
Chapter 5

A VERY FAST TABU SEARCH ALGORITHM FOR
JOB SHOP PROBLEM

Jozef Grabowski1, and Mieczyslaw Wodecki2

Wroclaw University of Technology, Institute of Engineering Cybernetics, Janiszewskiego 11-17,
50-372 Wroclaw, Poland, grabow@ict.pwr.wroc.pl;

University of Wroclaw, Institute of Computer Science, Przesmyckiego 20, 51-151 Wroclaw,
Poland, mwd@ii.uni.wroc.pl

Abstract This paper deals with the classic job-shop scheduling problem with makespan
criterion. Some new properties of the problem associated with blocks are pre-
sented and discussed. These properties allow us to propose a new, very fast
local search procedure based on a tabu search approach. The central concepts
are lower bounds for evaluations of the moves, and perturbations that guide the
search to the more promising areas of solution space, where "good solutions" can
be found. Computational experiments are given and compared with the results
yielded by the best algorithms discussed in the literature. These results show
that the algorithm proposed solves the job-shop instances with high accuracy in
a very short time. The presented properties and ideas can be applied in many
local search procedures.

Keywords: Job-Shop Scheduling, Makespan, Heuristics, Tabu Search

1. Introduction

The paper deals with the job-shop problem, which can be briefly presented
as follows. There is a set of jobs and a set of machines. Each job consists of
a number of operations, which are to be processed in a given order, each on
a specified machine for a fixed duration. The processing of an operation can
not be interrupted. Each machine can process at most one operation at a time.
We want to find the schedule (the assignment of operations to time intervals on
machines) that minimizes the makespan.

The job-shop scheduling problem, although relatively easily stated, is NP-
hard, and is considered one of the hardest problems in the area of combinatorial
optimization. This is illustrated by the fact that a classical benchmark problem

118

(FT10) of 10 jobs and 10 machines, proposed by Fisher and Thompson (1963),
remained unsolved (to optimality) for more than a quarter of a century. Many
various methods have been proposed, ranging from simple and fast dispatching
rules to sophisticated branch-and bound algorithms. For the literature on job-
shop scheduling, see Carlier and Pinson (1989), Morton and Pentico (1993),
Nowicki and Smutnicki (1996b), Vaessens, Aarts and Lenstra (1996), Aarts
and Lenstra (1997), Balas and Vazacopoulos (1998), and Pezzela and Merelli
(2000), and their references. In this paper, we present new properties and
techniques which allows us to solve the large-size job-shop instances with high
accuracy in a relatively short time

The paper is organized as follows. In Section 2, the notations and basic
definitions are introduced. Section 3 presents the new properties of the problem,
moves and neighbourhood structure, methods to evaluate the moves, search
strategy, dynamic tabu list, perturbations, and algorithm based on a tabu search
approach. The central concepts are lower bounds for evaluations of the moves,
and perturbations used during the performance of the algorithm. Computational
results are shown in Section 4 and compared with those taken from the literature.
Section 5 gives our conclusions and remarks.

2. Problem Formulation and Preliminaries

The job-shop problem can be formally defined as follows, using the notation
by Nowicki and Smutnicki (1996b). There are: a set of jobs J = {1,2,..., n} ,
a set of machines M = {1,2,..., m}, and a set of operations O = {1,2,..., o}.
Set O decomposes into subsets (chains) corresponding to the jobs. Each job
j consists of a sequence of Oj operations indexed consecutively by (lj-i +
1,..., lj-i + Oj), which are to be processed in order, where lj = Yli=i °i> *s the
total number of operations of the first j jobs, j — 1,2,..., n, (IQ = 0), and o =
J2f=i °i- Operation x is to be processed on machine /^ G M during processing
time px, x G O. The set of operations O can be decomposed into subsets
Mfc = {x G O\fix = k}, each containing the operations to be processed on
machine k, and m^ = |Mfc|, k G M. Let permutation TT̂ define the processing
order of operations from the set M& on machine k, and let II*. be the set of all
permutations on M&. The processing order of all operations on machines is
determined by m-tuple TT = (TTI, TT2, ..., 7rm), where TT G III x II2 x ... x I I m .

It is useful to present the job-shop problem by using a graph. For the given
processing order TT, we create the graph G(ir) = (iV, R U E(TT)) with a set of
nodes N and a set of arcs R U E{ir), where:

N = O U {s, c}, where s and c are two fictitious operations representing
dummy "start" and "completion" operations, respectively. The weight of
node x G N is given by the processing time p^, (ps = pc = 0).

A Very Fast Tabu Search Algorithm for Job Shop Problem 119

• R= U [
3=1 L i==1

U {(Ij-i + ojtc)}].
Thus, R contains arcs connecting consecutive operations of the same job,
as well as arcs from node s to the first operation of each job and from the
last operation of each job to node c.

m rrik—1

- E(TT) = U U {fabCWi+ !))}•
k=l i=l

Thus, arcs in E(TT) connect operations to be processed by the same ma-
chine.

Arcs from set R represent the processing order of operations in jobs, whereas
arcs from set E(TT) represent the processing order of operations on machines.
The processing order TT is feasible if and only if graph G(n) does not contain a
cycle.

Let C(x,y) and L(x,y) denote the longest (critical) path and length of this
path, respectively, from node x to y in G(TT). It is well-known that makespan
Cmaxi7^) for 7T is equal to length L(s, c) of critical path C(s, c) in G(TT). NOW,

we can rephrase the job-shop problem as that of finding a feasible processing
order TT G II that minimizes Cmax(7r) in the resulting graph.

arcs from R

^ arcs from E(n)

Figure 5.1. Operation predecessors and successors.

We use a notation similar to the paper of Balas and Vazacopoulos (1998).
For any operation x £ O, we will denote by a(x) and j(x) the job-predecessor
and job-successor (if it exists), respectively, of #, i.e. (a(x), #) and (x, 7(x))
are arcs from R. Further, for the given processing order TT, and for any operation
x e O, we will denote by /3(x) and 5(x) the machine-predecessor and machine-
successor (if it exists), respectively, of x, i.e. the operation that precedes x, and

120

succeeds x, respectively, on the machine processing operation x. In other words,
(/3(x), x) and (x, S(x)) are arcs from E(ir)9 see Figure 5.1.

Denote the critical path in G(TT) by C(s, c) = (s, ui, u<i,..., MW>
 C)> where

n^ G O, 1 < i < w, and i/; is the number of nodes (except fictitious s and
c) in this path. The critical path C(s, c) depends on TT, but for simplicity in
notation we will not express it explicitly. The critical path is decomposed into
subsequences I?i, B<i,..., Br called blocks in TT on C(s, c) (Grabowski, 1979;
Grabowski, Nowicki, and Smutnicki, 1988), where

1 Bk = (ufk,ufk+1,...,uik_1,ulk), 1 < fk<lk<w, fc = l,2,...,r.

2 B*. contains operations processed on the same machine,
fc = l ,2 , . . . , r .

3 two consecutive blocks contain operations processed on different ma-
chines.

A>th block

Figure 5.2. Block on critical path.

In other words, the block is a maximal subsequence of C(s, c) and contains
successive operations from the critical path processed consecutively on the
same machine. In the further considerations, we will be interested only in non-
empty block, i.e. such that \Bk\ > 1, or alternatively fk < h> Operations Ufk

and uik in Bk are called the./zr.stf and last ones, respectively. The fc-th block,
exclusive of the first and last operations, is called the &-th internal block, see
Figure 5.2.

A block has advantageous so-called elimination properties, introduced orig-
inally in the form of the following theorem (Grabowski, 1979; Grabowski,
Nowicki, and Smutnicki, 1988).

T H E O R E M 5.1 . LetG(TX) be an acyclic graph with blocks Bk, k = 1,2, ...,r.
If acyclic graph G(cv) has been obtained from G{ir) through the modifications
ofn so that Cmax(uj) < Cmax{^), then in G(u)

(i) at least one operation x G Bk precedes job ufk, for some k G {1,2, . . . , r} ,
or

(ii) at least one operation x G Bk succeedsjob uik, forsome k G{1,2, . . . , r } .

