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Abstract ALPS is a framework for implementing and parallelizing tree search al­
gorithms. It employs a number of features to improve scalability and 
is designed specifically to support the implementation of data inten­
sive algorithms, in which large amounts of knowledge are generated and 
must be maintained and shared during the search. Implementing such 
algorithms in a scalable manner is challenging both because of stor­
age requirements and because of communications overhead incurred in 
the sharing of data. In this abstract, we describe the design of ALPS 
and how the design addresses these challenges. We present two sample 
applications built with ALPS and preliminary computational results. 
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1. Introduction 
Tree search algorithms are a general class in which the nodes of a di­

rected, acyclic graph are systematically searched in order to locate one 
or more goal nodes. In most cases, the graph to be searched is not known 
a priori, but is constructed dynamically based on information discovered 
during the search process. We assume the graph has a unique root node 
with no incoming arcs, which is the first node to be examined. In this 
case, the search order uniquely determines a rooted tree called the search 
tree. Although tree search algorithms are easy to parallelize in principle, 
the absence of a priori knowledge of the shape of the tree and the need 
to effectively share information generated during the search makes such 
parallelization challenging and scalability difficult to achieve. In [Ralphs 
et al., 2003] and [Ralphs et al., 2004], we examined the issues surround­
ing parallelization of tree search algorithms and presented a high-level 
description of a class hierarchy for implementing such algorithms. In this 
abstract, we follow up on those works by presenting further details of 
the search handling layer of the proposed hierarchy, called the Abstract 
Library for Parallel Search (ALPS), which will soon have its first public 
release. 

A variety of existing software frameworks are based on tree search. 
For mixed-integer programming—the application area we are most in­
terested in—most packages employ a sophisticated variant of branch 
and bound. Among the offerings for solving generic mixed-integer pro­
grams are bc-opt [Cordier et al., 1999], FATCOP [Chen and Ferris, 
2001], MIPO [Balas et al., 1996], PARING [Linderoth, 1998], SIP [Mar­
tin, 1998], SBB [Forrest, 2004], GLPK [Makhorin, 2004], and bonsaiC 
[Hafer, 1999]. Of this list, FATCOP and PARINO are parallel codes. 
Commercial offerings include ILOG's CPLEX, IBM's OSL (soon to be 
discontinued), and Dash's XPRESS. Generic frameworks that facilitate 
extensive user customization of the underlying algorithm include SYM­
PHONY [Ralphs, 2004], ABACUS [Jiinger and Thienel, 2001], BCP 
[Ladanyi and Ralphs, 2001], and MINTO [Nemhauser et al., 1994], of 
which SYMPHONY and BCP are parallel codes. Other frameworks 
for parallel branch and bound include BoB [Benchouche et al., 1996], 
PICO [Eckstein et a l , 2000], PPBB-Lib [Tschoke and Polzer, 1998], 
and PUBB [Shinano et al., 1995]. Good overviews and taxonomies of 
parallel branch and bound are provided in both [Gendron and Crainic, 
1994] and [Trienekens and Bruin, 1992]. Eckstein et al. [Eckstein et al., 
2000] also provides a good overview of the implementation of parallel 
branch and bound. A substantial number of papers have been written 
specifically about the application of parallel branch and bound to dis-
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Crete optimization problems, including [Bixby et al., 1995; Correa and 
Ferreira, 1995; Grama and Kumar, 1995; Mitra et al., 1997]. 

The goal of the ALPS project is to build on the best existing method­
ologies while addressing their shortcomings to produce a framework that 
is more general and extensible tha^ any of the current options. As such, 
we provide support for the implementation of a range of algorithms that 
existing frameworks are not general enough to handle. Our design is 
centered around the abstract notion of knowledge generation and shar­
ing, which is very general and central to implementing scalable versions 
of today's most sophisticated tree search algorithms. Such algorithms 
are inherently data-intensive, i.e., they generate large amounts of knowl­
edge as a by-product of the search. This knowledge must be organized, 
stored, and shared efficiently. ALPS provides explicit support for these 
procedures and allows for user-defined knowledge types, making it easy 
to create derivative frameworks for a wide range of specific classes of 
algorithms. While our own experience is in developing algorithms for 
solving mixed-integer linear programs, we have in mind to develop a 
number of additional layers providing support for tree search algorithms 
in other areas, such as global optimization. Although we present limited 
computational results, we want to emphasize that this research is ongo­
ing and that the results are intended merely to illustrate the challenges 
we still face. The main goal of the paper is to describe the framework 
itself. ALPS is being developed in association with the Computational 
Infrastructure for Operations Research (COIN-OR) Foundation [Lougee-
Heimer, 2003], which will host the code. 

