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Abstract: We propose a new metaheuristic framework embodied in two approaches,
Relaxation Adaptive Memory Programming (RAMP) and its primal-dual
extension (PD-RAMP). The RAMP method, at the first level, operates by
combining fundamental principles of mathematical relaxation with those of
adaptive memory programming, as expressed in tabu search. The extended PD-
RAMP method, at the second level, integrates the RAMP approach with other
more advanced strategies. We identify specific combinations of such strategies
at both levels, based on Lagrangean and surrogate constraint relaxation on the
dual side and on scatter search and path relinking on the primal side, in each
instance joined with appropriate guidance from adaptive memory processes.
The framework invites the use of alternative procedures for both its primal and
dual components, including other forms of relaxations and evolutionary
approaches such as genetic algorithms and other procedures based on
metaphors of nature.
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1. Introduction

Adaptive memory programming (AMP) has been the source of numerous
important developments in metaheuristics in the last decade. The term refers
to the appropriate integration of memory structures to effectively explore the
solution space in optimization algorithms. Because AMP is the foundation of
tabu search (TS), which appeared as the first method specially designed to
exploit adaptive memory, the terms TS and AMP have often been used
interchangeably. However, more recently the principles of AMP as
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introduced in tabu search have likewise been used to enhance other
approaches as in the creation of hybrid algorithms that incorporate tabu
search components. Many important examples exist of methods that integrate
genetic algorithms and evolutionary computation methods with adaptive
memory, but perhaps the most prominent example and successful use of
adaptive memory outside of tabu search are the recent developments in
scatter search and its generalization, the path-relinking approach.

On the other hand, relaxation techniques have been widely used in
combinatorial optimization to provide bounds for tree search procedures as
well as to produce heuristic algorithms. These techniques are based upon the
solution of an auxiliary (or relaxed) problem derived from the original by
fully dropping or diminishing the restrictiveness of some constraints. Since a
feasible solution to the original problem is usually not available from the
solution of the relaxed problem, constructive and local search procedures are
typically used to search for complementary feasible and possibly improved
solutions. The effectiveness of the improvement methods employed is critical
for the performance of these relaxation-based approaches. Yet surprisingly,
only relatively rudimentary forms of search strategies can be found in the
literature on these methods, and are usually limited to descent algorithms
involving greedy strategies and very simple neighborhoods. This is a critical
gap in the current state-of-the-art of approximation algorithms since it is well
established that in many cases in the history of optimization dual approaches
outperform their primal counterpart. Therefore, these findings provide a
significant motivation for the next generation of metaheuristics to take
advantage of duality as well as the creation of metaheuristic approaches that
can exploit the primal-dual relationships as a means for bridging the duality
gap in combinatorial optimization.

This paper takes a first step toward integrating these two key
developments by proposing a unified framework for the design of dual and
primal-dual metaheuristics that take full advantage of adaptive memory
programming. Such an initiative is influenced and reinforced by the following
remarks.

An important conceptual difference exists between local search methods
and relaxation techniques. Local search methods are characteristically
restrictive approaches that confine the solution space to the solutions that are
made accessible by the neighborhood structure employed. By contrast,
relaxation techniques enlarge the solution space to include infeasible
solutions that fall within the boundaries of the relaxation utilized. Ultimately,
even in cases where local search methods allow for crossing feasibility
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boundaries as a form of strategic oscillation, neighborhood search and
relaxation heuristics are conceptually complementary approaches for
handling optimization models and generating search directions.

Local search methods are typically primal approaches in the sense that
they explore the solution space by exploiting the context of the original
problem to be solved. By contrast, relaxation heuristics work by primarily
solving a distinct problem associated with the type of the relaxation. In
particular, Lagrangean and surrogate constraint relaxation approaches are
based on optimizing the Lagrangean or the surrogate dual problem,
respectively, and then finding a complementary feasible primal solution.
However, when it comes to integer programs the optimization of the dual
problem relaxation does not necessarily result in a complementary feasible
primal solution, and in many cases these methods do not converge in a
reasonable amount of time, thus producing solutions with large duality gaps.

