
Chapter 6

LINEAR EQUATIONS FOR SMALL FIELDS
SUPERPOSED ON FINITE BIASING FIELDS

The theory of linear piezoelectricity assumes infinitesimal deviations
from an ideal reference state of the material in which there are no pre-
existing mechanical and/or electrical fields (initial or biasing fields). The
presence of biasing fields makes a material apparently behave like a
different material, and renders the linear theory of piezoelectricity invalid.
The behavior of electroelastic bodies under biasing fields can be described
by the theory for infinitesimal incremental fields superposed on finite
biasing fields, which is a consequence of the nonlinear theory of
electroelasticity. Knowledge of the behavior of electroelastic bodies under
biasing fields is important in many applications including the buckling of
thin electroelastic structures, frequency stability of piezoelectric resonators,
acoustic wave sensors based on frequency shifts due to biasing fields,
characterization of nonlinear electroelastic materials by propagation of
small-amplitude waves in electroelastic bodies under biasing fields, and
electrostrictive ceramics which operate under a biasing electric field. This
chapter presents the theory for small fields superposed on biasing fields in
an electroelastic body and some of its applications.

1. A NONLINEAR SPRING

The basic concept of small fields superposed on finite biasing fields can
be well explained by a simple nonlinear spring. Consider the following
spring-mass system (see Figure 6.1-1). When the spring is stretched by x,
the force in the spring is where k and are linear and
nonlinear spring constants.
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Figure 6.1-1. Reference, initial, and present states of a nonlinear spring-mass system.

The reference state in Figure 6.1-1 (a) is the natural state of the spring
when there is no force and stretch in it. Under an initial, constant force the
mass m is in equilibrium with an initial stretch in the spring (see Figure
6.1-1 (b)) such that

Then a small, dynamic, incremental force is applied, and the mass is in
small amplitude motion around with position (see Figure 6.1-1
(c)). Since both and are small, we want to derive a linear relation
between them. In the state in Figure 6.1-1 (c) the equation of motion for the
mass is
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Using (6.1-1) and the smallness of

where

is an effective linear spring constant at the initial stretch Thus at the state
with an initial stretch, the nonlinear spring responds to small, incremental
changes like a linear spring with an effective linear spring constant It is
important to note that depends on and the nonlinear spring constant

2. LINEARIZATION ABOUT A BIAS

The concept in the previous section can be generalized to an
electroelastic body [35]. Consider the following three states of an
electroelastic body (see Figure 6.2-1):

Figure 6.2-1. Reference, initial, and present configurations of an electroelastic body.

(i) The reference state: In this state the body is undeformed and free of
electric fields. A generic point at this state is denoted by X with Cartesian
coordinates The mass density is

(ii) The initial state: In this state the body is deformed finitely and
statically, and carries finite static electric fields. The body is under the action
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of body force body charge prescribed surface position surface

traction surface potential and surface charge The deformation

and fields at this configuration are the initial or biasing fields. The position
of the material point associated with X is given by x = x(X) or
with strain Greek indices are used for the initial configuration. The

electric potential in this state is denoted by with electric field
x(X) and satisfy the following static equations of nonlinear
electroelasticity:

(iii) The present state: In this state, time-dependent, small, incremental
deformations and electric fields are applied to the deformed body at the
initial state. The body is under the action of and

The final position of X is given by y = y(X,t), and the final electric potential
is and satisfy the dynamic equations of
nonlinear electroelasticity:
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2.1 Linearization of Differential Equations

Let the incremental displacement be u(X,t) (see Figure 6.2-1). u and
are assumed to be infinitesimal. We write y and as

where a dimensionless parameter is introduced to indicate the smallness of
the incremental deformations and fields. In the following, terms quadratic in
or of higher order of will be dropped. Substitution of (6.2-3) into (6.2-2)
yields

where

and

where

To the first order of

From (1.1-22),
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For the electric field

Then the Maxwell stress tensor and can be expanded as

where

and

Then

where
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Equation (6.2-15) can be further written as

which shows that the incremental stress tensor and electric displacement
vector depend linearly on the incremental displacement gradient and
potential gradient. In (6.2-16),

and are called the effective or apparent elastic,

piezoelectric, and dielectric constants. They depend on the initial
deformation and electric potential Even when a material is
considered linear, i.e., only the second-order material constants need to be
considered, the effective material constants still show modifications by the
biasing fields. The effective material constants in general have lower
symmetry than the fundamental linear elastic, piezoelectric, and dielectric
constants. This is called induced anisotropy or symmetry breaking. There
can be as many as 45 independent components for 27 independent

components for and 6 independent components for Since the

fields in the present configuration satisfy (6.2-2) and the biasing fields
satisfy (6.2-1), we have

where and are determined from

In the above derivation, can be set to 1 everywhere.
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The boundary value problem for the incremental fields u and consists
of the following equations and boundary conditions:

Because of the dependence of and on the initial

deformations and fields, (6.2-20) in general are equations with variable
coefficients.