1.1 Tree Search Algorithms 
In a tree search algorithm, each node in the search graph has associ­

ated data, called its description, that can be used to determine if it is 
a goal node, and if it has any successors. To specify such an algorithm, 
four main elements are required. The fathoming rule determines whether 
a node has successors that need to be explored. The branching method 
specifies how to generate the descriptions of a node's successors. The 
processing method determines whether a node is a goal node and whether 
it has any successors. The search strategy specifies the processing order 
of the candidate nodes. 

Each node has an associated status, which is one of: candidate (avail­
able for processing), ac t ive (currently being processed), fathomed (pro­
cessed and has no successors), or processed (not fathomed, hence has 
successors). The search consists of repeatedly selecting a candidate node 
(initially, the root node), processing it, and then either fathoming or 
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branching. The nodes are chosen according to priorities assigned during 
processing. 

Variants of tree search algorithms are widely applied in areas such 
as discrete optimization, global optimization, stochastic programming, 
artificial intelligence, game playing, theorem proving, and constraint pro­
gramming. One of the most common variants in discrete optimization 
is branch and bounds originally suggested by Land and Doig [Land and 
Doig, I960]. In branch and bound, branching consists of partitioning 
the feasible set into subsets. Processing consists of computing a bound 
on the objective function value, usually by solving a relaxation. A node 
can be fathomed if (1) the solution to the relaxation is in the original 
feasible set (in which case, the best such solution seen so far is recorded 
as the incumbent)^ (2) the objective value of the solution to the relax­
ation exceeds the value of the incumbent, or (3) the subset is proved to 
be empty. 

1.2 Parallelizing Tree Search 
In principle, tree search algorithms are easy to parallelize. Sophis­

ticated variants, however, involve the generation and sharing of large 
amounts of knowledge, i.e., information helpful in guiding the search 
and improving the effectiveness of node processing. Inefficiencies in the 
mechanisms by which knowledge is maintained and shared result in par­
allel overhead, which is additional work performed in the parallel algo­
rithm that would not have been performed in the sequential one. The 
goal of any parallel implementation is to limit this overhead as much as 
possible. 

We assume a simple model of parallel computation in which there 
are N processors with access to their own local memory and complete 
connectivity with other processors. We further assume that there is 
exactly one process per processor at all times, though this process might 
be multi-threaded. The main sources of parallel overhead for tree search 
algorithms are: 

• Communication Overhead: time spent actively sending or receiv­
ing knowledge. 

• Idle Time: time spent waiting for knowledge to be transferred from 
another processor (including task starvation, when the processor 
is waiting for more work to do). 

• Redundant Work: time spent performing unnecessary work, usu­
ally due to a lack of appropriate global knowledge. 

• Ramp-Up/Ramp-Down: idle time at the beginning/end of the al­
gorithm during which there is not enough work for all processors. 
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The effectiveness of the knowledge-sharing mechanism is the main factor 
affecting this overhead. The sources of overhead hsted above highhght 
the tradeoff between centrahzed storage and decision making, which in­
curs increased communication and idle time, and decentralized storage 
and decision making, which increases performance of redundant work. 
Achieving the proper balance is the challenge we face. Scalability is a 
measure of how well this balance is achieved, i.e., how well an algorithm 
takes advantage of increased computing resources, primarily additional 
processors. Our measure of scalability is the rate of increase in over­
head as additional processors are made available. A parallel algorithm 
is considered scalable if this rate is near linear. An excellent general 
introduction to the analysis of parallel scalability is provided in [Kumar 
and Gupta, 1994]. 

