Chapter 4

VIBRATIONS OF FINITE BODIES

This chapter and Chapter 5 are on the linear dynamics of piezoelectrics.
In this chapter we discuss time-harmonic vibrations of finite bodies, which
are fundamental to device applications. Both free and forced vibrations are
examined. Sections 1 to 5 present exact solutions from the three-
dimensional equations. Section 6 provides some general results of the
eigenvalue problem for the free vibration of a piezoelectric body. Sections 7
to 11 give approximate solutions of a few vibration problems that are very
useful but do not allow simple, exact solutions. However, with some very
accurate approximations, the problems can be solved very easily. Section 12
presents a special problem, i.e., frequency shifts of a piezoelectric body due
to small amounts of mass added to its surface. This problem is particularly
useful in sensor applications. It is treated by a perturbation method and a
simple formula for frequency shifts is obtained.

1. THICKNESS-STRETCH VIBRATION OF A CERAMIC
PLATE (THICKNESS EXCITATION)

Solutions to thickness vibrations of piezoelectric plates can be obtained
in a general manner [19]. To simplify the algebra we discuss a few special
cases in Sections 1 to 3. Consider a ceramic plate poled along the x3 axis
(see Figure 4.1-1). The plate is bounded by two planes at x3 = +h which are
traction-free and electroded. A time-harmonic voltage is applied across the

plate thickness.
N =

3 2 L™

Figure 4.1-1. An electroded ceramic plate with thickness poling.
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1.1 Boundary-Value Problem

The boundary-value problem is:

T, =pi;, D=0, in V,
Ty =cySuy—ewE, Di=e,S,+&,E, in V,
S, =, +u,)/2, E,=—¢,, n V, 4.1-1)

T,; =0, x,=th,

P(x; = h)—d(x;, =—h) = Ve'™.

Consider a possible solution in the following form:

u, =uy(x,)e”, u, =u,=0, ¢=d(x,)e”. (4.1-2)
The nontrivial components of strain and electric field are
Sy =Uy3, E;=-¢,, (4.1-3)

where the time-harmonic factor has been dropped. The nontrivial stress and
electric displacement components are

T, =Ty =cus; + €59,
Ty =cyus 5 + €530, (4.1-4)

D; =eyuy; —6,39;.
The equations to be satisfied are

_ 2
Cyslly 33 + €330 33 = —pw Uy,

(4.1-5)
€33U3 33 — 533¢,33 =0.
Equation (4.1-5), can be integrated to yield
e
¢=—u,+Bx,+B,, (4.1-6)

€33
where B, and B, are integration constants, and B, is immaterial. Substitute
Equation (4.1-6) into the expressions for 733, D3, and (4.1-5);:
Ty = Cpuy 5 + e,B,, D, =-£,B,, “4.1-7)

— 2
Cylly 33 =— PO Uy, (4.1-8)

where
2
€33

Ty =eyp(l+kyy), ki = (4.1-9)

£33C33 .
The general solution to (4.1-8) and the corresponding expression for the
electric potential are
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uy = A, sinéx, + A4, coséx,,

e, . . (4.1-10)
¢ =—(4,sinéx; + 4, cos&x,)+ Byx; + B,,
33
where A and 4 are integration constants, and
g2 =P o2 (4.1-11)

C33
The expression for stress is then
T,; = c¢55(A,Ecoséx, — A,Esinéx,) + e, B, . (4.1-12)
The boundary conditions require that
Cy A Ecoséh—c;A,Esinéh+ ey B, =0,

cyAlcoséh+c,A,Esinéh+ e, B =0, (4.1-13)
258 4 singh+2Bh=V,
&3

or, add the first two, and subtract the first two from each other:
¢34 Ecoséh+ey, By =0,

Cyyd,Esinéh =0, (4.1-14)

255 4 sinéh+2Bh=V.

&3
1.2 Free Vibration

Consider free vibrations with V = 0 first. Equation (4.1-14) decouples
into two sets of equations.

1.2.1 Anti-Symmetric Modes

One set is called anti-symmetric modes for which

€3 4,Esinéh=0. (4.1-15)
Nontrivial solutions may exist if
sinéh=0, 4.1-16)
or
5‘"’h:%, n=0,2,4,6,-, (4.1-17)

which determines the resonance frequencies
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o :1“2-;1 fﬁi n=0,2,4,6, (4.1-18)
P

Equation (4.1-16) implies that B; = 0 and 4; = 0. The corresponding modes
are

e
ui” =cos&Mx,, ¢ =2EcosEMx,, (4.1-19)
33
where n = 0 is a rigid body mode.

1.2.1 Symmetric Modes

For symmetric modes

CyAEcoséh+e,, B =0,

4.1-20
258 4 singh+2B,h=0. (4.1-20)
€33
The resonance frequencies are determined by
C;Ecoséh ey, .2
e . =c. _ 33 - 1-
% gingn  h| = Cnshcosch . sinéh=0, (4.1-21)
€33
or
tangh = é—}; (4.1-22)
3
where
2 2 5
I k
k323 __ G _ €33 a3 :(k;3)2. (4.1-23)

- 2N 2
£33C3 53051+ kg 1+ ks,

Equations (4.1-22) and (4.1-20) determine the resonance frequencies and
modes. For symmetric modes, 42 = 0.

1.3 Forced Vibration

Next consider forced vibrations. From Equation (4.1-14), A, = 0 which
means that anti-symmetric modes are not excitable by a thickness electric
field, and
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10 €33
V. 2h -
A =— - = eV > . (41-29)
6325 cosch es oz thoosth—2 5 sin
2-Bsinéh 2h £33
€33
cyécoséh 0
23 gin th vV - y
B =L E33 ” _ [ cosé‘z, . (4.1-25)
0325 cosch e 2¢,,Ehcos Eh— 253 sinéh
2-2ginéh 2k 33

&33
Hence
14 h
_—%- =-0,, (4.1-26)
2h Eh—ky tanéh
where o, is the surface charge per unit area on the electrode at x3 = 4. The
capacitance per unit area is

_ 9. &3 ¢h

D, = —£3,B) = —¢&3,

T T AL £ 12 tan B (4.1-27)
V. 2héh—kytanéh
We note the following limits:
lim ¢ =22
€;,—0 2h
]imC:.‘c:i__l_z_:ﬁé_(1+k323):C0’ (4.1-28)
@—0 2h 1 k33 2h

- 2
1+ k3,
where Cjy is the static capacitance. The motional capacitance C,, is defined
by

C,=C- Ozgi ____f___h -
2h | Eh—k2 tan&h
_ &y $h—(U+k3)(Eh— ks tan &)
2h Eh—k2 tan &h
_Exn —k323§h:r k3, tan &h _ 2 & tandh—dh
2h  Eh-k} tanéh 2 Eh—k2 tanéh

(1+ k3, )}

(4.1-29)
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Notethat C,, depends on electromechanical coupling.
Problem

4.1-1. Study thickness-shear vibration of a ceramic plate with in-plane
poling under thickness excitation. Hint: Consider #; =0, u#; = 0, u3 =
us(x1,t), and ¢= @xy,1).

X
AL

X3

p — 2h >

Figure 4.1-2. An electroded ceramic plate with in-plane poling.