Our fundamental premise is that solving the Lagrangean or the surrogate
problem affords relevant insights for the creation of adaptive memory
structures by gathering information that cannot be obtained by primal based
approaches. Consequently, a method that effectively gathers information from
the primal and dual sides fulfills the concept of adaptive memory
programming and suitably may provide a unified framework for solving
difficult combinatorial optimization problems.

We propose two metaheuristic approaches based on these observations.
The first approach couples surrogate and Lagrangean relaxations with tabu
search and path-relinking as a means to create a Relaxation AMP (RAMP)
method. In addition, we introduce a special relaxation technique giving rise to
a cross-parametric relaxation method (CPRM) that combines the notion of
parametric subgradients from surrogate constraint duality theory (Glover
1975) with the Lagrangean/Surrogate relaxation technique introduced in
Narciso and Lorena (1999). More precisely, CPRM combines Lagrangean
and surrogate relaxations by using a Lagrangean based subgradient search
within a surrogate constraint framework to generate good surrogate
constraints.

Although the RAMP approach constitutes a stand alone metaheuristic, we
integrate this approach with scatter search and path-relinking to create a
Primal-Dual metaheuristic approach, called PD-RAMP, which constitutes a
major contribution of this paper. While RAMP is primarily a dual approach,
PD-RAMP exploits the primal-dual relationships more thoroughly. For
economy of terminology, we will refer to both forms of the RAMP method
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(the basic RAMP method and PD-RAMP) simply as RAMP, without added
qualification, whenever no specific details are necessary regarding the level
of the approach utilized.

The reminder of this paper is organized as follows. Section 2 reviews
classical relaxation procedures that are deemed relevant in the context of this
research and discusses the cross-parametric relaxation method. Section 3
describes the dual and primal-dual components of the RAMP method. Section
4 presents concluding remarks and perspectives for further developments.

2. Fundamentals of Cross-Parametric Relaxation

Surrogate constraints (SC) and Lagrangean relaxation (LR) form the
building blocks of the cross-parametric relaxation method (CPRM).

Throughout this paper we define specific problems by reference to their
value functions. Following this convention, consider the general 0-1 integer
linear programming problem P defined by

v(P) = Min{cx\ Ax<b,Dx<e,xe {0,1}}

and assume that the constraints Ax < b are the ones that make the problem
difficult to solve (i.e., the form of the problem that excludes these constraints
can be solved efficiently by known methods).

Lagrangean relaxation

The Lagrangean relaxation of P is obtained by dualizing the constraints
Ax < b to form the integer programming problem LPA defined by

v(LPA) = Min{cx-Jl(Ax-b)\Dx<e,xe{O,l}},

where X represents a nonnegative vector of multipliers with one component
for each row of A. The dual problem in this case consists of finding such a X
that maximizes the value v(LPA). A solution to LPA for any given vector
A > 0 provides a lower bound on the primal objective function V(P)-SL

result known as weak Lagrangean duality. Whenever there is a duality gap1,
i.e., whenever the optimum values for the primal and dual problems are not
the same, it is not possible to determine optimality for an integer linear
programming problem by means of solving the dual. Strong Lagrangean

1 The duality gap is sometimes called the integrality gap when referring to the dual of
the linear programming relaxation of P.
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duality, that gives rise to the optimality conditions for an Lagrangean primal-
dual solution2, includes complementary slackness conditions—i.e. for a given
X a primal solution x must satisfy A(Ax - b) = 0. If the optimal primal
dual solution fails to satisfy the complementary slackness conditions, the
solution is a near-optimal solution to P with a duality gap
v(P)-v(LPA) = A(Ax-b). Determining an optimal primal-dual solution
underlies finding the optimal multipliers for LPA that result from solving the
Lagrangean dual of the primal problem P, which may be more explicitly
defined by

v(Dx) = Max {v(LPA) | A > 0}.

Although the problem is only restricted by non-negativity constraints that
do not offer difficulties, it contains a nonlinear function with an implicit
Maxmin objective that is rather costly to evaluate. In fact the problem is
equivalent to

v(DA) = MaxMin {ex-A(Ax-b)\xe {0,1}}.
A>0 Dx<e

Therefore, to determine v(LPA) for a given A, one must solve the
Lagrangran problem LPA'. A useful property is that v(LPA) is a continuous
piecewise linear concave function of A (represented by a finite number of
linear functions ex - A(Ax - b), one for each Lagrangean dual solution). The
function is differentiable except at points A where LPX has alternative
optimal solutions. Subgradient optimization, which extends the gradient
concept to nondifferentiable concave/convex functions, has proved effective
to find optimal or near-optimal Lagrangean dual solutions. Likewise the
method can be used to generate dual solutions for other types of relaxations
as will be discussed later.