2. Implementation 

2.1 Knowledge Sharing 
In [Ralphs et al., 2004], building on ideas in [Trienekens and Bruin, 

1992], we proposed a tree search methodology driven by the concept of 
knowledge discovery and sharing. We briefly review the concepts from 
the earlier work here. The design of ALPS is predicated on the idea 
that all information required to carry out a tree search can be repre­
sented as knowledge that is generated dynamically and stored in various 
local knowledge pools (KPs), which share that knowledge when needed. 
A single processor can host multiple KPs that store different types of 
knowledge and are managed by a knowledge broker (KB). Examples of 
knowledge generated while solving mixed-integer programs include fea­
sible solutions, search-tree nodes, and valid inequalities. 

The KB associated with a KP may field two types of requests on its 
behalf: (1) new knowledge to be inserted into the KP or (2) a request for 
relevant knowledge to be extracted from the KP, where "relevant" is de­
fined for each category of knowledge with respect to data provided by the 
requesting process. A KP may also choose to "push" certain knowledge 
to another KP, even though no specific request has been made. 

The most fundamental knowledge generated during the search is the 
descriptions of the search-tree nodes themselves. The node descriptions 
are stored in KPs called node pools. The node pools collectively contain 
the list of candidate nodes. The tradeoff between centralization and de­
centralization of knowledge is most evident in the mechanism for sharing 
node descriptions among the processors, known as load balancing. Effec­
tive load balancing reduces both idle time associated with task starvation 
and performance of redundant work. Load balancing methods have been 
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studied extensively [Fonlupt et al., 1998; Henrich, 1993; Kumar et al., 
1994; Laursen, 1994; Sanders, 1998; Sinha and Kale, 1993], but many of 
the suggested schemes are not suited for our framework. The simplest 
approach is a master-worker design that stores all node descriptions in a 
single, central node pool. This makes work distribution easy, but incurs 
high communication costs. This is the approach we have taken in our 
previous frameworks, SYMPHONY and BCP. It works well for small 
numbers of processors, but does not scale well, as the central node pool 
inevitably becomes a computational and communications bottleneck. 

2.2 The Master-Hub-Worker Paradigm 
To overcome the drawbacks of the master-worker approach, ALPS 

employs a master-hub-worker paradigm, in which a layer of "middle 
management" is inserted between the master process and the worker 
processes. In this scheme, a cluster consists of a hub, which is responsi­
ble for managing a fixed number of workers. As the number of processes 
increases, we simply add more hubs and more clusters of workers. This 
scheme is similar to one implemented by Eckstein et al. in the PICO 
framework [Eckstein et al., 2000], except that PICO does not have the 
concept of a master. This decentralized approach maintains many of the 
advantages of global decision making while reducing overhead and mov­
ing some computational burden from the master process to the hubs. 
This burden is then further shifted from the hubs to the workers by 
increasing the task granularity, as described below. Cluster size is com­
puted based on the number of hubs and the number of processors, which 
are set by the user at run time. 

The basic unit of work in our design is a subtree. Each worker is 
capable of processing an entire subtree autonomously and has access to 
all of the methods needed to manage a tree search. Designating a subtree 
as the fundamental unit of work helps to minimize memory requirements 
by enabling the use of efficient data structures for storing subtrees using 
a diff'erencing scheme similar to that used in both SYMPHONY and 
BCP. In this scheme, node descriptions are not stored explicitly, but 
rather as differences from their predecessors' descriptions. This increased 
granularity also reduces idle time due to task starvation, but, without 
proper load balancing, may increase the performance of redundant work. 

2.3 Load Balancing 
Recall that each node has an associated priority that can be thought 

of as indicating the node's "quality," i.e., the probability that the node or 
one of its successors is a goal node. In assessing the distribution of work 
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to the processors, we need to consider not only quantity, but also quality. 
ALPS employs a three-tiered load balancing scheme, consisting of static, 
intra-cluster dynamic, and inter-cluster dynamic load balancing. Static 
load balancing, or mapping, takes place during the initial phase of the 
algorithm. The first task is to generate a group of successors of the root 
node and distribute them to the workers to initialize their local node 
pools. ALPS uses a two-level root initialization scheme, a generalization 
of the root initialization scheme of [Henrich, 1993]. During static load 
balancing, the master creates and distributes a user-specified number 
of nodes for hubs. The hubs in turn create a user-specified number 
of successors for their workers, then the workers initialize their subtree 
pools and begin. 

