
Chapter 7

CUBIC AND OTHER EFFECTS

In this chapter we derive equations for cubic nonlinear effects. Some
other effects not included in the general framework of Chapter 1 are also
discussed.

1. CUBIC THEORY

1.1 Cubic Effects

By cubic theory we mean that effects of all terms up to the third power
of the displacement and potential gradients or their products are included
[6]. Cubic theory is an approximate theory for relatively weak
nonlinearities, and can be obtained by expansions and truncations from the
nonlinear theory in Chapter 1. From

by repeated use of the chain rule of differentiation, we obtain, to the second
order in products of the derivative of

From (1.1-16), retaining terms up to the second order in the derivative of
we find

From (7.1-2) and (7.1-3)

From (1.5-11), and (7.1-4), retaining terms up to cubic in
the small field variables, we obtain
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and

From (1.5-10), and (7.1-4):
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and

Note that the fourth-order material constants are needed for a complete
description of the cubic effects.

1.2 Quadratic Effects

If we keep terms up to the second order of the gradients only, we obtain
the quadratic or second-order theory below:
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where the third-order material constants are needed.

2. NONLOCAL EFFECTS

2.1 Nonlocal Theory

Nonlocality comes from the consideration of long-range interactions. In
one-dimensional lattice dynamics it has been shown that nonlocal theory
includes, besides the interactions between neighboring atoms, interactions
among non-neighboring atoms as well [41]. Nonlocality in constitutive
relations is needed in modeling certain phenomena. Consider an
electroelastic body V. Within the linear theory of piezoelectricity the
nonlocal constitutive relations are given by [42]

As a special case, when the nonlocal material moduli are Dirac delta
functions, Equations (7.2-1) reduce to the classical constitutive relations in
(2.1-11). Substitution of (7.2-1) into the equation of motion and the charge
equation results in integral-differential equations which are usually difficult
to solve.

2.2 Thin Film Capacitance

In the following we give an example of what is probably the simplest
nonlocal problem [43]. Consider an unbounded dielectric plate as shown in
Figure 7.2-1. The plate is electroded and a voltage is applied. We want to
obtain its capacitance from the nonlocal theory.

Figure 7.2-1. A thin dielectric plate.

The problem is one-dimensional. The boundary-value problem is
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When the kernel function has the following special form

Equation (7.2-2) reduces to the usual classical form. is the dimensionless
relative electric susceptibility which differs from the one in (1.5-11) by a
factor of The dielectric material of the capacitor is assumed to be
homogeneous and isotropic. Hence must be invariant under
translation and inversion. We have

should have a localized behavior, large near and decaying
away from there. We chose the following kernel function

where is a microscopic parameter with the dimension of a length. It is a
characteristic length of microscopic interactions. It is easy to verify that

has the following properties:

Hence

which shows that does include the local form as a limit case. We
also note that the above is the fundamental solution of the
following differential operator

Integrating once, with we obtain
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where is an integration constant which physically represents the surface
free charge density on the electrode at x = h. Equation (7.2-9) can be written
as

which is a Fredholm integral equation of the second kind for the electric
field E. Instead of solving (7.2-10) directly, we proceed as follows. With
(7.2-8), we differentiate (7.2-10) with respect to x twice and obtain

Hence a solution E of the integral equation (7.2-10) also satisfies the
following differential equation

The general solution to (7.2-12) can be obtained easily. It has two
exponential terms from the corresponding homogeneous equation, and a
constant term which is the particular solution. The general solution contains
two new integration constants. These two integration constants result from
the differentiation in obtaining the differential equation (7.2-12) from the
original integral equation (7.2-10). Hence the solution to (7.2-12) may not
satisfy (7.2-10). Therefore we substitute the general solution to (7.2-12)
back into (7.2-10), which determines the two new integration constants.
Then, with the boundary conditions we can determine and
another integration constant resulting from integrating E for and thus
obtain the nonlocal electric potential distribution
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where is the classical local solution, and