2. THICKNESS-STRETCH VIBRATION OF A CERAMIC
PLATE (LATERAL EXCITATION)

Consider a ceramic plate poled in the x3 direction (Figure 4.2-1). The
two major surfaces are traction-free and are unelectroded. A voltage is
applied across x; = *oo and a uniform electric field Es(f) = Ee' is produced.

X1
M

v

Figure 4.2-1. An unelectroded ceramic plate with in-plane poling.
2.1 Boundary-Value Problem

The boundary-value problem is:
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T, =pii,, D, =0, in V,

Jisi i
T, =cuSy—eyE,, D =eyS,+eE, in V,
S, =, ;+u;;)/2, E,=—¢,, in V, 4.2-1)
T,;,=0, D=0, x =1h,
¢=-x,Ee'™, in V.
Consider the possibility of the following fields:

u, =u,(x)e”, u,=u, =0. (4.2-2)
The nontrivial strain and electric field components are
Sy=u,, E;=E, (4.2-3)

where the time-harmonic factor has been dropped. The nontrivial stress and
electric displacement components are

T, = Culty — e, E,
Ty, = ¢yt — e, E,
' (4.2-4)
Ty = cyyuy; — ey E,
D; =eju, +éey,E.
The electrical boundary conditions and the charge equation are trivially
satisfied. The equation of motion and the mechanical boundary conditions
take the following form:
2
eyl =—pou, —h<x <h, 42-5)
ey, —e E=0, x =+h,
which shows that we effectively have an elastic plate driven by a surface
traction. The general solution to (4.2-5); is

u, = 4 sinfx, + 4,cosé x,, (4.2-6)
where A, and A4, are integration constants, and
=Ly, 4.2-7)
‘n

Then the expression for the stress component relevant to the boundary
conditions is

T, = ¢ (4 coscx, — A,Esinéx,) — e, E . (4.2-8)
The boundary conditions require that
¢ (4 Ecoséh— A,Esinéh) —e, E =0,
¢ (A Scoséh+ A,Esinéh)—ey E =0,

or, add and then subtract

(4.2-9)
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c A Ecoséh=ey E, 4.2-10)
¢ A,Esinéh = 0. '
2.2 Free Vibration

First consider free vibrations with E = 0. From (4.2-10), nontrivial
solutions may exist if

sinh=0, (4.2-11)
or
g(n)h:%, n=0,2,4,6,---, (4.2-12)
which determines the following resonance frequencies
o™ =27 S0 20,246, (4.2-13)
2\ p
Equation (4.2-11) implies that 4, = 0. The corresponding modes are
u, =cos&Mx,, (4.2-14)

which are called anti-symmetric modes, n = 0 represents a rigid body mode.
For symmetric modes from (4.2-10), (E = 0),

coséh=0, (4.2-15)
or

é:(n)h:%r’ n=13,5,, (4.2-16)

which determines the following resonance frequencies

o™ =1 S 135, (4.2-17)
2h\ p

Equation (4.2-15) implies that 4, = 0. The corresponding modes are
u, =sin&Mx, . (4.2-18)

2.3 Forced Vibration

For forced vibrations 4 =0 and from (4.2-10),,
4 = €3
Y ey Eheoséh
The displacement field is

Eh. (4.2-19)



€3

" ¢, ,Shcosch

Problem

: 10,4
Ehsiné xe' .
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(4.2-20)

4.2-1. Study the thickness-shear vibration of a ceramic plate with thickness
poling under lateral excitation. Hint: Consider u, =u,(x;,7),

u, =0, u, =0,and ¢ =—x,Ee" .

X
2

pT 2h

E——

X1

Figure 4.2-2. An unelectroded ceramic plate with thickness poling.

3. THICKNESS-SHEAR VIBRATION

PLATE (THICKNESS EXCITATION)

OF A QUARTZ

Consider a rotated Y-cut quartz plate. The two major surfaces are
traction-free and are electroded, with a driving voltage across the thickness.
This structure represents a widely used piezoelectric resonator.

X
S

2h

>

Figure 4.3-1. An electroded quartz plate.

3.1 Boundary-Value Problem

The boundary-value problem is:

X1
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T,,=pii, D,;,=0, in V,
T, = CuSu—€yEs Di=eySytek, in V,
S, =@, +u;,;)/2, E,=—¢, in V, (4.3-1)

T,, =0, x,=th,

¢(x, = h)—g(x, =—h) =Ve™.
The problem is mathematically the same as the one in Section 1. Its solution
can be obtained from that in Section 1 by changing notation. Because of the
importance of this solution in applications, we solve this problem below so
that this section can be used independently. Consider the possibility of the
following displacement and potential fields:
u =u (x,)e”, u,=u, =0, ¢=¢(x,)e". (4.3-2)
The nontrivial components of strain, electric field, stress, and electric
displacement are
2S12 =Uy,, Ez = _¢,2 > (4.3-3)
and
Ty = ¢ty +ezs¢,za T, = ety 5 +ezs¢,2’
D, =exu , —6np,, Dy =eyi, —630,,

where the time-harmonic factor has been dropped. The equation of motion
and the charge equation require that

= _ 2
Ty12 = Colhynn + €360 =—POUy

(4.3-4)

(4.3-5)
Dz,z = €Uy 5 — 522¢,22 =0.
Equation (4.3-5); can be integrated to yield
e
¢=—u +Bx,+B,, (4.3-6)

€n
where B; and B, are integration constants, and B, is immaterial. Substituting
(4.3-6) into the expressions for T3y, D, and (4.3-5); we obtain

T, = Eﬁéul,2 +exB,, D,=-¢,8B, 4.3-7)
6661’[1,22 =—-p 0)2741 5 (4.3-8)

where
e2
Cos = Cos(1+ kfe ) k225 =—=

(4.3-9)
266

The general solution to (4.3-8) and the corresponding expression for the

electric potential are
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u, = A, sinéx, + 4, cos&x,,

e . 4.3-10
¢ =—2(4,sin&x, + 4, coséx, )+ Byx, + B,, ( )
22
where A, and A, are integration constants, and
g2=L 2, (4.3-11)

666
Then the expression for the stress component relevant to boundary
conditions is

T, = Ce (A& cosx, — A,Esinéx, ) + e, B, . (4.3-12)
The boundary conditions require that
Cos A& cosEh—Co A, Esinéh + e, B, =0,
Ces A& cosEh+ g A,Esinéh+ ey B =0, (4.3-13)
252 4 singh+2Bh=V,
€n

or, add the first two, and subtract the first two from each other:
Ces A5 cosEh+e, B =0,

CesA,&5inéh =0, (4.3-14)

255 4 sinfh+2Bh=V.

€
3.2 Free Vibration

First we consider free vibrations with V = 0. Equation (4.3-14)
decouples into two sets of equations. For symmetric modes,

Ces ArEsinéh=0. (4.3-15)
Nontrivial solutions may exist if
sinéh =0, (4.3-16)
or
.f‘”h:fsz—, n=0,2,4,6- (4.3-17)

which determines the following resonance frequencies

RONSC 6_66_, n=0,2,4,6,--. (43-18)
2h \ p

Equation (4.3-16) implies that B; = 0 and 4; = 0. The corresponding modes
are
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e
u, =coséMx,, ¢=-2cosMx,, (4.3-19)
€
where n = 0 represents a rigid body mode. For anti-symmetric modes,
Cee A £ coséh+ey B, =0,

4.3-20
255 4 sinéh+2Bh=0. (4:3-20
&xn
The resonance frequencies are determined by
CesSCOSER ey o2
=C — 736 ¢ = -
€% gin e h|” CesChcosSh e, sinéh=0, (4.3-21)
822
or
h
tanch = —_5.7, (4.3-22)
ka
where
2 2 2
— e e k
ki =—2—= 2 = (43-23)

EnCes  EnCe(1+ky) 14k
Equations (4.3-22) and (4.3-20) determine the resonance frequencies and
modes. Ifthe small piezoelectric coupling for quartz is neglected in (4.3-22),
a set of frequencies similar to (4.3-17) with n equals odd numbers can be
determined for a set of modes with sine dependence on the thickness
coordinate. Static thickness-shear deformation and the first few thickness-
shear modes in a plate are shown in Figure 4.3-2.