Time spent performing static load balancing is the main source of 
ramp-up, which can be significant when node processing times are large. 
The problem of reducing ramp-up has long been recognized as a chal­
lenging one [Gendron and Crainic, 1994; Borbeau et al., 2000; Eckstein 
et al., 2000]. Two-level root initialization reduces ramp-up by paral­
lelizing the root initialization process itself. Implementation of two-level 
root initialization is straightforward, but our experience has shown that 
it can work quite well if the number of nodes distributed to each worker 
is large enough and node processing times are short. 

Inside a cluster, the hub manages dynamic load balancing. Intra-
cluster load balancing is initiated when an individual worker reports to 
the hub that its workload is below a given threshold. Upon receiving 
the request, the hub asks its most loaded worker to donate a subtree 
to the requesting worker. In addition, the hub periodically checks the 
quahties of the workloads of its workers. If it finds that the qualities are 
unbalanced, the hub asks the workers with the most high priority nodes 
to share their workload with the workers that have fewer such nodes. 

The master is responsible for balancing the workload among hubs, 
which periodically report their workload information to the master. The 
master has a roughly accurate global view of the system load and the 
load of each cluster at all times. If either the quantity or quality of work 
is unbalanced among the clusters, the master identifies pairs of donors 
and receivers. Donors are clusters whose workloads are greater than the 
average workload of all clusters by a given factor. Receivers are the 
clusters whose workloads are smaller than the average workload by a 
given factor. Donors and receivers are paired and each donor sends a 
subtree to its paired receiver. 

A unique aspect of our load balancing scheme is that it takes account 
of the differencing scheme for storing subtrees. In order to prevent sub­
trees from becoming too fractured for efficient storage using differencing. 
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we try at all times to ensure that the search-tree nodes are distributed in 
a way such that the nodes stored together locally constitute connected 
subtrees of the search tree. This means the tree structure must be taken 
into account when sharing nodes during the load balancing. Candidate 
nodes that constitute the leaves of a subtree are grouped, and the entire 
subtree is shared, rather than just the nodes themselves. To achieve 
this, each subtree is assigned a priority level, defined as the average pri­
orities of a given number of its best nodes. During load balancing, the 
donor chooses the best subtree in its subtree pool and sends it to the 
receiver. If a donor does not have any subtrees in its subtree pool, it 
splits the subtree that it is currently exploring into two parts and sends 
one of them to the receiver. In this way, differencing can still be used 
effectively. 

2.4 Task Management 
Because each process hosts a KB and several KPs, it is necessary to 

have a scheme for enabling multi-tasking. In order to maintain max­
imum portability and to assert control over task scheduling, we have 
implemented our own simple version of threading. ALPS processes are 
message driven—each process devotes one thread to listening for and 
responding to messages at all times. Other threads are devoted to per­
forming computation as scheduled. Because each processor's KB con­
trols the communication to and from the process, it also controls task 
scheduling. The KB receives external messages, forwards them to the 
appropriate local KP if needed, and forwards all locally generated mes­
sages to the appropriate remote KB. When not listening for messages, 
the KB schedules the execution of computational tasks by the local KPs. 
The KB decides when and for how long to process each task. 

3. Class Structure 
ALPS consists of a library of C-t-+ classes from which can be derived 

specialized classes that define various tree search algorithms. Figure 1 
shows the ALPS class hierarchy. Each block represents a C + + class, 
whose name is listed in the block. The lines ending with triangles rep­
resent inheritance relationships. For example, the AlpsSolutionPool, 
AlpsSubtreePool and AlpsNodePool classes are derived from the class 
AlpsKnowledgePool. The lines ending with diamonds represent asso­
ciative relationships. For instance, AlpsKnowledge contains as a data 
member a pointer to an instance of AlpsEncoded. ALPS is comprised 
of just three main base classes and a number of derived and auxiliary 
classes. These classes support the core concept of knowledge sharing and 
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Figure 1. The ALPS class hierarchy. 

are described in the paragraphs below. The classes named UserXXX in 
the figure are those that must be defined by the user to develop a new 
application. Two examples are described in Section 4. 

