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1 Introduction 

As a result of the advancement of wireless technology and the proliferation of 
handheld wireless terminals, recent years have witnessed an ever-increasing 
popularity of wireless networks, ranging from wireless Local Area Networks 
(WLANs) and wireless wide-area networks (WWANs) to mobile ad hoc net- 
works (MANETs). In WLANs (e.g., the Wi-Fi technology) or in WWANs 
(e.g., 2.5G/3G/4G cellular networks), mobile hosts communicate with an 
access point or a base station that is connected to the wired networks. Ob- 
viously, only one hop wireless link is needed for communications between a 
mobile host and a stationary host in wired networks. In contrast, there is 
no fixed infrastructure such as base stations or access points in a MANET. 
Each node in a MANET is capable of moving independently and function- 
ing as a router that discovers and maintains routes and forwards packets 
to other nodes. Thus, MANETs are multi-hop wireless networks by nature. 
Note that MANETs may be connected at the edges to the wired Internet. 

Transmission control protocol (TCP) is a transport layer protocol which 
provides reliable end-to-end data delivery between end hosts in traditional 



wired network environment. In TCP, reliability is achieved by retransmit- 
ting lost packets. Thus, each TCP sender maintains a running average of the 
estimated round trip delay and the average deviation derived from it. Pack- 
ets will be retransmitted if the sender receives no acknowledgment(ACK) 
within a certain timeout interval (e.g., the sum of smoothed round trip 
delay and four times the average deviation) or receives duplicate acknowl- 
edgments. Due to the inherent reliability of wired networks, there is an 
implicit assumption made by TCP that any packet loss is due to congestion. 
To reduce congestion, TCP will invoke its congestion control mechanisms 
whenever any packet loss is detected. Since TCP is well tuned, it has be- 
come the de facto transport protocol in the Internet that supports many 
applications such as web access, file transfer and email. Due to its wide use 
in the Internet, it is desirable that TCP remains in use to provide reliable 
data transfer services for communications within wireless networks and for 
those across wireless networks and the wired Internet. It is thus crucial that 
TCP performs well over all kinds of wireless networks in order for the wired 
Internet to extend to the wireless world. 

Unfortunately, wired networks and wireless networks are significantly 
different in terms of bandwidth, propagation delay, and link reliability. The 
implication of the difference is that packet losses are no longer mainly due to 
network congestion; they may well be due to some wireless specific reasons. 
As a matter of fact, in wireless LANs or cellular networks, most packet losses 
are due to high bit error rate in wireless channels and handoffs between 
two cells, while in mobile ad hoc networks, most packet losses are due to 
medium contention and route breakages, as well as radio channel errors. 
Therefore, although TCP performs well in wired networks, it will suffer 
from serious performance degradation in wireless networks if it misinterprets 
such non-congestion-related losses as a sign of congestion and consequently 
invokes congestion control and avoidance procedures, as confirmed through 
analysis and extensive simulations carried out in [4, 5, 7, 18-21]. As TCP 
performance deteriorates more seriously in ad hoc networks compared to 
WLANs or cellular networks, we divide wireless networks into two large 
groups: one is called one-hop wireless networks that include WLANs and 
cellular networks and the other is called multi-hop wireless networks that 
include MANETs. 

To understand TCP behavior and improve TCP performance over wire- 
less networks, given these wireless specific challenges, considerable research 
has been carried out and many schemes have been proposed. As the re- 
search in this area is still active and many problems are still wide open, this 
chapter serves to pinpoint the primary causes for TCP performance degra- 



dation over wireless networks, and cover the state of the art in the solution 
spectrum, in hopes that readers can better understand the problems and 
hence propose better solutions based on the current ones. 

This chapter is organized as follows. We present in Section 2 a brief 
overview of TCP congestion control mechanisms and some current perfor- 
mance enhancement techniques. As the challenges TCP is facing differ in 
one-hop and multi-hop wireless networks and so do the solutions, it is suit- 
able to separate them into two sections. Section 3 starts by identifying 
the challenges imposed on the standard TCP in one-hop wireless networks, 
followed by the classification of some existing solutions according to their 
design philosophy. Among the solutions, there are four large categories. The 
first class of schemes attempts to improve TCP performance by splitting a 
TCP connection into two at the base station or access point. Relying on 
an intelligent proxy located at the base station enforcing tasks such as local 
retransmission or ACK suppression/regulation, the second class eliminates 
the negative effects of wireless links on TCP. The approaches in the third 
class aim at hiding the characteristics of wireless links from TCP by provid- 
ing a reliable link layer. The last category resolves the problems by slightly 
modifying TCP at the end systems, e.g., selective acknowledgment enabling 
or fast retransmission. In each class, the solutions are discussed in certain 
details. The structure of Section 4 is similar to that of Section 3, except that 
TCP performance over MANETs is the focus. Similarly, current solutions 
can also be grouped into three camps, according to their design philosophy. 
The first camp incorporates network feedback information into their designs 
to modify TCP's response to non-congestion-related packet losses while the 
second camp attempts to do so without explicit feedback. Unlike the previ- 
ous two, the third one starts by tuning the lower layers in order for TCP to 
operate normally, while leaving TCP intact. With the understanding that 
current solutions fail to improve on some critical issues such as fairness, Sec- 
tion 5 gives some suggestions on future research issues. Finally, concluding 
remarks are given in Section 6. 

2 Overview of TCP 

Before we dive into the detailed discussion of questions such as why TCP per- 
forms poorly in wireless networks, how TCP performance can be improved, it 
is necessary to prepare the reader by presenting an overview of not only the 
basic functionality of TCP but also the state-of-the-art in TCP. The basic 
functions of TCP as a transport layer protocol include flow control, error re- 



covery and congestion control, while the state-of-the-art techniques include 
fast retransmission and recovery, selective acknowledgment, etc., mainly fo- 
cusing on how to promptly and effectively respond to network congestion. 

2.1 Basic Functionality of TCP 

It is well known that TCP is a connection-oriented transport protocol that is 
aimed at guaranteeing end-to-end reliable ordered delivery of data packets 
over wired networks. For this purpose, basic functionalities such as flow 
control, error control, and congestion control are indispensable. While these 
functions have a clean-cut definition of their own, in practice they are closely 
coupled with one another in TCP implementation. 

In TCP, a sliding window protocol is used to implement flow control, 
in which three windows are used, namely, Congestion Window, Advertised 
window, and Transmission Window. Congestion window indicates the max- 
imum number of segments (Without causing confusion, the term segment 
and packet are used interchangeably henceforth) that the sender can trans- 
mit without congesting the network. As shown next in details on congestion 
control, this number is determined by the sender based on the feedback from 
the network. Advertised window, however, is specified by the receiver in the 
acknowledgements it. Advertised window indicates to the sender the amount 
of data the receiver is ready to receive in the future. Normally, it equals to 
the available buffer size at the receiver in order to prevent buffer overflow. 
Transmission window means the maximum number of segments that the 
sender can transmit at one time without receiving any ACKs from the re- 
ceiver. Its lower edge indicates the highest numbered segment acknowledged 
by the receiver. Obviously, to avoid network congestion and receiver buffer 
overflow, the size of transmission window is determined as the minimum of 
the congestion window and the receiver's advertised window. 

To notify the sender that data is correctly received, TCP employs a 
cumulative acknowledgement mechanism. In other words, upon the receipt 
of an ACK, the sender knows that all previously transmitted data segments 
with a sequence number less than the one indicated in the ACK are correctly 
received at the receiver. In the case that an out-of-order segment (identified 
on the basis of sequence numbers) arrives at the receiver, a duplicate ACK is 
generated and sent back to the sender. It is important to note that in wired 
networks, an out-of-order delivery usually implies a packet loss. If three 
duplicate cumulative ACKs are received, the sender will assume the packet is 
lost. A packet loss is also assumed if the sender does not receive an ACK for 
the packet within a timeout interval called retransmission timeout (RTO), 
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Figure 1: TCP congestion window dynamics ([44]) 

which is dynamically computed as the estimated round-trip time (RTT) 
plus four times the mean deviation. By retransmitting the lost packet, TCP 
achieves reliable data delivery. 