/)

Static »n =1 n=2 n=3

Figure 4.3-2. Thickness-shear deformation and modes in a plate.
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33 Forced Vibration

For forced vibration we have 4, =0 and

0 ey
v 2k —e,V
4 = 5 - Ca” . (4.3-24)
céf COSSHCxn| oz heosh—2 ¢ sinch
2-®sinéh 2k )
En

Celcoséh 0
288 Gnen v

£n Ve & coséh
B = T e 66 > (4.3-25)
66 * 2¢,Ehcoséh— 2L sinh
e
2-®sinéh 2h &n
Exn
Hence
D, =-¢£,B, = 4 S -o (4.3-26)

N o 12z %
2h &h—k, tan &h
where @, is the surface charge per unit area on the electrode at x, = A. The
capacitance per unit area is
9. _¢n ch

7 (4.3-27)
V. 2h&th—kstanth
We note the following limits:
lim C =22,
a0 2h
limC = gi__l_z— = gﬁ(] +k2). (4.3-28)
w0 2h 1 k26 2h
1+ k3,

34 Mechanical Effects of Electrodes

In certain applications, e.g., piezoelectric resonators, the electrodes
cannot be treated as a constraint on the electric potential only, and its
mechanical effects need to be considered. This may include the inertial
effect of the electrode mass and the stiffness of the electrode. Consider a
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quartz plate with electrodes of unequal thickness on its two major faces as
shown in Figure 4.3-3 [20].

X2
' A
v 2 }

/ 1\ Crystal $ h X1
Electrodes plate ‘ >
\ v \T "

T Zhrr

Figure 4.3-3. A quartz plate with electrodes of different thickness.

We are interested in free vibration frequencies. The governing equations are

2
T,,=-pou, D, 6 =0, —h<x,<h,
Ty =cuSu —eyle, Di=eySy+ek,, —h<x,<h,

S; =@, +u; )2, E =-¢,, ~h<x,<h,

Uy

T; =cySy> S;=Q,;+u;)/2,
—h—-h"<x,<-h, h<x,<h+h,

where o' and ¢';y are the mass density and the elastic constants of the
electrodes. The two electrodes are of the same isotropic material. The outer
surfaces of the electrodes are traction-free. The electrodes are shorted. We
have the following boundary and continuity conditions:

T,;=0, x,=h+2h, x,=-h-2H,
u;(x, =h")=u,(x,=h"),

T, (x,=h")=T,,(x, =h"),
u,(x,=-h")y=u,(x, =-h"),
T,j(x;==h")=T,,(x,=-h"),

P(x, = h) = P(x, = —h).
Fields inside the plate are still given by (4.3-10), (4.3-7),, and (4.3-12).
For fields inside the electrodes, consider the upper electrode first:

) (4.3-29)
=-p'w'u, —h-h"<x,<-h, h<x,<h+h,

(4.3-30)
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Tys = Ciglhy, =—P'@’uy (4.3-31)
u, = A/sin&'(x, — h)+ A, cos&'(x, — h), (4.3-32)
Ty = cigl Al cosE'(x, —h)— AiE'sing'(x, ~ )], (4.3-33)

where A’y and A", are integration constants, and
&) =L-w’. (4.3-34)

Cés
Similarly, for the lower electrode we have

u, = A'sin&'(x, + h)+ A4; cos&'(x, + h) (4.3-35)
T, =cglAE cosE'(x, + h) — A& sin &' (x, + )], (4.3-36)

where 4”7 and A4 " are integration constants.
Substituting (4.3-10), (4.3-7),, (4.3-12), (4.3-32), (4.3-33), (4.3-35), and
(4.3-36) into (4.3-30), we obtain
A sinéh+ A4, coséh = 4,
— A, sinéh+ A, costh = A7,
CesC (A, cosEh — A, sinh) + e, B, = cgo&'A),
Cosl (A, coséh + A, sinE)h + ey B, = ¢y &'A4], (4.3-37)
A/ cos&E2R — 4, sinE2h" =0,
AlcosE2h" + A sinE2R" = 0,
e
-—&A1 sinéh+ Bh=0.
&pn
For nontrivial solutions of the undetermined constants, the determinant of

the coefficient matrix of (4.3-37) has to vanish. This results in the following
frequency equation:

(1 — k2 M] 2tan&h+ fp—f’ﬁ(tan E2h +tan 5’2h"):|
ch Ples

= "D—_C“— tan fh[ tan h(tan £'24' + tan £"2h") (4.3-38)
s

+2 /i’& tan &'20 tan &20" }
PCes

We make the following observations from (4.3-38).
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(1) In the limit of #’ — 0 and A" — 0, i.e., the mechanical effects of the
electrodes are neglected, (4.3-38) reduces to

(1 k2 ta;hghj tangh =0, (4.3-39)

which is the frequency equation of both symmetric and anti-symmetric
modes given in (4.3-16) and (4.3-22).
(i) When A’ = h", i.e., the electrodes are of the same thickness, (4.3-38)

reduces to
1-k2 tanch _ ’ P tanhtan & 20
ch Plss
X (tan Eh+ ’ﬁﬁs— tan 5'2h'] =
PlCeq

The first factor of (4.3-40) is the frequency equation for the anti-symmetric
modes given in [21]. The second factor is for symmetric modes. For small
K, i.e., very thin electrodes, we approximately have

tan &'2h' = E2H, /p “ aneoh = Reh, R=L220 . (4341
Ples ph

In this case the first factor of (4.3-40) reduces to

ch
kL +R(ER)*

which is the result given in [22]. Note that in Equation (4.3-42) the shear
stiffness of the electrodes (c'ss) has disappeared. Only the mass effect of the
electrodes is left and is represented by the mass ratio R.

(iii) For small 4" and 4", i.e., thin and unequal electrodes, Equation (4.3-
38) reduces to

(4.3-40)

tan &h = (4.3-42)

(1 k2 “‘2‘5}’][2tan§h+(R'Jr R")zH]

(4.3-43)
= Ehtan h|(R' + R")tan &h + 2R'R"£h]
where we have denoted
RI=P2 g P2 (4.3-44)

ph ph
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To the lowest (first) order of the mass effect, the R'R” term on the right-hand
side of Equation (4.3-44) can be dropped.

Problem

43-1. When the electrodes are very thin, only the inertial effect of the
electrode mass needs to be considered; its stiffness can be neglected.
The boundary condition on an electroded surface is, according to
Newton’s 2™ law

~T.n, = p'hii, =—p'h o’u,. (4.3-45)

JuJ

Use Equation (4.3-45) to study the anti-symmetric thickness-shear
vibration of a quartz plate with electrodes of equal thickness and
derive Equation (4.3-42).