The nonlocal electric field distribution E and the local solution are

Denoting the capacitance per unit electrode area from the local theory by
and the one from the nonlocal theory by C, we have

With the expression of k in (7.2-14), we write in the following
form:

It is seen that the thin film capacitance from the nonlocal theory differs from
the result of the local theory. The nonlocal solution depends on the ratio

of the film thickness to the microscopic characteristic length. From
(7.2-17) we immediately have
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which shows that the nonlocal result is smaller than the local result. From
(7.2-17) we also have the following limit behavior

which shows that when the film thickness is large compared to the
microscopic characteristic length, the nonlocal solution approaches the local
solution. We also have the limit

which shows that the nonlocal and local solutions differ more for materials
with larger We plot from (7.2-17) as a function of for values of

and 100 in Figure 7.2-2. It is seen that for a film with a moderate
value of when the thickness there is a deviation of about
10% from the local theory which has a fixed value of 1. The figure shows
that and the deviation from 1 becomes larger as h becomes smaller
and disappears when h is large:

Figure 7.2-2. Capacitance for and 100.

The spatial distribution of the electric field for and for two values
of and 5, respectively, is shown in Figure 7.2-3. It is interesting to
see that the field is large near the electrodes compared to the local solution
with the fixed value of 1. The curve with has a larger electric field
near the electrodes than the curve with This is a boundary effect
exhibited by the nonlocal theory. Even for a thick capacitor, (7.2-15) still
yields
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For our case, with Equation (7.2-21) yields a limit value of 3.32. For
materials with a large the value of (7.2-21) can be large. Since E is larger
near the electrodes and D is a constant, P must be smaller near the
electrodes than near the center of the plate.

Figure 7.2-3. Electric field distribution for                            and 5.

The spatial distribution of the normalized deviation of the electric
potential from the local solution for and for two values of
and 5, respectively, are shown in Figure 7.2-4. The curve with
shows a smaller deviation.

Figure 7.2-4. Electric potential deviation for and 5.
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Finally, we note that in (7.2-12) the small parameter appears as the
coefficient of the term with the highest derivative. Hence when tends to
zero we have a singular perturbation problem of boundary layer type of a
differential equation. For this type of problem, when the small parameter is
set to zero, certain boundary conditions have to be dropped because the
order of the differential equation is lowered. Equation (7.2-12) is a
consequence of an integral-differential equation of defined by (7.2-2),
which only needs two boundary conditions. In the solution procedure, two
of the integration constants in the general solution to (7.2-12) were
determined by the integral equation (7.2-10). However, if we take (7.2-12)
as our starting point, we need two more boundary conditions. This is
because (7.2-12) is a fourth-order differential equation for (considering it
has already been integrated once with an integration constant Then
when is set to zero, two boundary conditions have to be dropped.

3. GRADIENT EFFECTS

3.1 Gradient Effect as a Weak Nonlocal Effect

Gradient effects in constitutive relations can be shown to be related to
weak nonlocal effects. For example, consider a one-dimensional nonlocal
constitutive relation between Y and X in a homogeneous, unbounded
medium. We have
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where

Therefore, to the lowest order of approximation, the nonlocal relation
reduces to a local one, and to the next order a gradient term arises.

3.2 Gradient Effect and Lattice Dynamics

Gradient terms can also be introduced in the following procedure.
Consider the extensional motion of a one-dimensional spring-mass system
(see Figure 7.3-1).

Figure 7.3-1. A spring-mass system.

The motion of the i-th particle is governed by the finite difference equation

or, with the introduction of x

where the extensional force T is given by the following constitutive relation



198

which depends on the strain and its second gradient. It should be noted
that, according to Mindlin [44], a continuum theory with the first strain
gradient is fundamentally flawed in that it is qualitatively inconsistent with
lattice dynamics and the second strain gradient needs to be included to
correct the inconsistency.

