
P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg May 24, 2005 14:19

S
SAFE PRIME

A safe prime is a prime number p of the form
p = 2q + 1 where q is also prime. In such a case,
q is called a Sophie Germain prime. Safe primes
are used in some implementations of the Diffie–
Hellman key exchange protocol, for example, to
protect against certain types of attacks.

Anton Stiglic

SALT

A salt is a t-bit random string that may be
prepended or appended to a user’s password prior
to application of a one-way function in order to
make dictionary attacks less effective. Both the
salt and the hash (or encryption) of the aug-
mented password are stored in the password file
on the system. When the user subsequently enters
a password, the system looks up the salt associ-
ated with that user, augments the password with
the salt, applies the one-way function to the aug-
mented password, and compares the result with
the stored value.

It is important to note that the work factor for
finding a particular user’s password is unchanged
by salting because the salt is stored in cleartext
in the password file. However, it can substantially
increase the work factor for generating random
passwords and comparing them with the entire
password file, since each possible password could
be augmented with any possible salt. The effort re-
quired to find the password associated with an en-
try in the password file is multiplied by the smaller
of {the number of passwords, 2t} compared with a
password file containing hashes (or encryptions)
of unsalted passwords.

Another benefit of salting is that two users who
choose the same password will have different en-
tries in the system password file; therefore, simply
reading the file will not reveal that the passwords
are the same.

Carlisle Adams
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SCHNORR DIGITAL
SIGNATURE SCHEME

The Schnorr signature scheme [6] is derived from
Schnorr’s identification protocol using the Fiat–
Shamir heuristic [2]. The resulting digital signa-
ture scheme is related to the Digital Signature
Standard (DSS). As in DSS, the system works in a
subgroup of the group Z

∗
p for some prime number

p. The resulting signatures have the same length
as DSS signatures. The signature scheme works as
follows:
Key Generation. Same as in the DSS system.

Given two security parameters τ, λ ∈ Z (τ > λ)
as input do the following:
1. Generate a random λ-bit prime q.
2. Generate a random τ -bit prime prime p such

that q divides p− 1.
3. Pick an element g ∈ Z

∗
p of order q.

4. Pick a random integer α ∈ [1, q] and compute
y = gα ∈ Z

∗
p.

5. Let H be a hash function H : {0, 1}∗ → Zq .
The resulting public key is (p, q, g, y, H). The

private key is (p, q, g, α, H).
Signing. To sign a message m ∈ {0, 1}∗ using the

private key (p, q, g, α, H) do:
1. Pick a random k ∈ Z

∗
p.

2. Compute r = gk ∈ Z
∗
p. Set c = H(m‖r ) ∈ Zq

and s = αc + k ∈ Zq .
3. Output the pair (s, c) ∈ Z

2
q as the signature

on m.
Verifying. To verify a message/signature pair

(m, (s, c)) using the public key (p, q, g, y, H) do:
1. Compute v = gs y−c ∈ Zp.
2. Accept the signature if c = H(m‖v). Other-

wise, reject.
We first check that the verification algorithm

accepts all valid message/signature pairs. For a
valid message/signature pair we have

v = gs y−c = gαc+k y−c = (ycgk)y−c = gk ∈ Zp

and therefore H(m‖v) = H(m‖gk) = c. It follows
that a valid message/signature is always accepted.
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The signature can be shown to be existentially
unforgeable (see existential forgery) under a cho-
sen message attack in the random oracle model,
assuming the discrete logarithm problem in the
group generated by g is intractable. This proof of
security is a special case of a general result that
shows how to convert a public-coin authentication
protocol (a protocol in which the verifier only
contributes randomness) into a secure signature
scheme in the random oracle model [1, 5]. In the
proof of security, the function H is assumed to be
a random oracle. In practice, one derives H from
some cryptographic hash function such as SHA-1.

To discuss signature length we fix concrete secu-
rity parameters. At the present time the discrete-
log problem in the cyclic group Z

∗
p where p is a

1024-bit prime is considered intractable [3] except
for a very well funded organization. Schnorr sig-
natures use a subgroup of order q of Z

∗
p. When q

is a 160-bit prime, the discrete log problem in this
subgroup is believed to be as hard as discrete-log
in all of Z

∗
p, although proving this is currently an

open problem. Hence, for the present discussion
we assume p is a 1024-bit prime and q is a 160-bit
prime. Since a Schnorr signature contains two el-
ements in Zq we see that, with these parameters,
its length is 320-bits.

Schnorr signatures are efficient and practical.
The time to compute a signature is dominated
by one exponentiation and this exponentiation
can be done offline, i.e. before the message is
given. Verifying a signature is dominated by the
time to compute a multi-exponentiation of the
form gahb for some g, h ∈ Zp and a, b ∈ Zq . Multi-
exponentiations of this type can be done at ap-
proximately the cost of a single exponentiation
[4, p. 617].

Dan Boneh
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SCHNORR
INDENTIFICATION
SCHEME

In its simplest form, an identification protocol in-
volves the presentation or submission of some in-
formation (a “secret value”) from a claimant to
a verifier (see Identification). Challenge-response
identification is an extension in which the infor-
mation submitted by the claimant is the function
of both a secret value known to the claimant (some-
times called a “prover”), and a challenge value re-
ceived from the verifier (or “challenger”).

Such a challenge-response protocol proceeds as
follows. A verifier V generates and sends a chal-
lenge value c to the claimant C. Using his/her se-
cret value s and appropriate function f (), C com-
putes the response value v = f (c, s), and returns v
to V. V verifies the response value v, and if success-
ful, the claim is accepted. Choices for the challenge
value c, and additionally options for the function
f () and secret s are discussed below.

Challenge-response identification is an im-
provement over simpler identification because it
offers protection against replay attacks. This is
achieved by using a challenge value that is time-
varying. Referring to the above protocol, there are
three general types of challenge values that might
be used. The property of each is that the challenge
value is not repeatedly sent to multiple claimants.
Such a value is sometimes referred to as a nonce,
since it is a value that is “not used more than
once.” The challenge value could be a randomly
generated value (see Random bit generation), in
which case V would send a random value c to C.
Alternatively, the challenge value might be a se-
quence number, in which case the verifier V would
maintain a sequence value corresponding to each
challenger. At each challenge, the stored sequence
number would be increased by (at least) one be-
fore sending to the claimant. Finally, the challenge
value might be a function of the current time.
In this case, a challenge value need not be sent
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from V to C, but could be sent by C, along with
the computed verifier. As long as the time cho-
sen was within an accepted threshold, V would
accept.

There are three general classes of functions
and secret values that might be used as part
of a challenge-response protocol. The first is
symmetric-key based in which the claimant C
and verifier V a priori share a secret key K. The
function f () is a symmetric encryption function
(see Symmetric Cryptosystem), a hash function,
or a Message Authentication Code (MAC algo-
rithms). Both Kerberos (see Kerberos authen-
tication protocol) and the Needham–Schroeder
protocol are examples of symmetric-key based
challenge-response identification. In addition, the
protocols of ISO/IEC 9798-2 perform identification
using symmetric key techniques.

Alternatively, a public key based solution may
be used. In this case, the claimant C has the
private key in a public key cryptosystem (see
Public Key Cryptography). The verifier V pos-
sesses a public key that allows validation of the
public key corresponding to C’s private key. In gen-
eral, C uses public key techniques (generally based
on number-theoretic security problems) to produce
a value v, using knowledge of his/her private key.
For example, V might encrypt a challenge value
and send the encrypted text. C would decrypt the
encrypted text and return the value (i.e., the recov-
ered plaintext) to V (note that in this case it would
only be secure to use a random challenge, and not
a sequence number or time-based value). Alterna-
tively, V might send a challenge value to C and
ask C to digitally sign and return the challenge
(see Digital Signature Schemes). The Schnorr
identification protocol is another example of pub-
lic key based challenge-response identification.

Finally, a zero-knowledge protocol can be used.
In this case, the challenger demonstrates knowl-
edge of his/her secret value without revealing any
information (in an information theoretic sense—
see “information theoretic security” in glossary)
about this value. Such protocols typically require
a number of “rounds” (each with its own challenge
value) to be executed before a claimant may be
successfully verified.

Mike Just
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SEAL

SEAL stands for Software-optimized Encryption
ALgorithm. It is a binary additive stream cipher
(see the entry concerning synchronous stream
ciphers). It has been proposed in 1993, and several
versions have been published: SEAL 1.0, SEAL 2.0
and SEAL 3.0 [3,4]. Some attacks have been pub-
lished that show how SEAL 1.0, SEAL 2.0 [2] and
later SEAL 3.0 [1] can be distinguished from a true
random function. But there is no really practical
attack for the moment.