4. TANGENTIAL THICKNESS-SHEAR VIBRATION OF
A CIRCULAR CYLINDER

Consider an infinite circular cylinder of inner radius a and outer radius
b. The cylinder is made of ceramics with tangential poling. We choose
(r,6,2) to correspond to (2,3,1) so that the poling direction corresponds to 3.
The inner and outer surfaces are electroded. There is no load applied, and
we are interested in free vibrations independent of 6.

/N

Figure 4.4-1. A circular cylinder with tangential poling.

The boundary-value problem is:
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r

iy = P, Dy =0, in Y,

Ty =cuSu—eyE, D, =euS,+e,E, in V,
S; =@, ; +u,;)/2, E,=—¢,, in V,

T,n; =0, r=a, b,

¢(r =a)=¢(r =b), if the electrodes are shorted,

or D =0, r=a,b, if the electrodes are open.

(4.4-1)

Consider the possibility of the following displacement and potential fields:

u, =u,(r)e”, u,=u, =0, ¢=dg@r)e". (4.4-2)
The nontrivial components of strain, electric field, stress, and electric
displacement are

du, u d
§,=285,,=—"~—" E=E :_d_f’ (4.4-3)
du, u d¢
T, =T —2_ 9 -
4 =14y 044( o r ) 15

(4.4-4)
du, u, d¢

D, =D, :els(?_—r“‘)_‘qu;’f-

Thus on the boundary surfaces at r = a and b there are no tangential electric
fields. The electric potential assumes constant values on the electrodes as

required. The stress components 7, and 7. vanish everywhere,

rr
particularly on the lateral surfaces. The equation of motion and the charge
equation to be satisfied are

dT 2 1
Y +=T,=-po’u,, —(rD,), =0. (4.4-5)
dr r r ’
Equation (4.4-5), can be integrated as
C
D, =e;—, (4.4-6)
r
where C3is an integration constant. Then, from (4.4-4), we have
C
$ = b 28, —=2|. (4.4-7)
’ &y v

Substitution of (4.4-7) into (4.4-4), gives



107

dar r En r
, (4.4-8)
du, u,) e (&%
“ar r) g r’
where
2
e
Cou =Cuy(1+ k125 ) k125 =—5— (4.4-9)
11€44
Substitute (4.4-8) into (4.4-5);:
. d*u, 1du, 1 N e;; C,
ar’> r dr r? &y 1’
(4.4-10)
2 du e
+—c44(—9— ) =2 =—pa’u,,
r &n r
or
d’u, 1du, 1 > el C,
c +——L——u, |+ poiu, =, (4.4-11)
44( dr r dr r ¢ o ¢ & r2
or
d’u, 1du, 1 2 —, C
e —u, +Eu, =k, (4.4-12)
ar* rdr ¢ ¢ty =his r
where
2 _ e?. e2 k2
Tty % S LR s o T (4413)
Cy4 EnCy  Encau(ltky) 1+kj;
Introduce a dimensionless variable R = £ r . Equation (4.12) can be written
as
d’ 1 d 1 C,
=0 +—ﬁ+[1— ) =kl =2, (4.4-14)
dR R dR R? R

which is Bessel’s equation of order one.

In the following we consider the case when the electrodes at r = a and b
are open. The electrical boundary conditions imply, through (4.4-6), that Cs
= 0. Then the general solution to (4.4-14) is

u, =CJ,(R)+C,Y(R) =CJ,(gr) + C, Y, (&), (4.4-15)
where J; and Y; are the first-order Bessel’s functions of the first and second
kind, respectively. From (4.4-8) the shear stress is



CEL[CII(E)E + CoYENE] T }[CIJ, (&) + C,Y, ()] (44-16)

- 015445{4'(&) A r)] X 44§[Y (o) - ’)]
sr 4
The traction-free boundary conditions require that
CIEM@[J;(z:a) e )} ex: 44§[Y (EOR ")J 0
J,(£b) ¥ f:b) e
C1544§l:‘]1 (ﬁb) - ‘fb :l + C2644§‘:Y1’(§b) - E—] 0.
The frequency equation is given by
J(g)_J(ia) Y/(Za) - Yi(Sa)
ngfb) Yg(sz) =0. (4.4-18)
Ji(&b) - ‘b Yi(&b) - £b

Problem

4.4-1. Study the tangential thickness-shear vibration of a circular cylinder
of monoclinic crystals [23].

S. AXTAL THICKNESS-SHEAR VIBRATION OF A
CIRCULAR CYLINDER

Consider an infinite circular cylinder of inner radius @ and outer radius
b. The cylinder is made of ceramics with axial poling along the x; direction.
We choose (r,6,z) to correspond to (1,2,3) so that the poling direction
corresponds to 3. The inner and outer surfaces are electroded. There is no
load applied, and we are interested in anti-plane axi-symmetric free
vibrations [24].
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Figure 4.5-1. A circular cylindrical ceramic shell with axial poling.
51 Boundary-Value Problem

From Section 6 of Chapter 3, the boundary value problem is:
c,Viu, =pii,, a<r<b,
Vzl//=0, a<r<b,
u, =0, r=a,b, if the cylindicalsurfaces are fixed,
or T_=0, r=a,b, if the cylindicalsurfaces are free,
o(r = a) = ¢(r = b), if the electrodes are shorted,

or D =0, r=a,b, if the electrodes are open,
where ¢ and  are related by

e
p=y+u,.
€n
The stress and electric displacement components are
T =cuu,, +esy,,

Dr = .—glll//,r‘

We look for solutions in the following form:
uz (r’t) = uz (r)elmt b

w(r,1) =y(r)e”.
The equations for #, and y are
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(4.5-1)

(4.5-2)

(4.5-3)

(4.5-4)
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2

o* 0
V2uz = auZz +1 auz :_p_(o uza
o Cas (4.5-5)
oO'w 10y
Vi = +——=0.
T o
The general solution to (4.5-5) is
u, = 4,J,(&r) + 4,X,(cr),
(4.5-6)

v =A, ln%+A4,

where A4;, A,, A3 and A4 are undetermined constants, J and Y, are zero-order
Bessel’s functions of the first and second kind, and

2
g2 =22 (4.5-7)
Cus
Hence
e e r
¢=W+J%bZJLMMJ&Th%n@ﬂFﬁ%mZ+AM
1 1 7
_ A
Trz = _0445[141‘]1(5") t+ Azyl(fr)] +e; 73, (4.5-8)
D, =-¢, :4;3"
,

where J, =—J, and ¥, =-Y] have been used.