3.3 Polarization Gradient

Mindlin [45] generalized the theory of piezoelectricity by allowing the
stored energy density to depend on the polarization gradient

where boundary terms are dropped for simplicity. The stationary conditions
of the above functional for independent variations of and are

Equations (7.3-7) represent seven equations for and If the
dependence of W on the polarization gradient is dropped, Equations (7.3-7)
reduce to the theory of linear piezoelectricity. The inclusion of polarization
gradient is supported by lattice dynamics [46,47]. The polarization gradient
theory and lattice dynamics both predict the thin film capacitance to be
smaller than the classical result [47], as shown in Figure 7.2-2.

3.4 Electric Field Gradient and Electric Quadrupole

3.4.1 Governing Equations

Electric field gradient can also be included in constitutive relations [48].
Electric field gradient theory is equivalent to the theory of dielectrics with
electric quadrupoles [1], because electric quadrupole is the thermodynamic
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conjugate of the electric field gradient. Consider the following functional
[49]

where is related to surface free charge. The presence of the term is
variationally consistent. We choose

where H is the usual electric enthalpy function of piezoelectric materials
given in (2.1-9), which is repeated below:

and are new material constants due to the introduction of the electric
field gradient into the energy density function. has the dimension of
length. has the dimension of Physically they may be related to
characteristic lengths of microstructural interactions of the material. Since

has the same structure as as required by crystal symmetry,
and has the same structure as For W to be negative definite in the
case of pure electric phenomena without mechanical fields, we require
to be positive definite like

With the following constraints

from the variational functional in (7.3-8), for independent variations of
and in V, we have

where we have denoted
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and is the relative electric susceptibility. When the energy
density does not depend on the electric field gradient, the equations reduce
to the linear theory of piezoelectricity. The first variation of the functional in
(7.3-8) also implies the following as possible forms of boundary conditions
on S

where is the surface gradient operator. One obvious possibility of
Equation  is on S. With substitutions from (7.3-13) and (7.3-
11), Equation (7.3-12) can be written as four equations for     and

where we have added the acceleration term.

3.4.2 Anti-Plane Problems of Ceramics

For anti-plane motions of polarized ceramics, Equations (7.3-15) reduce
to a much simpler form. Consider
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The non-vanishing strain and electric field components are

For ceramics poled in the direction, the nontrivial components of and
are

where is the two-dimensional Laplacian, and
The nontrivial ones of (7.3-15) take the form

where

3.4.3 Thin Film Capacitance

To see the most basic effects of the electric field gradient, consider the
infinite plate capacitor shown in Figure 7.3-1.

Figure 7.3-1. A thin dielectric plate.
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The problem is one-dimensional. We assume that the material is isotropic so
that there is no piezoelectric coupling. The equations and boundary
conditions from the electric field gradient theory are

From (7.3-20) the following equation for can be obtained:

where

The general solution to (7.3-22) can be obtained in a straightforward
manner. The anti-symmetric solution for is

where and are integration constants. Due to the introduction of the
electric field gradient, the order of the equation for is now higher than the
Laplace equation in the classical theory. Therefore more boundary
conditions than in the classical theory are needed. Following Mindlin [47],
we prescribe

where is a parameter. represents the classical solution.
Equation (7.3-24) is for Mindlin’s polarization theory. When it is directly
introduced here for the electric field gradient theory, it is not variationally
consistent. This can be resolved by translating it into a different form
mathematically while still keeping its physical interpretation, which is left as
an exercise. With the solution in (7.3-23), the boundary conditions in (7.3-
20) and (7.3-24), and the identification of the relation between an integration
constant and the surface charge on the electrode at we obtain the
capacitance C per unit area, the potential and the electric field E as
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where

are the capacitance and electric field from the classical theory, and
is the electric permittivity. Equation (7.3-25) is exactly the same as

the result of the polarization gradient theory [47], and its behavior is
qualitatively the same as what is shown in Figure 7.2-2.

3.4.4 A Line Source

Consider the potential field of a line charge at the origin [50]. We
need to solve Equation (7.3-19) with a concentrated electric source.
Eliminating we obtain

Equation (7.3-29) can be rewritten as

Therefore is the fundamental solution of the differential operator in
Equation (7.3-30), which is known. Hence

where is the zero order modified Bessel function of the second-kind.
Since



204

integrating Equation (7.3-31) twice we obtain

where the lnr term is the classical solution. Since

we have

The potential field is plotted in Figure 7.3-2.