Surrogate constraint relaxation

A surrogate relaxation of P consists of replacing the constraints Ax < b
by a nonnegative linear combination of these constraints weighted by a vector
of multipliers w. This replaces the constraints Ax < b by a single surrogate
constraint, w(Ax — b)<0, thus producing the surrogate problem
SPW defined by

2 A Lagrangean primal-dual solution is an optimal solution for LP that also
satisfies the primal Ax < b constraints.
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v(SPw) = Min {ex | w(Ax-b) < O,Dx < e,xe {0,1}}.

Since SPW is a relaxation of P (for w nonnegative), v(SPw) cannot
exceed the optimal objective function value for P and it approaches this
value more closely as w(Ax-b)<0 becomes a more accurate
representation of the polyhedron defined by the constraints Ax < b. The
associated surrogate dual is the one that yields

v(Dw) = Max {v(SPw) | w > 0}.

Although surrogate constraint relaxation has not been employed as widely
as Lagrangean relaxation, it is theoretically more powerful—the surrogate
duality gap is always at least as good, and often better than, the Lagrangean
duality gap. In fact, the Lagrangean dual value can be equal to the surrogate
dual value only if the complementary slackness conditions hold for every
Lagrangean multiplier (Greenberg and Pierskalla 1970), which is very
unlikely for most integer programming problems. Another important result is
that, as surrogate constraints incorporate the corresponding original primal
constraints as a special case, any optimal solution to the surrogate problem
that is feasible for the primal is automatically optimal for the primal. This
result contrasts advantageously with Lagrangean relaxation because no
complementary slackness conditions are required to determine optimality.

Subgradient Optimization

The subgradient method is a generalization of the gradient method to
nondifferentiable concave/convex functions. Subgradient optimization is a
well established technique to solve the Lagrangean dual and likewise has
been recently proved effective in finding good weights for surrogate
constraint relaxations (see for example, Lorena and Lopes 1994).

Let A* denote the optimal solution for the Lagrangean dual problem DA.
Beginning at some point A,0 (e.g. Z° = 0) the method iteratively generates a
sequence of points

Ak+l=Ak+0k(b-Axk),

where 0k is a positive scalar called the step size. If 0k is small enough, the
point Ak+1 will be closer (in a Euclidian distance sense) to A* than Ak. In
fact, although each step of the subgradient method does not guarantee an
increase in v(LPA), it can be shown (see Held, Wolfe and Crowder 1974)
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that under the assumption that lim#* = 0 and ^ * = 0 # * = 0 0 ' Resequence

of v(LPz ) values converges to v(DA ). Therefore, the question is how to

select 6k in order to guarantee convergence. It is common to compute 0k as

k = j3k[v(DA)-v(LPA)]

Wb-Ax'f '
where J3k is a parameter between 0 and 2 and v{Dx) is an upper bound on

the optimal value v(Dx ), with xk being an optimal solution for LPA. In

practice, by weak duality v(D ) is replaced by the value of a feasible
solution to P and parameter J3k is initialized by setting J3° = 2 and halving
its current value whenever v(DA) has not improved for a fixed number of
iterations. Likewise, the method stops when no substantial improvement
has been verified for a predefined number T of iterations, e.g.

| v(LPAk) - v(LPAk+t) |< 8 for a given s > 0 and 1 < t < T.

Cross-Parametric Relaxation

Cross-parametric relaxation combines surrogate and Lagrangean
relaxations coupled with Lagrangean-based subgradient search to generate
good surrogate constraints. In terms of graph theory, the method can be
defined as using a classical subgradient search with a Lagrangean
substitution as a way to produce parametric subgradients, as defined in
Glover (1975).