SEAL has been designed to be really efficient
in its software implementation, mainly for 32-bit
processors. It is a length-increasing pseudoran-
dom function that maps a 32-bit sequence number
n to an L-bit keystream, under control of a 160-bit
secret key. a more precise description can be found
in the original papers.

Caroline Fontaine
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SECOND PREIMAGE
RESISTANCE

Second preimage resistance is the property of a
hash function that it is computationally infeasi-
ble to find any second input that has the same
output as a given input. This property is related
to preimage resistance and one-wayness; however,
the later concept is typically used for functions
with input and output domain of similar size (see
one-way function). Second preimage resistance is
also known as weak collision resistance. A min-
imal requirement for a hash function to be sec-
ond preimage resistant is that the length of its re-
sult should be at least 80 bits (in 2004). A hash
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function is said to be a one-way hash function
(OWHF) if it is both preimage resistant and second
preimage resistant. The relation between collision
resistance, second preimage resistance and preim-
age resistance is rather subtle, and it depends
on the formalization of the definition: it is shown
in [6] that under certain conditions, collision
resistance implies second preimage resistance
and second preimage resistance implies preimage
resistance.

In order to formalize the definition, one needs
to specify according to which distribution the first
element in the domain is selected and one needs to
express the probability of finding a second preim-
age for this element. Moreover, one often intro-
duces a class of functions indexed by a public
parameter, which is called a key. One could then
distinguish between three cases: the probability
can be taken over the random choice of elements
in the range, over the random choice of the param-
eter, or over both simultaneously. As most practi-
cal hash functions have a fixed specification, the
first approach is more relevant to applications.
The second case is known as a Universal One-Way
Hash Function or UOWHF.

The definition of a one-way function was given
in 1976 by Diffie and Hellman [1]. Second preim-
age resistance of hash functions has been intro-
duced by Rabin in [5]; further work on this topic
can be found in [2–4, 7, 8]. For a complete for-
malization and a discussion of the relation be-
tween the variants and between hash functions
properties, the reader is referred to Rogaway and
Shrimpton [6].

B. Preneel
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SECRET SHARING
SCHEMES

Informally speaking, a secret sharing scheme
(SSS, for short) allows one to share a secret among
n participants in a such a way that some sets of
participants called allowed coalitions can recover
the secret exactly, while any other sets of partici-
pants (non-allowed coalitions) cannot get any ad-
ditional (i.e., a posteriori) information about the
possible value of the secret. the SSS with the last
property is called perfect. The set � of all allowed
coalitions is called an access structure.

The history of SSS began in 1979 when this
problem was introduced and partially solved by
Blakley [1] and Shamir [2] for the case of (n, k)-
threshold schemes where the access structure con-
sists of all sets of k or more participants. Consider
the simplest example of (n, n)-threshold scheme.
There is a dealer who wants to distribute a secret
s0 among n participants. Let s0 be an element of
some finite additive group G. For instance, G is
the group of binary strings of length m with addi-
tion by modulo 2, i.e., G = GF(2)m (see finite field).
The dealer generates a random sequence s1, . . . , sn
such that

∑n
i=1 si = s0 (for instance, by generating

independently elements s1, . . . , sn−1 ∈ G and then
putting sn := s0 − ∑n−1

i=1 si). Then the dealer sends
privately to each ith participant the elements si
called share, i.e., other participants have no infor-
mation about the value of si . It is easy to see that
any coalition of less then n participants has no in-
formation except of a priori information about s0
and all participants together recover the value of
the secret as

∑n
i=1 si . These simple schemes ap-

pear to be enough for the realization of arbitrary
monotone (i.e., if A ∈ � and A ⊂ B then B ∈ �) ac-
cess structure �. Namely, for any allowed coali-
tion A ∈ � let the above realize (independently)
an (|A|, |A|)-threshold scheme, i.e., send to the
ith, participant as many shares s A

i ) as the num-
ber of allowed coalitions to which this participant
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belongs it is enough to consider only maximum al-
lowed coalitions).

The probabilistic model of an SSS for the general
case is the following (see [4, 5]). There are n + 1
sets S0,S1, . . . ,Sn and the probability distribution
P on their Cartesian product S = S0 × · · · × Sn. A
pair (P,S) is called a perfect probabilistic SSS re-
alizing the access structure � if the following two
properties hold:
� participants of an allowed set A ( i.e., A ∈ � ) to-

gether can recover the secret exactly (formally,
P(S0 = c0 | Si = ci, i ∈ A) ∈ {0, 1} if A ∈ �);

� participants forming a non-allowed set A (A /∈
�) cannot get additional information beyond
their a priori information about s0, i.e., P(S0 =
c0 | Si = ci, i ∈ A) = P(S0 = co) if A /∈ �. These con-
ditions can be reformulated in the language
of entropy (see information theory) as H(Si,

i ∈ A∪ 0) = H(Si, i ∈ A) + δ�(A)H(S0), where
δ�(A) = 0 if A ∈ �, and δ� A) = 1, otherwise.
There are also combinatorial models of SSSs.

An arbitrary set V ⊂ S is called the “code” of the
combinatorial SSS, and its codewords called “shar-
ing rules”. The simplest combinatorial model de-
mands that at first, for every set A ∈ � the 0th
coordinate of any codeword from V is uniquely de-
termined by the values of the coordinates from the
set A and, secondly, for every set A /∈ � and for any
given selection of values of the coordinates from
the set A the number of codewords with given
value of 0th coordinate does not depend on this
value. This model is a particular case of the prob-
abilistic model, namely, when all nonzero values of
P are equal. The most general definition of combi-
natorial models, which contain probabilistic ones
as a particular case, was given in [6,7].

For both types of models the “size” of share, pro-
vided to any participant, cannot be smaller than
the “size” of the secret, where “size” is defined as
log|Si | or H(Si) respectively for combinatorial and
probabilistic statements of the problem. Special
attention has been paid to so-called ideal SSSs,
where the size of any share coincides with the
size of the secret. For example, any (n, k)-threshold
scheme can be realized as an ideal perfect SSS (see
threshold cryptography). It was shown in a chain
of papers [6–9] that the access structures of ideal
perfect SSS correspond to a special class of ma-
troids [10]. On the other hand, any access struc-
ture can be realized as a perfect SSS but probably
not very efficient (ideal). At least the above given
realization demands for some access structures to
distribute shares which size is exponentially (in
n) larger than the secret’s size. An infinite fam-
ily of access structures was constructed such that
for any perfect realization the size of the shares

is at least n/ ln n times larger than the size of the
secret [11].

To generate shares the dealer of an SSS has to
use some source of randomness, say r ∈ X, where
X is in some probabilistic space, and any share
si is a function of s0 and r , i.e., si = fi(s0, r ). A
linear realization of SSS (or, linear SSS) means
that all functions fi(·) are linear. To make it for-
mal: let s0, . . . , sn be elements in mi-dimensional
vector spaces (i = 0, 1, . . . , n) over some finite field
GF(q) of q elements, let r be an element of the
l-dimensional vector space over the same field.
Then a linear SSS is generated by some (m0 +
l) × m matrix G according to the formula s =
(s0, . . . , sn) = xG, where m = ∑n

i=0 mi and vector
x is the concatenation of vectors s0 and r. Con-
sider vector spaces V0, . . . , Vn, where Vi is the lin-
ear subspace generated by the columns of G that
correspond to si , i.e., by columns gj, where j =
m0 + · · · + mi−1 + 1, . . . , m0 + · · · + mi . Then ma-
trix G realizes the access structure � perfectly if
and only if [12,13]:
� for any set A ∈ � the linear span of subspaces

{Va : a ∈ A} (i.e., the minimal vector subspace
containg all these subspaces Va) contains the
subspace V0;

� for any set A /∈ � the linear span of subspaces
{Va : a ∈ A} intersects with the linear subspace
V0 only by the vector 0.

All aforementioned examples of SSS are linear.
Note that if all dimensions mi are equal to 1
then the matrix G can be considered as a gener-
ator matrix of a linear error-correcting code (see
cyclic codes). In particular, it gives another de-
scription of Shamir’s threshold schemes via Reed–
Solomon codes [14]. This “coding theory approach”
was further developed and generalized to the case
of arbitrary linear codes and their minimal words
as only possible access structures [16]. Surely, a
linear SSS with all dimensions mi = 1 is ideal, but
multidimensional linear SSSs with all mi = m0
give a larger class of ideal SSS [15]. It is an open
question if any ideal SSS can be realized as a (mul-
tidimensional) linear ideal SSS?

Modifications of assumptions of the secret shar-
ing problem’s statement such as perfectness of the
scheme, honesty of the dealer and participants,
sending shares via secure, private channels and so
on lead to many variations of secret sharing prob-
lem. Among them: ramp schemes, publicly verifi-
able secret schemes, SSS with cheaters, SSS
with public reconstruction [17], and visual secret
sharing schemes.