5.2 Clamped and Electroded Surfaces

First consider the case when the two cylindrical surfaces are fixed and
the two electrodes are shorted. Then we have

u=0, r=a,b,

b=0. r=ab, (4.5-9)
which implies that

v=0, r=a,b. (4.5-10)
Hence

A,=0, 4,=0, (4.5-11)

and



Jo(Ga) Yo(Ga)
Jo(cb) Y, (ch)

5.3 Free and Unelectroded Surfaces

Next consider the case
T.=0, r=a,b,

D =0, r=a,b.
Then 4, =0 and
Ji(Ga) Y, (Sa)
Ji(8b) Yi(sh)

54 Free and Electroded Surfaces

Finally, consider
T.,=0, r=a,b,

$=0, r=a,b.
It can be shown that
J,(Ga) Y, (Sa)
J1(8b) Y(Sb)

For large x, Bessel functions can be approximated by
2

J,x)=,— cos(x —_——
Vns

Y (%)= isin(x—zzt———jE .
X 2

Then it can be shown that for large a and b, (4.5-16) simplifies to

B o —Jo(@n) -2,

§b1n§ Yo(fa) =Yy (b)  Yi(Ga)-—
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(4.5-12)

(4.5-13)

(4.5-14)

(4.5-15)

(4.5-16)

(4.5-17)
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siné(b—a) = —i{(l + ﬁjcosg(b —a)- 2\/E] . (4.5-18)
&b ln—Z— a a

Setting 2h = b-a and allowing a, b — oo, we have

§bln—— =¢&blIn % =¢bln (1 ———) §b(— —) =—£2h,
sin&(b —a) =sin(E2h) = £2h,

(4.5-19)
b b
(1 +— )cosé’(b a)-— 2\/7
= 2¢0s(E2h) -2 = —2[1—cos(E2h)] = —4sin’® &h.
Then Equation (4.5-18) reduces to
tan &h = g—i’ , (4.5-20)

15

which is the frequency equation for the thickness-shear vibration of a
ceramic plate with in-plane poling (see Problem 4.1-1).

Problems

4.5-1. Show (4.5-16).

4.5-2.  Show (4.5-18).

4.5-3. Study the case of u=0,r=a, b and D, =0,r = q, b.

4.5-4. Study the axial thickness-shear vibration of a circular cylinder of
monoclinic crystals [23].

4.5-5. Study vibrations of a ceramic wedge.

6. SOME GENERAL RESULTS

In this section we prove a few general properties of the eigenvalue
problem for the free vibration of a piezoelectric body [25]. The free
vibration of a piezoelectric body with frequency @ is governed by the
differential equations

_ 2
—Collyy — €y = PO U,

(4.6-1)
—eulyy t ExPru =0
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6.1 Abstract Formulation

We introduce the following notation:
A=, U={u.¢}, V={,y},
AU = {_cjikluk,lj - elg’i¢,lg‘ Uy t gik¢,ki}’ (4.6-2)
BU = {pu,,0},

where U and V are four-vectors and A and B are operators. Then the
eigenvalue problem for the free vibration of a piezoelectric body can be
written as

AU=ABU, in V,
u; =0, on S,
T,(Un, =(c,yuy, +e,;¢,)n;, =0, on §,, (4.6-3)
$=0, on S,
D,(U)n, =(eyu,, —£,0,)n, =0, on §,,
which is a homogeneous system. We are interested in nontrivial solutions of
U. A and B are real but 4 and U may be complex at this point. We note that
for a nontrivial U, its first three components #; have to be nontrivial, because
u; = 0 implies, through (4.6-3), that ¢ = 0. For convenience we denote the

collection of all U that are smooth enough and satisfy the boundary
conditions in (4.6-3) by

H = {U| U satisfies all boundary conditions in (4.6-3),.s}. (4.6-4)
A scalar product over H is defined by

<UsV>= [ (uy, +py)dv, (4.6-5)

which has the following properties:
<U;V>=<V;U >,

(4.6-6)
<U;aV+ W>=a<U;V>+ <U;W >,

where & and £ are scalars.
6.2 Self-Adjointness

Forany U, Ve H
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< AUV >=< {—cﬁk,uk’,j - ekﬁ¢,kj ety t g,.k¢’ki};{v,.,1//} >
= [ ety — ey Vi + (et + 848 )W 1AV
= | -7, (Uny, - D,(U)nyldS

+ IV [(C i tti Vi +ekji¢,kvi,j el Y — &, )dV

= —J, [T, (U)n,v, + D,(U)n,y)dS
5 (4.6-7)
+ L (7, (V)n,uk + D, (V)nk¢]dS

+ J;, [("ckhjvi,jl —enl¥ Ju, +(_ekjivi,jk +EWY 1 )pldV
==, [T,(Uny, + D,(U)nylds
+ [ T(VInu, + D (Vyn,gldS

+ < U; AV >=< U; AV >,
and
<BU;V >=<U;BV >. (4.6-8)
Hence both A and B are self-adjoint on H. Equation (4.6-7) is called the
reciprocal theorem in elasticity and Green’s identity in mathematics.

6.3 Reality

Let A be an eigenvalue and U the corresponding eigenvector. Hence
AU = ABU. (4.6-9)
Take complex conjugate
AU = IBU", (4.6-10)
where an asterisk means complex conjugate, and we have made use of the
fact that A and B are real. Multiply (4.6-9) by U™ and (4.6-10) by U
through the scalar product, and subtract the resulting equations:

0=(1-1)<BU;U" >. (4.6-11)
Since < BU;U”™ > is strictly positive, we have
A-A =0, (4.6-12)

or A is real. Then let the real and imaginary parts of U be U* and U".
Equation (4.6-9) can be written as

AU +iU") = AB(UR +iU"), (4.6-13)
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which implies that
AU® = JBU®, AU’ =/BU’. (4.6-14)

Equation (4.6-14) shows that U® and U’ are also eigenvectors of A. In the
rest of this section, we will assume that the eigenvectors have been chosen
as real.

64 Orthogonality
Let U™ and U™ be two eigenvectors corresponding to two distinct
eigenvalues A and A®, respectively. Then
AU™ = JmBym
AU(H) — ﬂ(")BU(n).

Multiply (4.6-15); by U” and (4.6-15), by U™ through the scalar product,
and subtract the resulting equations

0=A" - A"y <BU™; U™ >, (4.6-16)
which implies that

(4.6-15)

<BU™; U™ >=0. (4.6-17)
The multiplication of (4.6-15), by U™ leads to
<AU™, U™ >=0. (4.6-18)

Equations (4.6-17) and (4.6-18) are called the orthogonality conditions. In
unabbreviated form they become

<AU™; U™ >
= ";, (cyklul(c”;) "+ eka¢(m) )
+ ezkzu(m)¢(n) ik¢,(km)¢,s‘n))dV =0,
<BU™; U™ >= J:/poul.('”)ui(")dV =0.

(4.6-19)

6.5 Positivity

A subset of H consisting of U that also satisfies the charge equation is
denoted by

H*={Ue€ H|Ureal, —e,u, , +&, ¢, =0 in V}. (4.6-20)
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For any U € H*
< AU U >=< {_cjikluk,lj - elg‘i¢,kj ey + Eq® b3l 0 >
= IV [(_cjikluk,lj — €y ¢Ig Ju, +(—eyu, , +&, ¢,ki )pldV
= | [-7,(Unu, - D(U)n,g1ds

+ J;, [(cjikluk,lui,j +ekji¢,kui,j +eik1uk,l¢,i _gik¢,k¢,i)dV

(4.6-21)
= _[, [cjikluk,lui,j +E,90,9, + z(eikzuk,1¢,i —&,9,8)1dV
= IV [cjikluk,lui,j +&,0,0, - ety — €49,)01AV
+ L 2(eik1uk,1 _gik¢,k n,¢dS
= _[V (€Ut ; +E4P AV 20,
and
<BU;U> >0. (4.6-22)
Multiply (4.6-9) by U
<AU;U>=A<BU;U >, (4.6-23)

which shows that A is nonnegative.
6.6  Variational Formulation

Consider the following functional (Rayleigh quotient) of U € H
vy = 20,

r) (4.6-24)
A(U)=<AU;U >, T(U)=<BU;U>.