Figure 7.3-2. Normalized potential field of a line source.



For far field approaches the classical solution. At the source point is not
singular. This is fundamentally different from the classical solution. When
approaches zero, Equation (7.3-33) reduces to the classical result. The curve
with the larger value of is closer to the classical solution. These qualitative
behaviors are as expected.

3.4.5 Dispersion of Plane waves

In the source-free case, eliminating from (7.3-19) we obtain

Consider the propagation of the following plane wave

Substitution of Equation (7.3-37) into the homogeneous form of Equation
(7.3-36) yields the following dispersion relation [50]

Different from the plane waves in linear piezoelectricity, Equation (7.3-38)
shows that the waves are dispersive, and the dispersion is caused by the
electric field gradient through electromechanical coupling. The dispersion
disappears when k = 0, or when there is no electromechanical coupling. We

note that the dispersion is more pronounced when is not small, or
when the wavelength is not large when compared to the microscopic
characteristic length When just begins to show its effect,
Equation (7.3-38) can be approximated by

As a numerical example we consider polarized ceramics PZT-7A. For
polarized ferroelectric ceramics the grain size, which may be taken as the
microscopic characteristic length is at sub-micron range. We plot

205
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Equation (7.3-39) in Figure 7.3-3 for different values of It can be seen

that larger values of yields more dispersion, as expected.

Figure 7.3-3. Dispersion curves of plane waves.

Problem

7.3-1. Study the capacitance of the dielectric plate in Figure 7.3-1 using
the electric field gradient theory with the following additional
boundary condition instead of (7.3-24)

where  is a parameter. represents the classical solution.

4. THERMAL AND VISCOUS EFFECTS

4.1 Equations in Spatial Form

Thermal and viscous effects often appear together and are treated in this
section. The energy equation in the global balance laws in (1.2-3) needs to
be extended to include thermal effects, and the second law of
thermodynamics needs to be added as follows:
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where q is the heat flux vector, is the entropy per unit mass, is the body
heat source per unit mass, and is the absolute temperature. The above
integral balance laws can be localized to yield

Eliminating in (7.4-2), we obtain the Clausius-Duhem inequality as

The free energy can be introduced through the following Legendre
transform:

then the energy equation and the C–D inequality (7.4-3) become

and

7.2 Equations in Material Form

Introducing the material heat flux and temperature gradient

the energy equation and the C–D inequality can be written as
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7.3 Constitutive Relations

For constitutive relations we start with the following:

Substitution of (7.4-9) into the C–D inequality yields

Since (7.4-10) is linear in and for the inequality to hold cannot

depend on and is related to by

We break and into reversible and dissipative parts as follows:

Then what is left for the C–D inequality (7.4-10) is

From and (7.4-11) we obtain the heat equation
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4.4 Boundary-Value Problem

In summary, the nonlinear equations for thermoviscoelectroelasticity are

with constitutive relations

which are restricted by

The equation for the conservation of mass in can be used to
determine separately from the other equations in (7.4-15). Equations

can be written as five equations for and

On the boundary surface S, the thermal boundary conditions may
be either prescribed temperature or heat flux

4.5 Linear Equations

For small deformations and weak electric fields
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The reversible part of the constitutive equations for small deformations and
weak electric fields are determined by and

In order to linearize the constitutive relations we expand into a power
series about and where is a reference temperature.
Denoting assuming and keeping quadratic terms
only, we can write

where are the thermoelastic constants, are the pyroelectric constants
and is related to the specific heat. Equations (7.4-20) and (7.4-21) yield

which are the equations for linear thermopiezoelectricity given by Mindlin
[51]. For the dissipative part of the constitutive relations we choose the
linear relations

In the following we will assume Equations (7.4-23) are

restricted by

A dissipation function can be introduced as follows:

whereby Equations and (7.4-24) can be written as
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Equation implies that

which further implies that and are positive definite. The formal
similarity between (7.4-25) and the first three terms on the right-hand side of
(7.4-21) suggests that the structures of and are the same as those
of and which are known for various crystal classes.

