
Chapter 4

VIBRATIONS OF FINITE BODIES

This chapter and Chapter 5 are on the linear dynamics of piezoelectrics.
In this chapter we discuss time-harmonic vibrations of finite bodies, which
are fundamental to device applications. Both free and forced vibrations are
examined. Sections 1 to 5 present exact solutions from the three-
dimensional equations. Section 6 provides some general results of the
eigenvalue problem for the free vibration of a piezoelectric body. Sections 7
to 11 give approximate solutions of a few vibration problems that are very
useful but do not allow simple, exact solutions. However, with some very
accurate approximations, the problems can be solved very easily. Section 12
presents a special problem, i.e., frequency shifts of a piezoelectric body due
to small amounts of mass added to its surface. This problem is particularly
useful in sensor applications. It is treated by a perturbation method and a
simple formula for frequency shifts is obtained.

1. THICKNESS-STRETCH VIBRATION OF A CERAMIC
PLATE (THICKNESS EXCITATION)

Solutions to thickness vibrations of piezoelectric plates can be obtained
in a general manner [19]. To simplify the algebra we discuss a few special
cases in Sections 1 to 3. Consider a ceramic plate poled along the axis
(see Figure 4.1-1). The plate is bounded by two planes at which are
traction-free and electroded. A time-harmonic voltage is applied across the
plate thickness.

Figure 4.1-1. An electroded ceramic plate with thickness poling.
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1.1 Boundary-Value Problem

The boundary-value problem is:

Consider a possible solution in the following form:

The nontrivial components of strain and electric field are

where the time-harmonic factor has been dropped. The nontrivial stress and
electric displacement components are

The equations to be satisfied are

Equation can be integrated to yield

where and are integration constants, and is immaterial. Substitute
Equation (4.1-6) into the expressions for and

where

The general solution to (4.1-8) and the corresponding expression for the
electric potential are
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where and are integration constants, and

The expression for stress is then

The boundary conditions require that

or, add the first two, and subtract the first two from each other:

1.2 Free Vibration

Consider free vibrations with V = 0 first. Equation (4.1-14) decouples
into two sets of equations.

1.2.1 Anti-Symmetric Modes

One set is called anti-symmetric modes for which

Nontrivial solutions may exist if

or

which determines the resonance frequencies
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Equation (4.1-16) implies that and The corresponding modes
are

where n = 0 is a rigid body mode.

1.2.1 Symmetric Modes

For symmetric modes

The resonance frequencies are determined by

or

where

Equations (4.1-22) and (4.1-20) determine the resonance frequencies and
modes. For symmetric modes,

1.3 Forced Vibration

Next consider forced vibrations. From Equation (4.1-14), which
means that anti-symmetric modes are not excitable by a thickness electric
field, and
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Hence

where is the surface charge per unit area on the electrode at The
capacitance per unit area is

We note the following limits:

where is the static capacitance. The motional capacitance is defined
by
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Note that depends on electromechanical coupling.

Problem

4.1-1. Study thickness-shear vibration of a ceramic plate with in-plane
poling under thickness excitation. Hint: Consider

and

Figure 4.1-2. An electroded ceramic plate with in-plane poling.

2. THICKNESS-STRETCH VIBRATION OF A CERAMIC
PLATE (LATERAL EXCITATION)

Consider a ceramic plate poled in the direction (Figure 4.2-1). The
two major surfaces are traction-free and are unelectroded. A voltage is
applied across and a uniform electric field is produced.

Figure 4.2-1. An unelectroded ceramic plate with in-plane poling.