The parametric subgradient feature of the method can be sketched as
follows. The subgradient method is used to generate the vector of surrogate
multipliers for the relaxed constraints of the primal to create the
corresponding surrogate problem. Then, the surrogate vector is used as a
parameter vector in the subgradient search carried out on the Lagrangean
relaxation of the surrogate problem aimed at determining a surrogate dual
solution. It should be noticed here that if only the surrogate constraint is
relaxed the Lagrangean multiplier is a scale factor rather than a vector.
However, there are cases where relaxing more than one component under this
Lagrangean substitution framework may be advantageous as will be
discussed later. In any event, the new surrogate dual solution and the primal
solution (obtained by projecting the surrogate dual solution on the primal-
feasible region) yield the new lower and upper bounds, respectively. These
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bounds in turn are used in computing the next subgradient-based multipliers
to generate a new surrogate problem, thus completing the loop for one
iteration of a parametric subgradient search.

In fact, the method is parametric in multiple senses: first in the sense that
the subgradient search itself is a search for good parameter (weight) values;
second in the sense that the method is substituting the classical Lagrangean
based subgradient search inside the surrogate constraint framework to provide
what are called parametric subgradients. Although the resulting surrogate
relaxation is not guaranteed to produce a smallest duality gap, this method is
usefully designed to yield an effective and efficient dual approach for solving
difficult integer programming problems.

In other words, the cross-linking of Lagrangean and surrogate relaxations
by using (1) Lagrangean-based subgradient directions for the solution of the
surrogate dual and (2) subgradient-based surrogate weights for the surrogate
relaxation, gives rise to what we call cross-parametric relaxation. The
method can be viewed as a generalization of the Lagrangean/surrogate
relaxation considered in Narciso and Lorena (1999) and the parametric
subgradient method as just described.

More formally, the cross-parametric relaxation can be written as

v(LzSPw) = Min {ex - Xw(Ax - b) \ Dx < e, x e {0,1} },

where w is a vector of surrogate multipliers and A is a scale factor
representing the Lagrangean multiplier associated with the surrogate
constraint.

The corresponding cross-parametric dual problem is the optimization
problem in A and w

v(DAw) = Max {v(LASPw) \ A, w > 0}.

It is immediate that by setting (p - Aw, problem DXw is the Lagrangean
dual D9, thus identifying the same optimal dual solution.

The purpose of the cross-parametric relaxation is to approach a solution
for D9 through a decomposition method consisting of solving a sequence of
locally optimal dual problems

D = Max {v(LASPw) \A>0},
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in which w is a parameter associated with a vector of surrogate multipliers
determined by the subgradient method (or some pre-defined vector used to
initialize the method). In other words, a solution to DJ for a fixed w
corresponds to a surrogate dual solution. The method progresses by
maintaining an appropriate interaction between the multipliers X and w in
such a way that changes in X leading to surrogate dual solutions implicitly
induce changes in w. This interaction materializes by cross-linking the
Lagrangean and surrogate approaches, using Lagrangean based subgradient
search within a surrogate constraint relaxation and using subgradient
directions (inferred by surrogate dual values and the corresponding projected
primal solution values) to determine new surrogate multipliers.

It should be stressed that even though the cross-parametric and traditional
Lagrangean relaxations are theoretically equivalent, the optimization
processes underlying the two methods are significantly different, yielding
different patterns and rates of convergence. This derives from the fact that
cross-parametric relaxation is based on optimizing a composite dual variable
q> = Xw that reflects the interaction between two interrelated dual variables.
This process rests on the solution of surrogate dual problems that do not arise
in traditional Lagrangean relaxation. Also, since no assumption is made about
the value of w when choosing X, it is very unlikely that a Lagrangean
substitution search over (p for a fixed w will lead to the same dual solutions
produced by subgradient directions over X without the parameter w.
Therefore, one can expect that only for optimal combinations of w and X,
problems Dx and D9 produce the same bounds. In consequence, these
composite relaxation strategies embedded in the cross-parametric relaxation
approach can find potentially better local bounds than traditional Lagrangean
relaxation alone.

A general framework for the cross-parametric relaxation approach is
depicted in the flowchart of Figure 1. In the diagram X(.) denotes the set of
feasible solutions for a problem ".". Also, xx and xw represent solutions to
the problems LXSPW and 5PW, respectively. Consequently, it is assumed
that if xx is feasible for SPW, both xx and xw stand for the same solution.