AlpsKnowledge. This is the virtual base class for any type of in­
formation that must be shared or moved from one process to another. 
AlpsEncoded is an associated class that contains the encoded or packed 
form of an AlpsKnowledge object. The packed form contains the data 
needed to describe an object of a particular type in the form of a char­
acter string. This representation typically takes much less memory than 
the object itself; hence, it is appropriate both for storage of knowledge 
and for communication of knowledge between processors. The packed 
form is also independent of type, which allows ALPS to deal with user-
defined knowledge types. Finally, duplicate objects can be quickly iden­
tified by hashing their packed forms. ALPS has the following four native 
knowledge types: 
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• AlpsSolution: A description of the goal state or solution to the 
problem being solved. 

• AlpsTreeNode: Contains the data and methods associated with a 
node in the search graph. Each node contains a description, which 
is an object of type AlpsNodeDesc, as well as the definitions of the 
process and branch methods. 

• AlpsModel: Contains the data describing the original problem. 
• AlpsSubTree: Contains the description of a subtree, which is a hi­

erarchy of AlpsTreeNode objects, along with the methods needed 
for performing a tree search. 

The first three of these classes are virtual and must be defined by the 
user in the context of the problem being solved. The last class is generic 
and problem-independent. 

AlpsKnowledgePool. The role of the AlpsKnowledgePool is described 
in Section 2.1. There are several derived classes that define native knowl­
edge types. The user can define additional algorithm-specific knowledge 
types. 

• AlpsSolutionPool: The solution pools store AlpsSolution ob­
jects. These pools exist both at the worker level—for storing solu­
tions discovered locally—and globally at the master level. 

• AlpsSubTreePool: The subtree pools store AlpsSubTree objects. 
These pools exist at the hub level for storing subtrees that still 
contain unprocessed nodes. 

• AlpsNodePool: The node pools store AlpsTreeNode objects. These 
pools contain the queues of candidate nodes associated with the 
subtrees as they are being searched. 

AlpsKnowledgeBroker. This class encapsulates the communication 
protocol. The KB is the driver for each processor and is responsible for 
sending, receiving, and routing all data that resides on that processor. 
Each KP must be registered so that the KB knows how to route each 
specific type of knowledge when it arrives and where to route requests for 
specific types of knowledge from other KBs. This is the only class whose 
implementation depends on the communication protocol. Currently, the 
protocols supported are a serial layer and an MPI [Gropp et al., 1999] 
layer. 

• AlpsKnowledgeBrokerMPI: A KB for multiprocessor execution via 
the MPI message-passing interface. 

• AlpsKnowledgeBrokerSerial: A KB for uniprocessor execution. 
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#iiiclude Alps.h 

#iiiclude AlpsUser.h // User-derived classes 

int mainCint argc, char* argv[]) 

UserModel model; 

UserParams userPar; 

#if defined(SERIAL) 

AlpsKnowledgeBrokerSerial broker(argc, argv, model, userPar); 

#elif defined(PARALLEL_MPI) 

AlpsKnowledgeBrokerMPI broker(argc, argv, model, userPar); 

#endif 

broker.registerClass("MODEL", new UserModel); 

broker.registerClass("SOLUTION", new UserSolution); 

broker.registerClass("NODE", new UserTreeNode); 

broker.search(); 

broker.printResuit(); 

return 0; 

Figure 2. Sample main function. 

4. Applications and Preliminary Results 
Developing an application with ALPS consists mainly of implement­

ing derived classes, and writing the mainO function. As described in 
Section 3, the user must derive algorithm-specific classes from the base 
classes AlpsModel, AlpsTreeNode, AlpsNodeDesc, and AlpsSolution. 
The user may also want to define algorithm-specific parameters by de­
riving a class from AlpsParameterSet, or he may even want to define 
new types of knowledge. A sample code for mainO is shown in Figure 2. 