2.2 A Variational Principle

The symmetries shown in (6.2-17) imply that the differential operators
in (6.2-20) are self-adjoint (see Section 6). It can be verified that the
stationary condition of the following variational functional under the
constraint of the boundary conditions on and yields (6.2-18) and the
boundary conditions on and

2.3 Linearization Using the Total Stress Formulation

With the total stress formulation in Section 7 of Chapter 1, the
derivation for the equations of the incremental fields can be written in a
more compact form as
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where

Problem

6.2-1. Show (6.2-9).

3. VARIATIONAL APPROACH

The equations for the small incremental fields can also be obtained by
making power series expansions in terms of the small incremental fields in
the variational functional of nonlinear electroelasticity [36]. Consider the
dynamic form of the total energy formulation in (1.8-5). Let
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Other quantities of the present state can then be written as

where, due to nonlinearity, higher powers of may arise. Note that in (6.3-
2) the superscripts 0, 1, 2 are for orders of expansions, not for powers except
in We want to derive equations governing u and From (6.3-1) and
(6.3-2), we can further write

where

Substituting (6.3-l)-(6.3-4) into the dynamic form of the in (1.8-5), we
obtain

where
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and

Comparing (6.3-6) to (1.7-1), we recognize (6.3-6) to be simply the
variational functional for the initial deformation which may be dynamic.
Since the initial deformation here satisfies the dynamic form of (6.2-1),
in (6.3-7) can be written into the following much simpler form:

which does not depend on u and anymore. If and are

held constant, or, in other words, then which

simply shows that is the variational functional for the initial deformation.
Since we are interested in equations for the first-order incremental fields u



178

and we drop all second-order quantities involving

and in and obtain

where

Equation (6.3-11) are the same as (6.2-23). When (1.8-1) is introduced into
(6.3-11), with the use of (1.8-2) and (1.8-6)-(1.8-8), (6.2-17) will result.

4. SMALL BIASING FIELDS

In some applications, the biasing deformations and fields are also
infinitesimal. In this case, usually only their first-order effects on the
incremental fields need to be considered. Then the following energy density
of a cubic polynomial is sufficient:
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where the subscripts indicating the orders of the material constants have
been dropped. For small biasing fields it is convenient to introduce the small
displacement vector w of the initial deformation (see Figure 6.2-1), given as

Then, neglecting terms quadratic in the gradients of w and the effective
material constants take the following form [35]:

where

It is important to note that the third-order material constants are necessary
for a complete description of the lowest order effects of the biasing fields.

5. THEORY OF INITIAL STRESS

In certain applications, e.g., buckling of thin structures, consideration of
initial stresses without initial deformations is sufficient. Such a theory is
called the initial stress theory in elasticity. It can be obtained from the theory
for incremental fields derived in Section 2. We set x = X in the equations for
small fields superposed on finite biasing fields. Furthermore, for buckling
analysis, a quadratic expression of with second-order material constants
only and the corresponding linear constitutive relations are sufficient. The
biasing fields can be treated as infinitesimal fields. Then the effective
material constants sufficient for describing the buckling phenomenon take
the following simple form:
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where is the initial stress and is the initial electric field.
Results obtained in buckling analyses of a few thin piezoelectric beams,

plates, and shells show that the buckling load of a piezoelectric structure is
often related to the corresponding elastic buckling load obtained from an
analysis neglecting the piezoelectric coupling in the following manner

where is a small, positive number. may depend on the material and
geometry of the structure. is an electromechanical coupling
factor. When (6.5-2) is true the electromechanical coupling tends to increase
the buckling load. In such a case an elastic analysis ignoring the
piezoelectric coupling yields a conservative estimate of the buckling load.
This is not surprising in view of the piezoelectric stiffening effect. Specific
results on buckling of thin piezoelectric structures can be found in the
references in a review article [37].