It turns out that in wired networks, almost all the packet losses are due 
to network congestion rather than transmission errors. Thus, in addition 
to retransmission, TCP responds to packet losses by invoking its congestion 
control mechanism. TCP congestion control is also based on the sliding 
window mechanism described above and consists of two major phases: slow 
start and congestion avoidance. In the slow start phase, the initial conges- 
tion window size (cwnd) is set to one maximum segment size (MSS) and is 
incremented by one MSS on each new acknowledgement. After cwnd reaches 
a preset threshold (ssthresh), the congestion avoidance starts and it is in- 
creased linearly, i.e., it is increased by one segment for each RTT. Upon a 
timeout, ssthresh is set to the half of the current transmission window size 
(but at least two segments) and the congestion window is reduced to 1 MSS. 
Then slow start mechanism starts again. This procedure is also called the 
additive increase and multiplicative decrease algorithm (AIMD, [25]). The 
entire congestion control algorithm is illustrated in Fig. 1. Note that the 
sender reacts to three duplicate ACKs in a different way, which is described 
in fast retransmission and fast recovery in the next subsection. 



2.2 State-of-the-Art in Standard TCP 

Most of the progress made in TCP is centered on error recovery and con- 
gestion control. Representative innovations include fast transmissions and 
fast recovery [42], selective acknowledgements [31], random early detection 
(RED, [17]) in routers, and explicit congestion notification (ECN, [39]). No- 
tice that depending on what features are included, there are several TCP 
flavors, including TCP Tahoe, TCP Reno, TCP New Reno, etc. Among 
them, TCP Reno is by far most widely deployed. Next, we briefly describe 
these innovations in the following. 

2.2.1 Fast Retransmission and Fast Recovery 

As noted earlier, a packet can be assumed lost if three duplicate ACKs are 
received. In this case, TCP performs a fast retransmission of the packet. 
This mechanism allows TCP to avoid a lengthy timeout during which no 
data is transferred. At the same time, ssthresh is set to one half of the 
current congestion window, i.e., cwnd, and cwnd is set to ssthresh plus three 
segments. If the ACK is received approximately one round trip after the 
missing segment is retransmitted, fast recovery is entered. That is, instead 
of setting cwnd to one segment and starting with slow start, TCP sets 
cwnd to ssthresh, and then steps into congestion avoidance phase. However, 
only one packet loss can be recovered during fast retransmission and fast 
recovery. Additional packet losses in the same window may require that the 
RTO expire before retransmission. 

2.2.2 Selective Acknowledgment 

Owing to the fact that fast retransmission and fast recovery can only han- 
dle one packet loss from one window of data, TCP may experience poor 
performance when multiple packets are lost in one window. To overcome 
this limitation, recently the selective acknowledgement option (SACK) is 
suggested as an addition to the standard TCP implementation. 

The SACK extension adopts two TCP options. One is an enabling op- 
tion, which may be sent to indicate that the SACK option can be used upon 
connection establishment. The other is the SACK option itself, which may 
be sent by TCP receiver over an established connection if SACK option is 
enabled through sending the first option. 

The SACK option contains up to four (or three, if SACK is used in 
conjunction with the Timestamp option used for RTTM [24]) SACK blocks, 
which specifies contiguous blocks of the received data. Each SACK block 



consists of two sequence numbers which delimit the range of data the receiver 
has received and queued. A receiver can add the SACK option to ACKs it 
sends back to a SACK-enabled sender. In the event of multiple losses within 
a window, the sender can infer which packets have been lost and should be 
retransmitted using the information provided in the SACK blocks. A SACK- 
enabled sender can retransmit multiple lost packets in one RTT instead of 
detecting only one lost packet in each RTT. 

2.2.3 Random Early Detection 

Random Early Detection (RED) is a router-based congestion control mecha- 
nism that seeks to detect incipient congestion and notify some TCP senders 
of congestion by controlling the average queue size at the router. To no- 
tify the TCP senders of congestion, the router may mark or drop pack- 
ets, depending on whether the senders are cooperative. As a response, the 
senders should reduce their transmission rate. This is done in two algo- 
rithms. The first algorithm is to compute the average queue size by us- 
ing exponential weighted moving average. If we denote by avg and q the 
average queue size and the current queue size, respectively, then avg = 
(1 - wq) x avg + wq x q, where wq is the queue weight. The other algo- 
rithm is to compute the packet-marking or packet-dropping probability pa. 
If avg falls in between minth and maxth, the packet marking probability 
pb = maxp(avg - minth)/(maxth - minth) and the final marking probability 
pa = pb/(l  - count * pb), where maxp and count are design parameters, 
respectively, denoting the maximum value for pb and the number of packets 
having arrived since last packet marking or dropping. If avg exceeds maxth, 
pa = 1, which means that the router marks or drops each packet that arrives. 
Through control over the average queue size prior to queue overflow, RED 
succeeds in preventing heavy network congestion and global synchronization 
as well as improving fairness. Notice that numerous variants of RED have 
been proposed to improve various performance of the original RED [16, 29, 
33, and 341. 

2.2.4 Explicit Congestion Notification 

Most of current Internet routers employ traditional "drop-tail" queue man- 
agement. In other words, the routers drop packets only when the queue over- 
flows, which could lead to the undesirable global synchronization problem 
as well as heavy network congestion. Recently, active queue management 
(AQM) mechanisms have been proposed since they can detect congestion 



before the queue overflows at the routers and inform TCP senders of the con- 
gestion, thereby avoiding some of these problems caused by the "drop-tail" 
policy. In the absence of Explicit Congestion Notification (ECN), however, 
the only choice that is available to AQM for indicating congestion to end 
systems is to drop packets at the routers. With ECN, AQM mechanisms 
have an alternative to allow routers to notify end systems of congestion in 
the network. 

ECN requires some changes to the header of both IP and TCP. In the IP 
header, an ECN field with two bits is used. By setting this field to specific 
bits, the router can send an indication of congestion to end systems. For 
TCP, two new flags in the Reserve field of the TCP header are specified. 
By manipulating these two flags, the TCP sender and the TCP receiver can 
enable ECN via negotiation during connection setup; the receiver can inform 
the sender if it receives congestion indications from intermediate routers; and 
the sender can inform the receiver that it has invoked congestion control 
mechanisms [39]. 

3 TCP in One-Hop Wireless Networks 

In this section, we focus on TCP performance in one-hop wireless networks, 
which typically include wireless LAN and wireless cellular networks. We first 
summarize some challenges adversely affecting TCP performance. Then, 
some representative schemes proposed to improve TCP performance are 
described. Notice that in this chapter we focus on how to improve TCP 
performance, so some schemes such as WTCP [41], which attempts to pro- 
pose a totally different transport layer protocol, are not presented here since 
it is not an improvement scheme based on TCP. 

3.1 Challenges 

Compared with wired networks, one-hop wireless networks have some in- 
herent adverse characteristics that will significantly deteriorate TCP perfor- 
mance if no action is taken. In essence, these characteristics include bursty 
channels errors, mobility and communication asymmetry. 

3.1.1 Channel Errors 

In wireless channels, relatively high bit error rate because of multipath fading 
and shadowing may corrupt packets in transmission, leading to the losses 
of TCP data segments or ACKs. If it cannot receive the ACK within the 



retransmission timeout, the TCP sender immediately reduces its congestion 
window to one segment, exponentially backs off its RTO and retransmits 
the lost packets. Intermittent channel errors may thus cause the congestion 
window size at the sender to remain small, thereby resulting in low TCP 
throughput. 

3.1.2 Mobility 

Cellular networks are characterized by handoffs due to user mobility. Nor- 
mally, handoffs may cause temporary disconnections, resulting in packet 
losses and delay. TCP will suffer a lot if it treats such losses as conges- 
tion and invokes unnecessary congestion control mechanisms. The handoffs 
are expected to be more frequent in next generation cellular networks as the 
micro-cellular structure is adopted to accommodate an increasing number of 
users. Thing could be worse if TCP cannot handle handoffs gracefully. Sim- 
ilar problems may occur in wireless LAN, as mobile users will also encounter 
communication interruptions if they move to the edge of the transmission 
range of the access point. 