2.1 Boundary-Value Problem

The boundary-value problem is:
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Consider the possibility of the following fields:

The nontrivial strain and electric field components are

where the time-harmonic factor has been dropped. The nontrivial stress and
electric displacement components are

The electrical boundary conditions and the charge equation are trivially
satisfied. The equation of motion and the mechanical boundary conditions
take the following form:

which shows that we effectively have an elastic plate driven by a surface
traction. The general solution to is

where and are integration constants, and

Then the expression for the stress component relevant to the boundary
conditions is

The boundary conditions require that

or, add and then subtract
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2.2 Free Vibration

First consider free vibrations with E = 0. From nontrivial
solutions may exist if

or

which determines the following resonance frequencies

Equation (4.2-11) implies that The corresponding modes are

which are called anti-symmetric modes, n = 0 represents a rigid body mode.
For symmetric modes from (E = 0),

or

which determines the following resonance frequencies

Equation (4.2-15) implies that The corresponding modes are

2.3 Forced Vibration

For forced vibrations and from

The displacement field is
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Problem

4.2-1. Study the thickness-shear vibration of a ceramic plate with thickness
poling under lateral excitation. Hint: Consider

and

Figure 4.2-2. An unelectroded ceramic plate with thickness poling.

3. THICKNESS-SHEAR VIBRATION OF A QUARTZ
PLATE (THICKNESS EXCITATION)

Consider a rotated Y-cut quartz plate. The two major surfaces are
traction-free and are electroded, with a driving voltage across the thickness.
This structure represents a widely used piezoelectric resonator.

Figure 4.3-1. An electroded quartz plate.

3.1 Boundary-Value Problem

The boundary-value problem is:
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The problem is mathematically the same as the one in Section 1. Its solution
can be obtained from that in Section 1 by changing notation. Because of the
importance of this solution in applications, we solve this problem below so
that this section can be used independently. Consider the possibility of the
following displacement and potential fields:

The nontrivial components of strain, electric field, stress, and electric
displacement are

and

where the time-harmonic factor has been dropped. The equation of motion
and the charge equation require that

Equation                can be integrated to yield

where and are integration constants, and is immaterial. Substituting
(4.3-6) into the expressions for and we obtain

where

The general solution to (4.3-8) and the corresponding expression for the
electric potential are
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where and are integration constants, and

Then the expression for the stress component relevant to boundary
conditions is

The boundary conditions require that

or, add the first two, and subtract the first two from each other:

3.2 Free Vibration

First we consider free vibrations with V = 0. Equation (4.3-14)
decouples into two sets of equations. For symmetric modes,

Nontrivial solutions may exist if

or

which determines the following resonance frequencies

Equation (4.3-16) implies that and The corresponding modes
are
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where n = 0 represents a rigid body mode. For anti-symmetric modes,

The resonance frequencies are determined by

or

where

Equations (4.3-22) and (4.3-20) determine the resonance frequencies and
modes. If the small piezoelectric coupling for quartz is neglected in (4.3-22),
a set of frequencies similar to (4.3-17) with n equals odd numbers can be
determined for a set of modes with sine dependence on the thickness
coordinate. Static thickness-shear deformation and the first few thickness-
shear modes in a plate are shown in Figure 4.3-2.

Figure 4.3-2. Thickness-shear deformation and modes in a plate.
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3.3 Forced Vibration

For forced vibration we have and

Hence

where is the surface charge per unit area on the electrode at The
capacitance per unit area is

We note the following limits:

3.4 Mechanical Effects of Electrodes

In certain applications, e.g., piezoelectric resonators, the electrodes
cannot be treated as a constraint on the electric potential only, and its
mechanical effects need to be considered. This may include the inertial
effect of the electrode mass and the stiffness of the electrode. Consider a
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quartz plate with electrodes of unequal thickness on its two major faces as
shown in Figure 4.3-3 [20].

Figure 4.3-3. A quartz plate with electrodes of different thickness.

We are interested in free vibration frequencies. The governing equations are

where and are the mass density and the elastic constants of the
electrodes. The two electrodes are of the same isotropic material. The outer
surfaces of the electrodes are traction-free. The electrodes are shorted. We
have the following boundary and continuity conditions:

Fields inside the plate are still given by (4.3-10), and (4.3-12).
For fields inside the electrodes, consider the upper electrode first:
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where and are integration constants, and

Similarly, for the lower electrode we have

where and are integration constants.
Substituting (4.3-10), (4.3-12), (4.3-32), (4.3-33), (4.3-35), and

(4.3-36) into (4.3-30), we obtain

For nontrivial solutions of the undetermined constants, the determinant of
the coefficient matrix of (4.3-37) has to vanish. This results in the following
frequency equation:

We make the following observations from (4.3-38).
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(i) In the limit of and i.e., the mechanical effects of the
electrodes are neglected, (4.3-38) reduces to

which is the frequency equation of both symmetric and anti-symmetric
modes given in (4.3-16) and (4.3-22).