A Very Fast Tabu Search Algorithm for Job Shop Problem 121

3. Tabu Search Algorithm (TS)

Currently, TS is one of the most effective methods using local search tech-
niques to find near-optimal solutions to combinatorial optimization problems,
see Glover (1989, 1990). The basic idea in our context involves starting from
an initial basic job processing order and searching through its neighbourhood,
for the processing order with the lowest makespan (in our case, the processing
order with the lowest lower bound on the makespan). The search then repeats
using the chosen neighbor as a new basic processing order.

The neighbourhood of a basic processing order is generated by the moves. A
move changes the location of some operations in the basic processing order. In
order to avoid cycling, becoming trapped at a local optimum, or continuing the
search in a too narrow region, the mechanisms of a tabu list and a perturbation
are utilized. The tabu list records the performed moves, for a chosen span of
time, treating them as forbidden for possible future moves, i.e. it determines
forbidden processing orders in the currently analyzed neighbourhood. The list
content is refreshed each time a new basic processing order is found: the oldest
elements are deleted and new ones added. The search stops when a given
number of iterations has been reached without improvement of the best current
makespan, the algorithm has performed a given total number of iterations,
time has run out, the neighbourhood is empty, or a processing order with a
satisfying makespan has been found, etc. In practice, the design of the particular
components of a search algorithm is considered an art. The construction of
the components influences the algorithm performance, speed of convergence,
running time, etc.

3.1 Moves and Neighbourhood

In the literature are many types of moves based on interchanges of operations
(or jobs) on a machine. The intuition following from Theorem 5.1 suggests that
the "insertion" type move is the most proper for the problem considered. In
general, the insertion move operates on a sequence of operations by remov-
ing an operation from its position in a sequence and inserting it in to another
position in the same sequence. More precisely, let v = (x, y) be a pair of
operations on a machine, x,y e O, x •=£ y. With respect to graph G(TT),

the pair v = (x,y) defines a move that consists in removing operation x
from its original position and inserting it in the position immediately after
(or before) operation y if operation y succeeds (or precedes) operation x
in G(TT). This move v generates a new graph G(TTV) from G(TT). All graphs
G(TTV), which can be obtained by performing moves from a given move set U,
create the neighbourhood iV(C/, TT) = {G(TTV) \ v G U} of graph G(TT).

The proper definition of the move and selection of U, i.e. the neighbourhood
N(U, TT), is very important in constructing an effective algorithm. The set U

122

should be neither too "big" nor too "small". The large set requires a great com-
putational effort for the search of N(U, TT) at a given iteration of the algorithm,
whereas the small one needs a large number of iterations for finding a "good"
solution.

For the job-shop problem there are several definitions of moves based on the
interchanges of adjacent and non-adjacent pairs of operations on a machine.

The interchange moves of the adjacent pairs have been used earlier by
Balas (1969), while the non-adjacent ones by Grabowski (1979), Grabowski
and Janiak, (1987), and Grabowski, Nowicki and Smutnicki (1988). The lat-
ter moves were widely employed for the flow-shop problem by Grabowski
(1980, 1982), and Grabowski, Skubalska and Smutnicki (1983), and for the
one-machine scheduling by Carlier (1982), Grabowski, Nowicki and Zdrzalka
(1986), Adams, Balas and Zawack (1988), and Zdrzalka and Grabowski (1989).
All these moves were applied in branch-and-bound procedures.

Recently, in the heuristics for the job-shop problem, the adjacent moves have
been employed by Matsuo, Suh and Sullivan (1988), Laarhoven, Aarts and
Lenstra (1992), and Nowicki and Smutnicki (1996b), while the non-adjacent
ones by DellAmico and Trubian (1993), Balas and Vazacopoulos (1998), and
Pezzela and Merelli (2000). Besides, the latter moves were used by Nowicki
and Smutnicki (1996a), Smutnicki (1998), and Grabowski and Pempera (2001)
in the tabu search algorithms for the flow-shop problem.

The second component of the local search algorithms is a selection (con-
struction) of "effective" neighbourhood N(U,TT). Amongst many types of
neighbourhoods considered (and connected with the chosen definition of the
move), two appear to be very interesting.

The first is that proposed by Nowicki and Smutnicki (1996b). In point of the
computational results, it seems that their neighbourhood used in the tabu search
procedure with built-in block properties (and based on interchanges of some
adjacent pairs only) is "optimal". However, we believe this neighbourhood
is "too small", that is, their TS needs too many iterations. Despite out criti-
cism, the computational results obtained by Nowicki and Smutnicki (1996b)
are excellent. Their spectacular success encourages further explorations in that
area.

The second neighbourhood (based on interchanges of non-adjacent pairs),
presented by Balas and Vazacopoulos (1998), is employed in their local search
(tree search) algorithm, denoted GLS. This algorithm is based on the branch-
and-bound procedure with an enumeration tree whose size is bounded in a
guided manner, so that GLS can be treated as an approximation algorithm. It is
clear that the largest size of the neighbourhood is at the root of the tree, and while
searching, the size decreases with increasing levels of the tree. Additionally,
GLS consists of several such procedures (each of them starting with various
initial solutions). As a consequence, it is difficult to compare the neighbour-

A Very Fast Tabu Search Algorithm for Job Shop Problem 123

hood size of GLS with those given in the literature. However, with regard to the
neighbourhood at the root of the tree, GLS investigates a considerably larger
neighbourhood than the heuristics based on interchanges of adjacent pairs of
operations. Computational results obtained by GLS confirm an advantage over
other heuristics for the job-shop problem. In our algorithm TS, the neighbour-
hood is larger than that at the root of the tree in GLS, and is based on the block
approach. Besides, in order to reduce calculations for the search of neighbour-
hood, we propose to use a lower bound on the makespan instead of calculating
the makespan explicitly, as a basis for choosing the best move.

For any block Bj- in G(n) (acyclic), let us consider the set of moves W^(TT)

which can be performed inside this block, i.e. on operations iyfc+i,..., uik-i,
k = 1,2,..., r. Precisely, each Wk(n) is defined by the formula

WfcC71") = {(x, y)\x,y e {ufk+i,..., u/ f c- i}, x ^ y}.

r
All these moves create the set W(TT) = U Wfc(7r).

Immediately from Theorem 5.1 we obtain the following Corollary which
provides the basis for elimination (Grabowski, 1979; Grabowski, Nowicki, and
Smutnicki, 1988).

COROLLARY 1 . If acyclic graph G(TTV) has been generated from acyclic
graph G(7r) by a move v G W(n), then Cmax(7Tv) >

This Corollary states that the moves from the set W(ir) defined above are not
interesting, taking into account the possibility of an immediate improvement of
the makespan after making a move.

Next, we will give a detailed description of the moves and neighbourhood
structure considered in this paper. Let us consider the sequence of operations on
critical path C(s, c) in G{ir) and blocks B\, i?2, • • . , Br determined for C(s, c).
For each fixed operation x belonging to the critical path C(s, c), we consider at
most one move to the right and at most one to the left. Moves are associated with
blocks. Let us take the block B^ = {ufk,u/k+i, ...,uik-i,uik}9k = 1,2, ...,r.
Then, we define the sets of candidates (Grabowski, 1979; Grabowski, Nowicki,
and Smutnicki, 1988).

124

Ekb = {ufk+1,...,uik-1,ulk} = Bk- {ufk}.

Each set Eka (or Ekb) contains the operations in the A:-th block of G(n) that are
candidates for being moved to a position after (or before) all other operations
in the £-th block. More precisely, we move operation x, x G Eka, to the right
in to the position immediately after operation vik, and this move takes the form
v = (x, uik), so Corollary 1 can not be applied to this move, i.e. v ^ Wk- By
symmetry, operation x, x G Ekb, is moved to the left in the position immediately
before operation Ufk, and this move takes the form v = (x, Ufk), so v $ Wk-
Note that after performing a move v = (x , t ^) , x G Eka (or v = (x,Ufk),
x G Ekb), operation x, in G(TTV) , is to be processed as the last (or first) operation
of the k-th block of G(n). It is easy to observe that in order to obtain the graph
G(TTV) by performing amove*/ = (x, uik),x G Eka(oTv = (x,Ufk),x G Ekb),
we should remove the arcs (/3(x), x), (x, S(x)) and (utk, S(uik)) from G(TT) and
add to G(TT) the arcs (/?(#), £(#)), (uh^x) anc^ (x> ^0%) (o r remove the arcs
(P(x),x),(x,6(x)) and (5(u/J,u/ f c) , and add the arcs (/3(x),5(x)), (x,ufk)
and (P(ufk), x)). For illustration, performing the move t; = (x, t ^) is shown
in Figure 5.3.