When the thermoelastic and pyroelectric effects are small, they can be
neglected. Then the above equations for the linear theory reduce to two one-
way coupled systems of equations, where one represents the problem of
viscopiezoelectricity with the following constitutive relations

and the other governs the temperature field

Equations (7.4-28) can be substituted into for four equations for
and Once the mechanical and electric fields are found, they can be
substituted into (7.4-29) to solve for the temperature field T.

Under harmonic excitation with an factor, the linear constitutive
relations in (7.4-28) can be written as

Formally, the material constants become complex and frequency-dependent.
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5. SEMICONDUCTION

Piezoelectric materials are either dielectrics or semiconductors.
Mechanical fields and mobile charges in piezoelectric semiconductors can
interact, and this is called the acoustoelectric effect. An acoustic wave
traveling in a piezoelectric semiconductor can be amplified by application of
a dc electric field. The acoustoelectric effect and the acoustoelectric
amplification of acoustic waves have led to piezoelectric semiconductor
devices. The basic behavior of piezoelectric semiconductors can be
described by a simple extension of the theory of piezoelectricity.

5.1 Governing Equations

Consider a homogeneous, one-carrier piezoelectric semiconductor under
a uniform dc electric field       The steady state current is

where q is the carrier charge which may be the electronic charge or its
opposite, is the steady state carrier density which produces electrical
neutrality, and is the carrier mobility. When an acoustic wave propagates
through the material, perturbations of the electric field, the carrier density
and the current are denoted by and The linear theory for small
signals consists of the equations of motion, Gauss’s law, and conservation of
charge [52]

The above equations are accompanied by the following constitutive
relations:

where are the carrier diffusion constants. Equations (7.5-1) can be written
as five equations for u, and n
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On the boundary of a finite body with a unit outward normal the
mechanical displacement or the traction vector the electric potential

or the normal component of the electric displacement vector and the
carrier density n or the normal current may be prescribed.

The Acoustoelectric effect and amplification of acoustic waves can also
be achieved through composite structures of piezoelectric dielectrics and
nonpiezoelectric semiconductors. In these composites the acoustoelectric
effect is due to the combination of the piezoelectric effect and
semiconduction in each component phase.

5.2 Surface Waves

As an example, consider the propagation of anti-plane surface waves in
a piezoelectric dielectric half-space carrying a thin, nonpiezoelectric
semiconductor film of silicon (see Figure 6.5-1) [53].

Figure 6.5-1. A ceramic half-space with a silicon film.

5.2.1 Equations for a Thin Film

The film is assumed to be very thin in the sense that its thickness is
much smaller than the wavelength of the waves we are interested in. For
thin films the following stress components can be approximately taken to
vanish

According to the compact matrix notation, with the range of p, q as 1,2, ...
and 6, Equation (7.5-4) can be written as
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For convenience we introduce a convention that subscripts u, v, w take the
values 2, 4, 6 while subscripts r, s, t take the remaining values 1, 3, 5. Then
Equation can be written as

where (7.5-5) has been used. From we have

Substitution of (7.5-7) into gives the constitutive relations for the
film

where the film material constants are

We now introduce another convention that subscripts a, b, c and d assume 1
and 3 but not 2. Then Equation (9.5-8) can be written as

Integrating the equations in for i = 1,3 and with respect to
through the film thickness, we obtain the following two-dimensional

equations of motion, Gauss’s law and conservation of charge:

where and n are averages of the corresponding quantities
along the film thickness.