Robert Blakley
Gregory Kabatiansky
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SECURE SIGNATURES
FROM THE “STRONG RSA”
ASSUMPTION

In the late 1990’s it was realized that by mak-
ing a somewhat stronger intractability assump-
tion than RSA (see RSA problem), it is possible to
devise digital signature schemes that are fairly ef-
ficient, and at the same time have a rigorous proof
of security (without resorting to the random-oracle
heuristic). The intractability assumption states
that given a modulus n (see modular arithmetic)
of unknown factorization and an element x in the
ring Z∗

n, it is hard to come up with an exponent
e ≥ 2 and an element y in Z∗

n, such that ye = x
(mod n). This assumption, first used by Barić and
Pfitzmann in the context of fail-stop signatures
[1], is called the strong RSA assumption (or the
flexible RSA assumption).

A simple way of using this assumption for signa-
tures was described by Gennaro et al. [7]. In their
construction, the public key (see public key crypto-
graphy) is a triple (n, x, H), where n is product of
two “quasi-safe primes”, x is a random element in
Z∗

n, and H is a hash function, mapping strings to
odd integers. The secret key consists of the fac-
torization of n. To sign a message m, the signer
picks a random string r, computes e ← H(m, r ),
and then, using the factorization of n, finds an el-
ement y ∈ Z∗

n such that ye = x (mod n). To verify a
signature (r, y) on message m, the verifier checks
that yH(m,r ) = x (mod n).

Gennaro et al. proved that this scheme is
secur—in the sense of existential unforgeability
(see also existential forgery) under an adaptive
chosen message attack (EU-CMA)—under some
conditions on the function H. The first condi-
tion is that H is division intractable. This means
that it is hard to come up with a list of pairs,
(mi, ri), i = 1, . . . , t , where the integer H(mt , rt ) di-
vides the product

∏t=1
i=1 H(mi, ri). The other con-

dition on H means, informally, that one cannot
reduce breaking the strong RSA assumption to
“breaking the hash function H”. It is shown in [7]
that hash functions satisfying these conditions ex-
ist if the strong RSA assumption holds. (It is also
shown in [7] that if H is modeled as a random
oracle, then it satisfies these conditions, provided
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that its output is sufficiently long. However, Coron
and Naccache showed in [2] that the output of
H in this case should be at least as long as the
modulus n.)

Cramer and Shoup [4], followed by Fischlin [6],
proposed more efficient signatures based on the
strong RSA assumption. In the Cramer–Shoup
public key scheme, the public key is a 5-tuple
(n, h, x, e′, H), where n is a product of two “safe
primes”, h, x are random quadratic residues in
Z∗

n, e′ is an odd prime, and H is a hash func-
tion, mapping strings to integers. If � denotes
the output length of H, then the prime e′ must
be at least (� + 1)-bit long. The secret key con-
sists of the factorization of n. To sign a mes-
sage m, the signer picks a new (� + 1)-bit prime
e 
= e′ and a random quadratic residue y ∈ Z∗

n, sets
x′ ← (y′)e′

h−H(m) (mod n), and then, using the fac-
torization of n, finds an element y ∈ Z∗

n such that
ye = xhH(x′) (mod n). To verify a signature (e, y, y′)
on message m, the verifier checks that e is an
odd (� + 1)-bit number, e 
= e′, sets x′ ← (y′)e′

h−H(m)

(mod n), and checks that ye = xhH(x′) (mod n).
In the scheme of Fischlin, the public key is a

5-tuple (n, g, h, x, H), where n, h, x, H are as in
the Cramer–Shoup scheme, and g is yet another
random quadratic residue in Z∗

n. Again, the se-
cret key is the factorization of n, and we use �

to denote the output length of H. To sign a mes-
sage m, the signer picks a new (� + 1)-bit prime e
and a random �-bit string α, and then, using the
factorization of n, finds an element y ∈ Z∗

n such
that ye = xgαhα⊕H(m) (mod n). To verify a signature
(e, α, y) on message m, the verifier checks that e is
an odd (� + 1)-bit number, that α is an �-bit string,
and that ye = xgαhα⊕H(m) (mod n). Fischlin also
proposed other variations of this scheme, where
the prime e can be chosen even shorter than � + 1
bits (and the computation made slightly more ef-
ficient), at the price of a longer public key.

For all of these schemes, it is proved that they
are secure (in the sense of EU-CMA), assum-
ing the strong RSA assumption and the collision-
intractability of the hash function H, and as long
as the signer never uses the same prime e for
two different signatures. The Cramer-Shoup sig-
nature scheme was generalized by Damgård and
Koprowski to any group where extracting roots is
hard [5]. The same generalization can be applied
to the schemes described by Fischlin.

It is interesting to note that the Cramer-Shoup
signature scheme can be viewed as a simple varia-
tion on an earlier scheme by Cramer and Damgård
[3]. The Cramer-Damgård scheme is based on a
tree construction, and one of its parameters is the
depth of that tree. For a tree of depth one, the

scheme maintains in the public key a list of t odd
primes e1, . . . , et , and can be used to generate upto
t signatures, using a different prime each time.
The Cramer-Shoup scheme is obtained essentially
by letting the signer choose the odd primes “on the
fly” instead of committing to them ahead of time
in the public key. One pays for this flexibility by
having to make a stronger intractability assump-
tion. Since the attacker can now choose the ex-
ponent e relative to which it issues the forgery,
one has to assume the strong RSA assumption
(whereas the standard RSA assumption suffices
for the Cramer–Damgård scheme.)

A curious feature of the Cramer-Shoup and
Fischlin schemes (as well as some instances of
the Gennaro–Halevi–Rabin scheme) is that when
there is an a-priori polynomial bound on the total
number of signatures to be made, the signer can
generate its public/private key pair even without
knowing the factorization of the modulus n. (This
is done using the same strategy as the simulator in
the security proof of these schemes.) That makes
it possible in some cases to have many users in a
system, all sharing the same modulus n.

Dan Boneh
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SECURE SOCKET
LAYER (SSL)

GENERAL: Secure Socket Layer (SSL) denotes the
predominant security protocol of the Internet for
World Wide Web (WWW) services relating to elec-
tronic commerce or home banking. The majority of
web servers and browsers support SSL as the de-
facto standard for secure client-server communi-
cation. The Secure Socket Layer protocol builds up
point-to-point connections that allow private and
unimpaired message exchange between strongly
authenticated parties.

CLASSIFICATION: In the ISO/OSI reference
model [8], SSL resides in the session layer between
the transport layer (4) and the application layer
(7); with respect to the Internet family of proto-
cols this corresponds to the range between TCP/IP
and application protocols such as HTTP, FTP, Tel-
net, etc. SSL provides no intrinsic synchronization
mechanism; it relies on the data link layer below.

Netscape developed the first specification of SSL
in 1994, but only publicly released and deployed
the next version, SSLv2, in the same year [6].
With respect to public key cryptography, it re-
lies mainly on RSA encryption (RSA public key
cryptosystem) and X.509-compliant certificates.
Block ciphers, such as DES (see Data Encryption
Standard), Triple DES (3DES), and RC4, along
with hash functions like MD5 and SHA, com-
plement the suite of algorithms. SSLv3 followed
in 1995, adding cryptographic methods such as
Diffie–Hellman key agreement (DH), support for
the FORTEZZA key token, and the Digital Signa-
ture Standard (DSS) scheme [5].

This article focuses on SSL version 3.0 and its
designated successor protocol Transport Layer Se-
curity (TLS) 1.0, which the Internet Engineering
Task Force (IETF) published for the first time in
1999 [3]. The IETF published the most recent
Internet-Draft for TLS 1.1 in October 2002 [4].

LAYER STRUCTURE: SSL splits into distinct lay-
ers and message types (see Figure 1). The hand-
shake message sequence initiates the communi-
cation, establishes a set of common parameters

Application Layer

Transport Layer

SSL/TLS Protocol

Record Layer

Application Messages Handshake Messages

ChangeCipherSpec
Message

Alert Messages

Fig. 1. SSL layer and message structure

like the protocol version, applicable cryptographic
algorithms (cipher suites), and assures the valid-
ity of the message sequence. During the hand-
shake, the participants accomplish the negoti-
ated authentication and derive the session key
material.

The record layer fragments the full data stream
into records with a maximum size of 214 bytes
and envelopes them cryptographically under the
current session keys. Records contain a keyed
message authentication code (HMAC). The initial
handshake presupposes a NULL cipher suite ap-
plying no encryption and no HMAC. The record
layer fully provides the use of compression. How-
ever, for patent reasons the core specifications
name no method explicitly, except for the manda-
tory NULL algorithm, which practically makes
compression an incompatible, implementation-
dependent feature.