O

X—> arcs removed from G(n)

.> arcs added to G(n)

Figure 5.3. Move performance.

According to the description given, foranyblock^ inG(7r), k = 1,2, . . . , r,
we define the following set of moves to the right

and the set of moves to the left

Set ZRk(7r) contains all moves of operations of Eka to the right after the last
operation uik of the fc-th block. Similarly, set ZLk{^) contains all moves of
operations of Ekbto the left before the first operation Ufk of the fc-th block. Of

A Very Fast Tabu Search Algorithm for Job Shop Problem 125

course, Corollary 1 does not hold for moves from the sets ZF^(TT) and ZLk(7r).
For illustration, the moves performed to the right and left are shown in Figure
5.4.

A"-th block

in G(K)

Figure 5.4. Operation movements.

Note that if \Bk\ = 2, for some k G { 1 , 2 , . . . , r } , then Eka = {ufk}9

= {v>ik}, and ZRk{ri) = ZLk(7r), and one of these sets can be eliminated.
If we assume that Eka = {^/fc-i} in ZRk(ir) and Ekb = {ufk+\} in ZLk(n)
then ZRk(7r) U ZLk(jC) is similar to that presented by Nowicki and Smutnicki
(1996b), denoted as %(?r).

As a consequence of the above considerations, in TS, we should take the set
of moves

r
M(TT)= {J(ZRk(7r)UZLk(7T))

k=i

and the resulting neighbourhood N(M(TT), TT).

A set of moves similar to M(TT) has been proposed by Grabowski (1980,
1982) and Grabowski, Skubalska and Smutnicki (1983) for the flow-shop prob-
lem. However, for the job-shop problem, the neighbourhood N(M(7r),7r)
contains processing orders which can be infeasible. It should be noticed that
if a move v = (x,t%) G ZRk(7r), (or v = (x,Ufk) G ZLk(7r)) contains an
adjacent pair of operations, i.e. x = vik-\ G Eka, (or x = Ufk+i G Ekb)9

then the resulting graph G(TTV) is acyclic (Balas, 1969; Laarhoven, Aarts, and
Lenstra, 1992).

In sequel, we consider conditions under which performing a move v =
(x, uik) G ZRk(n), x ^ ti|fc_i, (or v = (x, wA) G ZLk(r:\ x ^ u A + i) in an
acyclic G(TT), generates the acyclic graph G(TTV).

T H E O R E M 5.2 For each acyclic C?(TT), ifG(7rv) has been generated by a move
v = (x, uik) G ZRk(7r), x / ^ f c - i , fc = 1 ,2 , . . . , r, awrfI/IW G(TT)

L(t*fc,c) + m i n (p a (%)) |) U | r i) +P7(x) > ^ W , c) , (5.1)

and/y(x) ^ ĉ (̂ zfe)> ^ « G(TTV) is acyclic.

126

Proof (by contradiction).
For simplicity, the index k will be dropped. For a move v = (x, 14), x G Eay

x 7̂ ui-i, we suppose that there is created a cycle C in G(TTV). It is obvious
that C contains some arcs that are added to graph G(TT) (see Figure 5.5).

If (/?(x), S(x)) G C, then G(n) contains a path from S(x) to (3(x), which
contradicts the assumption that G(ir) is acyclic. Therefore, C can contain
(x, S(ui)) or (ui, x). If C contains both these arcs, then there is a path in G(n)
from 5(ui) to ui, contrary to the assumption that G(TT) is acyclic. Hence, C
contains either (x, S(ui))9 or (ui, x). If (x, S(ui)) G C, then there is a path in
G?(TT) from 6(ui) to x, again contrary to the assumption. Finally, if (i#, x) G C,
then C contains

a) apathdi(x,uj) = ((x,7(x),

b)

(a) In this case if C contains path d\ (x, m), then this path is in G(TT) and, since
7(x) 7̂ oc{ui), we obtain

(5.1a)

(b) But if C contains path d%(x, ui), then this path is in G(TT), and now we
obtain

L(7(x),c) > L{uhc) +pUl-i +P7(x)- (5-1&)

Together (5.1a) and (5.1b) imply

,c) > L(uhc)

which contradicts the assumption 5.1.

o-x->o^

Figure 5.5. Paths d\(x, m) and di(x, m) in G(TT).

A Very Fast Tabu Search Algorithm for Job Shop Problem 127

The considerations in the proof of Theorem 5.2 suggest the following property.

PROPERTY 1 For each acyclic G(TT), ifGfa) has been generated by a move
v = (x, uik) 6 ZRk(jr), k = 1,2,..., r and ifx has no job-successor 7(x),
then G(TTV) is acyclic.

By symmetry, we have

THEOREM 5.3 For each acyclic G(n), ifG{jxv) has been generated by a move
v = (x, Ufk) £ ZLk(n), x 7̂ Ufk+i> k = 1,2,..., r, and if in G(n)

L{s,ufk) + mm(p7(t4/fc),pti/fc+i) +pa(x) > L(s,a(x)), (5.2)

anda(x) ^ 7(^/fc), ^e« {̂ (TT)̂ W acyclic.

The proof of Theorem 5.3 can be obtained by using similar considerations to
Theorem 5.2, but with the set of moves ZLfc(Tr).
By analogy, we have

PROPERTY 2 For each acyclic G(TT), ifG(^v) has been generated by a move
v = (x, Ufk) G ZLkiw), k = 1,2,..., r, and if x has no job-predecessor a(x),
then G(TTV) is acyclic.

Note that the conditions 5.1 and 5.2 are both less restrictive than those given
by Balas and Vazacopoulos (1998) for procedure GLS, so that our neighbour-
hood is larger than that proposed by Balas and Vazacopoulos (1998), but it is
slightly smaller than that of DellAmico and Trubian (1993).

Let

7r) = {v G ZRk(ft)\v satisfies 5.1 and j(x) ^ Oi{uik), or x = ?%-

ZL%(TT) = {v e ZLk(7r)\v satisfies 5.2 and a(x) ^ 7(^/fc)>
 o r x =

be the sets of the moves from ZRk(7r) and ZLk{ft), the performance of which
generates acyclic G(TTV) from acyclic G(TT). Finally, in our TS, we will employ
the set of moves

fc=l

which creates the neighbourhood N(M*(K), TT).

As a consequence of the above considerations, let

E*ka = {xe Eka I (x,uh) e ZR*k(n)},
E*kb = {xe Ekb | (x, ufk) € ZL*k(n)},

be the sets of operations whose movement generates acyclic Gfc) from acyclic

128

In order to decrease the total computational effort for the search, we pro-
pose calculation of a lower bound on the makespans instead of computing the
makespans explicitly for use in selecting the best solution, though doing so
can increase the number of iterations in TS. The makespan resulting from per-
forming a move can be calculated by using the standard Bellman's algorithm
in O(o) time, however, doing this for every solution becomes too expensive, so
that we propose a less costly lower bound. In fact, this lower bound is used for
evaluating and selecting the "best" move.

Next, we present a method to indicate a move to be performed, i.e. an
operation which should be moved after the last operation %nk (or before the first
operation Ufk) of the fc-th block. According to the search strategy in TS, we
want to choose a move v which will generate graph G(TTV) with the smallest
possible makespan Lv(s, c). To evaluate all moves from the sets ZB^(n) and

^(TT), (i.e. all operations from E^a and E%b) we introduce the formula

Aka(x) = max(Ll La
2, L%, L%, L%\ x G

where:
L\ = -Px,
L% = L(j(x), c) - L{ulk, c) + p U l k ,

La
3 = L(s,a(S(x)))-L(s,x),

% = L$ + L
I - L(~?(f3(x)),c) - L(x,c),

And
Afc6(x) = max{L\, Lb

2, L\, L\, L\), X G E*kb,

where:
L \ = -Px,
L\ = L(s,a(x)) - L(s,ufk) +pUfk,

L\ = L(-y((3(x)),c)-L(x,c),
L b jb i Tb I „

L§ - L(s,a(<J(x)))-L(5,x), x^uh.