3.1.3 Asymmetry 

In one-hop wireless networks, the wireless link between a base station and a 
mobile terminal in nature is asymmetric. Compared with the base station, 
the mobile terminal has limited power, processing capability, and buffer 
space. Another asymmetry stems from the vastly different characteristics of 
wired links and wireless links. The former is reliable and has large bandwidth 
while the latter is error-prone and has limited and highly variable bandwidth. 
For example, the bandwidth of a typical Ethernet is lOMbps (100Mbps or 
even higher for fast Ethernet) while the highest bandwidth for 3G networks 
is only about 2Mbps. Therefore, the wireless link is very likely to become 
the bottleneck of TCP connections. 

3.2 Current Solutions 

The quest to overcome the deficiency of TCP over wireless links has been 
courting extensive efforts. Among the various solutions proposed to im- 
prove TCP performance, there are four major categories: split-connection 
solutions, proxy-based solutions, link-layer solutions, and end-to-end solu- 
tions. The split-connection solutions attempt to improve TCP performance 
by splitting a TCP connection into two at the base station so that the TCP 
connection between the base station and the mobile host can be specially 
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Figure 2: I-TCP, splitting a TCP connection into two connections 

tuned for the wireless links. Realizing the base station is a critical point, 
approaches based on proxy put an implicit or explicit intelligent agent at 
the base station, detecting packet losses over wireless links and taking cor- 
responding actions (such as duplicate ACK suppression and/or local re- 
transmission) to ensure the TCP sender responds correctly. For the third 
category, a reliable link layer is built by adopting some link error recovery 
mechanisms, seeking to hide link errors from the TCP sender. Unlike the 
previous three classes, the end-to-end approaches enhance TCP by using 
SACK to quickly recover from multiple packet losses or by predicting in- 
coming handoffs to avoid unnecessary congestion control invocation. Next, 
some representative schemes in each category are presented. 

3.2.1 Spli t -Connection Solut ions 

Indirect  T C P :  Indirect-TCP (I-TCP) [7] protocol proposed by Bakre and 
Badrinath suggests that any TCP connection from a mobile host (MH) 
to a machine on the fixed network (FH) should be split into two separate 
connections: one between the MH and its base station (BS) over the wireless 
medium and the other between the BS and the FH over the fixed network, 
as shown in the Fig. 2. A packet sent to MH is first received by BS, it 
then sends an acknowledgment to FH and then the packet is forwarded to 
MH. If MH moves to a different cell while communicating with an FH, the 
whole connection information maintained at the current BS is transferred 
to the new BS and the new BS takes over thereafter. The FH is unaware of 
this indirection and is not affected when this switch occurs. Also, since the 
end-to-end connection is split, the TCP connection over the wireless link 
can use some wireless-link-aware TCP variation, which may be tailored to 
handle wireless channel errors and handoff disruption. 

From the above description, we see that I-TCP separates the congestion 
control functionality on the wireless link from that on the fixed network, 



which enables the two kinds of links to identify different reasons for packet 
losses and then take corresponding actions. In addition, since the TCP 
connection is broken into two, it is possible for a mobile host to use some 
lightweight transport protocol instead of a full TCP/IP suite to communi- 
cate with the base station and access the fixed network through the base 
station. This feature is desirable since a mobile host, as pointed out earlier, 
has limited battery and processing power. The downside of this scheme, 
however, is the following. First, I-TCP violates the end-to-end semantics 
of TCP acknowledgments, as both the wired part and the wireless part of 
a connection have their own acknowledgments. Second, control overhead 
is considerable as the base station needs to maintain a significant amount 
of state for each TCP connection and all the state information needs to be 
transferred to the new base station in the event of a handoff, which could 
result in a long delay. 

M-TCP: M-TCP [9] is another split-connection approach that breaks 
up a TCP connection between a FH and a MH into two parts: one between 
the FH and the BS, and the other between the BS and the MH. What 
makes it different from I-TCP is that it manages to preserve TCP end-to- 
end semantics. 

M-TCP is assumed to operate upon the underlying three-level architec- 
ture shown in Fig. 3. A mobile host (MH) communicates with the BS in 
the cell. Several BSs are controlled by a supervisor host (SH), which, serv- 
ing a gateway, is connected to the wired network. The authors opt for this 
architecture for two reasons. The first is that the functionalities at a BS 
can be transferred to SH, which may reduce the cost of the network as one 
SH is in charge of several BSs; the other is that the number of handoffs 
is greatly reduced since a MH roaming from one cell to another need not 
perform handoffs as long as the two cells are controlled by the same SH. 

Another important assumption made by M-TCP is that a relatively re- 
liable link layer is operating underneath M-TCP to recover losses such that 
the bit error rate over wireless links is low. The implication of this as- 
sumption is that TCP performance degradation is mainly due to frequent 
disconnections caused by handoffs. 

M-TCP operates as follows. Assume that the MH has acknowledged 
bytes up to sequence number x, the SH sends an ACK for bytes up to x - 1 
to the TCP sender. Note that this is different from I-TCP in that the SH 
only sends ACKs to the sender when it receives ACKs from the MH. If the 
SH does not receive ACKs beyond x for some time, the SH will assume 
this is due to temporary wireless link outage. Therefore, it sends an ACK 
for the last byte x with a zero window size. Upon receiving this ACK, 
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Figure 3: Three-level architecture underlving M-TCP 



the sender will enter into persist mode, freezing all its transmission states 
such as RTO and congestion window. When the wireless link is regained, 
the MH will notify the SH by sending a greeting packet. The SH, in turn, 
informs the sender of this reconnection, allowing the sender to resume its 
transmission from the frozen state. Through this way, the adverse efforts 
of disconnections on TCP performance are gracefully eliminated since no 
congestion control is invoked. 

Some comments are in order. First and foremost, while maintaining end- 
to-end TCP semantics, M-TCP works well under the wireless environment 
where frequent disconnections between the MH and the BS are common. 
Second, during handoffs from one domain of SH to the domain of another 
SH, little overhead is incurred since compared to I-TCP, a small amount 
of state is transferred from the old SH to the new SH. However, in order 
to achieve the expected performance improvement, it relies largely on its 
underlying link layer to hide the effects of high bit error rate. 

3.2.2 Proxy-Based Solutions 

SNOOP: Balakrishnan et al. [6] sought to improve TCP performance by 
modifying the network-layer software at a BS while preserving end-to-end 
TCP semantics. Snoop protocol gets its name because it adds a snooping 
module to network layer, which monitors every packet that passes a BS in 
either direction. In the following, we describe how snoop module deals with 
packet losses in both directions. 

If TCP packets are sent from a FH to a MH, the snoop module caches 
each packet that has not yet been acknowledged by the MH. Meanwhile, 
the snoop module also keeps track of all the acknowledgments sent from 
the mobile host. The snoop module determines that a packet loss occurs 
by detecting if either it receives a duplicate acknowledgment or its local 
timer times out. In this case, the lost packet is retransmitted if it has been 
cached. The duplicate acknowledgments, if any, are suppressed. Through 
this way, unnecessary congestion control mechanism invocations are avoided 
since packet losses due to wireless channel errors are hidden from the FH. 

In the case that packets are transmitted from an MH to an FH, since the 
MH cannot tell whether a packet loss is due to errors on the wireless link or 
due to congestion elsewhere in the network, TCP SACK option is used. At 
the BS, when the snoop module notices a gap in the inbound sequence num- 
bers of the packets sent from the MH, selective acknowledgements are sent 
to the MH. Upon receiving such SACKS, SACK-enabled MH will retransmit 
the lost packets for local loss recovery. 



SNOOP is also designed to handle handoffs. Several BSs near a MH will 
form a multicast group and buffer some latest packets sent from the FH. 
Prior to a handoff, the MH will send control messages to determine that a 
BS with strongest signal should be the primary one, i.e., the one forwarding 
packets to the MH, and that all other BSs just buffer packets. Therefore, 
both handoff latency and packet losses are reduced. 

The major merit of this approach is that, it improves TCP performance 
through performing local retransmissions across the wireless link without 
affecting end-to-end TCP semantics. On the other hand, although TCP 
performance during handoffs may be improved, considerable overhead is 
incurred for maintaining the multicast BS group and state transfer from one 
BS to another. Finally, it is worth noting that special care needs to be taken 
to handle the interaction of the snoop module retransmission and TCP end- 
to-end retransmission because SNOOP is similar to  link-level retransmission 
approaches over the wireless links. 