6. FREQUENCY PERTURBATION

Many piezoelectric devices are resonant devices for which frequency
consideration is of fundamental importance in design. Analysis based on
linear piezoelectricity can provide understanding of the operating principles
and basic design tools. This type of analysis is represented by Mindlin’s
early work on the eigenvalue problem of Section 6 of Chapter 4 [38].
However, devices designed based on linear piezoelectricity are deficient in
certain applications. Knowledge of the frequency stability due to
environmental effects (e.g., temperature change, force, and acceleration)
which cause biasing deformations and frequency shifts is often required for
a successful design. For the lowest order effect of the biasing fields, we need
to study the eigenvalue problem of an electroelastic body vibrating with the
presence of a small bias. From (6.4-4) we have
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where and are the resonance frequency and the

corresponding mode, respectively, when the biasing fields are present and
may be called a perturbed frequency and mode.  is an artificially introduced
dimensionless number to show the smallness of the biasing fields. In terms
of the abstract notation in Section 6 of Chapter 4, Equation (6.6-1) can be
written as [39]

where

We make the following expansions:

Substituting (6.6-4) into (6.6-2), collecting terms of equal powers of the
following perturbation problems of successive orders can be obtained. Zero-
order:
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which we recognize to be the eigenvalue problem for vibrations of a linear
piezoelectric body without biasing fields, treated in Section 6 of Chapter 4.
The solution to the zero-order problem, and is assumed known and
the first-order problem below is to be solved:

The equations for the first-order problem can be written as

Multiply both sides of (6.6-7) by

Similar to (4.6-7), it can be shown that

With (6.6-5) and (6.6-6), Equation (6.6-9) becomes
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Substitute (6.6-10) into (6.6-8):

which can be further written as

With Equation from (6.6-12)

The above expressions are for the eigenvalue For we make the
following expansion:

Then

Hence



184

or

With integration by parts, we can write (6.6-17) further as

When is set to 1, (6.6-18) becomes the well-known first-order perturbation
integral for frequency shifts [40].

7. ELECTROSTRICTIVE CERAMICS

As the linear coupling between mechanical and electric fields,
piezoelectricity cannot exist in isotropic materials. Mathematically this is the
consequence of the fact that a third-rank isotropic tensor with a pair of
symmetric indices has to vanish. Electrostriction is a nonlinear electroelastic
coupling effect that exists in all dielectrics, isotropic or anisotropic. In the
simplest description, electrostriction can be described by the term

in the energy density (6.4-1).

7.1 Nonlinear Theory

Electrostrictive ceramics are macroscopically isotropic due to their
polycrystalline structure. For isotropic materials, there are not many
independent components of the material tensors, linear or nonlinear. Instead
of (6.4-1), it is more convenient to use representations based on tensor
invariants of the strain tensor with components and the material

electric field vector with components The invariant representation
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automatically yields three-dimensional constitutive relations with a few
independent material parameters. With the integrity bases for isotropic
functions of a symmetric tensor and a vector, it can be determined that for
isotropic electroelastic ceramics the energy density function can be
written as

where the six invariants through are given by [1 ]

In (6.7-2), stands for Equations (6.7-1) and (6.7-2) imply the
following constitutive relations for the symmetric stress tensor and the
polarization vector:

where 1 is the unit tensor of rank two, and represents tensor or dyadic
product. Equation (6.7-3) and (6.7-4) are the most general constitutive
relations of isotropic, nonlinear electroelastic materials. Although seemingly
simple, they can be complicated functions of and Under the
inversion of we have and indicating that
is odd and is even in Therefore linear dependence of on
(piezoelectricity) is not allowed, but higher order couplings are possible. In
particular, electrostrictive effect can be seen from, e.g., the fourth term on
the right-hand side of (6.7-3), which is due to

7.2 Effects of a Small, Electrical Bias

Electrostrictive ceramics operate under a biasing electric field. If a small
biasing electric field is applied, the small biasing fields are purely
electrical because there is no linear electromechanical coupling in the
material. In such a case, the effective material constants under the electrical
bias are
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Thus electrostrictive ceramics appear to be piezoelectric under a biasing
electric field, and the effective piezoelectric constants are tunable by
the biasing electric field

For the simplest model of electrostrictive ceramics, consider the case of
infinitesimal deformation. We construct an energy density function as
follows:

where and are elastic constants, is the relative dielectric permittivity,
and are electrostrictive constants. The constitutive relations generated

by (6.7-4) are

Under a biasing electric field in the direction, from (6.7-5), the
effective piezoelectric constants can be obtained as

Note that since there are only two electrostrictive material constants, the
following relation exists

The nonzero tensor components of the electrostrictive constants are related
to the material constants in (6.7-6) by