(ii) When i.e., the electrodes are of the same thickness, (4.3-38)
reduces to

The first factor of (4.3-40) is the frequency equation for the anti-symmetric
modes given in [21]. The second factor is for symmetric modes. For small

i.e., very thin electrodes, we approximately have

In this case the first factor of (4.3-40) reduces to

which is the result given in [22]. Note that in Equation (4.3-42) the shear
stiffness of the electrodes has disappeared. Only the mass effect of the
electrodes is left and is represented by the mass ratio R.

(iii) For small and i.e., thin and unequal electrodes, Equation (4.3-
38) reduces to

where we have denoted
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To the lowest (first) order of the mass effect, the term on the right-hand
side of Equation (4.3-44) can be dropped.

Problem

4.3-1. When the electrodes are very thin, only the inertial effect of the
electrode mass needs to be considered; its stiffness can be neglected.
The boundary condition on an electroded surface is, according to
Newton’s law

Use Equation (4.3-45) to study the anti-symmetric thickness-shear
vibration of a quartz plate with electrodes of equal thickness and
derive Equation (4.3-42).

4. TANGENTIAL THICKNESS-SHEAR VIBRATION OF
A CIRCULAR CYLINDER

Consider an infinite circular cylinder of inner radius a and outer radius
b. The cylinder is made of ceramics with tangential poling. We choose

to correspond to (2,3,1) so that the poling direction corresponds to 3.
The inner and outer surfaces are electroded. There is no load applied, and
we are interested in free vibrations independent of

Figure 4.4-1. A circular cylinder with tangential poling.

The boundary-value problem is:
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Consider the possibility of the following displacement and potential fields:

The nontrivial components of strain, electric field, stress, and electric
displacement are

Thus on the boundary surfaces at r = a and b there are no tangential electric
fields. The electric potential assumes constant values on the electrodes as
required. The stress components and vanish everywhere,
particularly on the lateral surfaces. The equation of motion and the charge
equation to be satisfied are

Equation can be integrated as

where is an integration constant. Then, from we have

Substitution of (4.4-7) into gives
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where

Substitute (4.4-8) into

or

or

where

Introduce a dimensionless variable Equation (4.12) can be written
as

which is Bessel’s equation of order one.
In the following we consider the case when the electrodes at r = a and b

are open. The electrical boundary conditions imply, through (4.4-6), that
Then the general solution to (4.4-14) is

where and are the first-order Bessel’s functions of the first and second
kind, respectively. From (4.4-8) the shear stress is
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The traction-free boundary conditions require that

The frequency equation is given by

Problem

4.4-1. Study the tangential thickness-shear vibration of a circular cylinder
of monoclinic crystals [23].

5. AXIAL THICKNESS-SHEAR VIBRATION OF A
CIRCULAR CYLINDER

Consider an infinite circular cylinder of inner radius a and outer radius
b. The cylinder is made of ceramics with axial poling along the direction.
We choose to correspond to (1,2,3) so that the poling direction
corresponds to 3. The inner and outer surfaces are electroded. There is no
load applied, and we are interested in anti-plane axi-symmetric free
vibrations [24].
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Figure 4.5-1. A circular cylindrical ceramic shell with axial poling.

5.1 Boundary-Value Problem

From Section 6 of Chapter 3, the boundary value problem is:

where and are related by

The stress and electric displacement components are

We look for solutions in the following form:

The equations for and are
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The general solution to (4.5-5) is

where and are undetermined constants, and are zero-order
Bessel’s functions of the first and second kind, and

Hence

where and have been used.

5.2 Clamped and Electroded Surfaces

First consider the case when the two cylindrical surfaces are fixed and
the two electrodes are shorted. Then we have

which implies that

Hence

and
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5.3 Free and Unelectroded Surfaces

Next consider the case

Then and

5.4 Free and Electroded Surfaces

Finally, consider

It can be shown that

For large x, Bessel functions can be approximated by

Then it can be shown that for large a and b, (4.5-16) simplifies to
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Setting 2h = b-a and allowing a, we have

Then Equation (4.5-18) reduces to

which is the frequency equation for the thickness-shear vibration of a
ceramic plate with in-plane poling (see Problem 4.1-1).