4.1 Knapsack Solver 
The binary knapsack problem is to select from a set of items a subset 

with the maximum total profit and not exceeding a given total weight. 
The profit is additive. By deriving classes KnapModel, KnapTreeNode, 
KnapNodeDesc, KnapSolution and KnapParameterSet, we have devel­
oped a solver for the binary knapsack problem employing a very simple 
branch and bound algorithm. The nodes of the search tree are described 
by subproblems obtained by fixing a subset of the items in the global 
set to be either in or out of the selected subset. The branching proce­
dure consists of selecting an item and requiring it to be in the selected 
subset in one successor node and not in the other. Processing consists 
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N 

1 
4 
8 

16 
32 

Wall-clock 

1335 
296 
160 
94 
53 

Ramp-up 
-

0% 
0% 
0% 
0% 

Idle 
-

2.9% 
2.6% 
7.8% 
7.9% 

Speedup 
-

4.5 
8.3 

14.2 
26.3 

Efficiency 
-

1.13 
1.04 
0.89 
0.83 

Nodes 

254 k 
85 m 
85 m 
85 m 
85 m 

Table 1. Overall results on four knapsack instances. 

of solving the knapsack problem without binary constraints (subject to 
the items that are fixed) to obtain a lower bound, which is then used to 
determine the node's priority (lower is better). Fathoming occurs when 
the solution to the relaxation is feasible to the binary problem or the 
lower bound exceeds the value of the incumbent. The search strategy is 
to choose the candidate node with the lowest lower bound (best first). 

To illustrate the performance of the solver, we randomly generated 
four difficult knapsack instances using the method described in [Martello 
and Toth, 1990]. These results are not meant to be comprehensive. 
Clearly, further testing on a much larger scale is needed and complete 
performance results will be reported in a full paper to follow. Testing was 
conducted on a Beowulf cluster with 48 dual processor nodes. Each node 
has two 1.0-GHz Pentium III processors and 512 megabytes of RAM. The 
operating system was Red Hat Linux 7.2. The message-passing library 
used was LAM/MPI. Five trials were run for each instance, with two 
hubs employed when the number of processors was eight or more. Table 1 
shows the number of processors used (AT), the wall-clock running time (in 
seconds), the percentage idle time, the speedup (ratio of the sequential 
and parallel running times), the parallel efficiency (ratio of the speedup 
to the number of processors), and the number of nodes enumerated. 
The efficiency approximates the percentage of running time devoted to 
useful work and should ideally be near one. Efficiencies significantly 
below one indicate the presence of overhead. We used SBB [Forrest, 
2004] to produce the sequential running times for comparison. Because 
our solver does not employ advanced techniques such as dynamic cut 
generation or primal heuristics, we disabled these capabilities with SBB 
as well. SBB still generated many fewer search-tree nodes due to its 
use of strong branching. Nonetheless, the comparison provides a useful 
baseline. From Table 1, we see that the speedup is near linear. Ramp-up 
time is negligible, but idle time still leaves room for improvement. The 
number of nodes enumerated is not increasing, which indicates that the 
performance of redundant work is not a problem. 
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Problem 

gesaS 

gesaS 
gesaS 
gesaS 
blend2 
blend2 
blend2 
blend2 

fixnetG 
fixnetG 
fixnetG 
fixnetG 

capGOOO 
capGOOO 
capGOOO 
capGOOO 

N 

1 
4 
8 

IG 
1 
4 
8 

IG 
1 
4 
8 

IG 
1 
4 
8 

IG 

Wall-clock 

1G2G 
G14 
2G9 
IGl 

15G5 
258 
213 
129 

271G 
703 
G2G 
37G 

4287 
1344 
1012 
G40 

Ramp-up 

-
9.8% 

35.1% 
49.1% 

-
12.8% 
14.0% 
34.1% 

-
1.0% 
3.0% 
4.G% 

-
0.2% 
0.3% 
1.2% 

Idle 

-
0 

0.2% 
0.1% 

-
0 

0.2% 
0 
-
0 

0.2% 
0 
-
0 
0 

0.2% 

Speedup 

-
2.G 
G.O 

10.1 
-

G.l 
7.3 

12.1 
-

3.9 
4.3 
7.2 

-
3.2 
4.2 
G.7 

EfF 

-
O.GG 
0.7G 
0.G3 

-
1.53 
0.92 
0.7G 

-
0.98 
0.54 
0.45 

-
0.80 
0.53 
0.42 

Nodes 

403 
445 
337 
247 

2339 
1019 
717 
980 

2729 
3598 
4703 
G570 
G129 
9551 

123G3 
14121 

Table 2. Computational results of sample MILP problems. 