As the figure shows, the information contained in each surrogate solution
may be used in a constructive process for building a feasible solution to the
primal problem. In addition, an improvement method is used in an attempt to
find an enhanced solution, which thereby may be used to replace the current
upper bound for the next subgradient iteration. By this means, a sequence of
Lagrangean multipliers generates lower bounds, while a sequence of feasible
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and enhanced solutions defines upper bounds. Without loss of generality, we
will refer to the block "constructive plus improvement" simply as the
projection method, because of its primary function of projecting a dual
solution into primal feasible space. Some advances on the design of effective
projection methods will be given in the next section.
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Figure 1. Cross-Parametric Relaxation Procedure

To conclude this section it is useful to say a few words about the rationale
of the cross-parametric relaxation. Besides the conceptual relaxation design
discussed earlier concerning some potentially misleading similarities with
traditional Lagrangean subgradient search, cross-parametric relaxation rests
on theoretical foundations stemming from properties of surrogate constraints.
Consequently, they are exploited using concepts tied to surrogate duality
theory, in particular those associated with the notion of parametric
subgradients (Glover 1975). More precisely, cross-parametric relaxation is
founded on the following observations.

Theoretically, a solution for a surrogate problem can be difficult to obtain.
In fact, if the primal problem P is NP-complete, any surrogate problem
SPW derived from it is also NP-Complete. Yet in practice a problem
relaxation having fewer constraints than the original problem is usually easier
to solve. Therefore one must be concerned with finding an appropriate
surrogate relaxation for which effective methods exist to solve the
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corresponding surrogate problem. In an extreme situation, if all constraints
are relaxed to become replaced by the surrogate constraint, the surrogate
problem becomes a knapsack problem. Although the knapsack problem is
NP-Complete, in many cases it can be solved efficiently by specialized
algorithms, particularly by drawing on the work of Pisinger (1999a, 1999b,
2004), and Martello, Pisinger and Toth (2000). Nevertheless, from the theory
of NP-Completeness one might find instances (not necessarily very large) for
which finding an optimal solution may be computationally very expensive.
Cross-parametric relaxation becomes especially relevant in such a case. When
the surrogate problem is difficult to solve, the step of relaxing the surrogate
constraint in Lagrangean fashion, especially using parametric subgradients,
may produce an effective procedure to find optimal or near-optimal surrogate
dual solutions. This assumption is in part supported by the interesting results
obtained by Lorena and Lopes (1994), and Narciso and Lorena (1999) in their
applications to the set covering and generalized assignment problems,
employing a special case of the cross-parametric relaxation proposed here and
relatively simple greedy heuristic projection methods.

The motivation for the use of parametric subgradients is also reinforced by
the fact that in many practical situations, problems are so complex that the
corresponding formulations may involve a relatively large set of difficult
constraints of the type exemplified by Ax < b in our general formulation. In
these circumstances, a surrogate constraint model can be generated by
grouping sets of constraints of the same type, such as those modeling similar
requirements as a way to create multiple surrogate constraints. Under this
framework a cross-parametric relaxation may involve the Lagrangean
relaxation of all the surrogate constraints, and in this case A is no longer a
scale factor but a vector of multipliers; hence subgradient optimization
becomes particularly relevant to perform a multiple-dimensional search of
improved dual solutions. The potential value of generating multiple surrogate
constraints has been suggested in Glover (1965, 1968) and cross-parametric
relaxation affords a means to exploit such a possibility and develop a more
powerful relaxation-based algorithm.

3. The RAMP Method
The RAMP method is presented in two stages, representing different

levels of sophistication. The first level focuses on exploiting a dual
framework, which is confined to creating an adaptive memory relaxation
based on the type of relaxations described in Section 2, making use of tabu
search and path-relinking strategies. The second level of sophistication
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embodies the primal-dual framework, which establishes the relationship
between the dual approach (defined in the first level of sophistication) and a
primal approach represented by scatter search and path-relinking. The role of
path-relinking at this second level is different from the one represented in the
first level, as will be clear later in this section.