Additional alert messages inform on exceptional
protocol conditions or one participant’s demand to
end the communication (closure alert).

BASIC PROTOCOL SEQUENCE: The SSL hand-
shake accomplishes three goals. First, both parties
agree on a cipher suite, i.e. the set of cryptographic
algorithms that they intend to use for applica-
tion data protection. Second, they establish a com-
mon master secret in order to derive their session
key material. Third, the participant’s identities
are authenticated. Although the SSL specification
permits anonymous, server-only and mutual au-
thentication, it is customary to only assert the
server’s identity.
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Certificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

SCER

SCER

SCE

C
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ChangeCipherSpec

Finished

SCER

SCER

ServerHello

Certificate

CertificateRequest

ServerKeyExchange

ServerHelloDone

SCER

SCE

SCE

C

E

ClientHello SCER

Fig. 2. SSL protocol sequence

Figure 2 gives an overview of the SSL pro-
tocol variants. It comprises four different hand-
shake sequences, each identified by a capital
letter:
� S denotes the server-authenticated message

flow.
� C marks the sequence with additional client au-

thentication.
� E shows the handshake variant with ephemeral

Diffie–Hellman key agreement.
� R stands for the handshake of resumed sessions.

Note, that the message pairs ChangeCipher-
Spec/Finished of client and server are drawn in
reverse order; the server message pair follows
ServerHello immediately.
The client opens the connection with a Client-

Hello message, which contains its selection of ac-
ceptable cipher suites and a random number.

The server chooses a supported cipher suite
and adds another random number, which together
builds the ServerHello response. Later, these two
random numbers become part of the session’s
master secret.

SERVER AUTHENTICATION: The server appends
a Certificate message, which holds a X.509 certifi-
cate bearing its identity and public key. Most of-
ten RSA keys (see RSA digital signature scheme)
are used. DSS signed certificates usually carry a
long term DH public key. If multiple levels of the

public key hierarchy separate the server certifi-
cate from the root authority certificate present in
the client browser, then the server is required to
deliver an ordered list of all dependent certificates.
The empty ServerHelloDone message finishes this
sequence.

The client confirms the validity of the certificate
chain up to one of its built-in root certificates. It
generates another random number and encrypts
it under the server’s RSA public key. This en-
crypted pre master secret forms the ClientKeyEx-
change message.

DH/DSS cipher suites might demand the client
to create (ephemeral) DH keys matching the
server’s domain parameters for the ClientKeyEx-
change message. Note, that if both parties own
certificates with group-compatible, fixed DH pub-
lic keys, every connection generates the identical
pre master secret.

Both sides derive the shared session key ma-
terial independently in two steps. First, the key
derivation function (KDF) transforms the client’s
pre master secret and both exchanged random
numbers into the master secret. Afterwards, the
KDF is re-applied to the master secret and both
random values to compute the final key block.
With respect to the chosen cipher suite, the key
block is broken up into a maximum of six segments
used as directional encryption keys (with initial-
ization vectors) and directional HMAC keys.
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CLIENT AUTHENTICATION: SSL servers can
demand client authentication through a Certifi-
cateRequest message. It contains the permitted
certificate types, i.e. signature algorithms, and a
list of trusted certification authorities identified
by their respective distinguished name.

The client answers with a Certificate message
requiring either a single certificate or the full certi-
fication chain. In addition, it creates a Certificate-
Verify message that contains a digest of the pre-
vious handshake messages, signed by the private
key corresponding to its certificate.

EPHEMERAL DIFFIE–HELLMAN: The ephe-
meral Diffie–Hellman key agreement (DH) em-
beds into the ServerKeyExchange and the Client-
KeyExchange messages. Both sides send their DH
public keys and, together with their own DH pri-
vate keys, calculate a shared pre master secret.
Note, that anonymous DH cipher suites are sus-
ceptible to man-in-the-middle attacks and pro-
tect only against passive eavesdropping (eaves-
dropper).

Both sides end the handshake sequence with
two further messages: ChangeCipherSpec indi-
cates the shift to the newly negotiated cipher pa-
rameters. Finished is the first message encrypted
under the new keys and declares the handshake
sequence complete. It holds an HMAC digest over
the whole handshake sequence and the negotiated
master secret in order to ensure that no message
tampering remains undetected.

The cryptographic state is established and con-
firmed on both sides and the record layer now en-
crypts and authenticates application data under
its new session keys.

The alert message CloseAlert indicates the pro-
tocol end, followed by the TCP layer’s closing FIN
packet.

PROTOCOL RESUMPTION: SSL permits the re-
sumption of formerly established sessions, in or-
der to shortcut the handshake, and preserve CPU
cycles by avoiding, for instance, the computation-
ally expensive pre master secret decryption.

Depending on whether the server supports this
feature, it sends a session identification string en-
closed in the ServerHello message. After estab-
lishing a valid cryptographic state, this ID refers
to the stored master secret. Subsequent client
connections indicate their intention to resume a
session by specifying the ID in the ClientHello
message.

Resumed sessions possess unique key blocks,
because the key generation process recombines

the stored master secret with fresh random nonce
out of both Hello messages.

ADDITIONAL INFORMATION: SSL permits the
re-negotiation of its cipher suites during the
course of the application protocol through a simple
repetition of the handshake sequence.

The Internet Assigned Numbers Authority
(IANA) assigns unique TCP port numbers to
SSL/TLS-enabled protocols, which are marked
with the appended letter s; for example port 443
for HTTPS or 989/990 for FTPS [7].

SECURITY ANALYSIS, BUGS: Several authors
have analysed the SSL protocol suite, stating in
consensus that, beginning with v3.0, it is mature
and without major design flaws [11,12,14].

Wagner and Schneier conclude in their analysis
that “In general SSL 3.0 provides excellent secu-
rity against eavesdropping and other passive at-
tacks. Although export-weakened modes offer only
minimal confidentiality protection, there is noth-
ing SSL can do to improve that fact.” [14]

Some minor attacks are known, however, cau-
tious implementation seems to prevent their ap-
plicability [13].

The man-in-the-middle version rollback attack
tries to establish a SSL v2.0 handshake protocol
between SSLv3/TLS-capable parties in compati-
bility mode. Due to a serious flaw in SSLv2, an
active adversary is capable to enforce an export
weakened cipher suite, and brute-force attack (see
cryptanalysis) to session keys directly. The SSLv2
attack is called cipher suite rollback. Reference [3]
gives recommendations on how to detect down-
grade attempts by embedding a short, well defined
pattern into the PKCS#1 padding data (PKCS)
of RSA encryptions, instead of using of purely
random bytes. If an SSLv3/TLS-capable server
finds the pattern, it will recognize that the other
party operates in backwards compatibility mode
although a later protocol version is supported.

Bleichenbacher published an attack against
PKCS#1 (version 1) formatted RSA encryptions
known as the million message attack [1]. Prob-
ing an SSL/TLS server with chosen ClientKeyEx-
change messages might reveal the encrypted
pre master secret after about 220 attempts, if the
server issues error alerts that allow to distinguish
between correctly and incorrectly formatted mes-
sages (chosen ciphertext attack). The TLS specifi-
cation recommends as a countermeasure to treat
PKCS#1 formatting errors by simply continuing
the handshake protocol with a randomly gener-
ated pre master secret. In this case, the server
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behaves in the same way, whether or not the for-
matting is correct [4].

The general method of timing cryptanalysis
[10] is applicable against SSL/TLS servers, if a
large number of unbiased measurements of pri-
vate key operations is available. Practical attacks
were shown for example by Brumley and Boneh
and Klime, et al. Countermeasures against timing
cryptanalysis usually degrade performance, for in-
stance by randomly delaying cryptographic opera-
tions or by holding a constant response time with-
out dependence of the algorithms’ execution paths.

Clemens Heinrich
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SECURITY

The security of encryption against unauthorized
decryption, unauthorized changing of the data,
etc. Security should depend completely on the key.
One distinguishes between the following two types
of security:
Computational security: quantitative security

against unauthorized decryption, based on par-
ticular (usually mathematical) assumptions like
the inherent difficulty of factoring sufficiently
long numbers. Often a security parameter de-
notes the computational level of the security.

Unconditional security: security against unautho-
rized decryption assuming that the cryptanalyst
has unlimited computing facilities (so, security
in an information theoretic sense).

Friedrich L. Bauer
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SECURITY ARCHITECTURE

Given any system characterized by a number of
devices and/or users communicating with specific
communication protocols, the (related) security ar-
chitecture refers to the enhancing security solu-
tion based on cryptographic techniques, protocols,
and secure storage, as well as protection of keys
and messages.