5.2.2 Fields in the Ceramic Half-Space

From the equations in Section 6 of Chapter 3, the equations for the
ceramic half-space are
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and

where

For a surface wave solution we must have

Consider the possibility of solutions in the following form:

where A and B are undetermined constants, and should be positive for
decaying behavior away from the surface. Equation already
satisfies For to satisfy we must have

which leads to the following expression for

where

The following are needed for prescribing boundary and continuity
conditions:
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5.2.3 Fields in the Free Space

Electric fields can also exist in the free space of which is
governed by

A surface wave solution to (7.5-22) is

where C is an undetermined constant. From (7.5-23), in the free space

5.2.4 Fields in the Semiconductor Film

The semiconductor film is one-dimensional with Consider
the case when the dc biasing electric field is in the direction. Let

where N is an undetermined constant. Equation (7.5-25) already satisfies the
continuity of displacement between the film and the ceramic half-space, and
the continuity of electric potential between the film and the free space. We
use a prime to indicate the elastic and dielectric constants as well as the
mass density of the film. Silicon is a cubic crystal with m3m symmetry. The
elastic and dielectric constants are given by
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From (7.5-10) and we obtain:

5.2.5 Continuity Conditions and Dispersion Relation

Substitution of (7.5-21), (7.5-23), (7.5-24), (7.5-25) and (7.5-27) into
the continuity condition of the electric potential between the ceramic half-
space and the film, for b = 3, and yields

which is a system of linear, homogeneous equations for A, B, C and N. For
nontrivial solutions the determinant of the coefficient matrix has to vanish

which determines the dispersion relation, a relation between and of the
surface wave. In terms of the surface wave speed Equation (7.5-
29) can be written in the following form:
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where (7.5-19) has been used, and

When h = 0, i.e., the semiconductor film does not exist, (7.5-30) reduces
to

which is the speed of the Bleustein-Gulyaev wave in (5.3-20).
When i.e., the half-space is non-piezoelectric,

electromechanical coupling disappears and the wave is purely elastic. In this
case Equation (7.5-30) reduces to

which is the equation that determines the speed of Love wave (an anti-plane
surface wave in an elastic half-space carrying an elastic layer) in the limit
when the film is very thin compared to the wavelength Love
waves are known to exist when the elastic stiffness of the layer is smaller
that that of the half-space.

The denominator of the right hand side of (7.5-30) indicates that a
complex wave speed may be expected and the imaginary part of the
complex wave speed may change its sign (transition from a damped wave to
a growing wave) when changes sign or

i.e., the acoustic wave speed is equal to the carrier drift speed [52].
When semiconduction is small, Equation (7.5-30) can be solved by an

iteration or perturbation procedure. As the lowest (zero) order of
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approximation, we neglect the small semiconduction and denote the zero-
order solution by Then from (7.5-30),

which is dispersive. For the next order, we substitute into the right-hand
side of (7.5-30) and obtain the following equation for

which suggests a wave that is both dispersive and dissipative.
For numerical results consider PZT-5H. Since the

counterpart of the elastic Love wave does not exist, but a modified
Bleustein-Gulyaev wave is expected. We plot the real parts of and

versus in Figure 7.5-2. The dimensionless wave number X and the
dimensionless wave speed Y of different orders are defined by

is a dimensionless number given by

which may be considered as a normalized electric field. It represents the
ratio of the carrier drift velocity and the speed of the Bleustein-Gulyave
wave. Because of the use of thin film equations for the semiconductor film,
the solution is valid only when the wavelength is much larger than the film
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thickness (X << 1). It can be seen that semiconduction causes additional
dispersion. This conduction induced dispersion varies according to the dc
biasing electric field.

Figure 7.5-2. Dispersion relations.

Figure 7.5-3 shows the imaginary part of versus The

dimensionless number describing the decaying behavior of the waves is
defined by

When the dc bias is large enough (approximately the decay constant
becomes negative indicating wave amplification. The transition from
damped waves to growing waves indeed occurs when (7.5-34) is true for
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Figure 7.5-3. Dissipation as a function of the dc bias.

6. DYNAMIC THEORY

The theory of linear piezoelectricity is based on the quasistatic
approximation. In piezoelectricity theory, the mechanical equations are
dynamic but the electromagnetic equations appear to be static. The electric
field and the magnetic field are not directly coupled in Maxwell’s equations.
When the complete set of Maxwell’s equations is included, the fully
dynamic theory is called piezoelectromagnetism [54].