3.1 Relaxation Adaptive Memory Programming

We begin by noting some similarities and contrasts between a subgradient
search and a path-relinking approach, which gives the foundation for a path-
relinking projection method as a fundamental component for a more
advanced Relaxation AMP approach.

Subgradients of the Lagrangean dual function v(Dx) at each investigated
multiplier Ak+l define convex linear combinations of vectors (Axk - b) for
solutions xk solving LPA. From this perspective, subgradient optimization
with Lagrangean substitution is a search method that links partially feasible
primal solutions (that only satisfy Dx < e) to the subset of solutions that are
primal feasible (i.e. that also satisfy Ax < b). Thus, from a more abstract
perspective we may consider that the inequality system Ax < b implicitly
defines a reference set of solutions that the method is moving towards. This
contrasts with a path-relinking approach where the reference set is explicitly
defined by solutions that have already been visited. Also, we may say that
solutions are linked to one another by means of subgradient directions.

In a path-relinking approach, moves from one solution to the next are
derived from weighted transformations that drive the search toward a subset
of solutions that meet certain requirements (defined by the level of
importance, with regard to optimality, of each of their own attributes). By
analogy, subgradient directions are derived from weighted combinations
generated with the goal of converging to the best solutions that possess the
requirements (or attributes) specified by Ax < b. In this sense, the method
can be viewed as a special case of a path-relinking approach where a move
from one solution to another in the path is given by a subgradient direction.
During a path-relinking trajectory each move typically avoids reconsidering
attributes that have been previously deleted (or rejected) throughout the
path—this is implemented by defining appropriate tabu restrictions
associated with the type of neighborhood utilized. Similarly, the subgradient
approach creates dual solutions (representing Lagrangean multipliers) that are
meant to penalize violated primal constraints, thus keeping the method from
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generating the same sets of solution attributes that would reiterate over
repeated (Axk - b) vectors—this is accomplished by choosing adequate step
sizes to ensure appropriate convergence.

The foregoing observations underlie the foundation of a path-relinking
projection method, as amplified in the following discussion.

Simple Relaxation AMP.

Subgradient directions pointing to solutions that satisfy Dx < e are
attractive to provide starting points for a method that projects these solutions
on the domain of feasibility of the original primal problem P. We emphasize
that the type of projection methods that are referred to in the context of this
paper are heuristic rather than exact and in particular are structured to exploit
the notion of adaptive memory programming. As a prelude to other more
elaborate strategies, we start by proposing the use of frequency-based tabu
search memory to construct a primal solution from the dual solution and also
to improve this solution further after reaching primal feasibility. Lower and
upper bounds are then updated based on the new values of the dual and
primal solutions respectively, and these values are used to compute a new
subgradient direction form the dual, if it applies.

Even though this method constitutes the simplest form of a Relaxation
AMP proposed here, we have found it can be quite effective compared to
currently popular state-of-the-art constructive or local search projection
methods based on simple greedy approaches. Also, the Simple Relaxation
AMP can be enhanced by the use of neighborhood structures incorporating
adaptive and dynamic search such as filter-and-fan or ejection chain methods.
(For a detailed description of these methods see Rego and Glover (2002).
Recent applications of filter-and-fan and ejection chain methods are reported
in Greistorfer, Rego and Alidaee (2003), Renato, Rego and Gamboa (2004),
and Rego, Li and Glover (2004).)

Advanced Relaxation AMP.

We now describe a more advanced approach that establishes a stronger
connection between the primal and dual. To do this, we retain a collection of
elite primal solutions selected among those projected from the dual to define
a reference set for a path-relinking projection method, generating paths
between dual solutions and their primal counterpart elite solutions. Here, the
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term "elite" is employed as in tabu search to refer to the output of a reference
set update method utilizing appropriate measures of solution quality and
diversity. An abbreviated version of path relinking projection consists of
keeping a single solution in the reference set represented by the best upper
bound found so far.