Ack Regulator: Since link layer enhancement schemes are shown to 
successfully improve TCP performance over wireless link, they have been 
adopted in 3G wireless networks. For example, reliable link-layer protocols 
such as RLP [49] and RLC [47] are respectively used in 3G1X [48] and UMTS 
[46]. However, as pointed out in [I 11, these link layer protocols also introduce 
increased delay and rate variability, which may cause bursty ACK arrivals 
(called ACK compression [56]) and consequently degrade TCP throughput. 
This effect becomes more pronounced as some channel state based scheduling 
schemes [8] is used in 3G wireless networks as well. 

To reduce such negative effects, Chan and Ramjee ([ l l ])  proposed a 
network-based solution called Aclc Regulator, which is implemented at the 
radio network controller (RNC) to regulate the flow of ACKs sent from 
the mobile host to the TCP sender. Notice that since most applications 
like web browsing mainly use the downlink, this solution is designed for 
TCP connections toward the mobile hosts. The key idea is that, the RNC 
should control the number of ACKs sent back to the sender each time a data 
packet is transmitted to the mobile host or an ACK arrives from the mobile 
host, such that there is at most one packet loss due to buffer overflow in one 
window of transmitted packets. In this way, the TCP sender operates mainly 
in the congestion avoidance phase. In this scheme, the RNC maintains a 
data queue for each TCP flow from the sender to the mobile host and an 
ACK queue from the mobile host to the sender. By monitoring the current 
available buffer space and estimating the number of future incoming data 
packets, the RNC decides how many ACKs it should send to  the sender 
each time. Significant performance improvement has been reported, which, 



nevertheless, is achieved at the expense of increased complexity and buffer 
space at the RNC. 

Advertised Window Control: While a great deal of effort has been 
made on the IEEE 802.11 MAC, little research work has been focused on 
the interaction of TCP with WLANs. However, to fully understand TCP 
behaviors over WLAN is very important, as TCP is the de facto transport 
layer protocol for most applications over WLANs. 

In [38], the work by Pilosof et al. has shed some light in better under- 
standing TCP fairness over WLANs. Through analysis and simulation, it 
is discovered that the upstream (from the mobile host to the base station) 
and downstream (from the base station to the mobile host) TCP flows do 
not fairly share the wireless medium, with a throughput ratio between them 
as high as ten times, in favor of upstream flows. They discovered that this 
ratio is sensitive to the buffer size at the base station. In particular, TCP 
unfairness may fall into four different regions as the buffer size is varying. 
Part of the reason is that given the TCP receiver window size, the down- 
stream TCP window size fails to reach the receiver window size if some data 
packets are lost due to insufficient buffer, while upstream TCP window size 
can reach the receive window size because it can tolerate some ACK losses. 

Thus, they proposed to modify the receiver's advertised window field in 
the ACKs when they pass through the base station. More precisely, given 
that there are n TCP flows in the WLANs and the buffer size at the base 
station is B,  the advertised window size will be set to the minimum of the 
original advertised window size and [B/nJ . Simulations and experiments 
show that the throughput ratio between upstream and downstream TCP 
flows is almost 1 after adopting this change. 

3.2.3 Link-layer Solutions 

AIRMAIL: Since TCP performance degradation is partly due to the high 
bit error rate of the wireless link, it is intuitive to shield TCP from such 
errors. With a reliable link-layer protocol in place, unnecessary TCP con- 
gestion control invocation due to channel errors can be avoided, and hence 
TCP performance is improved. Based on this idea, a reliable link-layer pro- 
tocol named AIRMAIL (Asymmetric Reliable Mobile Access In Link-layer) 
was proposed in [4]. In AIRMAIL, two well-known link error recovery tech- 
niques, i.e., forward error correction (FEC) and automatic repeat request 
(ARQ) are employed. Moreover, in order to accommodate the asymmetry 
lying between the two ends of a wireless link, i.e., the BS and the MH, AIR- 
MAIL purposely devises some asymmetric ARQ error control and window- 



based flow control techniques as shown in the following: 

Timers are always at the BS regardless of whether it is transmitting 
or receiving. Thus all timer-related operations are conducted in the 
BS. 

The base station receiver sends its status to a mobile transmitter pe- 
riodically. However, this is not the case for the mobile receiver to send 
its status to the base station transmitter. Rather, the mobile receiver 
sends status messages based on an event-driven mechanism. The dif- 
ference in the mechanisms of sending status messages is justified by 
the power constraint a t  the mobile host. 

In addition to ARQ, three levels of FEC, namely bit-level FEC, byte- 
level FEC, and packet-level FEC, have been employed to  provide increased 
error correction capability under different mobile environment. 

Several comments on AIRMAIL are in order. First, since AIRMAIL 
only involves changes at the link layer, no modifications need to be made 
to TCP. Obviously, it fits in well with the layered structure of network 
protocols. Second, when designing ARQ techniques, AIRMAIL takes into 
account the asymmetry between the BS and the MH, a desirable feature 
which may relieve the requirement of computing power on the mobile host 
and prolong the battery life of the mobile host as well. Third, the draw- 
back of AIRMAIL is that it cannot account for temporary disconnections 
due to handoff. Thus, even though it succeeds in reducing bit error rate 
over wireless links, it can do little to prevent TCP from timing out when an 
acknowledgment is not received on time because of long disconnections. In 
fact, this observation might apply to various link layer approaches. Finally, 
the interaction between link-layer retransmissions and end-to-end retrans- 
missions can be complicated, as shown in [14]. It showed that link-layer 
retransmission protocols only improve TCP performance when the packet 
error rate exceeds a certain threshold. Further study on the interaction is 
needed in order to improve TCP performance with the aid of the link-layer 
enhancement. 

TULIP: TULIP (Transport Unaware Link Improvement Protocol) is 
a TCP-unaware link layer protocol that works upon the MAC layer [36]. 
Because TULIP is targeted for half-duplex wireless links, to avoid collision 
between two opposite data streams, it only passes one packet at a time 
to the MAC layer. The procedure is described as follows. After receiving 
a TCP packet from the upper layer, TULIP passes it to the MAC layer. 
When starting to transmit the packet, the MAC layer notifies TULIP by 



sending a signal TRANS. Upon reception of TRANS, TULIP starts a timer 
At,, which is estimated as the time duration between the beginning of data 
packet transmission and the end of the reception of a link-layer ACK (or 
a link-layer ACK piggybacked with a data packet). In the case that Atl  
is underestimated because of packet length variations, the MAC layer will 
inform TULIP by sending another signal WAIT, specifying the additional 
time Atz. Readers are referred to [36] for details on how to set At2 as it 
involves the specific MAC layer mechanism. To locally recover lost or cor- 
rupted packets due to channel errors, a link-layer selective acknowledgment 
mechanism is used to retransmit packets, which is assigned high priority 
compared to normal data packets in order for fast recovery. Moreover, to 
save bandwidth over the wireless link, a mechanism called MAC acceleration 
is introduced to piggyback a TCP ACK with the TULIP ACK. Through sim- 
ulation it is shown that TULIP achieves a bit better performance compared 
to SNOOP in the environment where errors are exponentially distributed 
over the wireless channel. 

3.2.4 End-to-end Solutions 

Fast Retransmission: Fast retransmission is perhaps the simplest end- 
to-end scheme to improve TCP performance. Based on the observation 
that TCP encounters unacceptably long pauses in communication during 
handoffs which cause increased delays and packet losses, fast retransmission 
was proposed by Caceres and Iftode to overcome this problem [lo]. The MH 
will send duplicate ACKs to the TCP sender immediately after the handoff 
process is completed. In this way, the TCP sender can begin retransmission 
without waiting for the timeout, hence preventing serious throughput drop. 

Selective Acknowledgement: As described earlier, the TCP selective 
acknowledgment mechanism can allow a SACK-enabled sender to retrans- 
mit in one RTT multiple lost packets in one transmission window and hence 
avoid continuous timeouts. However, this mechanism does not distinguish 
the reasons for packet losses and still assumes all losses are caused by con- 
gestion. Consequently, TCP congestion control procedures are inappropri- 
ately called for, which throttles the sender's transmission rate. As shown in 
[5 ] ,  SACK is useful over the error-prone wireless link where losses occur in 
bursts. 