6.1 Governing Equations

For a piezoelectric but nonmagnetizable dielectric body, the three-
dimensional equations of linear piezoelectromagnetism consist of the
equations of motion and Maxwell’s equations, as shown by
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as well as the following constitutive relations

where is the magnetic induction, is the magnetic field, and is the
magnetic permeability of free space. With Equation (7.6-2), Equation (7.6-
1) becomes

6.2 Quasistatic Approximation

The quasistatic approximation made in Section 2 of Chapter 1 can be
considered as the lowest order approximation of the dynamic theory given
by (7.6-3) through the following perturbation procedure [5]. Consider an
acoustic wave with frequency in a piezoelectric crystal of size L. We scale
the various independent and dependent variables with respect to
characteristic quantities

where

is the speed of light in free space and the scaling yields a b in the same units
as E. Then Equation (7.6-3) takes the following form:
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or

where

To the lowest order

or

6.3 Anti-Plane Problems of Ceramics

For anti-plane motions of polarized ceramics we have [55]
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The non-vanishing components of                  and     are

The nontrivial ones of the equations of motion and Maxwell’s equations in
(7.6-1) take the following form:

Eliminating the electric field components from

where Differentiating with respect to time

once and substituting from we have

The above equations can be written in coordinate independent forms as

where and are the two-dimensional gradient operator and Laplacian,
respectively. D is the electric displacement in the plane. is the unit
vector in the direction. Equations govern the displacement and
magnetic fields. Once and are determined, and can be obtained
from Equation Then the electric field and the stress components
can be obtained from constitutive relations. From Equations and
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it can be seen that physically the introduced by Bleustein [18] is
related to

6.4 Surface Waves

To see the dynamic effects more specifically, we study the propagation
of surfaces waves in a ceramic half-space [55]. The corresponding
quasistatic problem was analyzed in Section 3 of Chapter 5. Consider a
ceramic half-space poled in the direction (see Figure 7.6-1).

Figure 7.6-1. A ceramic half-space.

Consider surface waves propagating in the direction with

where U, H, and are undetermined constants. Substitution of
Equations (7.6-17) into (7.6-14) and (7.6-15) results in

where the inequalities are for decaying behavior from the surface. From
Equations and (7.6-17) we obtain
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6.4.1 A Half-Space with an Electroded Surface

First consider the case when the surface at is electroded with a
perfect conductor for which we have The electrode is assumed to be
very thin with negligible mass. Hence we have the traction-free condition

on the surface. Then from (7.6-12) and we can write

For nontrivial solutions of U and H, the determinant of the coefficient
matrix has to vanish which, with (7.6-18), leads to

where

In Equations (7.6-22), v is the surface wave speed, is the speed of plane
shear waves propagating in the direction, is the ratio of acoustic and
light wave speeds which is normally a very small number, c is the speed of
light in a vacuum, and n is the refractive index in the direction. Equation
(7.6-21) is an equation for the surface wave speed v. Waves with speed
determined by (7.6-21) are clearly nondispersive. Since is very small, it is
simpler and more revealing to examine the following perturbation solution
of (7.6-21) for small

It is seen that the effect of electromagnetic coupling on the wave speed of
Bleustein-Gulyaev waves is of the order of As a numerical example

we consider PZT-7A. Calculation shows that
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Hence the modification on the wave speed is very small and is negligible in
most applications. When is set to zero, or when the speed of light
approaches infinity, Equation (7.6-23) reduces to the speed of the Bleustein-
Gulyaev waves in Section 3 of Chapter 5. The above solution serves as a
good example for illustrating the quasistatic approximation, which can only
be done from the dynamic theory.