The complexity of A ^ x) , A G {a, 6}, having the components L(s,i) and
L(i, c), i G AT, is 0(1). Note that these components are obtained during the
calculation of the makespan L(s,c) in G(TT). Here, if there does not exist
7(x) (or a(x)) for some x, then 7(x) = c and L(7(x), c) = 0 (or a(x) = s
and L(s,a(x)) = 0). Further, if there does not exist a(S(x)) (or 7(/?(#))
for some x, then a(<5(#)) = s and L(s, a(S(x))) = 0 (or 7(/?(x)) = c and

)),c) = 0). Note that if x = ufk (or x = uh), then L% (or L\)

A Very Fast Tabu Search Algorithm for Job Shop Problem 129

is not used during the calculation of A&a(x) (or A^(x)). The usefulness of
these values Ak\(x), A G {a, &}, for the choice of a move is illustrated by the
following Theorems.

THEOREM 5.4 For each acyclic G(TT), ifG(7Tv) has been generated by a move
v = (x, uik) G ZRI(TT), k = 1,2,..., r,

Lv{s,c)>L(s,c)

where Lv(s,c) is the length of a critical path in G(TTV).

Proof.
For simplicity, the index k will be dropped, then we have

L(s,c) + Aa(x) = L{s,c)+max{La
1, La

2, L%, L% L%)
= L(s,c)+max(-px, L(-y(x),c) - L(uuc) +pUl, L(s,a(5(x)))
-L(s,x), L(7(x),c) -L(^,c)+pWi +L(s,a(6(x))) - L(s,x)

Since G(TT) is acyclic, then there exists a critical path. And for each node i G N
which belongs to the critical path, we have

and

Further, since the nodes /?(x), x, 5(x) and î belong to the critical path C(s, c),
then, using 5.3, we get

L(«, c) + Ao(x) = max(L(s, c) - px, L(s, c) + L(j(x), c)
-L{uhc)+pUl, L(«,c)+L(3,a(<J(x)))-L(«,x), L(s,c)

(x)), c)) = max(L(s, x) + L(x, c) - 2px, L(s, ufi + L(uu c)
+pUl +L(7(x),c) - L (u / , c) + p w p L(s,x) + L((J(x),c)

; a(<5(x))) - L(5, x), L(5j x) + L(5(x), ufi + L{uh c) - pUl

), c) - L(i//, c) + p^ + L(s, a(5(x))) - L(s, x)
+Px, L(s, p(x)) + L(x, c) + L(-y(f3(x)), c) - L(x, c))
= max(L(s, x) + L(x, c) - 2px, L(s, u{) + L(j(x), c), L(5(x), c)

, c), L(5, /3(x)) + X(7(/3(*)), c)). (5.4)

130

Now, let us consider certain paths di(s,c), c?2(s,c), ds(s,c), d±(s,c) and
ds(s, c) from s to c in G(TTV) generated by the move v = (#, ui) e ZR^(TT)
(see Figure 5.6),

di(*,c) -
d2{s,c) =

5,c) = (C(s,a(S(x))),(a(6(x)),S(x)),C(6(x),Ul),(Ul,x),

d5(s,c) =

Paths di(s, c), ^ (s , c), d3(s, c), d^s, c) and ds(s, c) in ̂ (Trt,).

The lengths of these paths are

h(s,c) = L(s,/3(x)) + L(5(x),c) = L(s,x) - p x + L(x,c) - px

= L(s, x) + L(x, c) - 2px,

Since G(TTV) is acyclic, then there exists a critical path Qj(s, c), the length of
which can not be shorter than the length of any path from s to c in
Therefore, we have

Lv(s,c) > h(s,c), Lv(s,c)>l2(s,c), Lv(s,c)>l3(s,c),
Lv(s,c) > U(s,c), Lv(s,c) >Z5(s,c).

A Very Fast Tabu Search Algorithm for Job Shop Problem 131

Hence, using 5.4, we get

Lv(s,c) > max(h(s,c), h(s,c), h(s,c), U(s,c), k(s,c))
= max(L(s, x) + L(x, c) — 2px, L(s, u{)
+L(7(x),c), L(S(x),c)+L(s,a(8(x))), L(s,a(6(x)))
+L(6(x), ui) +Px + L(7(x), c), L(s, /J(x)) + L(7(/?(x)), c))

An analogous result holds for moves from the set

T H E O R E M 5.5 For each acyclic G(it), if G{irv) has been generated by a move
v = (x, ufk) e ZL*k{v), k = 1,2, . . . , r, then

Lv(s, c) > L(s, c) + Akb(x),

where Lv(s, c) is the length of the critical path in G(TTV).

Proof. Parallels that of Theorem 5.4.

Hence, by moving operation x G E^,a (or x G E%.b) after operation uik (or
before operation w/fc) in G(TT), a lower bound on value Lv(s, c) of acyclic
graph G(nv) is L(s, c) + Afco(x) (or L(s, c) + A^(a:)). Thus, the values
AfcA(^), A G {a, b}9 can be used to decide which operation should be moved,
i.e. the operation should have the smallest value of A^\(x). The smallest
value of Ak\(x) corresponds to the "best" move v = (x,vik) G ZR%(ir)9 (or
v = (x,Ufk) G ZL^(7r)) if Afca(x) (or A^(x)) reaches this value. From
Theorems 5.4 and 5.5 it follows that if A^A(^) > 0, then in the resulting graph
G(TTV) we have Lv(s, c) > L(s, c).

Generally, in our TS, for the given graph G(TT), we calculate the critical path
C(s, c) (if there is more than one critical path, any one of them can be used),
and the length of this path Cmax(7r) (= L(s, c)). We then identify the blocks
J5i, £?2, • • •»Br> create the set of moves M*(TT), compute the values Ak\(x)9

x G -B|A, A G {a, b}, k = 1,2, . . . , r, choose the "best" move v (corresponding
to the smallest value of Ak\(x)) from set M* (TT) and create the graph G(TTV) by
removing some arcs from G(TT) and adding other ones to G(n) (see beginning
of this section). Next, the search process of TS is repeated for the resulting
graph G(TTV) until Maxiter of iterations is reached. Of course, according to
the philosophy of TS, there are some exceptions while choosing the "best"
move:

A. If the chosen move has a status tabu (see next section for details), the move
is not allowed.

132

B. If MaxretP (MaxretP < Maxiter) of the consecutive non-improving
iterations pass in TS, then, instead of a single ("best") move, we choose
several ones to be performed simultaneously (see section Perturbations
for details).

Exception (B) gives assistance in addition to the tabu list to avoid being trapped
at a local optimum.

3.2 Tabu List and Tabu Status of Move

In our algorithm we use the tabu list defined as a finite list (set) T with
dynamic length LengthT containing ordered pairs of operations. The list is
initiated by introducing LengthT empty elements. If a move v = (x, %) G
ZRI(TT), (or move v = (x,Ufk) e ZL%(K)) is performed on graph G(TT)

generating graph G(TVV)9 then the pair of operations (S(x),x) (orpair (#,/?(#)),
representing a precedence constraint, is added to T. Each time before adding a
new pair to T, we must delete the oldest one.

With respect to graph G(TT), amove (x,znk) G ZRk (TT), (or a move (x,Ufk) £
ZL*k(ir)) has the tabu status (it is forbidden) if A(x)DBk ^ Q(orB(x)nBk ^ 0
), where:

B(x) = {yeO\(y,x)eT}.

Set A(x) (or set B(x)) indicates which operations are to be processed after (or
before) operation x with respect to the current content of the tabu list T.

Length T

4/3n

2/3n

H(2) H(0 Her

Figure 5.7. Dynamic tabu list.