Problems

4.5-1.
4.5-2.
4.5-3.
4.5-4.

4.5-5.

Show (4.5-16).
Show (4.5-18).
Study the case of u = 0, r = a, b and r = a, b.
Study the axial thickness-shear vibration of a circular cylinder of
monoclinic crystals [23].
Study vibrations of a ceramic wedge.

6. SOME GENERAL RESULTS

In this section we prove a few general properties of the eigenvalue
problem for the free vibration of a piezoelectric body [25]. The free
vibration of a piezoelectric body with frequency is governed by the
differential equations
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6.1 Abstract Formulation

We introduce the following notation:

where U and V are four-vectors and A and B are operators. Then the
eigenvalue problem for the free vibration of a piezoelectric body can be
written as

which is a homogeneous system. We are interested in nontrivial solutions of
U. A and B are real but    and U may be complex at this point. We note that
for a nontrivial U, its first three components have to be nontrivial, because

implies, through (4.6-3), that For convenience we denote the
collection of all U that are smooth enough and satisfy the boundary
conditions in (4.6-3) by

A scalar product over H is defined by

which has the following properties:

where and are scalars.

6.2 Self-Adjointness

For any
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and

Hence both A and B are self-adjoint on H. Equation (4.6-7) is called the
reciprocal theorem in elasticity and Green’s identity in mathematics.

6.3 Reality

Let be an eigenvalue and U the corresponding eigenvector. Hence

Take complex conjugate

where an asterisk means complex conjugate, and we have made use of the
fact that A and B are real. Multiply (4.6-9) by and (4.6-10) by U
through the scalar product, and subtract the resulting equations:

Since is strictly positive, we have

or is real. Then let the real and imaginary parts of U be and
Equation (4.6-9) can be written as
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which implies that

Equation (4.6-14) shows that and are also eigenvectors of In the
rest of this section, we will assume that the eigenvectors have been chosen
as real.

6.4 Orthogonality

Let and be two eigenvectors corresponding to two distinct
eigenvalues and respectively. Then

Multiply by and                 by through the scalar product,
and subtract the resulting equations

which implies that

The multiplication of by leads to

Equations (4.6-17) and (4.6-18) are called the orthogonality conditions. In
unabbreviated form they become

6.5 Positivity

A subset of H consisting of U that also satisfies the charge equation is
denoted by



116

For any

and

Multiply (4.6-9) by U

which shows that is nonnegative.

6.6 Variational Formulation

Consider the following functional (Rayleigh quotient) of

The first variation of is

Therefore implies that

From (4.6-24) we have
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where the small variation (4.6-27) implies that

Hence the U that makes is an eigenvector of the eigenvalue

6.7 Perturbation Based on Variational Formulation

Next we consider the case when A and B are slightly perturbed but are
still self-adjoint, which causes small perturbations in and U:

We are interested in an expression of linear in and From (4.6-
24),
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hence

6.8 Perturbation Based on Abstract Formulation

Equation (4.6-31) can also be obtained from the following perturbation
procedure. Expand both sides of (4.6-29). The zero-order terms represent the
unperturbed eigenvalue problem. The first-order terms are

Multiply both sides by U:

or

The first term and the last term in (4.6-34) cancel, and what is left is

which is the same as (4.6-31). Note that in this perturbation procedure, no
assumption regarding the self-adjointness of and was made.
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7. EXTENSIONAL VIBRATION OF A THIN ROD

Consider a rectangular rod of length l, width w, and thickness t as shown
in Figure 4.7-1, where l >> w >> t. We are interested in the low frequency
extensional vibration of the rod [11]. By low frequency we mean that the
wavelength of the vibration modes is much longer than the width and
thickness of the rod.

Figure 4.7-1. A piezoelectric rod with rectangular cross section.