Examples of security architectures based on
Public key techniques include X.509 and EMV.
As part of the security architecture, a number
of Trusted Third Parties may be defined, such
as Registration Authorities, Certification Autho-
rities, and Time Stamping Authorities. These are
entities that are not part of the original system
as such, but are introduced as part of the security
architecture.
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Other examples are Kerberos, based on con-
ventional cryptography and bespoke key manage-
ment architectures e.g. to handle online PIN-code
(see Personal Identification Number) verification,
which is characterized by key hierarchies, start-
ing with session keys, or data keys at the bottom,
which are protected or exchanged by key encryp-
tion keys, perhaps comprising several layers, and
the top layer consisting of the so-called master
keys.

Peter Landrock

SECURITY EVALUATION
CRITERIA

Security Evaluation Criteria are usually pre-
sented as a set of parameter thresholds that must
be met for a system to be evaluated and deemed
acceptable. These criteria are established based
on a Threat Assessment to establish the extent of
the data sensitivity, the security policy, and the
system characteristics. The system is evaluated,
the evaluation is measured against the criteria,
and then an assessment is made of whether or
not the system security characteristics meet the
requirements as specified by the Security Evalu-
ation Criteria. The criteria is typically unique to
each system, the environment it is in and how it
is used.

Important past frameworks of security evalua-
tion criteria have been the following:
TCSEC by US Department of Defense (1985):

The Trusted Computer System Evaluation Cri-
teria (TCSEC) is a collection of criteria that
was previously used to grade or rate the se-
curity offered by a computer system product.
No new evaluations are being conducted us-
ing the TCSEC although there are some still
ongoing at this time. The TCSEC is some-
times referred to as the “Orange Book” be-
cause of its orange cover. The current version
is dated 1985 (DOD 5200.28-STD, Library No.
S225,711). The TCSEC, its interpretations, and
guidelines all have different color covers and are
sometimes known as the “Rainbow Series” [1]. It
is available at http://www.radium.ncsc.mil/tpep/
library/rainbow/5200.28-STD.html.

ITSEC by the European Commission (1991):
The Information Technology Security Evalua-
tion Criteria (ITSEC) is a European-developed
criteria filling a role roughly equivalent to the
TCSEC. Although the ITSEC and TCSEC have
many similar requirements, there are some
important distinctions. The ITSEC places in-
creased emphasis on integrity and availability,

and attempts to provide a uniform approach to
the evaluation of both products and systems.
The ITSEC also introduces a distinction be-
tween doing the right job (effectiveness) and do-
ing the job right (correctness). In so doing, the
ITSEC allows less restricted collections of re-
quirements for a system at the expense of more
complex and less comparable ratings and the
need for effectiveness analysis of the features
claimed for the evaluation.

CTCPEC by CSE Canada (1993): The Canadian
Trusted Computer Product Evaluation Criteria
is the Canadian equivalent of the TCSEC. It is
somewhat more flexible than the TCSEC (along
the lines of the ITSEC) while maintaining fairly
close compatibility with individual TCSEC
requirements.

Common Criteria ISO 15408 (2001): In 1990,
the Organization for Standardization (ISO)
sought to develop a set of international stan-
dard evaluation criteria for general use. The CC
project was started in 1993 in order to bring all
these (and other) efforts together into a single
international standard for IT security evalua-
tion. The new criteria was to be responsive to the
need for mutual recognition of standardized se-
curity evaluation results in a global IT market.
The common criteria combine the best aspects of
TCSEC and ITSEC and aims to supersede both
of them [2].

Tom Caddy
Gerrit Bleumer
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SECURITY STANDARDS
ACTIVITIES

This article describes a number of highly visi-
ble security standards activities. It cannot be ex-
haustive, but it does include many standards bod-
ies that are influencing the security industry and
product development. Many of the standards are
interrelated; for example, X.509 public key certifi-
cates have been profiled for use in the Internet
by the PKIX working group of the Internet Engi-
neering Task Force (IETF), and that profile has
been augmented for Qualified Certificates, which
are used to identify human beings involved in elec-
tronic commerce.
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X.509: ITU-T Recommendation X.509 defines
public key certificates and attribute certificates.
ITU-T was previously known as CCITT, which has
been developing telecommunications standards
for decades. X.509 [40, 41] is part of a joint effort
between ITU-T and the International Organiza-
tion for Standardization (called ISO), which devel-
oped the X.500 series of standards. The documents
have numbers assigned by both standards bodies,
but the numbers assigned by ITU-T are tradi-
tionally used to refer to the documents. Within
this series, X.509 defines the public key certificate
to provide authentication in a ubiquitous global
directory environment. While the envisioned di-
rectory deployment has never materialized, the
certificate format has been used in small, closed,
networks as well as large, open, deployments. The
public key certificate enables secure communica-
tion between entities that were unknown to each
other prior to the communication. Deployments
of these certificates are known as public key in-
frastructure (PKI). To bring PKI to large multina-
tional corporations or to millions of Internet users,
a common certificate format is necessary. X.509
defines a general, flexible certificate format. The
widespread adoption of X.509 is due to two fac-
tors. First, X.509 is technically suitable for many
environments. Second, it was developed at an im-
portant time. It became an international stan-
dard at a time when a number of vendors were
ready to begin implementing certificate-based
products.

X.509 includes a powerful extension mecha-
nism. It was defined for Version 3 certificates and
Version 2 CRLs (Certificate Revocation Lists). Ar-
bitrary extensions can be defined and incorporated
into a certificate or CRL, and a criticality flag in-
dicates whether or not a certificate using system
needs to understand and examine this extension
as part of the verification process. Thus, certificate
and CRL contents can readily be tailored to spe-
cific environments. The inclusion of a particular
critical extension can restrict use of the certificate
to a particular application environment.

X.509 also specifies the format of the attribute
certificate. The attribute certificate is used in con-
junction with a public key certificate to provide
additional information about the named entity. At-
tribute certificates are most often used to express
authorization information.

Although X.509 is an international standard,
the ITU-T continues to maintain the document
and develop enhancements. Most of the mainte-
nance takes the form of clarifying text, and most of
the enhancements take the forms of new standard
extensions. Any problems found through opera-
tional experience are addressed in the standard

through a formal defect reporting and resolution
process.

PKIX: The Internet Engineering Task Force
(IETF) is responsible for creating standards for
the Internet. For the most part, the IETF devel-
ops protocols. This work is carried out by a num-
ber of working groups, which are organized into
Areas. Within the Security Area, the PKIX (Pub-
lic Key Infrastructure using X.509) working group
was formed at the end of 1995 with the explicit
intention of tailoring the X.509 public key certifi-
cate to the Internet environment. Essentially, the
group set out to define an Internet PKI. Quickly,
the group realized that defining an Internet PKI
was more extensive than profiling the X.509 cer-
tificate. Thus, the PKIX charter was written to en-
compass four major activities:
1. X.509 certificate and certificate revocation list

(CRL) profile;
2. Certificate management protocols;
3. Operational protocols; and
4. Certificate Policy (CP) and Certification Prac-

tice Statement (CPS) framework.
The first activity was the original motivating

task. The profile includes detailed specification of
the mandatory, optional, critical, and non-critical
extensions in a PKIX-compliant certificate or CRL.
The profile was published in January 1999 [15],
and updated in April 2002 [37]. The profile is likely
to be refined to provide guidance on the use of
international character sets [39]. Also, the qual-
ified certificate profile was developed in January
2001 [34], and the attribute certificate profile was
developed in April 2002 [38].

The second activity was to specify the proto-
cols for management operations required in the
Internet PKI, including certification of entities
and their key pairs, certificate revocation, key
backup and recovery (see key management), Cer-
tification Authority (CA) key rollover, and cross-
certification. Two competing protocols were devel-
oped: CMP [16] and CMC [29].

The third activity, operational protocols, was to
specify the protocols for day-to-day Internet PKI
operation, such as certificate retrieval, CRL re-
trieval, and on-line certificate status checking. The
results, to date, include several important spec-
ifications. It tells how to use FTP and HTTP to
access repositories [20]. Others tell how to use an
LDAPv2 directory as a repository [18,21]. Another
specification defines the Online Certificate Status
Protocol (OCSP) [19]. And, others are being devel-
oped to address the use of LDAPv3 directories.

Finally, the fourth activity, guidance to CP and
CPS authors, provides topics and formats for these
documents. The guidance was originally published
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in March 1999 [17]. Since that time, the American
Bar Association’s Information Security Commit-
tee has reviewed it. With the assistance of these
lawyers, an update is in progress.

PKIX has played an essential role in bringing
PKI concepts to the Internet. The protocols and
functions it has defined make a PKI possible, even
in the diverse Internet, because their flexibility
and generality can satisfy the requirements of
greatly differing environments. The PKIX work
continues to evolve, and the charter was expanded
in 1999 to include additional work items, including
time-stamping protocols. The Time-Stamp Proto-
col (TSP) [36] was published in August 2001.