4.2 Mixed-integer Linear Program Solver 
For the knapsack solver, node processing times were negligible and 

good feasible solutions were discovered early in the solution process, 
which makes scalability relatively easy to achieve. As a more strin­
gent test, we have developed a generic solver for mixed-integer linear 
programs (MILPs) called ALPS Branch and Cut (ABC), employing a 
straightforward branch and cut algorithm with cuts generated using the 
COIN-OR Cut Generation Library [Lougee-Heimer, 2003]. ABC consists 
of the classes AbcModel, AbcTreeNode, AbcNodeDesc, AbcSolution, and 
AbcParameterSet. The search strategy is best first. Strong branching 
is used to choose the variables to be branched on. ABC also uses the 
SBB rounding heuristic as a primal heuristic. 

We tested ABC using four problems: gesaS^ blend2, fixnetG^ and 
capGOOO from MIPLIB3 [Bixby et al., 1998]. As above, these results 
are meant to be illustrative, not comprehensive. As with the knapsack 
example, two hubs were used when the number of processes was eight 
or more. The results are summarized in Table 2. 

From Table 2, we see that for generic MILPs, parallel efficiency is not 
as easy to achieve. However, the source of overhead is quite problem 
dependent. For gesaS and blend2, ramp-up is a major problem, due to 
large node processing time near the top of the tree. Neither gesaS nor 
hlend2 exhibits signs of the performance of redundant work. Also, as the 
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number of processors increases, the number of search nodes decreases. 
This is primarily due to the fact that good feasible solutions are found 
early in the search process. For fixnetd and capGOOO^ ramp-up is not a 
problem, but the number of nodes processed increases when the number 
of processes increases, indicating the presence of redundant work. For 
these problems, good feasible solutions are not found until much later in 
the search process. These results illustrate the challenges that we still 
face in improving scalability. We discuss prospects for the future in the 
final section. 

5. Summary and Future Work 
In this paper, we have described the main features of the ALPS frame­

work. Two applications were developed to test ALPS. The limited com­
putational results highlight the challenges we still face in achieving scala­
bility. The prehminary results obtained for ABC highlight the two most 
difficult scalability issues to address for MILP—reduction of ramp-up 
time and elimination of redundant work. Controlling ramp-up time is 
the most difficult of these. Attempts to branch early in order to produce 
successors more quickly have thus far been unsuccessful. A number of 
other ideas have been suggested in the literature. Two that we are cur­
rently exploring are (1) using a branching procedure that creates a large 
number of successors instead of just the current two, and (2) utihzing 
the processors idle during ramp-up in order to find a good initial fea­
sible solution, thereby helping to eliminate redundant work. The first 
approach seems unlikely to be successful, but the second one may hold 
the key. This approach is also being explored by Eckstein et al. in the 
context of PICO. As for eliminating redundant work, this can be done by 
fine-tuning our load balancing strategies, which are currently relatively 
unsophisticated, to ensure a better distribution of high-priority work. 

In future work, we will continue to improve the performance of ALPS 
by refining our methods of reducing parallel overhead as discussed above. 
Also, we will continue development of the Branch, Constrain, and Price 
Software (BiCePS) library, the data handling layer for solving mathe­
matical programs that we are building on top of ALPS. BiCePS will 
introduce dynamically generated cuts and variables as new types of 
knowledge and support the implementation of parallel branch and bound 
algorithms in which the bounds are obtained by Lagrangian relaxation. 
Finally, we will build the BiCePS Linear Integer Solver (BLIS) on top 
of BiCePS. BLIS will be a LP-based branch, cut, and price solver for 
MILPS, hke ABC, but with user customization features akin to SYM­
PHONY and BCP. 
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