As mentioned above, our algorithm uses a tabu list with dynamic length.
This length is changed, as the current iteration number iter of TS increases.
The length change is used as a "pick" intended to carry the search to another

A Very Fast Tabu Search Algorithm for Job Shop Problem 133

area of the solution space. LengthT is a cyclic function shown in Figure 5.7
and defined by the expression

{ [§n] , if W(l) < iter < W(l) + H(/),

[|n] , if JF(0 + #(/) < iter < W(l) + H(l) + ft,

where: / = 1,2,... is the number of the cycle, W(l) = E L i H(S - 1) + (I -
1) * h, (here if (0) = 0), and h is the width of the pick equal to n. Interval H(l)
is the parameter which is not constant, but it depends on the structure of graph
G(n) currently considered. More precisely, let G(TT) be the graph obtained at
the beginning of the interval H (1), i.e. in W(l) + 1 iteration (see expression on
LengthT). Then the next pick is begun when H(I) = 2 x \C\ iterations pass
in TS, where \C\ is the number of nodes in the critical path of G(TT). The one
exception is for the first cycle when we take H(l) = 3 x \C\.

If LengthT decreases then a suitable number of the oldest elements of tabu
list T is deleted and the search process is continued.

3.3 Search Strategy
We employ a specific searching strategy which yields very good computa-

tional results. A move v = (x>ulk) ^ M*(TT) (or v = (x,Ufk) G M*(TT))

is unforbidden (UF), if it does not have the tabu status. For a given graph
G(TT), the neighbourhood is searched in the following manner. First, the sets
of unforbidden moves are defined

URk = {v e ZR*k(ir) | move v is UF},

ULk = {v e ZLI(TT) I move v is UF}.

For the fc-th block, the "best" moves vR^ G URk and vL^ G ULk are chosen
(respectively):

DELTA(vR(k)) = mmv={XiUlk)eURk Afeo(x), fc = 1,2,..., r,

DELTA{vL{k)) = mmv={XiUfk)eULk Akh(x), k = 1,2,..., r.

Next, the following sets of moves are created

RB = {vR{k) |fc = l , 2 , . . . , r } ,

LB = {vL{k) | k = l , 2 , . . . , r } ,

and
BB = RBULB = {vi, v2,..., v2r}.

134

Note that the move vk G BB belongs either to RB or to LB. The move
v to be performed is selected amongst those in BB with the lowest value of
DELTA(v), i.e. DELTA(v) = minVkeBB DELTA(vk), and which gives
the lowest bound on value Cmax(^v)9 that is Cmax(^) + DELTA(v) (see
Theorems 5.4 and 5.5). If the move v is selected, then the resulting graph
G(TTV) is created, and a pair of operations corresponding to the move v is added
to the tabu list T (see section Tabu list and tabu status of move for details).
If set BB is empty, then the oldest element of tabu list T is deleted, and the
search is repeated until non-empty set BB is found.

3.4 Perturbations

The main handicap of a local search procedure is its myopic nature: it looks
only one single move ahead, and any move can lead to a "bad" solution where the
search becomes trapped in a local optimum that may be substantially "worse"
than the global optimum, even in the tabu search approach where a tabu list is
used. In this paper, we use a certain perturbation technique in addition to the
tabu list for overcoming this drawback of traditional local search algorithms.

The generic key idea of a perturbation is to consider a search which allows
us several moves to be made simultaneously in a single iteration and carry the
search to the more promising areas of solution space.

In our algorithm, the set of promising moves can be found as follows

BB^ = {vk e BB | DELTA(vk) <0} = {vi, v2,..., vz}, z < 2r.

The intuition following from Theorems 5.4 and 5.5 suggests that each move
v G BB(~) can provide a graph G(irv) that is "better" than G(TT). Therefore, as
a perturbation, we decided to perform simultaneously all moves from B&~} in
G(TT), obtaining the resulting graph, denoted Gfa), where v = (vi, V2,..., vz).
While performing simultaneously all moves from BB^~), the different moves of
BB(~) operate in different blocks of G(TT). Therefore, graph G(T^ is acyclic
(it follows from the proofs of Theorems 5.2 and 5.3).

Note that if \BB^ | = 1, then the perturbation is equivalent to the selection
from BB the single ("best") move to be performed, thus, in this case, it is
not treated as a perturbation. Furthermore, if set BBL-) is empty then the
perturbation can not be performed. Therefore, in both cases, the search process
is continued (according to the description given in section Search strategy)
until the graph with \BB^ | > 1 is obtained, and then the perturbation can be
made.

If a perturbation is performed, then a pair of operations corresponding to
the move v with the smallest value of DELTA{v) is added to tabu list T (see
section Tabu list and tabu status of move for details).

A perturbation is used when at least MaxretP consecutive non-improving
iterations pass in the algorithm. More precisely, if graph G{ify) is obtained after

A Very Fast Tabu Search Algorithm for Job Shop Problem 135

performing a perturbation, then the next one is made when MaxretP of the
iterations will pass in TS. In other words, the perturbation is made periodically,
where MaxretP is the number of the iterations between the neighbouring ones.

3.5 Algorithm TSGW

In the algorithm, the asterisk (*) refers to the best values found, the zero su-
perscript (°) refers to initial values, and its lack denotes the current values. The
algorithm starts from a given initial graph G(7i°) (TT° can be found by any al-
gorithm). The algorithm stops when Maxiter iterations have been performed.

INITIALISATION.

Set G(TT) := G(TT°), C* := Cmax{ix°), TT* := TT°, T := 0, iter := 0,
retp := 0.

SEARCHING.

Set Her := Her + 1, modify (if it is appropriate) LengthT of the tabu
list according to the method described earlier, and for graph G(TT) create
a set of representatives BB.

SELECTION

If BB = 0, then remove the oldest element of the tabu list and go to
SEARCHING.

Find the "best" move v e BB, i.e.

DELTA(v) = min DELTA(vk),
VEBB

create the graph G(TTV), calculate Cmax(7rv), and modify the tabu list
according to die method described earlier. If Qnaxi^v) < C*, then
save the best values (7* := Cmax(^v), and TT* := irv. If Cmax(7rv) >
Cmaxi^), then set retp := retp + 1, otherwise set retp := 0.

Next set G(TT):= G(TTV).

STOP CRITERIA

If iter > Maxiter then STOP.

If retp < MaxretP then go to SEARCHING.

PERTURBATION

For graph G(ir) create the sets BB and BB^~\ liBB = 0, then remove
the oldest element of the tabu list and go to SEARCHING. Perform the
perturbation according to the method described earlier generating graph
G(iTy), and calculate Cmax(^v)' IfCmax(7Ty) < C*, then save the best

136

values C* := Cmax(^v), TT* := ^u and set retp := 0. If \BB^\ < 1
and Cmaxi^v) > Cmoa.(7r), then set retp := retp + 1. If \BB^\ < 1
and Cmax(7Ty) < Cmax(7r), then set retp := 0. If \BB^\ > 1, then
set retp := 0. Modify the tabu list according to the method described
earlier. Next set G(TT) := G(TT^), and go to SEARCHING.

Algorithm TSGW has one tuning parameter MaxretP which is to be chosen
experimentally.

4. Computational Results

Algorithm TSGW was coded in C++, run on a personal computer Pentium
333 MHz, and tested on benchmark problems taken from the literature. The
results obtained by our algorithm were then compared with results from the
literature.

So far, the best approximation algorithms for the job-shop problem with
the makespan criterion were proposed in papers by Matsuo, Suh and Sullivan
(1988), Laarhoven, Aarts and Lenstra (1992), DellAmico and Trubian (1993),
Nowicki and Smutnicki (1996b), Balas and Vazacopoulos (1998), and Pezzela
and Merelli (2000). Pezzela and Merelli reported that their algorithm, denoted
as TSSB, provides better results than the ones proposed by other authors. There-
fore we compare our algorithm TSGW with TSSB, which is also based on the
tabu search approach.

Algorithm TSGW, similarly as TSSB, was tested on 133 commonly used
problem instances of various sizes and difficulty levels taken from the OR-
Library.

(a) Five instances denoted as ORB1-ORB5 with n x m = 10 x 10 due to
Applegate and Cook (1991), three instances FT6, FT 10, FT20 with nxm =
6 x 6,10 x 10, 5 x 20 due to Fisher and Thompson (1963), and five instances
ABZ5-ABZ9 with n x m = 10 x 10,20 x 15 due to Adams, Balas and Zawack
(1988).