LDAP: The Lightweight Directory Access Proto-
col (LDAP) [2] was originally conceived as a sim-
ple to describe and simple to implement subset of
the capability of the X.500 Directory Access Pro-
tocol (DAP). Over time, the subset of functions
and features has expanded. Today, it is used as
the access protocol for many repositories, some of
which are based on X.500 directories, but many
are not. As part of this evolution, the “lightweight”
aspect of the protocol has diminished. Neverthe-
less, many vendors worldwide use LDAPv2 [6] and
LDAPv3 [8]. The IETF LDAPext Working Group
has been formed to specify useful extensions for
LDAPv3, such as an authentication and access
control mechanism.

An LDAPv2 schema [21] has been specified for
LDAP-compliant repositories that contain certifi-
cate and CRL information. This facilitates inter-
operability between PKI products from different
vendors in an LDAP environment. In a joint effort
between the LDAPext and PKIX working groups,
a similar schema is being developed for LDAPv3.

S/MIME: In 1995, a consortium of industry ven-
dors led by RSA Data Security, Inc., developed a
companion security solution to the Multipurpose
Internet Mail Extensions (MIME) specifications,
which are the basis for any email message that
goes beyond simple text. For example, an email
message that includes bold text or includes an
attachment makes use of MIME. Secure MIME
(S/MIME) specifies encryption and digital signa-
tures for MIME messages. While a formal stan-
dards body did not develop the original S/MIME
specifications, many important product vendors
embraced S/MIME. To build on and expand this
success, the consortium released change control
of the S/MIME Version 2 documents [9, 10] to the
IETF in 1997.

The IETF S/MIME Working Group developed
significant enhancements, resulting in S/MIME

Version 3 [22–26]. The primary focus of the
S/MIME Working Group was to develop an al-
gorithm independent protocol and incorporate a
number of new security features into the specifi-
cations, while preserving compatibility with the
earlier specification whenever possible. In partic-
ular, the S/MIME Version 3 specifications include
support for sending encrypted messages to large
mail lists, security labels on messages (for exam-
ple, “company proprietary,” “secret,” or “top se-
cret”), and signed message receipts. These signed
receipts provide proof that the intended recipient
received a signed message that contained a re-
quest for a receipt.

The S/MIME Version 3 specifications include
discussion of PKI concepts such as certificate for-
mat, certificate processing, and CRLs. These spec-
ifications are compatible with the X.509 profile
developed by the PKIX Working Group, and they
provide additional details for the use of X.509 cer-
tificates in the email environment. Further, pro-
vision is made in the message envelope to carry
an arbitrary numbers of certificates and CRLs to
assist the recipient with the task of path construc-
tion and certificate validation.

IPSEC: IPsec is designed to provide interopera-
ble, high quality, cryptographically-based security
the Internet Protocol (both Version 4 (IPv4) and
Version 6 (IPv6)). The security services offered in-
clude access control, connectionless integrity, data
origin authentication, protection against replays,
confidentiality, and limited traffic flow confiden-
tiality. The services are provided by the use of
two traffic security protocols, the Authentication
Header (AH) [11] and the Encapsulating Security
Payload (ESP) [12], and through the use of cryp-
tographic key management procedures and proto-
cols.

The Internet Key Exchange (IKE) protocol [13]
is used to establish the symmetric keying ma-
terial needed by AH and ESP. IKE provides for
strong, X.509-certificate-based authentication of
the IP layer entities, and it is compatible with the
certificate profile developed by the PKIX Working
Group. However, a companion document is being
developed to describe details of certificate usage
in the IPsec environment.

The IPsec Working Group is working on the sec-
ond version of IKE. The primary goal of the up-
date is to simplify the protocol. The simplification
is targeted at increased interoperability.

TLS: The Transport Layer Security (TLS) speci-
fication [7] is the IETF standards-track version of
the Secure Sockets Layer Version 3.0 (SSLv3.0)
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protocol found in millions of Web browsers and
Web servers. The history has many parallels to
S/MIME. The original specification was developed
outside of any standards body, and then it was re-
leased to the IETF, who took over configuration
control and made enhancements.

TLS creates a secure channel between two
transport layer entities, providing certificate-
based authentication, information integrity, and
data confidentiality. The TLS specification dis-
cusses X.509 certificates, and it is mostly compat-
ible with the profile developed by the PKIX Work-
ing Group. The few conflicts are associated with
compatibility with SSLv3.0 (and earlier) imple-
mentations that were developed well in advance of
the PKIX profile. The PKIX X.509 certificate pro-
file appears to meet the goals of the Internet com-
munity. Interestingly, non-IETF standards groups
are also using the PKIX certificate profile.

AAA: In 1997, the IETF created the first stan-
dard Authentication, Authorization, and Account-
ing (AAA) protocol, called RADIUS (Remote Ac-
cess Dial-In User Service) [30–32]. As the name
implies, RADIUS is designed for use with Dial-In
Access Servers. RADIUS has been a big success,
displacing many proprietary protocols. RADIUS
is widely implemented as Network Access Servers
(NASs) serving analog and digital dial-in Point-to-
Point Protocol (PPP) service, and it is the preva-
lent Internet Service Provider (ISP) access model.
RADIUS has been adapted for use with DSL (us-
ing PPPOE) and cable access (using DOCSIS).
RADIUS has been successful because it offers
a simple and flexible model for client-server ex-
changes. However, this simple model does not
have sufficient security for some new applica-
tions, and it also lacks support for server-initiated
control.

The IETF AAA Working Group is responsible
for building a more secure and capable AAA proto-
col. A number of proposals were evaluated in June
2000, and the working group selected the Diame-
ter protocol [35]. Diameter is designed to be up-
wards compatible with RADIUS, but many of the
messaging underpinnings have been upgraded to
be more secure. Security is provided using CMS
and IPsec. For better response time, the SCTP
(Stream Control Transmission Protocol) transport
is supported as an alternative.

Diameter explicitly supports server-to-client re-
quests and message forwarding. These capabili-
ties have previously been forced into RADIUS [33].
Diameter also includes explicit support for appli-
cation suite additions. Application designs have
been drafted for Mobile IP authentication and

third generation wireless telecommunications [1]
sessions.

SPKI: The IETF formed the Simple Public Key
Infrastructure (SPKI) Working Group in 1996. In
many ways, it is an alternative to PKIX. One
fundamental premise of SPKI is that X.509 is a
complicated and bulky certificate format that, by
explicitly binding a key pair to an identity, rests
upon an inherently flawed foundation. SPKI pro-
ponents argue that the concept of a globally unique
identity will never be realized. Instead, they advo-
cate the use of the public key as an identity. Where
necessary and meaningful, a name or other identi-
fying information may be associated with a public
key, but this is optional and, it is only intended to
have local significance.

The SPKI specifications [27,28] discuss the con-
cepts and philosophy behind this approach to an
Internet PKI. A detailed certificate format and
processing rules are included. SPKI explicitly en-
compasses authorization as well as authentica-
tion. The sophisticated certificate format makes
it possible to express, in a general way, the per-
mitted uses of the certified public key. This capa-
bility (not surprisingly) diminishes the intended
simplicity of the Simple Public Key Infrastructure.
Although SPKI embodies a number of interesting
ideas and research contributions, it has not gained
widespread support.

OPENPGP: As with the S/MIME and TLS Work-
ing Groups, the IETF OpenPGP Working Group
was formed to develop a standard based on
a protocol that was developed outside of any
standards body. The popular Pretty Good Privacy
(PGP) email security package was brought to the
IETF so that interoperable implementations from
different vendors could be developed. OpenPGP
[14] defines email message protection and the
PGP certificate format (an alternative to both
X.509 and SPKI). Despite a loyal installed base,
OpenPGP has not seen corporate or government
adoption. OpenPGP is viewed as an individual-to-
individual solution. The user-centric trust model
cannot easily be centrally controlled by an organi-
zation.

XML SECURITY: Prominent standards bodies
are actively developing XML (eXtensible Markup
Language) security specifications, including the
World Wide Web Consortium (W3C) and the Or-
ganization for the Advancement of Structured In-
formation Standards (OASIS).

The W3C is developing specifications for the
XML syntax with respect to encryption (XML



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg May 24, 2005 14:19

556 Security standards activities

Encryption) and digital signature (XML Signa-
ture), as well as XML protocols for key manage-
ment (XML Key Management Specification) that
allow a client to obtain key information (including
values, certificates, management, or trust data)
from a Web service.