The method is structured in two phases. A first phase creates an initial
reference set based upon a tabu search projection method, with the difference
that, for the purpose of speeding up this initialization phase, only a
rudimentary long term memory is employed, or even none at all if short-term
memory is sufficient to achieve a reference set with desired levels of diversity
and solution quality. The second phase replaces the constructive phase of the
tabu search projection method by a path-relinking projection method to
transform dual solutions (generated by the subgradient search) into primal
feasible solutions. The analogy between the subgradient search and the path-
relinking strategy constitutes a primary motivation for the development of
this path-relinking projection method. The method operates by starting from a
trial solution obtained from the dual and moving toward pre-defined subsets
of guiding solutions in the current reference set. The definition of the
aforementioned subset is established by an appropriate subset generation
method as considered in the classical path-relinking/scatter search template
(Glover 1997). To take fuller advantage of adaptive memory programming,
tabu search is used as an improvement method over the best primal solutions
obtained after combinations. A useful variation of such an improvement
method can be based on integrating path-relinking and ejection chain
strategies, as initially proposed in Rego and Glover (2002) and recently
demonstrated to be effective for the solution of generalized assignment
problems by Yagiura, Ibaraki, and Glover (2004a).

We should note that in these Relaxation AMP methods, the primal
algorithm is confined to an improvement method executed by a tabu search
procedure and a selection process empowered by a reference set update
method. Therefore, it is considered a dual-based metaheuristic approach. A
more sophisticated method that takes full advantage of the primal-dual
relationships and adaptive memory programming is the Primal-Dual RAMP
approach presented next.
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3.2 Primal-Dual Relaxation Adaptive Memory
Programming

Primal-Dual Relaxation Adaptive Memory Programming (PD-RAMP)
goes beyond the customary notions of primal-dual relationships used in linear
programming (where the primal and dual have the same optimum values).
The method is enhanced by adaptive memory strategies that affect both sides
of the primal-dual connection, as a means for bridging the duality gap that
exists in combinatorial optimization.

More precisely, PD-RAMP refers to the exploitation of primal-dual
relationships, by an adaptive process that takes advantage of the primal side
using scatter search and path relinking, and takes advantage of the dual side
using surrogate constraint and Lagrangian relaxations. It extends the basic
(first level) form of the RAMP method by interconnecting its dual component
with an appropriate primal component that utilizes adaptive memory
programming more thoroughly. This is accomplished by integrating memory
and learning through the use of a reference set of solutions that is common to
and updated by both the primal and the dual approaches.

The main function of the dual approach is to generate new solutions for
the reference set as specified by the first level RAMP approach. For a better
understanding of the conceptual design of the PD-RAMP approach, we
underline a few important concepts concerning the foundations of the
surrogate constraint relaxations and contrast them with those of scatter
search. (Similar concepts hold for surrogate constraints and the cross-
parametric relaxation, therefore for the sake of simplifying the explanation
we restrict attention to surrogate constraints.)

As previously noted, surrogate constraint approaches explore the solution
space by generating solutions that are derived from the creation of
nonnegative linear combinations of constraints. The process seeks to capture
relevant information contained in individual constraints and integrate it into
new surrogate constraints. The result is to generate composite decision rules
(characterized by each surrogate problem) leading to associated new trial
solutions. By contrast, scatter search combines vectors of solutions rather
than combining vectors of constraints, and likewise is organized to capture
information not contained separately in the original vectors. These
observations set the stage for the primal-dual metaheuristic approach
identified by the PD-RAMP method. Although there are other possible and
also interesting variations to create primal-dual strategies under the RAMP
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model, we start off considering scatter search and surrogate constraints as the
basic methods for the primal and dual approaches, respectively.

The method starts by creating an initial reference set of solutions produced
by a surrogate approach as laid down by the initial phase of the RAMP
approach. At this stage the reference set contains relevant information that
was made available by the dual approach. Although the surrogate constraint
model is provided with the ability to integrate information extracted from
individual constraints, each piece of information, generated at each iteration
of the surrogate constraint method, is represented in a single solution that
results from solving the associated surrogate problem (and the application of
the complementary projection method). These solutions may be viewed as
individual memory structures that can be integrated to create more complex
compound memory structures. This result is accomplished by the scatter
search method through generating weighted combinations of these solutions
(and so their attributes) to create new composite solutions. The method is
structured to alternate between the primal and dual approaches, both updating
the reference set in an evolutionary fashion.

Figure 2 provides an illustration of the general RAMP model that is
completed by the Primal-Dual RAMP approach.