6.4.2 A Half-Space with an Unelectroded Surface

When the surface of the half-space at is unelectroded,
electromagnetic waves also exist in the free space of The solution for
the free space can be written as:

where and are undetermined constants. Substitution of (7.6-25) into

(7.6-15) with replaced by for free space, we obtain

The electric field generated by in (7.6-25) through (7.6-13) with
dropped and replaced by for fee space, is given by

We require the continuity of and at as well as the vanishing of
shear stress This implies that

Vanishing of the determinant of the coefficient matrix leads to
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which is an equation for v. Again, the waves are nondispersive. When is
set to zero the result of Section 3 of Chapter 5 will be obtained. A
perturbation solution of (7.6-29) to the first order in is

and calculation shows that, for PZT-7A,

6.5 Electromagnetic Radiation

Next we consider electromagnetic radiation from a vibrating circular
cylinder of ceramics poled in the direction as shown in Figure 7.6-2 [56].

Figure 7.6-2. A Circular cylinder of ceramics poled in the direction.

The cylinder is mechanically driven at r = b. The surface at r = b is
unelectroded. Electromagnetic waves propagate away from the cylinder
(radiation).

6.5.1 Boundary-Value Problem

For the special case of a solid cylinder (a = 0), from Equation (7.6-16)
the boundary-value problem is:
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6.5.2 Interior Fields

For fields inside the cylinder, in polar coordinates, from Equation (7.6-
16) we have

and

Consider the possibility of

where v is allowed to assume any real, positive value for the moment (for
solutions periodic in v has to be an integer). Other values of v may also
be physically meaningful. For example, v= 1/2 with represents a
crack at Substitution of (7.6-35) into (7.6-33)results in

where we have denoted
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Equation (7.6-36) can be written as Bessel’s equations of order v. Then
general solutions for and can be written as

where and are the v-th order Bessel functions of the first and second
kind. are undetermined constants. From (7.6-38) we obtain the
following expressions that are useful for boundary and/or continuity
conditions:

where a superimposed prime indicates differentiation with respect to the
whole argument of a function.
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6.5.3 Exterior Fields

In the free space of r >b, the electromagnetic fields are given by

where and are the v-th order Hankel function of the first and

second kind, and

6.5.4 Boundary and Continuity Conditions

Since is singular at the origin, terms associated with and have
to be dropped. To satisfy the radiation condition at we must have

What need to be satisfied at r = b are

Note that when v = 0 (axi-symmetric), Equation becomes
uncoupled to In this case cannot be excited by Hence there
is no radiation. In the following we consider the case of From
Equation (7.6-44)
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where

yields a frequency equation. The corresponding modes are coupled
acousto-electromagnetic modes.

6.5.5 Electromagnetic Radiation

We calculate the radiation at far fields with large r using the following
asymptotic expressions of Bessel functions with large arguments

Then

which are clearly outgoing. To calculate radiated power we need the radial
component of the Poynting vector which, when averaged over a period of
time, with the complex notation, is given by
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where an asterisk represents complex conjugate. Equation (7.6-49) shows
that the energy flux is inversely proportional to r. It also shows the angular
distribution of the power radiation. The radiated power per unit length of the
cylinder is

We are interested in the frequency range of acoustic waves. Therefore is
finite, and For small arguments we have

Then, approximately,

In this approximate form, the denominator of the first factor of (7.6-52)
represents the frequency equation for quasistatic electromechanical
resonances in piezoelectricity. With Equation (7.6-52), the radiated power
can be written as

From Equation (7.6-53) we make the following observations:
(i) S is large near resonance frequencies. It is singular at these

frequencies unless some damping is present.
(ii) In the limit of and all 0. In this case as

expected.
(iii) S is proportional to the square of a piezoelectric constant. For

materials with strong piezoelectric coupling, the radiated power is much
more than that of a material with weak coupling.
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Problems

7.6-1.
7.6-2.

7.6-3.

Study piezoelectromagnetic SH waves in a ceramic plate [57].
Study piezoelectromagnetic SH surface waves in a ceramic half-
space carrying a thin layer of isotropic conductor or dielectric [32].
Study piezoelectromagnetic SH gap waves between two ceramic
half-spaces [58].