(b) Forty instances of eight different sizes LA01-LA40 with nxm= 10 x 5,
15 x 5, 20 x 5,10 x 10,15 x 10, 20 x 10, 30 x 10,15 x 15 due to Lawrence
(1984). The optimal solution of the instance LA29 is thus far unknown.

(c) Eighty instances of eight different sizes TA1-TA80 with nxm = 15x15,
20 x 15, 20 x 20,30 x 15, 30 x 20, 50 x 15, 50 x 20,100 x 20 due to Taillard
(1993). For this class, the optimal solution is known only 32 out of 80 instances.

The effectiveness of our algorithm was analysed in both terms of CPU time
and solution quality. There are some complications involving the speed of
computers used in the tests. Algorithm TSGW was run on Pentium 333 MHz,
whereas TSSB was run on Pentium 133 MHz. Regarding the speed of the per-
formance, it is becoming very difficult to compare the CPU times of algorithms
tested on different computers. An attempt is made to compare the CPU times

A Very Fast Tabu Search Algorithm for Job Shop Problem 137

for different algorithms using conversion factors for different machines given in
a report by Dongarra (2004). Although, the benchmark results reported in Don-
garra tests can be used to give a rough estimate on the relative performance of
different computers, these results refer to floating-point operations and therefore
may not be representative when computations are essentially with integers, as
in the case of our algorithms. Besides, the architecture, configurations, cache,
main memory and compilers also affect the CPU times. Therefore, in order
to avoid discussion about the conversion factors and speed of computers used
in the tests, we enclosed for each compared algorithm the original name of
computer on which it has been tested, as well as the original running time.

Algorithm TSGW needs an initial solution, which can be found by any heuris-
tic method. In our tests, we use the procedure INSA which is based on an
insertion technique, see Nowicki and Smutnicki (1996b). The computational
complexity of this heuristic is O(n3m2).

At the initial stage, TSGW was run several times, for small-size instances in
order to find the proper value of tuning parameter MaxretP. This was chosen
experimentally as a result of the compromise between the running time and
solution quality and we set MaxretP = 3.

For each test instance, we collected the following values:

CA - the makespan found by the algorithm A e {TSGW, TSSB }.

Time - CPU in seconds.

Then two measures of the algorithms quality were calculated

PRD(A) = 100(CA - LB)/LB - the value (average) of the percentage rel-
ative difference between makespan CA and the best known lower bound
LB (or the optimum value OPT, if it is known).

CPU {A) - the computer time (average) of algorithm A.

For TSSB, there are some problems concerning the interpretation of the
results in CPU times for the instances of class (c). In the paper of Pezzela and
Merelli (2000), it is reported that for each instance, TSSB performs Maxiter
iterations equal to lOOn. So that, the average CPU for the instances with size
n x m = 20 x 20 should be shorter than for the ones with nx m = 100 x 20,
whereas in Table 6 of the paper we have found that for the former instances,
the CPU is, in approximation, 150 times longer than for the latter ones. Similar
problems are in Table 3 of the paper for the instances of class (b).

Therefore, we conclude that for the instances of classes (b) and (c), Maxiter
is not equal to lOOn, but it is different for different instances. Instead, the analy-
sis of the results in Table 5.1 for class (a) suggests that there these inconveniences
are avoided. Hence, we have assumed that the CPU times of TSSB obtained for
both classes (b) and (c) are those for which the Qnax values (or PRD values)

138

presented in the paper of Pezzela and Merelli (2000) are reached. And, since
these values are reported for each instance, it is possible to detect Maxiter
and/or CPU time to be correspondent to the Cmax value produced by TSSB,
for an individual instance.

As a consequence of the above, while testing our algorithm, for each instance
of classes (b) and (c), we detect the CPU time at which TSGW has reached the
Cmax value not greater than that obtained by TSSB. Then it was possible to
compare the CPU times of the algorithms.

In Table 5.1, we present the results obtained for the test problems of class
(a) ORB1-ORB5, FT6, FT 10, FT20, and ABZ5-ABZ9. For these instances,
TSGW was tested for Maxiter equal to 300n.

Table 5.1. Detailed results for the problem instances of class (a)

Problem

ORB1
ORB2
ORB3
ORB4
ORB5

FT6
FT10
FT20
ABZ5
ABZ6
ABZ7
ABZ8
ABZ9

all

n x m

10 x 10
10 x 10
10 x 10
10 x 10
10 x 10

6 x 6
10 x 10
2 0 x 5
10 x 10
10 x 10
20 x 15
20 x 15
20 x 15

OPT or
(LB-UB)

1059
888

1005
1005

887
55

930
1165
1234
943
656

(647-669)
(661-679)

TSGW
Maxiter = 300 * n

(smax

1059
888

1005
1005
887
55

930
1165
1236
943
656
671
682

PRD
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.16
0.00
0.00
3.71
3.18
0.54

CPU
0.9
0.9
1.1
0.8
0.9
0.1
1.2
2.3
1.1
1.0

14.8
14.6
14.9

CPU to opt
(or to best)

0.6
0.6
0.7
0.6
0.2
0.0
0.2
0.7

(0.2)
0.2
3.8

(5.7)
(3.9)

rssB
Maxiter = 100 * n

("'max

1064
890

1013
1013
887
55

930
1165
1234
943
666
678
693

PRD
0.47
0.23
0.80
0.80
0.00
0.00
0.00
0.00
0.00
0.00
1.52
5.12
4.84
1.06

CPU
82
75
87
75
81
-

80
115
75
80

200
205
195

CPU represents the CPU time:
TSGW on Pentium 333MHz,
TSSB on Pentium 133MHz (Pezzella and Merelli2000)

Our algorithm finds an optimal solution to ten out of thirteen problems in
relatively very short times. For very famous FT 10 with n x m = 10 x 10,
it finds an optimal solution in 0.2 second. Nevertheless, for ABZ5, we could
not find any optimal solution reported in the literature, equal to 1234. Besides,
note that for Maxiter equal to 300n, TSGW needs a very small amount of
CPU times. The longest CPU time of TSGW is equal to 14.9 seconds (on
computer Pentium 333), whereas TSSB needs 205 seconds (on Pentium 133)
for Maxiter equal to lOOn. Finally, note that in the terms of PRD values,
TSGW produces significantly better results than TSSB.

A Very Fast Tabu Search Algorithm for Job Shop Problem 139

Table 5.2. Detailed results for the problem instances of class (b)

LA 0 P T ° r
LA (LB-UB)
10x5
1
2
3
4
5

15x5
6
7
8
9
10

20x5
11
12
13
14
15

666
655
597
590
593

926
890
863
951
958

1222
1039
1150
1292
1207

10x10
16
17
18
19
20

945
784
848
842
902

TSGW
Cmax

666
655
597
590
593

926
890
863
951
958

1222
1039
1150
1292
1207

945
784
848
842
902

PRD

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

CPU

0.0
0.0
0.2
0.0
0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

0.6
0.0
3.2
2.1
0.5

TSSB
^max

666
655
597
590
593

926
890
863
951
958

1222
1039
1150
1292
1207

945
784
848
842
902

PRD

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

LA
OPT or

(LB-UB)
15x10
21
22
23
24
25

1046
927

1032
935
977

20x10
26
27
28
29
30

1218
1235
1216

1142-1153
1355

30x10
31
32
33
34
35

1784
1850
1719
1721
1888

15x15
36
37
38
39
40
all

1268
1397
1196
1233
1222

TSGW
Cmax

1046
927

1032
936
978

1218
1235
1216
1160
1355

1784
1850
1719
1721
1888

1268
1411
1198
1233
1225

PRD CPU

0.00
0.00
0.00
0.10
0.10

0.00
0.00
0.00
1.57
0.00

0.00
0.00
0.00
0.00
0.00

0.00
1.00
0.17
0.00
0.25
0.08

3.4
2.7
0.2
0.9
3.7

1.0
3.9
4.4
0.9
0.2

0.0
0.0
0.0
0.0
0.1

0.1
2.4
2.4
3.4
4.5

TSSB
C'max

1046
927

1032
938
979

1218
1235
1216
1168
1355

1784
1850
1719
1721
1888

1268
1411
1201
1240
1233

PRD

0.00
0.00
0.00
0.32
0.20

0.00
0.00
0.00
2.28
0.00

0.00
0.00
0.00
0.00
0.00

0.00
1.00
0.42
0.57
0.90
0.14

CPU represents the CPU time on Pentium 333MHz.