Freeze-TCP: It is observed that most current TCP schemes require 
base stations to monitor the TCP traffic and actively participate in flow 
control in order to enhance performance. However, such schemes might be 
undesirable or even useless for several reasons. First, to be compatible with 



currently existing infrastructure, it is ideal that no modification should be 
made to intermediate nodes, since such nodes may belong to other orga- 
nizations and hence are unavailable for modification. Second, as network 
security is becoming increasingly important, end-to-end traffic is likely to 
be encrypted and hence inaccessible to intermediate nodes. As a result, 
some schemes such as SNOOP, I-TCP or M-TCP can no longer work in 
such scenarios since they all require the base station to access the traffic be- 
fore taking actions. Finally, overly relying on mediation at the intermediate 
nodes may cause a significant amount of control overhead, creating network 
bottlenecks under heavy traffic load. 

To overcome these deficiencies, the author in [22] proposed Freeze-TCP, 
a true end-to-end TCP enhancement scheme. The key idea of this scheme 
is to exonerate the base station from intervening in the end-to-end TCP 
connections. By constantly observing its received signal strength, a mo- 
bile host can predict a temporary disconnection due to handoffs or fading. 
Once such an event is predicted, the mobile host sends an ACK to the TCP 
sender with a zero advertised window size. Upon reception of such an ACK, 
the sender enters a persist mode. That is, the sender freezes all retrans- 
mission timers and sends zero window probes (ZWP) until the mobile host 
advertises a non-zero receiving window size. Since ZWPs are sent out with 
exponentially backoff, it is possible that the sender remains idle even the 
mobile host has recovered from the disconnection. To tackle this problem, 
the same technique as in [lo] is employed. Namely, as soon as the mobile 
host knows that it has reconnected, it will send three duplicate ACKs to the 
sender, forcing the sender to start fast retransmission. The main advantage 
of this scheme is that it improves TCP performance without any modifica- 
tion to the intermediate nodes. However, it could be easily seen that the 
actual performance depends largely on the accuracy with which the mobile 
host predicts an impending disconnection. 

4 TCP in Mobile Ad Hoc Networks 

TCP performance in mobile ad hoc networks is the focus of this section. It is 
expected that compared to one-hop wireless networks, TCP will encounter 
more serious difficulty in providing end-to-end communications in mobile ad 
hoc networks, as MANETs are, in essence, infrastructureless, self-organizing 
multi-hop networks, and lacking centralized network management. Next, we 
present the main problems in ad hoc networks, followed by recent solutions. 



4.1 Challenges 

Some salient characteristics of mobile ad hoc networks, which seriously de- 
teriorate TCP performance, include the unpredictable wireless channels due 
to fading and interference, the vulnerable shared media access due to ran- 
dom access collision, the hidden terminal problem and the exposed terminal 
problem, and the frequent route breakages due to node mobility. From the 
point of view of network layered architecture, these challenges can be broken 
down into five categories, i.e., a) the channel error, b) the medium contention 
and collision, c) the mobility, d) the multi-path routing, and e) congestion, 
whose adverse impacts on TCP is elaborated next. 

4.1.1 Channel Errors 

The effects of channel errors in ad hoc networks are similar to those in 
one-hop wireless networks except that they are more serious, since a TCP 
connection now may consist of multi-hop wireless links, unlike the situation 
in cellular networks or wireless LAN where only the last hop is wireless. 
Accordingly, the congestion window size at the sender may shrink more 
dramatically due to channel errors in several wireless hops, resulting in even 
lower throughput in ad hoc networks. 

4.1.2 Medium Contention and Collision 

Contention-based medium access control (MAC) schemes, such as the IEEE 
802.11 MAC protocol [9], have been widely studied and incorporated into 
many wireless testbeds and simulation packages for wireless multi-hop ad 
hoc networks, where the neighboring nodes contend for the shared wireless 
channel before transmitting. There are three key problems, i.e., the hidden 
terminal problem, the exposed terminal problem, and unfairness. A hidden 
node is the one that is within the interfering range of the intended receiver 
but out of the sensing range of the transmitter. The receiver may not cor- 
rectly receive the intended packet due to collision from the hidden node. An 
exposed node is the one that is within the sensing range of the transmitter 
but out of the interfering range of the receiver. Though its transmission 
does not interfere with the receiver, it could not start transmission because 
it senses a busy medium, which introduces spatial reuse inefficiency. The 
binary exponential backoff scheme always favors the latest successful trans- 
mitter and results in unfairness. These problems could be more harmful in 
multi-hop ad hoc networks than in Wireless LAN as ad hoc networks are 
characterized by multi-hop connectivity. 



MAC protocols have been shown to significantly affect TCP performance 
[20, 21, 40, 45, 51, and 541. When TCP runs over 802.11 MAC, as [54] 
pointed out, the instability problem becomes very serious. It is shown that 
collisions and the exposed terminal problem are two major reasons for pre- 
venting one node from reaching the other when the two nodes are in each 
other's transmission range. If a node cannot reach its adjacent node for 
several times, it will trigger a route failure, which in turn will cause the 
source node to start route discovery. Before a new route is found, no data 
packet can be sent out. During this process, TCP sender has to wait and 
will invoke congestion control algorithms if it observes a timeout. Serious 
oscillation in TCP throughput will thus be observed. Moreover, the random 
backoff scheme used in the MAC layer exacerbates this [20]. Since large 
data packet sizes and back-to-back packet transmissions both decrease the 
chance of the intermediate node to obtain the channel, the node has to back 
off a random period of time and try again. After several failed tries, a route 
failure is reported. 

TCP may also encounter serious unfairness problems [20, 40, 45, and 541 
for the reasons stated below: 

Topology causes unfairness because of unequal channel access oppor- 
tunity for different nodes. As shown in Fig. 1, where the small circle 
denotes a node's valid transmission range and the large circle denotes 
a node's interference range, all nodes in a 7-node chain topology ex- 
perience different degree of competitions. There are two TCP flows, 
namely flow 1 from node 0 to 1 and flow 2 from node 6 to 2. The 
transmission from node 0 to node 1 experiences interference from three 
nodes, i.e., nodes 1, 2, and 3, while the transmission from node 3 to 
node 2 experiences interference from five nodes, i.e., nodes 0, 1, 2, 4, 
and 5. Flow 1 will obtain much higher throughput than flow 2 due to 
the unequal channel access opportunity. 

The backoff mechanism in the MAC may lead to unfairness as it always 
favors the last successfully transmitting node. 

0 TCP flow length influences unfairness. Longer flows implies longer 
round trip time and higher packet dropping probability, leading to 
lower and more fluctuating TCP end-to-end throughput. Through 
this chain reaction, unfairness is amplified, as high throughput will 
become higher and low one lower. 
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Figure 4: Node interference in a chain topology 

4.1.3 Mobility 

Mobility may induce link breakage and route failure between two neighbor- 
ing nodes, as one mobile node moves out of the other's transmission range. 
Link breakage in turn causes packet losses. As we said earlier, T C P  can- 
not distinguish between packet losses due to route failures and packet losses 
due to congestion. Therefore, TCP congestion control mechanisms react 
adversely to such losses caused by route breakages [I ,  15, and 271. Mean- 
while, discovering a new route may take significantly longer time than TCP 
sender's RTO. If route discovery time is longer than RTO, TCP sender will 
invoke congestion control after timeout. The already reduced throughput 
due to losses will further shrink. It could be even worse when the sender and 
the receiver of a TCP connection fall into different network partitions. In 
such a case, multiple consecutive RTO timeouts lead to inactivity lasting for 
one or two minutes even if the sender and receiver finally get reconnected. 

Fu et al. conducted simulations considering mobility, channel error, and 
shared media-channel contention [19]. They indicated that mobility-induced 
network disconnections and reconnections have the most significant impact 
on TCP performance comparing to channel error and shared media-channel 
contention. T C P  NewReno merely achieves about 10% of a reference TCP's  
throughput in such cases. As mobility increases, the relative throughput 
drop ranges from almost 0% in a static case to 100% in a highly mobile case 
(when moving speed is 20mls ) .  In contrast, congestion and mild channel er- 
ror (say 1%) have less visible effect on TCP (with less than 10% performance 
drop compared with the reference TCP).  