The first variation of IT is

TSA—AST  SA—TI6T

Jl = 4.6-25
I? r ( )
Therefore OI1 = 0 implies that
SA-TIT = 0. (4.6-26)

From (4.6-24) we have
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OAN -TII" =< AU;6U > + < SAU; U >
-IT1<BU;oU > -I1 < 6BU; U >
=< AU;0U >+ < AdU; U >
~II<BU;oU > -IT1 < BoU; U > (4.6-27)
=< AU;dU > + < U; AU >
~I1 <BU;dU > -I1 < 6U;BU >
=2 < AU-IIBU;dU >,

where the small variation oU € H. (4.6-27) implies that

AU-TIBU =0. (4.6-28)
Hence the U that makes o1 = 0 is an eigenvector of the eigenvalue IT.

6.7 Perturbation Based on Variational Formulation

Next we consider the case when A and B are slightly perturbed but are
still self-adjoint, which causes small perturbations in A and U:

(A +AAYU +AU) = (1 + AL)B +AB)YU +AU).  (4.6-29)

We are interested in an expression of A4 linear in AA and AB. From (4.6-
24),
_ <(A+AA)U+AU);U +AU >

<(B+AB)U+AU);U+AU >
<AU+(AA)U+A(AU); U + AU >
<BU +(AB)U+ B(AU); U + AU >
<AU;U >+ < AU;AU > + < (AA)U + A(AU); U >
<BU;U > + <BU;AU > + < (AB)U + B(AU); U >
_<AU;U>+2 < AU;AU > + < (AA)U; U >
" <BU;U > +2 <BU;AU > + < (AB)U; U >
_< AU;U>(1+ 2 < AU;AU > + < (AA)U; U >)
<BU;U > <AU; U >
X(l_ 2 <BU;AU > + < (AB)U; U >JE
<BU;U >

A+AA

I

n
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_ <AUU >£1+ 2 < AU;AU > + < (AAU; U >
<BU;U > < AU U >
2<BU;AU >+ < (AB)U; U >
- <BU;U> ]
_< AU U > N 2 < AU;AU > + < (AA)U; U >
<BU;U > <BU;U >
< AU;U > 2 <BU;AU > + < (AB)U; U >
- <BU;U> <BU;U>
N 2 < AU-/ABU;AU > + < (AA)U; U > -1 < (AB)U; U >
<BU;U >
N <(AA)U;U > -4 < (AB)U; U >
<BU;U >

(4.6-30)

=4

=A

3

hence
_<(AAU;U> -1 <(AB)U; U >
<BU;U > '

A

(4.6-31)

6.8 Perturbation Based on Abstract Formulation

Equation (4.6-31) can also be obtained from the following perturbation
procedure. Expand both sides of (4.6-29). The zero-order terms represent the
unperturbed eigenvalue problem. The first-order terms are

A (AU) +(AA)U = AABU + A(AB)U + AB(AU). (4.6-32)
Multiply both sides by U:
<A(AU)U>+<(AAU;U > (4.6-33
= A4 <BU;U > +1 < (AB)U; U > +4 < B(AU); U >, 6-33)
or
<AU; AU > + < (AA)U; U >
(4.6-34)

=AA<BU;U > +4 <(AB)U; U > +4 < AU;BU >.

The first term and the last term in (4.6-34) cancel, and what is left is
<(AAU;U > -1 <(AB)U;U >
AAd = (AA)U; A <(4B) . (4.6-35)
<BU;U >
which is the same as (4.6-31). Note that in this perturbation procedure, no

assumption regarding the self-adjointness of AA and AB was made.
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7. EXTENSIONAL VIBRATION OF A THIN ROD

Consider a rectangular rod of length /, width w, and thickness ¢ as shown
in Figure 4.7-1, where [ >> w >> t. We are interested in the low frequency
extensional vibration of the rod [11]. By low frequency we mean that the

wavelength of the vibration modes is much longer than the width and
thickness of the rod.

x3‘!‘ /x2

» W

Figure 4.7-1. A piezoelectric rod with rectangular cross section.

As an approximation, it is appropriate to take the vanishing boundary
stresses on the surfaces bounding the two small dimensions to vanish
everywhere. Consequently

T,, =T\(x,,1), and all other T, =0. (4.7-1)

If the surfaces of the area /w are fully electroded with a driving voltage V
across the electrodes, the appropriate electrical conditions are

14
E =E, =0, E,= - (4.7-2)
The pertinent constitutive relations are
S, =s,T, +d,E;,
1 1171 313 (47_3)
Dy =dyT, + ey, E;.
Equation (4.7-3); can be inverted to give
1 d
7, =—S8,-—2E,. (4.7-4)
S S1y
Then the differential equation of motion and boundary conditions are
1 .
— 1y, = piy, —1/12<x <1/2,
11
(4.7-5)
1 d, Vv
Ty=—u, +—2L—=0, x =1//2.

S Syt
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Equations (4.7-5) show that the applied voltage effectively acts like two
extensional end forces on the rod. For free vibrations, V = 0 and the
electrodes are shorted. We look for free vibration solution in the form

u, (x,,0) =u,(x,)e"” . (4.7-6)
Then the eigenvalue problem is
U, +pspetu, —1/2<x <172,

(4.7-7)
u, =0, x ==I/2

The solution of @ = 0 and #; = constant represents a rigid body mode. For
the rest of the modes we try u; = sinkx;. Then, from (4.7-7), k = @4/ psy, .
To satisfy (4.7-7); we must have

coskizo, = k(n)izﬂ, n=13,5,--, (4.7-8)
2 2 2
or
| nrx nr
a)n ’m _—=—, wn =, n:1,3,5,"‘. (47‘9)
(n) 11 2 2 (n) l\/—pz

Similarly, by considering #; = coskx;, the following frequencies can be
determined:

nw

l\/,as'u ’

The frequencies in (4.7-9) and (4.7-10) are integral multiples of @, and are

@ = n=246,. (4.7-10)

called harmonics. @, is called the fundamental and the rest are called the

overtones.
Ifthe surfaces of the area /¢ are fully electroded with a driving voltage V
across the electrodes, the appropriate electrical conditions are

14
E, =0, D,=0, E,=——. (4.7-11)
w
The pertinent constitutive relations are
S, =s,T, +d,E, +d,E;,
1 1171 2142 313 (4.7_12)
D, =dyT\ + enE, + 6, E;.

From the boundary conditions on the areas of /w, we take the following to
be approximately true everywhere:

Dy =d, T +&,E, +€,E,=0. (4.7-13)
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With (4.7-13), (4.7-12) can be written as
S, = EIITI +d,E,,

o (4.7-14)
D, =d,T, +&,E,,
where
51 =5y _d321 /&3,
d21 = d21 —d31823 /6‘33, 4.7-15)

~ 2
£y =&y — &/ Es.

If the surfaces of cross-sectional areas Iw and It are not electroded, the
appropriate electrical conditions are

D,=D,=0. (4.7-16)
The pertinent constitutive relations are
Sy =syh +&uD,,

(4.7-17)
E, =-g,T,+ p,D,.

8. RADIAL VIBRATION OF A THIN RING

Axi-symmetric radial vibration can be set up in a thin ceramic ring (see
Figure 4.8-1) with radial poling, electroded on its inner and outer surfaces

[1].

3

Figure 4.8-1. A ceramic ring with radial poling.