As an approximation, it is appropriate to take the vanishing boundary
stresses on the surfaces bounding the two small dimensions to vanish
everywhere. Consequently

If the surfaces of the area lw are fully electroded with a driving voltage V
across the electrodes, the appropriate electrical conditions are

The pertinent constitutive relations are

Equation can be inverted to give

Then the differential equation of motion and boundary conditions are
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Equations (4.7-5) show that the applied voltage effectively acts like two
extensional end forces on the rod. For free vibrations, V = 0 and the
electrodes are shorted. We look for free vibration solution in the form

Then the eigenvalue problem is

The solution of and represents a rigid body mode. For

the rest of the modes we try Then, from

To satisfy we must have

or

Similarly, by considering the following frequencies can be
determined:

The frequencies in (4.7-9) and (4.7-10) are integral multiples of and are

called harmonics. is called the fundamental and the rest are called the

overtones.
If the surfaces of the area lt are fully electroded with a driving voltage V

across the electrodes, the appropriate electrical conditions are

The pertinent constitutive relations are

From the boundary conditions on the areas of lw, we take the following to
be approximately true everywhere:
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With (4.7-13), (4.7-12) can be written as

where

If the surfaces of cross-sectional areas lw and lt are not electroded, the
appropriate electrical conditions are

The pertinent constitutive relations are

8. RADIAL VIBRATION OF A THIN RING

Axi-symmetric radial vibration can be set up in a thin ceramic ring (see
Figure 4.8-1) with radial poling, electroded on its inner and outer surfaces
[1].

Figure 4.8-1. A ceramic ring with radial poling.

Let R be the mean radius, w the width and h the thickness of the ring. We
assume R >> w >> h. In cylindrical coordinates, from the boundary
conditions, we make the approximation that the following is true throughout
the ring:
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Let correspond to (1,2,3). The radial electric field and the tangential
strain are given by

The relevant constitutive relations are

which can be solved to give

where

The equation of motion takes the following form

Substitution of into (4.8-6) yields

For free vibrations V= 0 and

The resonance frequency is

9. RADIAL VIBRATION OF A THIN PLATE

A circular disk of a piezoelectric ceramic poled in the thickness
direction is positioned in a coordinate system as shown in Figure 4.9-1. We
consider axi-symmetric radial modes [26].



123

Figure 4.9-1. A circular ceramic plate with thickness poling.

The faces of the disk are traction-free and are completely coated with
electrodes. The electrodes are connected to a voltage source of potential

Under these circumstances, the boundary conditions at are

Since and vanish on both major surfaces of the plate and the plate
is thin, these stresses cannot depart much from zero. Consequently they are
assumed to vanish throughout. Thus we assume that

Furthermore, since the plate is thin and has conducting surfaces,

We consider radial modes with

The constitutive relations are

where
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are the effective material constants for a thin plate after the relaxation of the
normal stress in the thickness direction. The one remaining equation of
motion in cylindrical coordinates is

Substitution from (4.9-5) for the stress components, we obtain

which, since we are assuming a steady-state problem with frequency
becomes

where

Equation (4.9-9) can be written as Bessel’s equation of order one. For a
solid disk, the motion at the origin is zero and the general solution is

where is the first kind Bessel function of the first order. Equation (4.9-11)
is subject to the boundary condition

hence (4.9-12) requires that

where, for convenience, the argument of the Bessel function is not written.
From (4.9-13) B can be expressed in terms of V as follows:

where



has been used and

which may be interpreted as a planar Poisson’s ratio, since the material is
isotropic in the plane normal to The total charge on the electrode at the
bottom of the plate is given by

Substitution of (4.9-11) into and then into (4.9-17) yields

Hence we obtain for the current that flows to the resonator

where

At mechanical resonance, the applied voltage can be zero, and from (4.9-
13),

Or, at the resonance frequency, the current goes to infinity. This condition is
determined by setting the square bracketed factor in the denominator of
(4.9-14) equal to zero. The resulting equation is

which can be brought into the same form as (4.9-21). The antiresonance
frequency results when the current goes to zero. The resulting equation is

125
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10. RADIAL VIBRATION OF A THIN CYLINDRICAL
SHELL

In this section we analyze the axi-symmetric radial vibration of an
unbounded thin ceramic circular cylindrical shell with radial poling,
electroded on its inner and outer surfaces (see Figure 4.10-1). A voltage V is
applied across the thickness. Let R be the mean radius, and h the thickness
of the shell. By a thin shell we mean R >> h.

