environments, IEEE JSAC Vo1.19
No.7 (Jul. 2001).

[ll] M. C. Chan and R. Ramjee, TCP/IP performance over 3G wireless
links with rate and delay variation, MobiCom702 (Sep. 2002).

[12] K. Chandran, S. Raghunathan, S. Venkatesan and R. Prakash, A
feedback-based scheme for improving TCP performance in ad hoc wire-
less networks, IEEE Personal communications Vo1.8 No.1 (Feb. 2001)
pp. 34-39.

[13] K. Chen, Y. Xue and K. Nahrstedt, On setting TCP's congestion win-
dow limit in mobile ad hoc networks, IEEE ICC703 (Anchorage, Alaska,
May 2003).

[14] A. DeSimone, M. C. Chuah and 0. C. Yue, Throughput performance of
transport-layer protocols over wireless LANs, Proc. Globecom '93 (Dec.
1993).

[15] T. D. Dyer and R. V. Boppana, A comparison of TCP performance
over three routing protocols for mobile ad hoc networks, ACM Mobihoc
(Oct. 2001).

[16] S. Floyd and K. Fall, Router mechanisms to support end-to-end con-
gestion control, LBL Technical report (Feb. 1997).

[17] S. Floyd and V. Jacobson, Random early detection gateways for con-
gestion avoidance, IEEE/ACM Transaction on Networking Vol.1 No.4
(Aug. 1993).

[18] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang and M. Gerla, The impact
of multihop wireless channel on TCP throughput and loss, IEEE INFO-
COM'03 (San Francisco, Mar. 2003).

[19] Z. Fu, X. Meng and S. Lu, How bad TCP can perform in mobile ad-hoc
networks, IEEE Symposium on Computers and Communications (Italy,
Jul. 2002).

[20] M. Gerla, R. Bagrodia, L. Zhang, K. Tang and L. Wang, TCP over
wireless multihop protocols: simulation and experiments, Proceedings of
IEEE ICC'99 (Vancouver, Canada, Jun. 1999).

[21] M. Gerla, K. Tang and R. Bagrodia, TCP performance in wireless mul-
tihop networks, Proceedings of IEEE WMCSA'99 (New Orleans, LA,
Feb. 1999).

[22] T. Goff, J . Moronski, D. S. Phatak and V. Gupta, Freeze-TCP: a true
end-to-end TCP enhancement mechanism for mobile environment, IEEE
INFOCOM'OO (Tel-Aviv, Mar. 2000).

[23] G. Holland and N. H. Vaidya, Analysis of TCP performance over mobile
ad hoc networks, MOBICOM'99 (Seattle, Aug. 1999).

[24] V. Jacobson, R. Braden and D. Borman, TCP extensions for high per-
formance, RFC 1323, (May 1992).

[25] V. Jacobson and M. Karels, Congestion avoidance and control, Pro-
ceedings of ACM SIGCOMM788 (Aug. 1988).

[26] D. B. Johnson, D A. Maltz and Y. Hu, The dynamic souce
routing protocol for mobile ad hoc networks, IETF Internet Draft.
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-O8.txt, (2003).

[27] D-K. Kim, C.-K. Toh and Y. Choi, TCP-BUS: improving TCP perfor-
mance over wireless ad hoc networks, IEEE Comsoc Journal On Com-
munications And Networks (JCN) Vo1.3 No.2 (2001).

[28] J . Li, C. Blake, D. S. J . De Couto, H. Lee and R. Morris, Capacity of
ad hoc wireless networks, MobiCom '01 (Rome, Italy, Jul. 2001).

[29] D. Lin and R. Morris, Dynamics of random early detection, ACM Com-
puter Communication Review Vo1.27 No.4 (Oct. 1997).

[30] J . Liu and S. Singh, ATCP: TCP for mobile ad hoc networks, IEEE
JSAC Vo1.19 No.7 (Jul. 2001).

[31] M. Mathis, J . Mahdavi, S. Floyd and A. Romanow, TCP selective ac-
knowledgement options, RFC 2018 (Oct. 1996).

[32] J . P. Monks, P. Sinha and V. Bharghavan, Limitations of TCP-ELFN
for ad hoc networks, MOMUC (2000).