Let R be the mean radius, w the width and / the thickness of the ring. We
assume R >>w >>h. In cylindrical coordinates, from the boundary
conditions, we make the approximation that the following is true throughout
the ring:

Ty #0, all other T, =0,

4.8-1
E,=E, =0. @81
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Let (8z,r) correspond to (1,2,3). The radial electric field and the tangential
strain are given by
u V
S =S8,=—, E,.=FE =—-——. 4.8-2
1 " 3 r h ( )

The relevant constitutive relations are
Sy =8p =85, Tg +dyE,,

(4.8-3)
Dy =D, =d; Ty + £,E,,
which can be solved to give
1 u d
Ty =—-—=-—"E,,
sy R sy
d (4.8-4)
u,
D, =—t—t+ 5k,
s, R
where
Ey =&y —dy /s, (4.8-5)
The equation of motion takes the following form
Ty ..
-—= = . 4.8-6
p = Pl (4.8-6)
Substitution of (4.8-4), into (4.8-6) yields
1 u, d
- E, = pii,. 4.8-7)
s, R s, R P (
For free vibrations V= 0 and
L (4.8-8)
S R’ " .
The resonance frequency is
1
@’ = —. (4.8-9)
psyR

9. RADIAL VIBRATION OF A THIN PLATE

A circular disk of a piezoelectric ceramic poled in the thickness
direction is positioned in a coordinate system as shown in Figure 4.9-1. We
consider axi-symmetric radial modes [26].
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P a
2b 1 %
0. T P

X1

Figure 4.9-1. A circular ceramic plate with thickness poling.

The faces of the disk are traction-free and are completely coated with
electrodes. The electrodes are connected to a voltage source of potential
Ve'™. Under these circumstances, the boundary conditions at x; = tb are

Ty, =0, x;=1b,

. (4.9-1)
¢ = i%e”‘”, x, = tb.

Since T3, T4, and T's vanish on both major surfaces of the plate and the plate
is thin, these stresses cannot depart much from zero. Consequently they are
assumed to vanish throughout. Thus we assume that

T,=T,=T,=0. (4.9-2)
Furthermore, since the plate is thin and has conducting surfaces,
vV .
E =0, E,=0, E,=——¢€". 4.9-3
1 2 3 2b ( )
We consider radial modes with
0
u,=0, —=0. 4.9-4
0 20 (4.9-4)

The constitutive relations are
_ P p p
T, =ciu,, +chu,/r+efid,,
— P r p
Ty =chu,lr+chu,, +e5d,,

T, =0,

14

(4.9-5)

D, = e} (w,,+u,/r)- 53’;¢,3,

where
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¢ =ey —cy /ey,
¢h =0 _‘3123 /€3,
ey =€ — €303/ Cy3, (4.9-6)
3y = &3 +ey /ey
are the effective material constants for a thin plate after the relaxation of the

normal stress in the thickness direction. The one remaining equation of
motion in cylindrical coordinates is

oT T -T
T %4 pof = pii. (4.9-7)
or r
Substitution from (4.9-5) for the stress components, we obtain
ch@u,, +u,, /r—u,lr?)=pi, (4.9-8)

which, since we are assuming a steady-state problem with frequency o,
becomes

urr 2 1
U, +—+| & -——u, =0, (4.9-9)
¥ r
where
2
2 W P -
& —————(vp)2 , () =cf/ (4.9-10)

Equation (4.9-9) can be written as Bessel’s equation of order one. For a
solid disk, the motion at the origin is zero and the general solution is

u, = BJ(Er)e™, (4.9-11)

where J, is the first kind Bessel function of the first order. Equation (4.9-11)
is subject to the boundary condition

T.=0, r=a, (4.9-12)
hence (4.9-12) requires that

+CII;B:].L:—eP V . (4.9'13)

clle_ 3 5p

r=a

where, for convenience, the argument of the Bessel function is not written.
From (4.9-13) B can be expressed in terms of V as follows:

B=[(l— J(éﬂa) e31 14

4.9-14
o 55 ( )

—&/o(Ga )}

where
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aJy(x) _ _ i) .
=) - (4.9-15)

has been used and
of =cf /e, (4.9-16)

which may be interpreted as a planar Poisson’s ratio, since the material is
isotropic in the plane normal to xs;. The total charge on the electrode at the
bottom of the plate is given by

0, = L D,dA = 2ﬂ"[) D,rdr . (4.9-17)

Substitution of (4.9-11) into (4.9-5), and then into (4.9-17) yields
Q, =2mefaBJ, (¢£a) - nebVa® 12b. (4.9-18)

Hence we obtain for the current that flows to the resonator

2 Pl
P [ AEPIGD _ Jdm
di (1-07)J,(Ea)-¢£al (£ a) 26
where
P2
(k2)? = (e;:l)p . (4.9-20)
3301

At mechanical resonance, the applied voltage can be zero, and from (4.9-
13),
daJ;
dr

vordiog, (4.9-21)
a

r=a

Or, at the resonance frequency, the current goes to infinity. This condition is
determined by setting the square bracketed factor in the denominator of
(4.9-14) equal to zero. The resulting equation is

Ealy(Ea)
Ji(§a)

which can be brought into the same form as (4.9-21). The antiresonance
frequency results when the current goes to zero. The resulting equation is

faly(Ea) _
L& a)

1-o7, (4.9-22)

1-07? - 2(kF)>. (4.9-23)
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10. RADIAL VIBRATION OF A THIN CYLINDRICAL
SHELL

In this section we analyze the axi-symmetric radial vibration of an
unbounded thin ceramic circular cylindrical shell with radial poling,
electroded on its inner and outer surfaces (see Figure 4.10-1). A voltage V is
applied across the thickness. Let R be the mean radius, and & the thickness

of the shell. By a thin shell we mean R >> h.

Electrodes

i

N

Figure 4.10-1. A thin ceramic circular cylindrical shell.

In cylindrical coordinates, the boundary conditions give
T.=7T,=T_=0, E,=E, =0, (4.10-1)

which are taken to be approximately true throughout the shell. We consider
motions independent of #and z. By symmetry

T, =0. (4.10-2)
The tangential strain and radial electric field are given by
u 4
S, =84=—", E;=E =——. 4.10-3
1 60 R 3 r h ( )
Let (8,z,r) correspond to (1,2,3). From
S,=8,=s,T, +5,Tpo+dy,E, =0, (4.10-4)
we solve for
d
7, =-2p _Sup. (4.10-5)

St Si



Substituting (4.10-5) into the following constitutive relations
S, =80 =51Tpe +5,T,, +dyE,,
Dy =D, =dy(Tyy +T,) + &55E,,

we obtain
S 5T, +dyE,,
D, =d,Ty, +£,E,,
where
52 d,s d?
- _ 27 _ e 5 . 43
Sp=Sy———, dy=d; - s &3 =&y .
S Sy S1

Equation (4.10-7) can be inverted to give

Teg zfl_ﬂ__d_il‘Er’
5, R 5

D =Dtz Dy
5y R S

Substitution of (4.10-9), into the following equation of motion

T, 00 s
R - pur
yields
1 u, d31
-— E,
Sui 7 5. R = Pl
For free vibrations, V= 0 and the resonance frequency is
1
w° =— -
psy R

Problem

4.10-1. Study the forced vibration.
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(4.10-6)

(4.10-7)

(4.10-8)

(4.10-9)

(4.10-10)

(4.10-11)

(4.10-12)

11. RADIAL VIBRATION OF A THIN SPHERICAL SHELL

Consider a thin spherical ceramic shell of mean radius R and thickness &
with R >> h (see Figure 4.11-1). The ceramic is poled in the thickness
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direction, with fully electroded inner and outer surfaces. Consider radial
vibration of the shell [1].