4.1.4 Multi-path Routing 

Routes are short-lived due to frequent link breakages. To reduce delay due to 
route re-computation, some routing protocols such as TORA [35] maintain 
multiple routes between a sender-receiver pair and use multi-path routing 
to transmit packets. In such a case, packets coming from different paths 
may not arrive at the receiver in order. Being unaware of multi-path rout- 
ing, TCP receiver would misinterpret such out-of-order packet arrivals as 
congestion. The receiver will thus generate duplicate ACKs that cause the 
sender to invoke congestion control algorithms like fast retransmission (upon 
reception of 3 duplicate ACKs). 

4.1.5 Congestion 

It is known that TCP is an aggressive transport layer protocol. Its attempt 
to fully utilize the network bandwidth makes ad hoc networks easily go 
into congestion. In addition, due to many factors such as route change 
and unpredictable variable MAC delay, the relationship between congestion 
window size and the tolerable data rate for a route is no longer maintained 
in ad hoc networks. The congestion window size computed for the old route 
may be too large for the newly found route, resulting in network congestion 
if the sender still transmits at the full rate allowed by the old congestion 
window size. 

Congestion/overload may give rise to buffer overflow and increased link 
contention, which degrades TCP performance. As a matter of fact, [28] 
showed the capacity of wireless ad hoc networks decreases as traffic and/or 
competing nodes arise. 

4.2 Current Solutions 

As is shown in the previous section, there is a magnitude of research work 
on improving TCP performance over one-hop wireless networks. However, 
many of these mechanisms are designed for infrastructure-based networks 
and depend on the base stations in distinguishing the error losses from con- 
gestion losses. Since mobile ad-hoc networks do not have such an infrastruc- 
ture, they are hard to be applied in mobile ad-hoc networks directly. 

More recently, several schemes have been proposed to  improve TCP 
performance over mobile ad hoc networks. We classify the schemes into 
three groups, based on their fundamental philosophy: TCP with feedback 
schemes, TCP without feedback schemes, and TCP with lower layer en- 
hancement schemes. Through the use of feedback information to signal 



non-congestion-related causes of packet losses, the feedback approaches help 
TCP distinguish between true network congestion and other problems such 
as channel errors, link contention, and route failures. On the other end of 
the solution spectrum, TCP without feedback schemes makes TCP adapt to 
route changes without relying on feedback from the network, in light of the 
concern that feedback mechanisms may bring about additional complexity 
and cost in ad hoc networks. The third group, lower layer enhancement 
schemes, starts with the idea that TCP sender should be hidden from any 
problems specific in ad hoc networks while lower layers such as routing layer 
and MAC layer need to be tailored with TCP's congestion control algorithms 
in mind. As expected, this idea guarantees that TCP end-to-end semantics 
is maintained for ad hoc networks to seamlessly internetwork with the wired 
Internet. In the following, we present some representative schemes according 
to the aforementioned taxonomy. 

4.2.1 TCP with Feedback Solutions 

TCP-F: In the mobile ad hoc networks, topology may change rapidly due 
to the movement of mobile hosts. The frequent topology changes result in 
sudden packet losses and delays. TCP misinterprets such losses as conges- 
tion and invokes congestion, leading to unnecessary retransmission and loss 
of throughput. To overcome this problem, TCP-F (TCP-Feedback) [12] was 
proposed so that the sender can distinguish between route failure and net- 
work congestion. Similar to Freeze-TCP and M-TCP discussed above, the 
sender is forced to stop transmission without reducing window size upon 
route failure. As soon as the connection is reestablished, fast retransmission 
is enabled. 

TCP-F relies on the network layer at an intermediate node to detect the 
route failure due to the mobility of its downstream neighbor along the route. 
A sender can be in an active state or a snooze state. In the active state, 
transport layer is controlled by the normal TCP. As soon as an intermediate 
node detects a broken route, it explicitly sends a route failure notification 
(RFN) packet to the sender and records this event. Upon reception of the 
RFN, the sender goes into the snooze state, in which the sender completely 
stops sending further packets, and freezes all of its timers and the values 
of state variables such as RTO and congestion window size. Meanwhile, all 
upstream intermediate nodes that receive the RFN invalidate the particular 
route in order to avoid further packet losses. The sender remains in the 
snooze state until it is notified of the restoration of the route through a 
route reestablishment notification (RRN) packet from an intermediate node. 
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Figure 5: The TCP-F state machine [12] 

Then it resumes the transmission from the frozen state. The state machine 
of TCP-F is shown in Fig. 5. 

TCP-ELFN: Holland and Vaidya proposed another feedback-based tech- 
nique, the Explicit Link Failure Notification (ELFN) [23, 321. The goal is 
to inform the TCP sender of link and route failures so that it can avoid re- 
sponding to the failures as if congestion occurs. ELFN is based on DSR [26] 
routing protocol. To implement ELFN message, the route failure message of 
DSR is modified to carry a payload similar to the "host unreachable" ICMP 
message. Upon receiving an ELFN, the TCP sender disables its congestion 
control mechanisms and enters into a "stand-by" mode, which is similar to 
the snooze state of TCP-F mentioned above. Unlike TCP-F using an ex- 
plicit notice to signal that a new route has been found, the sender, while on 
stand-by, periodically sends a small packet to probe the network to see if 
a route has been established. If there is a new route, the sender leaves the 
stand-by mode, restores its RTO and continues as normal. Recognizing most 
of popular routing protocols in ad hoc networks are on demand and route 
discovery/rediscovery is event driven, periodically sending a small packet at 
the sender is appropriate to restore routes with mild overhead and without 
modification to the routing layer. 

Through explicit route failure notification, TCP-EFLN and TCP-F allow 
the sender to instantly enter snooze state and avoid unnecessary retransmis- 
sions and congestion control which wastes precious MH battery power and 
scarce bandwidth. With explicit route reestablishment notification from in- 
termediate nodes or active route probing initiated at the sender, these two 
schemes enable the sender to resume fast transmission as soon as possible. 
But neither of these two considers the effects of congestion, out-of-order 



packets, or bit errors, which are quite common in wireless ad hoc networks. 
In addition, both TCP-ELFN and TCP-F use the same parameter sets in- 
cluding congestion window size and RTO after reestablishment of routes as 
those before the route failure, which may cause problems because conges- 
tion window size and RTO are route specific. Using the same parameter 
sets helps little to approximate the available bandwidth of new route if the 
route changes significantly. 

ATCP: ATCP (Ad hoc TCP) [30] also utilizes the network layer feed- 
back. The idea of this approach is to insert a thin layer called ATCP between 
IP and TCP, which ensures correct behavior in the event of route failures 
as well as high bit error rate. The TCP sender can be put into a persist 
state, congestion control state or retransmit state, respectively, correspond- 
ing to the packet losses due to route breakage, true network congestion or 
high bit error rate. Note that unlike the previous two feedback-based ap- 
proaches, packet corruption caused by channel errors has also been tackled. 
The sender can choose an appropriate state by learning the network state 
information through explicit congestion notification (ECN) messages and 
ICMP "Destination Unreachable" messages. 

The state transition diagram for ATCP at the sender is shown in Fig. 
6. Upon receiving a "Destination Unreachable" message, the sender enters 
into the persist state. The TCP at the sender is frozen and no packets are 
sent until a new route is found, so the sender does not invoke congestion 
control. Upon receipt of an ECN, congestion control is invoked without 
waiting for a timeout event. If a packet loss happens and the ECN flag is 
not set, ATCP assumes the loss is due to bit errors and simply retransmits 
the lost packet. In case of multi-path routing, upon receipt of duplicate 
ACKs, TCP sender does not invoke congestion control, realizing multi-path 
routing shuffles the order in which segments are received. So ATCP works 
well when the multi-path routing is applied. 

ATCP is considered to be a more comprehensive approach in comparison 
with TCP-F and TCP- ELFN in that it accounts for more possible sources 
of deficiency including bit errors and out of order delivery due to multi- 
path routing. Through re-computation of congestion window size each time 
after route reestablishment, ATCP may adapt to change of routes. Another 
benefit of ATCP is that it is transparent to TCP, and hence nodes with and 
without ATCP can interoperate. 