[33] T. J. Ott, T. V. Lakshman and L. H. Wong, SRED: stabilized RED,
Proceedings IEEE INFOCOM '99 (New York, Mar. 1999).

[34] R. Pan, B. Prabhakar and K. Psounis, CHOKe: a stateless active queue
management scheme for approximating fair bandwidth allocation, Pro-
ceeding of INFOCOM'OO (Tel-Aviv, Mar. 2000).

[35] V. D. Park and M. S. Corson, A highly adaptive distributed rout-
ing algorithm for mobile wireless networks, Proceedings of IEEE IN-
FOCOM'97 (Kobe, Japan, Apr. 1997).

[36] C. Parsa and J. J . Garcia-Luna-Aceves, Improving TCP performance
over wireless networks at the link layer, ACM Mobile Networks and Ap-
plications Vol. 5 (2000).

[37] C. E. Perkins, E. M. Belding-Royer and S. Das, Ad hoc on demand
distance vector (AODV) routing, IETF RFC 3561

[38] S. Pilosof, R. Ramjee, D. Raz, Y. Shavitt and P. Sinha, Understanding
TCP fairness over wireless LAN, IEEE INFOCOM'O3 (San Francisco,
Mar. 2003).

[39] K. Ramakrishnan, S. Floyd and D. Black, The addition of explicit con-
gestion notification (ECN) to IP, RFC 3168, Sep. 2001.

[40] E. Royer, S. J . Lee and C. Perkins, The effects of MAC protocols on
ad hoc network communication, IEEE WCNC (Chicago, IL, Sep. 2000).

[41] P. Sinha, N. Venkitaraman, R. Sivakumar and V. Bharghavan, WTCP:
a reliable transport protocol for wireless wide-area networks, ACM Mo-
biCom'99 (Aug. 1999).

[42] W. Stevens, TCP slow start, congestion avoidance, fast retransmit, and
fast recovery algorithms, RFC 2001 (Jan. 1997).

[43] W. Stevens, TCP/IP Illustrated Vol. 1 (Addison-Wesley, 1996).

[44] A. S. Tanenbaum, Computer Networks, (4th Edition, Prentice-Hall In-
ternational, Inc. 2002).

[45] K. Tang and M. Gerla, Fair sharing of MAC under TCP in wireless ad
hoc networks, Proceedings of IEEE MMT'99 (Venice, Italy, Oct. 1999).

[46] Third Generation Partnership Project, (Release 1999).

[47] Third Generation Partnership Project, RLC protocol specification (3G
TS 25.322:), (1999).

[48] TIA/EIA/cdma2000, Mobile station - base station compatibility stan-
dard for dual-mode wideband spread spectrum cellular systems, Wash-
ington: Telecommunication Industry Association, (1999).

[49] TIA/EIA/IS-707-A-2.10, Data service options for spread spectrum sys-
tems: radio link protocol type 3, (Jan. 2000).

[50] F. Wang and Y. Zhang, Improving TCP performance over mobile ad-
hoc networks with out-of-order detection and response, ACM Mobi-
Hoc '02 (Lausanne, Switzerland, Jun. 2002).

[51] H. Wu, Y. Peng, K. Long, S. Cheng and J. Ma, Performance of re-
liable transport protocol over IEEE 802.11 wireless LAN: analysis and
enhancement, IEEE INFOCOM'OZ (New York, Jun. 2002).

[52] K. Xu, S. Bae, S. Lee and M. Gerla, TCP behavior across multihop wire-
less networks and the wired internet, ACM Wo WmoM'02 (Sep. 2002).

[53] K. Xu, M. Gerla, L. Qi and Y. Shu, Enhancing TCP fairness in ad hoc
wireless networks using neighborhood RED, ACM MobiCom'O3 (Sep.
2003).

1541 S. Xu and T. Saadawi, Does the IEEE 802.11 MAC protocol work well
in multihop wireless ad hoc networks? IEEE Communications Magazine
(Jun. 2001).

[55] S. Xu and T. Saadawi, Revealing TCP unfairness behavior in 802.11
based wireless multi-hop networks, IEEE PIMRC'OI (Oct. 2001).

[56] L. Zhang, S. Shenker and D. Clark, Observations on the dynamics of a
congestion control algorithm: the effects of two-way traffic, Proceedings
of ACM SIGCOMM'SI (Sep. 1991).