Figure 4.11-1. A spherical ceramic shell with radial poling.

In spherical coordinates the boundary conditions give

1,=T7,=T1T,=0, E,=E, =0, 4.11-1)
which are taken to be valid approximately throughout the shell. For radial
motions independent of & and ¢, by symmetry

Tp=T,,, T, =0. (4.11-2)
The relevant strain and electric field components are
u, V
S%:SW:?, Er=——h—. (4.11-3)

Let (r,8,¢) correspond to (3,1,2) so that poling is along 3. The pertinent
constitutive relations are
Soo = Spp = S1Tpe + 52T, +dyE,,

(4.11-4)
D, =dy(Tyy +T,,) + E,,
which can be inverted to yield
1 u, d
Too = Trpw = 7_ = ro
St S, St S 4.11-5)
2d ~ '
D, =—3— —Lf’—+g33E,,
Sy +5, R
where
Eyy = &35 = 2d3 (5, +5,) . (4.11-6)

The relevant equation of motion is
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e o 4.11-7)

Substitute from (4.11-5)
2 u N 2d,,

r

- E, = pii,. (4.11-8)
S +S, R s, +5,R P

For free vibration, V= 0 and the resonance frequency is
2
a)Z

-2 (4.11-9)
P8y + 5y, )R2

Problem

4.11-1. Study the forced vibration.

12. FREQUENCY SHIFTS DUE TO SURFACE
ADDITIONAL MASS

In certain applications, we need to study shifts of resonance frequencies
due to a small amount of mass added to the surface of a crystal. One
example is the mass effect of a thin surface electrode on resonance
frequencies. In addition, many chemical and biological acoustic wave
sensors detect certain substances through the mass-frequency effect of the
substances accumulated on the crystal surface by chemically or biologically
active films. These situations can be modeled by a crystal with a thin film of
thickness 4’ and mass density o on part of the crystal surface (see Figure
4.12-1).

h!’

Added mass
layer

Figure 4.12-1. A crystal with a thin layer of additional mass on part of its surface.
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The mass layer is assumed to be very thin. Only the inertial effect of the
layer needs to be considered; its stiffness can be neglected. The boundary
condition on the surface area with added mass is

~T.n, = p'Wii, =—p'h'0’u,. (4.12-1)

JiJ

Then the eigenvalue problem for the resonance frequencies and modes of a
crystal with surface added mass is

—Colhyy — €y = pAu, in YV,
—eylyy; tExP, =0, In ¥,

u,=0, on S,

(4.12-2)
Tyn; =(Ciytty + ey, n, =eAp'h'u;, on S,
$=0, on S 4
Din, = (eyu,, —gik¢,k yn, =0, on S,
where we have denoted
A=07, (4.12-3)

and we have artificially introduced a dimensionless number & to show the
smallness of the added mass. When & = 1, (4.12-2)4 becomes (4.12-1). In
terms of the abstract notation in Section 6, Equation (4.12-2) can be written
as

AU=/BU, in V,
u,=0, on §,,
T,(U)n; =elp'h'y,, on S, (4.12-4)
$=0, on S,

D,(U)n, =0, on §,.

We make the following perturbation expansion [27]:

Az29 4g1@

, © ) 4.12-5
U= {l;} = {:}0)} + g{zl(l)} =U® +au®. ( )

Substituting (4.12-5) into (4.12-4), collecting terms of equal powers of &, the
following perturbation problems of successive orders can be obtained. Zero-
order:
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0) 0) _ 0),.(0) .
—C iUy ’elg'i¢,1_q- =pA~u;”, in V,
0) 0) _ .
—Culy T gik¢,ki =0, in V,
ul(O) = 0, on Su .
(0) (0) _
(Cmtti) +eyP; )n; =0, on S,

©) _
¢’ =0, on S¢,

(4.12-6)

0 0
(eiklul(c,l) _gik¢,(k))ni =0, on §,.

The solution to the zero-order problem, A® and U(O), 1s assumed known. The
first-order problem below is to be solved:

1) a1 _ 0,0 @, @
= Cualhyy — €@y = pPA U + pAlu’, in ¥,
m Q) _ 3
—eyllyy + &P, =0, in ¥V,
uP =0, on S
U] M) — AR 20, (©0)
(Couthis TPy In; = pHA ", on S,

1 _
¢’ =0, on S¢,

u’

(4.12-7)

(eiklul(cl,? - 8ik¢,(k1))ni =0, on §,.
The equations for the first-order problem can be written as
AUY = 29BUY + AYBUC. (4.12-8)

Multiplying both sides of (4.12-8) by U gives
<AUD U9 >= 29 < BUY U > 4240 < BUP; U >, (4.12-9)
From (4.6-7),

<AUO;UO >
= [ [T,(U”)m,u® + D,(U)n,p"1dS (4.12-10)

+ [, [T U)mu® + D, (U )n g JdS+ < U AU >

With (4.12-6) and (4.12-7), (4.12-10) becomes
< AU UY >
= p'h’ﬂ(o)u,ﬁo)u,go)dS+ <UQ;AUY >,

St

Substituting (4.12-11) into (4.12-9) yields

(4.12-11)
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<AUD U > [ pWAOuuds

(4.12-12)
=19 <BU®; U9 > 2V < BUY: U >,
which can be further written as
< AUY - 2OBU; U > - L pH A%uuds
T 4.12-13
=1V <BUO, U@ >, ( )
With (4.12-6), from (4.12-13)
 pH A%UOuds - phuPuVds
n _ 9 — 70 5
AV = TG = A — . (4.12-14)
<BU®, U > J‘V puOu®dy

The above expressions are for the eigenvalue A = ®*. For @ we make the
following expansion:

o= +z0l. (4.12-15)
Then
A= a)2 = (a)(O) + (9(0(1))2
= (@) +2e0® 0" = 4O + £, (4.12-16)
Hence
eV _ 1 "
0® " 2A0®)’
1 . PRl uds (4.12-17)
0
=G A —
2(60 ) IV pui ui dV
Finally, setting £=1 in (4.12-7), we obtain
o-0® 1) PHuuddS
=7 (4.12-18)

' 2 _[Vpu,(o)u@)dV

We make the following observations from (4.2-18):

(i) Clearly, we have @ — < 0. This shows that a small amount of
mass added to the surface tends to lower the resonance frequencies, as
expected. On the other hand, if a thin layer of material is removed from the
surface, resonance frequencies increase.

(ii) Larger p'h’ causes more frequency shifts.
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(iii) In an area where the surface displacement is large, the added mass

has a larger effect on resonance frequencies.

(iv) If the additional mass is essentially a concentrated mass m at a point
with Cartesian coordinates y, on the surface (e.g., a local contamination),

then (4.2-18) reduces to
o-0® _ 1m®u’y)

RO 2 .[Vpu.“”u.“’)dV '

In

(v) Obviously, Sy can be several disadjoint areas.

Problem

4.12-1. Use (4.12-18) to analyze Problem 4.3-1 [27].

(4.2-19)