Figure 4.10-1. A thin ceramic circular cylindrical shell.

In cylindrical coordinates, the boundary conditions give

which are taken to be approximately true throughout the shell. We consider
motions independent of and z. By symmetry

The tangential strain and radial electric field are given by

Let correspond to (1,2,3). From

we solve for
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Substituting (4.10-5) into the following constitutive relations

we obtain

where

Equation (4.10-7) can be inverted to give

Substitution of into the following equation of motion

yields

For free vibrations, V= 0 and the resonance frequency is

Problem

4.10-1. Study the forced vibration.

11. RADIAL VIBRATION OF A THIN SPHERICAL SHELL

Consider a thin spherical ceramic shell of mean radius R and thickness h
with R >> h (see Figure 4.11-1). The ceramic is poled in the thickness
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direction, with fully electroded inner and outer surfaces. Consider radial
vibration of the shell [1].

Figure 4.11-1. A spherical ceramic shell with radial poling.

In spherical coordinates the boundary conditions give

which are taken to be valid approximately throughout the shell. For radial
motions independent of and by symmetry

The relevant strain and electric field components are

Let correspond to (3,1,2) so that poling is along 3. The pertinent
constitutive relations are

which can be inverted to yield

where

The relevant equation of motion is
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Substitute from (4.11-5)

For free vibration, V= 0 and the resonance frequency is

Problem

4.11-1. Study the forced vibration.

12. FREQUENCY SHIFTS DUE TO SURFACE
ADDITIONAL MASS

In certain applications, we need to study shifts of resonance frequencies
due to a small amount of mass added to the surface of a crystal. One
example is the mass effect of a thin surface electrode on resonance
frequencies. In addition, many chemical and biological acoustic wave
sensors detect certain substances through the mass-frequency effect of the
substances accumulated on the crystal surface by chemically or biologically
active films. These situations can be modeled by a crystal with a thin film of
thickness and mass density on part of the crystal surface (see Figure
4.12-1).

Figure 4.12-1. A crystal with a thin layer of additional mass on part of its surface.
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The mass layer is assumed to be very thin. Only the inertial effect of the
layer needs to be considered; its stiffness can be neglected. The boundary
condition on the surface area with added mass is

Then the eigenvalue problem for the resonance frequencies and modes of a
crystal with surface added mass is

where we have denoted

and we have artificially introduced a dimensionless number to show the
smallness of the added mass. When becomes (4.12-1). In
terms of the abstract notation in Section 6, Equation (4.12-2) can be written
as

We make the following perturbation expansion [27]:

Substituting (4.12-5) into (4.12-4), collecting terms of equal powers of the
following perturbation problems of successive orders can be obtained. Zero-
order:
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The solution to the zero-order problem, and is assumed known. The
first-order problem below is to be solved:

The equations for the first-order problem can be written as

Multiplying both sides of (4.12-8) by gives

From (4.6-7),

With (4.12-6) and (4.12-7), (4.12-10) becomes

Substituting (4.12-11) into (4.12-9) yields
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which can be further written as

With (4.12-6), from (4.12-13)

The above expressions are for the eigenvalue For we make the
following expansion:

Then

Hence

Finally, setting in (4.12-7), we obtain

We make the following observations from (4.2-18):
(i) Clearly, we have This shows that a small amount of

mass added to the surface tends to lower the resonance frequencies, as
expected. On the other hand, if a thin layer of material is removed from the
surface, resonance frequencies increase.

(ii) Larger causes more frequency shifts.



133

(iii) In an area where the surface displacement is large, the added mass
has a larger effect on resonance frequencies.

(iv) If the additional mass is essentially a concentrated mass m at a point
with Cartesian coordinates on the surface (e.g., a local contamination),

then (4.2-18) reduces to

(v) Obviously, can be several disadjoint areas.

Problem

4.12-1. Use (4.12-18) to analyze Problem 4.3-1 [27].