In summary, as shown by the simulations, these feedback-based ap- 
proaches improve TCP performance significantly while maintaining TCP's 
congestion control behavior and end-to-end TCP semantics. However, all 
these schemes require that the intermediate nodes have the capability of de- 
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Figure 6: State transition diagram for ATCP at the sender [30] 

tecting and reporting network states such as link breakages and congestion. 
Enhancement at the transport layer, network layer, and link layer are all 
required. It deserves further research on the ways to detect and distinguish 
network states in the intermediate nodes. 

4.2.2 TCP without Feedback Solutions 

Adaptive Congestion Window Limit Setting: Based on the obser- 
vation that TCP's congestion control algorithm often over-shoots, leading 
to network overload and heavy contention at the MAC layer, Chen et al. 
[13] proposed an adaptive congestion window limit (CWL, measured in the 
number of packets) setting strategy to dynamically adjust TCP's CWL ac- 
cording to the current round-trip hop-count (RTHC) of the path, which can 
be obtained from routing protocols such as DSR. More precisely, the CWL 
should never exceed the RTHC of the path. 

The rationale behind this scheme is very simple, as shown in the fol- 
lowing. It is known that to fully utilize the capacity of a network, a TCP 
flow should set its CWL to the bandwidth-delay product (BDP) of the cur- 
rent path, where a path's BDP is defined as the product of the bottleneck 
bandwidth of the forward path and the packet transmission delay in a round 
trip. On the other hand, the CWL should never exceed the path's BDP in 
order to avoid network congestion. In ad hoc networks, if we assume the 
size of a data packet is S and the bottleneck bandwidth along the forward 
and return paths is the same and equal to bwmi,, it can be easily seen that 
the delay at any hop along the path is less than the delay at the bottleneck 



link, i.e., S/bwmin. Since the size of a TCP acknowledgement is normally 
smaller than that of the data packet, according to the definition of the BDP, 
we know BDP <= RTHC x S .  Therefore, the CWL, which is bounded by 
the path's BDP, should never exceed the RTHC of the path. 

This upper bound can be further tightened when the IEEE 802.11 MAC 
layer protocol is adopted. In fact, it is shown that, in a chain topology, 
a tighter upper bound exists, which is approximately 115 of the RTHC of 
the path. According to this tighter upper bound, the maximum RTO is set 
to a relatively small value of 2 seconds, which enables TCP to probe the 
route quickly should it break (due to false link failure). Simulation results 
showed that this simple but useful strategy is able to improve TCP-Reno 
performance by 8% to 16% in a dynamic MANET. 

TCP-DOOR: TCP-DOOR [50] attempts to improve TCP performance 
by detecting and responding to out-of-order (000) packet delivery events 
and thus avoiding invoking unnecessary congestion control. By definition, 
000 occurs when a packet sent earlier arrives later than a subsequent 
packet. In ad hoc networks, 000 may happen multiple times in one TCP 
session because of route changes. 

In order to detect 000, ordering information is added to TCP ACKs 
and TCP data packets. 000 detection is carried out at both ends: the 
sender detects the Out-of-Order ACK packets and the receiver detects the 
Out-of-Order data packets. If the receiver detects 000, it should notify the 
sender, considering the fact that it is the sender who takes congestion control 
actions. Once the TCP sender knows of an 000 condition, it may take one 
of the two responsive actions: temporarily disabling congestion control and 
instant recovery during congestion avoidance. The first action means that, 
whenever an 000 condition is detected, TCP sender will keep its state 
variables such as RTO and the congestion window size constant for a time 
period TI.  The second action means that, if during the past time period T2, 
the TCP sender has already entered the state of congestion avoidance, and it 
should recover immediately to the state prior to such congestion avoidance. 
The main reason is the detection of 000 condition implies that a route 
change event has just occurred. 

However, 000 can be detected only after a route has recovered from 
failures. As a result, TCP-DOOR is less accurate and responsive than a 
feedback-based approach that is able to determine whether congestion or 
route errors occur, and hence report to the sender at the very beginning. 
Furthermore, it may not work well with multi-path routing since multi-path 
routing may cause 000 as well. Therefore, it is concluded that TCP-DOOR 
may work as an alternative to the feedback-based approach to improve TCP 



performance over ad hoc network, if the latter is not available. 
Fixed RTO: In TCP congestion control, TCP doubles the RTO and re- 

transmits the oldest unacknowledged packet when the retransmission timer 
expires. Although this exponential backoff mechanism of the RTO could 
handle network congestion gracefully, it is no longer suitable in MANETs 
when the loss of packets or ACKs is caused by temporary route breakages, 
a s  discussed earlier. In such a case, the RTO should be recalculated, if pos- 
sible, according to the new route instead of being doubled. Furthermore, 
when the new route is established, TCP sender should start the transmission 
immediately instead of waiting for the expiration of retransmit timer. 

In the fixed RTO approach [15], no feedback from lower layers is needed. 
Rather, a heuristic is employed to distinguish route failures and congestion. 
When timeouts occur consecutively, i.e., an ACK is not received before the 
second RTO expires, the sender assumes a route failure rather than network 
congestion takes place. Therefore, the unacknowledged packet is retrans- 
mitted again without doubling the RTO. The RTO remains fixed until the 
route is re-established and the retransmitted packet is acknowledged. By 
adopting this strategy, the TCP sender avoids waiting for a long period of 
time before attempting to retransmit. This fast retransmission would force 
routing protocol especially like AODV [37] and DSR to repair routes fast, 
which in turn leads to a large congestion window on average and high TCP 
throughput. Actually, this technique complements TCP-DOOR. 

4.2.3 Lower Layer Enhancement Solutions 

Routing Layer Enhancement: A framework termed Atra, due to Anan- 
tharaman et al., aims to improve TCP performance over ad hoc networks 
by enhancing routing layers [3]. Three mechanisms, called Symmetric Route 
Pinning (SRP), Route Failure Prediction (RFP), and Proactive Route Er- 
rors (PRE), are introduced to minimize the probability of route failures, to 
predict route failures in advance, and to minimize the latency in convey- 
ing route failure information to source, respectively. Since asymmetric path 
would increase the probability of route failure for a connection, in the first 
mechanism, the ACK path of a TCP connection is always kept the same as 
the data path. Based on the progression of signal strengths of packet recep- 
tions from the concerned neighbor, the second mechanism enables the node 
to predict the occurrence of link failure more accurately. Finally, with PRE, 
when a link failure is detected, all sources that have used the link in the past 
certain period are informed of the link failure. This mechanism reduces the 
latency involved in the route failure information delivery and consequently 



reduces the number of packet losses and also triggers early alternate route 
computations. 

Link Layer Enhancement: Fu et al. [18] have discussed the inter- 
action between TCP and 802.11 MAC. Their studies reveal two interesting 
results. First, given a specific network topology and flow pattern, there ex- 
ists a TCP window size, say W*, at which TCP throughput is maximized 
since the best spatial reuse can be achieved; further increasing the win- 
dow size will reduce throughput. However, the standard TCP protocol does 
not operate around W*, typically with an average window much larger than 
W*. As a result, TCP experiences throughput reduction due to reduced spa- 
tial reuse and increased packet loss. In the simulated scenarios, 4% to 21% 
throughput reduction from maximum throughput is observed. Second, most 
packet drops experienced by TCP are not due to buffer overflow, but due to 
link-layer contention that are incurred by hidden terminals. They showed 
that contention drops exhibit a load-sensitive loss feature: as the injected 
TCP packets exceed W* and further increase, the link dropping probabil- 
ity becomes non-negligible and increases accordingly; after the injected TCP 
packets exceed another threshold W, the link dropping probability saturates 
and flattens out. It turns out that the link-layer dropping probability is not 
significant enough to make the average TCP window oscillate around W*, 
which subsequently leads to suboptimal TCP throughput. 

Therefore, two link layer techniques were proposed in [18] to improve 
TCP efficiency: a Link-RED (Random Early Detection) algorithm to tune 
the wireless link's packet dropping probability and an adaptive link-layer 
pacing scheme to reduce the medium contention. The Link-RED algo- 
rithm attempts to maintain the optimum congestion window size at the 
TCP sender. At the link layer each node measures the average number 
of the retries for recent packet transmissions. Normally, when the TCP 
sender increases the congestion window size and injects more packets into 
the network, this average number will increase, as more packets will aggra- 
vate medium contention. The head-of-line packet is dropped from the buffer 
or marked as congested with a probability calculated based on this average 
number. Once it detects packet losses or the congestion flag in the ACKs, 
the TCP sender invokes the congestion control algorithm that could help 
maintain the congestion window size around the optimum value and hence 
improve TCP's throughput. 