The OASIS Security Services Technical Com-
mittee is developing the Security Assertion
Markup Language (SAML), an XML framework
for exchanging authentication and authoriza-
tion information. The underlying authentication
mechanism may be PKI-based, but SAML encom-
passes a number of other authentication technolo-
gies as well. A number of other OASIS techni-
cal committees are likely to build upon SAML,
as well as the W3C specifications mentioned
above, to provide security; such committees in-
clude Business Transaction Processing (BTP),
electronic business XML (ebXML), Provisioning
Services Markup Language (PSML), eXtensible
Access Control Markup Language (XACML), Web
Services Security (WSS), and Digital Signature
Services (DSS).

IEEE P802: Local Area Network (LAN) and
Metropolitan Area Network (MAN) standards
encompass a number of data communications
technologies and the applications of these tech-
nologies. There is no single technology that is
applicable to all applications. Correspondingly, no
single local or metropolitan area network stan-
dard is adequate for all applications. As a result,
the Institute of Electrical and Electronics Engi-
neers (IEEE) Standards Association sponsors sev-
eral working groups and technical advisory groups
within Project 802. Security is the focus of IEEE
802.10, which has seen little market adoption.
However, other working groups have also devel-
oped security relevant standards.

IEEE 802.1X specifies port-based access con-
trols. It provides a means of authenticating and
authorizing devices attached to a LAN port, pre-
venting access when authentication and autho-
rization fails.

IEEE 802.11 includes the ability to encrypt
wireless LAN traffic using the Wired Equivalent
Privacy (WEP) protocol. Unfortunately, WEP has
many flaws. IEEE 802.11 is presently working on a
short-term and a long-term replacement for WEP,
called TKIP and CCMP, respectively. The Tempo-
ral Key Integrity Protocol (TKIP) is intended to
replace WEP on current hardware, and it is imple-
mented by firmware and driver software upgrades.
The Counter and CBC-MAC Protocol (CCMP) is
intended for future generations of product. Future
product generations will likely implement both

TKIP and CCMP for compatibility with currently
fielded devices.

IEEE 802.15 is developing security solutions for
personal area networks, and IEEE 802.3 is devel-
oping security solutions for some uses of Ethernet.
Clearly, more customers are demanding security
solutions. Other working groups are likely to have
security initiatives in the near future.

IEEE P1363: IEEE Project 1363 is developing
standard specifications for public key cryptogra-
phy, which includes mathematical primitives for
key derivation, public-key encryption, and digital
signatures. P1363 has been adopted as an IEEE
standard, although work continues on a compan-
ion document, called IEEE P1363a, which will
specify additional techniques. A study group is in-
vestigating newer schemes and protocols not con-
sidered in P1363 and P1363a; such specifications
will appear over time as P1363–1, P1363–2, and
so on.

ANSI X9F: The American National Standards
Institute (ANSI) committee X9 (Financial Ser-
vices) develops and publishes standards for the
financial services industry. These standards fa-
cilitate delivery of financial products and ser-
vices. Subcommittee X9F is responsible for secu-
rity, and it includes working groups that focus
on cryptographic tools (X9F1), security protocols
(X9F3), and digital signature and certification
policy (X9F5), among others. X9F has published
many standards (the X9 on-line catalog can be
found at http://www.x9.org), and many of its stan-
dards become international standards through a
close working relationship with ISO TC68.

INFLUENTIAL ACTIVITIES: Some activities that
are not part of any formal security standards body
are influencing security standards development,
the security industry, and product development.
Again, this discussion cannot be exhaustive, but
a number of the highly visible security standards
influencing activities are discussed.

U.S. FPKI

The U.S. Federal Public-Key Infrastructure
(FPKI) is an initiative by the U.S. Government to
define a PKI suitable for its own use. One focus is
the production of an acceptable profile for X.509
certificates and CRLs, where there is significant
harmonization with the PKIX certificate profile,
but the ultimate goal is a full PKI specification.
This specification will encompasses all relevant
PKI entities, including end entities, registration
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authorities (RAs), certification authorities (CAs),
and Bridge CAs. It also includes the security-
relevant protocols between these entities, as well
as the operational policies and procedures re-
quired for the PKI.

The U.S. FPKI specifications impose compliance
requirements on vendors wanting to sell PKI prod-
ucts to the U.S. Government. To the greatest ex-
tent possible, commercial standards have been ref-
erenced and profiled. The hope is that the FPKI is
sufficiently similar to PKIs for other environments
that compliance will not unduly restrict vendors.

The Minimum Interoperability Specifications
for PKI Components (MISPC) [5] is one component
of the full U.S. FPKI vision. The goal in MISPC is
to understand and to specify the minimum func-
tionality required of PKI entities that will still
enable them to interoperate usefully with other
PKI entities. Thus, for example, the certificate and
CRL profile portion of MISPC identifies which of
the many optional fields in the X.509 and PKIX
specifications must be implemented. Interestingly,
MISPC is more than a detailed specification; a CD
containing a complete reference implementation
compliant with the specification is also available.
Thus, vendors have a straightforward way of test-
ing whether their products are MISPC compliant.

GOC PKI

The Government of Canada Public-Key Infras-
tructure (GOCPKI) is the first large-scale gov-
ernmental PKI initiative in the world. Its goal
similar to the U.S. FPKI, but it defines a PKI
suitable for Canadian federal government use. It is
a full PKI specification, including certificate and
CRL profiles, entity functionality and character-
istics, communications protocols, and operational
policies and procedures. The GOC PKI will im-
pose compliance requirements on vendors, but it
is hoped that this will not preclude Commercial
Off-the-Shelf (COTS) products.

JCP

The Java Community Process (JCP) is an open or-
ganization of international Java developers and
licensees whose charter is to develop and re-
vise Java technology specifications, reference im-
plementations, and technology compatibility kits.
This group publishes Java Specification Requests
(JSRs), and several are related to security and
PKI. For example, JSR 55 discusses certification
path creation, building, and verification; JSR 74
discusses many of the Public Key Cryptography
Standards (PKCS) published by RSA Laborato-

ries; JSR 104 discusses XML trust services; JSR
105 discusses XML Digital Signature services;
JSR 106 discusses XML Digital Encryption ser-
vices; and JSR 155 discusses Web Services Se-
curity Assertions based on the OASIS SAML
specification. These and related efforts are ex-
pected to eventually be included in future versions
of the Java 2 Micro Edition (J2ME), Java 2 Stan-
dard Edition (J2SE), and Java 2 Enterprise Edi-
tion (J2EE) platforms. Further information can be
found at [4].

ICE-CAR

The Interworking Certification Infrastructure for
Commerce, Administration and Research (ICE-
CAR) project, a successor to the ICE-TEL project,
began in January 1999. The objective of this
project is to provide all of the technology com-
ponents that are needed to support the secure
use of the Internet for commercial and adminis-
trative applications in Europe. These applications
include e-commerce, intra-organizational commu-
nication, health-care applications, and research.
An additional goal was to promote the availabil-
ity of technically compatible and interconnectable
PKIs, which guarantee the authenticity and valid-
ity of public keys used in these environments. The
project has produced numerous technical reports
that are available for download from the Deliv-
erables section of the main Web site; see [3] for
further details.

Russ Housley
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SELECTIVE FORGERY

Selective forgery is a message related forgery
against a cryptographic digital signature scheme.
Given a victim’s verifying key, a selective forgery
is successful if the attacker finds a signature s for
a message m selected by the attacker prior to the
attack, such that the signature s is valid for m with
respect to the victim’s verifying key.

Gerrit Bleumer

SELF-SHRINKING
GENERATOR

The self-shrinking generator is a clock-controlled
generator that has been proposed in [1]; it is
strongly related to the shrinking generator, but
uses only one Linear Feedback Shift Register
(LFSR) R, producing a maximum-length linear se-
quence.

Its principle is really easy to get: the output se-
quence of the LFSR is partitioned into pairs of bits.
According to the value of the pair, one bit is added
to the keystream, and then the pair is discarded
and we go to the next one. More precisely:

Pair Bit added

10 0
11 1
01 no bit added
00 no bit added
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EXAMPLE. Let us consider that R has length four,
and that its feedback is given by st+1 = st + st−3. If
the initial state is s0s1s2s3 = 1010, then the output
of the LFSR is 101011001000111101011001000-
1111010110010001111 . . . This gives the following
output for the whole scheme: 00101101001011 . . .

A recent survey on the possible attacks is [2].

Caroline Fontaine
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SELF-SYNCHRONIZING
STREAM CIPHER

In a self-synchronizing, or asynchronous, stream
cipher, the keystream depends on the secret key of
the scheme, but also of a fixed number, say t, of ci-
phertext digits (that have already been produced,
or read; this distinguishes it from a synchronous
stream cipher). It can be viewed as follows:

ciphertext
key

plaintext
ENCRYPTION

key

plaintext
DECRYPTION

According to its design, such a scheme is able
to resynchronize the keystream with the message
with just a few correct bits of ciphertext. This
means that if some bits are inserted or deleted
in the ciphertext, just a small part of the plain-
text will not be obtained correctly; the next set of
t consecutive correct bits in the ciphertext will be
sufficient to resynchronize the keystream and pro-
duce the following bits of the plaintext correctly.