Table 5.3. Average results for the instance groups of class (b)

Problem

LA01-05
LA06-10
LA11-15
LA16-20
LA21-25
LA26-30
LA31-35
LA36-40

all

n x ra

1 0 x 5
1 5 x 5
20 x 5

10 x 10
15 x 10
20 x 10
30 x 10
15 x 15

TSGW
PRD (aver.)

0.00
0.00
0.00
0.00
0.04
0.31
0.00
0.28
0.08

CPU (aver.)
0.1
0.0
0.0
1.3
2.2
2.2
0.0
2.6

TSSB
PRD (aver.)

0.00
0.00
0.00
0.00
0.10
0.46
0.00
0.58
0.14

CPU (aver.)
9.8
-
-

61.5
115
105

-
141

CPU represents the CPU time:
TSGW on Pentium 333MHz,
TSSB on Pentium 133MHz (Pezzella and Merelli 2000)

140

Table 5.4. Detailed results for the problem instances of class (c)

TA OPT or
(LB-UB)

15x15
1
2
3
4
5
6
7
8
9
10

1231
1244

1218
1175
1224
1238
1227
1217
1274
1241

20x15
11
12
13
14
15
16
17
18
19
20

1321-1364
1321-1367
1271-1350

1345
1293-1342
1300-1362
1458-1464
1369-1396
1276-1341
1316-1353

20x20
21
22
23
24
25
26
27
28
29
30

1539-1645
1511-1601
1472-1558
1602-1651
1504-1597
1539-1651
1616-1687
1591-1615
1514-1625
1473-1585

30x15

31
32
33
34
35
36
37
38
39
40

1764

1774-1803
1778-1796
1828-1832

2007
1819

1771-1784
1673-1677

1795

1631-1686

TSGW
Omax

1239
1244

1218
1175
1228
1238
1227
1218
1287
1249

1370
1376
1355
1345
1355
1369
1477
1418
1350
1361

1658
1620
1567
1656
1604
1666
1693
1622
1635
1602

1769
1836
1831
1842
2007
1820

1808
1694
1812
1724

PRD riptsize CPU

0.649
0.000
0.000
0.000
0.327
0.000
0.000
0.082
1.020
0.645

3.709
4.164
6.609
0.000
4.795
5.307
1.303
3.579
5.800
3.419

7.739
7.213
6.454
3.371
6.649
8.252
4.765
1.948
7.992
8.758

0.283
3.495
2.981

0.766
0.000
0.055
2.089
1.255
0.947
5.702

7.9
7.2
4.7
6.6
9.6
9.4
4.5
9.1
9.7
7.1

7.5
3.9
4.7
7.6
10.1
11.9
4.7
6.9
9.1
4.8

12.0
13.9
18.8
11.9
14.0
16.7
22.1
32.2
57.0
5.9

11.1
17.3
25.2

46.9
7.9
14.7
23.3
17.6
19.2
17.2

TSSB

Omax

1241
1244
1222
1175
1229
1245
1228
1220
1291
1250

1371
1379
1362
1345
1360
1370
1481
1426
1351
1366

1659
1623
1573
1659
1606
1666
1697
1622
1635
1614

1771

1840
1833
1846
2007
1825
1813
1697
1815

1725

PRD

0.812
0.000
0.328
0.000
0.408
0.565
0.081
0.246
1.334
0.725

3.785
4.391
7.160
0.000
5.182
5.385
1.578
4.164
5.878
3.799

7.797
7.412
6.861
3.558
6.782
8.252
5.012

1.948
7.992
9.572

0.397
3.720
3.093
0.985
0.000
0.330
2.372
1.435
1.114

5.763

TA OPT or
(LB-UB)

30x20

41
42
43
44
45
46
47
48
49
50

1859-2023
1867-1961
1809-1879
1927-1998
1997-2005
1940-2029
1789-1913
1912-1971
1915-1984
1807-1937

50x15

51
52
53
54
55
56
57
58
59
60

2760
2756
2717
2839
2679
2781
2943
2885
2655
2723

50x20

61
62
63
64
65
66
67
68
69
70

2868
2869-2872

2755
2702
2725
2845
2825
2784
3071
2995

100x20

71
72
73
74
75
76
77
78
79
80
all

5464
5181
5568
5339
5392
5342

5436
5394
5358
5183

TSGW
Omax

2033
1976
1898
2031
2021
2046
1937
1986
2007
1971

2760
2756
2717
2839
2681
2781
2943
2885
2655
2723

2868
2937
2755
2702
2725
2845
2861
2784
3071
2995

5464
5181
5568

5339
5392
5342

5436
5394
5358
5183

PRD

9.359
5.839
4.920

CPU

3.9
3.2
8.2

5.397 44.1
1.202
5.464
8.272
3.870
4.804
9.076

0.000
0.000
0.000
0.000
0.075
0.000
0.000
0.000
0.000
0.000

0.000
2.370
0.000
0.000
0.000
0.000

7.1
6.6
4.4
9.2
6.9
5.7

1.7
3.2
5.7
3.1
5.3
7.6
3.8
2.8
4.1
3.6

3.9
3.4
5.8
10.7
2.7
4.6

1.274 46.1

0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
2.30

7.3
4.8
2.7

4.8
3.0
3.6
4.3
5.8
7.1
3.0
2.8
3.5
6.5

TSSB

Omax

2045
1979

1898
2036
2021
2047
1938
1996
2013
1975

2760
2756
2717
2839
2684
2781
2943
2885
2655
2723

2868
2942
2755
2702
2725
2845
2865
2784
3071
2995

5464

5181
5568
5339
5392
5342
5436
5394
5358
5183

PRD

10.005
5.999

4.920
5.656
1.202

5.515
8.329
4.393
5.117
9.297

0.000
0.000
0.000
0.000
0.187
0.000
0.000
0.000
0.000
0.000

0.000
2.544
0.000
0.000
0.000
0.000
1.416
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

2.43

CPU represents the CPU time on Pentium 333MHz.

A Very Fast Tabu Search Algorithm for Job Shop Problem 141

Tables 5.2 and 5.3 report the computational results for the Lawrence's test
problems (LA01-LA40) of class (b). Table 5.2 shows the detailed results ob-
tained for each instance tested. Instances LA01-LA15 and LA31-LA35 are
"easy" because the number of jobs is several times larger than the number of
machines. They were solved to optimality by TSGW in less than 0.4 seconds.
The more difficult instances LA16-LA30 and LA36-LA40 were solved in less
than 4.5 seconds.

Table 5.3 lists the average results for each size (group) nxm of the instances.
For all groups, CPU times of TSGW are very small (on the average). And so,
for group with the largest instances LA36-LA40, TSGW needs 2.6 seconds (on
Pentium 333), whereas TSSB needs 141 seconds (on Pentium 133). While, for
group with the smallest instances LA01-LA05, the respective CPU times are
0.1 and 9.8 seconds. Besides, note that in the terms of PRD values, TSGW
produces substantially better results than TSSB.

Tables 5.4 and 5.5 present the results on 80 test problems of class (c) proposed
by Taillard (TA01-TA80). It is reported that for 32 out of 80 instances optimal
solutions are not known.

Table 5.4 lists detailed results for TA01-TA80. Instances TA51-TA80 are
"easy" because the number of jobs is several times larger than the number of
machines. Most of them (i.e. 28 out of 30) were solved to optimality by TSGW
in less than 10 seconds. For more difficult instances TA31-TA40 and TA41-
TA50, the best Cmax values of TSSB were produced by TSGW in less than 50
seconds. While, for the most difficult instances TA21-TA30 the values were
produced in less than 60 seconds. Most of them (i.e. 8 out of 10) were obtained
in less than 25 seconds. The longest CPU is reached for TA29 and is equal to
57 seconds.