The goal of adaptive link-layer pacing is to alleviate the medium con- 
tention especially when the congestion window size exceeds the optimum 
value. It is enabled from within the Link-RED algorithm. When a node 
(which just sends a packet) notices its average number of retries is less than 



a predefined threshold, it calculates its backoff time as usual. Otherwise, it 
increases the backoff period by an interval equal to the transmission time of 
the previous data packet, and backs off accordingly. 

Neighborhood RED: As described in the previous subsection on chal- 
lenges, TCP exhibits serious unfairness in ad hoc networks as a result of 
the combination of MAC-inherent problems such as medium contention, the 
hidden terminal problem, and the exposed terminal problem. As these prob- 
lems are likely to exist in nodes which are located in a neighborhood, Xu et 
al. [53] proposed a scheme named neighborhood RED (NRED) that seeks to 
improve TCP fairness from the point of view of a neighborhood. By defini- 
tion, a node's neighborhood consists of the node itself and the nodes which 
can interfere with this node's signal. To make things simpler, a node's neigh- 
borhood considered in the scheme comprises the node itself and its one-hop 
and two-hop neighbors. 

The key idea of NRED is that each node forms a distributed queue of 
a neighborhood based on the individual queues maintained at every node 
located in the node's neighborhood, and the RED scheme can be applied 
to the distributed queue to address the fairness issue, as it has proven to 
be effective, in wired networks, in improving fairness among TCP flows by 
controlling average queue size at routers. 

The NRED scheme boils down to three algorithms, namely, Neighborhood 
Congestion Detection (NCD), Neighborhood Congestion Notification (NCN), 
and Distributed Neighborhood Packet Drop (DNCP). Instead of counting on 
each node actively advertising its own queue size information and then mea- 
suring the neighborhood queue size, which may cause a large amount of 
overhead or even aggravate congestion, NCD intelligently gets around the 
difficult task by monitoring channel utilization. Normally, channel utiliza- 
tion can serve as an indicator of the queue size, based on the observation 
that channel utilization around a node is likely to increase when the queues 
at its neighboring nodes build up. An early congestion is assumed to take 
place as the channel utilization exceeds a certain threshold. If congestion is 
detected, the node will calculate the packet dropping probability and send 
it in a NCN packet to its neighbors, provided certain conditions are met in 
order to avoid "overreaction". The neighbors, upon the reception of such 
notification, will drop some packets according to DNCP. 

Simulation studies show that the NRED can improve TCP fairness to 
some extent in ad hoc networks. However, the price paid is that the aggre- 
gate throughput in the network is actually reduced, which shows there is 
still room for further improvement. 



5 Future Research Directions 

At this point, after we discussed the challenges and visited some repre- 
sentative solutions, it is well recognized that in order for TCP to deliver 
a comparable performance in wireless networks to that in wired networks, 
quite a few critical issues need to be addressed. Note that compared with 
its one-hop counterparts, ad hoc networks require more efforts to handle as 
things are much more complicated. In this section we discuss some of these 
open issues for which searching for a better solution demands special efforts. 
It is worthy noting that we do not mean to list all. Rather, we concentrate 
on those that we believe are most important. 

5.1 TCP Fairness 

TCP unfairness becomes pronounced in wireless LANs [38]. In mobile ad 
hoc networks, the unfairness problem is more severe. It is shown that in a 
mobile ad hoc network with multiple flows, the throughput can be signif- 
icantly different among competing flows. This phenomenon is particularly 
evident when comparing flows of short paths to those of long paths [20]. 
Compared with the considerable effort paid to improve TCP end-to-end 
throughput, fairness is a critical issue that deserves more attention. In fact, 
this insufficiency can be seen from the number of proposed scheme targeted 
for fairness: among all the schemes we present in this chapter, only Adver- 
tised Window Control and Neighborhood RED address this issue, although 
a few schemes have touched upon fairness. Since bandwidth over wireless 
links is very limited bandwidth compared with that over wired links, it is 
crucial for every flow to fairly share the bandwidth in wireless networks. 
Therefore, more mature approaches are highly expected. 

5.2 Interactions among Different Layers 

Layered network architecture brings a myriad of advantages. At the same 
time, it requires a close look at the interactions among different layers when 
designing a good scheme. Currently, many solutions are focused on one spe- 
cific layer, attempting to isolate the problem and solve it. It is true that 
TCP might perform better with a highly effective and efficient link layer or 
routing layer, e.g., an MAC protocol which can quickly resolve medium con- 
tentions, or a mobility-aware routing protocol which can gracefully handling 
route changes. However, this approach may be problematic or even coun- 
terproductive, as suggested in [14]. Furthermore, as many factors such as 



bursty channel errors, medium access contention, and route breakage are all 
contributing to TCP throughput deterioration in mobile ad hoc networks, a 
unified solution is justified which takes into account the interaction among 
different layer. We thus argue that a cross-layer approach seems more de- 
sirable and promising. 

5.3 Compatibility with the Wired Internet 

For the purpose of internetworking with the wired Internet as required in 
future pervasive mobile computing, whatever TCP is designed for ad hoc 
networks should be fully compatible with the Internet. This quest for com- 
patibility translates into two requirements for future research. First, TCP's 
end-to-end semantics must be maintained. Second, TCP performance should 
be considered when TCP connections span both the wired networks and mo- 
bile ad hoc networks. 

6 Conclusions 

As the assumption made by TCP that any packet loss is due to network con- 
gestion is no longer valid in wireless networks, TCP performs poorly in such 
networks. In this chapter, we point out the major reasons for this perfor- 
mance degradation. In particular, factors such as error-prone wireless chan- 
nels and handoffs result in the poor TCP performance over one-hop wireless 
networks, while, aside from these factors, other factors such as medium ac- 
cess contention, frequent route changes, and breakages are considered to lead 
to the poor TCP performance over multi-hop wireless networks. Compared 
with one-hop wireless networks, we can see it is more difficult to make TCP 
perform well in multi-hop wireless networks. 

This chapter presents the state-of-the-art in recent efforts to improve 
TCP performance. Given the reasons, almost all the proposed schemes at- 
tempt to achieve better TCP performance with either of the two ideas: TCP 
should be capable of distinguishing non-congestion-related packet losses from 
congestion caused packet losses such that corresponding actions can be taken 
to deal with the losses; or non-congestion-related losses should be reduced 
such that TCP can work normally without any modifications. Interestingly 
enough, there seems little study attempting to combine these two ideas. 

Again, we choose to present the proposed schemes after separating those 
for one-hop wireless networks from those for multi-hop wireless networks for 
the purpose of clarity. In the realm of one-hop wireless networks, there are 



four groups of schemes, i.e., split-connection approaches, proxy-based ap- 
proaches, link-layer enhancement approaches, and end-to-end approaches. 
According to [5], a TCP-aware reliable link-layer protocol such as SNOOP 
performs best. However, TULIP is claimed to deliver better performance 
than SNOOP under some circumstances. In case of frequent and long dis- 
connections, M-TCP appears to perform well. In the realm of multi-hop 
wireless networks, there are also three groups of schemes, namely, TCP 
with feedback approaches, TCP without feedback approaches, and lower 
layer enhancement approaches. In conclusion, feedback-based schemes seem 
to be able to react more quickly to non-congestion-related packet losses, 
thus to be more effective in enhancing TCP performance [50]. However, 
the price to be paid is that they are more difficult to implement, for they 
require end nodes and intermediate nodes to cooperate with each other. On 
the other hand, approaches without feedback information are relatively sim- 
ple to implement, although the performance gain may not be high enough. 
Meanwhile, some solutions by enhancing the link layer and routing layer 
shed insights into how to reduce non-congestion-related losses in order to 
improve TCP performance. 

Finally, although some encouraging improvements have been reported by 
employing the proposed schemes, none of them can work well in all scenarios 
and meet all the challenges mentioned. Therefore, there is still much work 
to be done in the near future. To serve as guidance for future research, 
some critical issues regarding improving TCP performance and fairness are 
identified. 
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