Improvement
Method

Restrictive Method
(Evolutionary Approach)

Relaxation Method

Reference
Set

Update
Method

Improvement
Method

Figure 2. Relational AMP model



RAMP 457

For the sake of providing a more comprehensive illustration, the complete
PD-RAMP method uses cross-parametric relaxation in the primal side and
scatter search in the dual side, though other variations of the method are
possible. For example, scatter search can be naturally replaced by its path-
relinking generalization. Ultimately a hybrid approach can be created by
using other evolutionary approaches such as genetic algorithms (GAs) or
evolution strategies (ESs), preferentially provided with adaptive memory
components. Likewise, traditional surrogate constraint and Lagrangean
relaxation can be used as stand alone dual procedures rather than combined in
a cross-parametric approach. As far as the improvement method is concerned,
there are advantages for using the adaptive memory orientation of tabu
search. In addition, as described earlier path-relinking is also particularly
relevant to create a projection method to bridge the gap between dual and
primal solutions.

4. Conclusions and Perspectives

The complete RAMP method (embodying its primal-dual form as well as
its more basic form) is organized to take advantage of a number of existing
methods, using them as components or building blocks to form more
advanced search strategies. The resulting procedure affords advantages that
cannot be obtained by more customary metaheuristic approaches alone, or
even by current hybrid methods. The component methods within RAMP are
strategically articulated in a unified design rather than used as independent
add-on components to be called whenever other components are unable to
make progress in finding improved solutions. The cross-parametric relaxation
method, the path-relinking projection method (in connection with subgradient
optimization) and the integration of surrogate constraints and scatter search
constitute primary factors of such an articulated methodology.

A key contribution of the RAMP method is its capability to exploit duality
as well as primal-dual relationships that have been largely neglected in the
field of metaheuristics. Moreover, the method includes a learning process
that relies on adaptive memory rather than kicking-off or re-starting the
search through randomized-based processes. Although memory is explicitly
structured by reference to solution attributes, the RAMP method implicitly
includes an automatic learning process embodied in an evolutionary
framework that is enhanced by a cohesive integration of primal and dual
approaches.
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Finally, the variety of possibilities to create intriguing variations of RAMP
algorithms opens new doors for research in metaheuristics. Opportunities for
advances emerge from discoveries about primal-dual coordination strategies,
including the coordination of parallel primal dual search. Advances can also
be derived from combinations of scatter search and path-relinking strategies
(or other evolutionary approaches) on the primal side and Lagrangean,
surrogate or cross-parametric relaxations on the dual side. New neighborhood
structures may likewise be exploited in RAMP strategies. In this connection,
recent advances in ejection chain methods and combinations of these with
path-relinking and filter-and-fan approaches (Rego and Glover, 2002) reveals
an interesting path of research for creating advanced variants of RAMP.

Preliminary computational results obtained by the RAMP and PD-RAMP
methods are very encouraging. Applied to two challenging and well-studied
problems, the Generalized Assignment Problem (GAP) and the Multi-
Resource Generalized Assignment Problem (MRGAP), the RAMP method
yields results rivaling the best in the literature, while the PD-RAMP method
dominates the performance of the previously best methods for these
problems. In particular, the PD-RAMP finds solutions that are always as good
or better than the leading approaches of Yagiura, Ibaraki and Glover (2004a,
2004b) for the GAP problem and of Yagiura et al. (2004) for the MRGAP
problem, while using 10% on average of the time required by these
algorithms. (The referenced methods achieve their leading position by also
using path-relinking and ejection chains, but without embedding them within
the primal-dual RAMP framework proposed here.) Compared to CPLEX 8.1,
the PD-RAMP approach finds optimal solutions to those problems that are
simple enough to enable CPLEX to solve them to optimality within a
reasonable amount of time, but generally requires only 5% of the solution
time required by CPLEX to obtain these solutions. For larger and more
difficult problems, PD-RAMP obtains solutions whose quality is superior to
that of the best solutions CPLEX is able to find when it is allowed to run up
to 70 times longer than PD-RAMP. In particular, PD-RAMP finds the
optimal solution for about 85% of these larger problems tested while CPLEX
succeeds in finding optimal solutions for less than 19% of these problems
under its significantly larger allotted time span. More detailed results can be
found in Rego et al. (2004), currently in process.
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