Table 5.5. Average results for the instance groups of class (c)

Problem

TA01-10
TA11-20
TA21-30
TA31-40
TA41-50
TA51-60
TA61-70
TA71-80

all

nxm

15 x 15
20 x 15
20 x 20
30 x 15
30 x 20
50 x 15
50 x 20

100 x 20

TSGW
PRD (aver.)

0.27
3.87
6.31
1.75
5.82
0.01
0.36
0.00
2.30

CPU (aver.)
7.6
7.1

20.4
20.1
9.9
4.1
9.2
4.4

TSSB
PRD (aver.)

0.45
4.13
6.52
1.92
6.04
0.02
0.39
0.00
2.43

CPU (aver.)
2175
2526

34910
14133
11512

421
6342

231

CPU represents the CPU time:
TSGW on Pentium 333MHz,
TSSB on Pentium 133MHz (Pezzella and Merelli 2000)

142

Finally, Table 5.5 shows the average results for each size (group) n x m
of instances. For all groups, CPU times of TSGW are extremely small (on
the average). And so, for group with the smallest instances TA01-TA10, our
algorithm needs 7.6 seconds (on Pentium 333), whereas TSSB needs 2175
seconds (on Pentium 133). While, for the most difficult group TA21-TA30, the
respective CPU times are 20.4 and 34910 seconds. Besides, It is noteworthy
that in the terms of PRD values, TSGW produces slightly better results than
TSSB.

All these results confirm the favorable performance of TSGW in the terms
of CPU times and PRD values as well.

5. Conclusions

In this paper we have presented and discussed some new properties of blocks
in the job-shop problem. These properties allow us to propose a new, very fast
algorithm based on the tabu search approach. In order to decrease the compu-
tational effort for the search in TS, we propose calculation of the lower bounds
on the makespans instead of computing makespans explicitly for use in select-
ing the best solution. These lower bounds are used to evaluate the moves for
selecting the "best" one. Also, we propose a tabu list with dynamic length
which is changed cyclically as the current iteration number of TS increases,
using a "pick" in order to carry the search to another area of the solution space.
Finally, some perturbations associated with block properties are periodically
applied. Computational experiments are given and compared with the results
yielded by the best algorithms discussed in the literature. These results show
that the algorithm proposed provides much better results than the recent modern
approaches. A particular superiority of our algorithm is observed for so-called
"hard" problems for which the number of jobs is close to the number of ma-
chines. Nevertheless, some improvements in our algorithm are possible. For
instance, attempts to refine the lower bounds and perturbations may induce a
further reduction of the computational times.

The results obtained encourage us to extend the ideas proposed to other hard
problems of sequencing, for example, to the flow-shop problem.

Acknowledgements

This research was supported by KBN Grant 4 T i l A 016 24. The authors
are grateful to Cesar Rego and the referees for their useful comments and
suggestions.

A Very Fast Tabu Search Algorithm for Job Shop Problem 143

References

Aarts, E. and J.K. Lenstra (1997) Local Search in Combinatorial Optimization.
Wiley, New York.

Adams, J., E. Balas and D. Zawack (1988) "The Shifting Bottleneck Procedure
for Job-Shop Scheduling," Management Science, 34(6):391-401.

Applegate, D. and W. Cook (1991) "A Computational Study of the Job-Shop
Scheduling Problem," ORSA Journal of Computing, 3:149-156.

Balas, E. (1969) "Machine Sequencing via Disjunctive Graphs: An Implicit
Enumeration Algorithm," Operations Research, 17:941-957.

Balas, E. and A. Vazacopoulos (1998) "Guided Local Search with Shifting
Bottleneck for Job-Shop Scheduling," Management Science, 44(2):262-275.

Carlier, J. (1982) "The One-Machine Sequencing Problem," European Journal
of Operational Research, \A2-\1.

Carlier, J. and E. Pinson (1989) "An Algorithm for Solving the Job Shop Prob-
lem," Management Science, 35:164-176.

Dongarra, J. J. (2004) Performance of Various Computers using Standard Linear
Equations Software. Working paper. Computer Science Department, Univer-
sity of Tennessee, USA. http://www.netlib.org/benchmark/performance.ps.

DellAmico, M. and M. Trubian (1993) "Applying Tabu Search to the Job-Shop
Scheduling Problem," Annals of Operations Research, 4:231-252.

Fisher, H. and G.L. Thompson (1963) Probabilistic Learning Combinations of
Local Job-Shop Scheduling Rules. In J.F. Muth, G.L. Thompson, Editors,
Industrial Scheduling, Prencite-Hall, Englewood Cliffs, New York.

Glover, F. (1989) "Tabu search. Part I," ORSA Journal of Computing, 1:190-
206.

Glover, F. (1990) "Tabu search. Part II," ORSA Journal of Computing, 2:4-32.
Grabowski, J. (1979) Generalized problems of operations sequencing in the

discrete production systems. (Polish), Monographs 9, Scientific Papers of
the Institute of Technical Cybernetics of Wroclaw Technical University.

Grabowski, J. (1980) "On Two-Machine Scheduling with Release and Due
Dates to Minimize Maximum Lateness," Opsearch, 17:133-154.

Grabowski, J. (1982) A new Algorithm of Solving the Flow-Shop Problem. In
G. Feichtinger and P. Kail, Editors, Operations Research in Progress, Reidel
Publishing Company, Dordrecht, 57-75.

Grabowski, J., E. Skubalska and C. Smutnicki (1983) "On Flow-Shop Schedul-
ing with Release and Due Dates to Minimize Maximum Lateness," Journal
of the Operational Research Society, 34:615-620.

Grabowski, J., E. Nowicki and S. Zdrzalka (1986) "A Block Approach for
Single Machine Scheduling with Release Dates and Due Dates," European
Journal of Operational Research, 26:278-285.

144

Grabowski, J. and J. Janiak (1987) "Job-Shop Scheduling with Resource-Time
Models of Operations," European Journal of Operational Research, 28:58-
73.

Grabowski, J., E. Nowicki and C. Smutnicki (1988) Block Algorithm for
Scheduling of Operations in Job-Shop System. (Polish), Przeglad Statysty-
czny, 35:67-80.

Grabowski, J. and J. Pempera (2001) New Block Properties for the Permutation
Flow-Shop Problem with Application in TS. Journal of the Operational
Research Society, 52:210-220.

Internet, http://mscmga.ms.ic.ac.uk/info.html.
Laarhoven, P.V., E. Aarts and J.K. Lenstra (1992) "Job-Shop Scheduling by

Simulated Annealing," Operations Research, 40:113-125.
Lawrence, S. (1984) Supplement to "Resource Constrained Project Schedul-

ing: An Experimental Investigation of Heuristic Scheduling Techniques,"
Technical Report, GSIA, Carnegie Mellon University.

Matsuo, H., C.J. Suh and R.S. Sullivan (1988) Controlled Search Simulated
Annealing Method for the General Job-Shop Scheduling Problem. Working
Paper 03-04-88, Department of Management, Graduate School of Business,
The University of Texas at Austin.

Morton, T. and D. Pentico (1993) Heuristic Scheduling Systems. Wiley, New
York.

Nowicki, E. and C. Smutnicki (1996a) "A Fast Tabu Search Algorithm for the
Permutation Flow-Shop Problem," European Journal of Operational Re-
search, 91:160-175.

Nowicki, E. and C. Smutnicki (1996b) "A Fast Tabu Search Algorithm for the
Job-Shop Problem," Management Science, 42(6):97-813.

Pezzella, F. and E. Merelli (2000) "A Tabu Search Method Guided by Shift-
ing Bottleneck for the Job-Shop Scheduling Problem". European Journal of
Operational Research, 120:297-310.

Smutnicki, C. (1998) A Two-Machine Permutation Flow-Shop Scheduling with
Buffers. OR Spectrum, 20:229-235.

Taillard, E. (1993) "Benchmarks for Basic Scheduling Problems," European
Journal of Operational Research, 64:278-285.

Vaessens, R., E. Aarts and J.K. Lenstra (1996) "Job Shop Scheduling by Local
Search," INFORMS Journal of Computing, 8:303-317.

Zdrzalka, S. and J. Grabowski (1989) "An Algorithm for Single Machine Se-
quencing with Release Dates to Minimize Maximum Cost," Discrete Applied
Mathematics, 23:73-89.