Let us now consider that one bit of the cipher-
text has been altered during the transmission.
This will induce some errors in the decryption of
the next t bits; after this, decryption will go on
correctly.

What can an active attacker do with such a
scheme? According to the propagation of each

error in a ciphertext on about t bits of plaintext, it
is more difficult for an attacker to forge a plaintext
of its choice than in a synchronous stream cipher.
Moreover, it is also more difficult for him to desyn-
chronize the keystream, since the scheme is able
to resynchronize it by itself. If the attacker wants
to desynchronize all the keystream, he has to do
a lot of modifications on the ciphertext. Neverthe-
less, some complementary mechanisms, that can
ensure authentication or integrity of the cipher-
text are welcome to help the receiver check that
all is going well.

At last, since each plaintext digit influences the
whole ciphertext (through the feedback of the ci-
phertext on the keystream generation), the statis-
tical properties of the plaintext are dispersed in
the ciphertext, and such a scheme may be more
resistant against attacks based on plaintext re-
dundancy, than synchronous stream ciphers.

Good references are [1] and [2].

Caroline Fontaine
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SEMANTIC SECURITY

Semantic security is a notion to describe the secu-
rity of an encryption scheme.

An adversary is allowed to choose between two
plaintexts, m0 and m1, and he receives an encryp-
tion of either one of the plaintexts. An encryp-
tion scheme is semantically secure, if an adver-
sary cannot guess with better probability than 1/2
whether the given ciphertext is an encryption of
message m0 or m1. The notion is also referred to
as indistinguishability of encryptions and noted as
IND. Historically the word “semantic” came from
the definition that the encryption reveals no in-
formation no matter what kind of semantics are
embedded in the encryption. It has been proven
that the definition describing this requirement is
equivalent to the indistinguishability of encryp-
tions. The notion of semantic security can be fur-
ther distinguished by the power of adversary. More
specifically, a powerful adversary may have access
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to an encryption oracle and/or decryption oracle
at various stages of the guessing game. Here, an
encryption oracle is an oracle that provides an en-
cryption of a queried plaintext, and a decryption
oracle provides the decryption of a queried cipher-
text (see also random oracle model).

The notion of semantic security can be applied
to both symmetric cryptosystems and public key
cryptosystems. But since the concrete security
analysis of a public key encryption scheme is more
tractable, the term is more frequently used to dis-
cuss the security of public key encryption schemes.

In a public key encryption scheme, the adver-
sary can always access the encryption oracle, be-
cause he can encrypt by himself. Therefore the
semantic security must be achieved against such
an adversary. Such security is called “semantically
secure against chosen plaintext attack” and writ-
ten IND-CPA. The threat of adversary who has
access to decryption oracle is called chosen cipher-
text attack (CCA). If a public-key scheme is seman-
tically secure against an adversary who has access
to a decryption oracle before determining the pair
of plaintexts m0 and m1, it is called IND–CCA1. If
a public-key scheme is semantically secure against
an adversary who has access to a decryption ora-
cle not only before receiving a target ciphertext
but also during the guessing stage, then it is de-
fined as IND–CCA2. It is regarded that this type
of adversary is the most powerful. Therefore the
scheme achieving IND–CCA2 is considered most
secure. (There is a restriction on this type of ad-
versary, namely that he cannot receive an answer
of the target ciphertext from decryption oracle.)

Besides semantic security, there are related
notions such as non-malleability and plaintext
awareness.

Kazue Sako
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SENDER ANONYMITY

Sender anonymity is achieved in a messaging sys-
tem if an eavesdropper who picks up messages
from the communication line of a recipient cannot

tell with better probability than pure guessing
who sent the messages. During the attack, the
eavesdropper may also listen on all communica-
tion lines of the network including those that con-
nect the potential senders to the network and he
may send his own messages. It is clear that all
messages in such network must be encrypted to
the same length in order to keep the attacker from
distinguishing different messages by their content
or length. The anonymity set for any particular
message attacked by the eavesdropper is the set
of all network participants that have sent message
within a certain time window before the attacked
message was received. This time window ofcourse
depends on latency characteristics and node con-
figurations of the network itself.

Sender anonymity can be achieved against
computationally restricted eavesdroppers by MIX
networks [1] and against computationally unre-
stricted eavesdroppers by DC networks [2,3].

Note that sender anonymity is weaker than
sender unobservability, where the attacker can-
not even determine whether or not a participant
sends a message. Sender unobservability can be
achieved with MIX networks and DC networks by
adding dummy traffic.

Gerrit Bleumer
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SEQUENCES

Sequences have many applications in mod-
ern communication systems, including signal
synchronization, navigation, radar ranging,
Code-Division Multiple-Access (CDMA) systems,
random number generation, spread-spectrum
communications, cryptography, in particular in
stream cipher systems.

In stream cipher systems it is essential to
construct sequences with good random proper-
ties, long periods, and large linear complexity. To
achieve many of these goals one often generates
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sequences using linear recurrence relations. The
period of a sequence {st } is the smallest integer ε

such that st+ε = st for all t. We will explain how
the period of a generated sequence is completely
determined by the characteristic polynomial of the
sequence. For linear sequences the period of the se-
quences generated can easily be controlled, which
makes them good building blocks in stream cipher
systems.

A linear recursion of degree n with binary coef-
ficients is given by

n∑
i=0

fi st+i = 0,

where fi ∈ GF(2) = {0, 1} for 0 < i < n and f0 =
fn = 1. The characteristic polynomial of the recur-
sion is defined by

f (x) =
n∑

i=0

fi xi .

The initial state (s0, s1, . . . , sn−1) and the given
recursion uniquely determines the generated se-
quence. A linear shift register with a characteristic
polynomial f (x) of degree n generates 2n different
sequences corresponding to the 2n different initial
states and these form a vector space over GF(2)
which is denoted 	( f ).

The maximum period of a sequence generated
by a linear shift register is at most 2n − 1. This
follows since a sequence is completely determined
by n-successive bits in the sequence and period 2n

is impossible since n successive zeros implies the
all zero sequence. Sequences with the maximal pe-
riod 2n − 1 are called m-sequences. For example,
with initial state (s0, s1, s2) = (001), then f (x) =
x3 + x + 1 generates the m-sequence 0010111.

EXAMPLE 1. Let the recursion be

st+4 + st+3 + st+2 + st+1 + st = 0 (mod 2)

with characteristic polynomial f (x) = x4 + x3 +
x2 + x + 1. The sequences in 	( f ) consists of
the 24 = 16 sequences corresponding to the se-
quences {(0), (00011), (00101), (01111)} and their
cyclic shifts.

To analyze properties of linear sequences, we as-
sociate a generating function G(x) to the sequence
{st }, and let

G(x) =
∞∑

t=0

st xt .

Let f∗(x) = ∑n
i=0 fn−i xi be the reciprocal polyno-

mial of the characteristic polynomial of f (x) of the

sequence. Then, we can compute the product

G(x) f∗(x) = (s0 + s1x + s2x2 + · · · )
× (1 + fn−1x + · · · + f1xn−1 + xn)

=
∞∑

t=0

ct xt .

The coefficient ct+n of xt+n for any t ≥ 0 becomes

ct+n =
n∑

i=0

fist+i = 0

as a consequence of the recurrence relation.
Hence,

G(x) f∗(x) = φ∗(x)

for some polynomial φ∗(x) of degree at most n − 1.
Its reciprocal polynomial φ(x) is given by

φ(x) = s0xn−1 + (s1 + fn−1s0)xn−2 + · · ·
+ (sn−1 + fn−1sn−2 + · · · + f1s0)

=
n−1∑
i=0

(
n−1−i∑

j=0

fi+ j+1s j

)
xi .

There is a one-to-one correspondence between any
sequence {st } in 	( f ) and any polynomial φ∗(x) of
degree ≤ n − 1. All sequences generated by f (x)
can therefore be described by

	( f ) =
{

φ∗(x)
f∗(x)

∣∣∣ deg(φ∗(x)) < deg( f ) = n
}

.

For example, the m-sequence 0010111 in 	(x3 +
x + 1) can be written

x2

1 + x2 + x3

= x2 + x4 + x5 + x6 + x9 + x11 + x12 + · · ·
= (x2 + x4 + x5 + x6)(1 + x7 + x14 + · · ·

In particular, a simple consequence of the above
description of 	( f ) is that 	( f ) ⊂ 	(g) if and only
if f (x) divides g(x).

The generating function G(x) for a periodic se-
quence of period ε can be written as

G(x) = (
s0 + s1x + · · · + sε−1xε−1)

× (1 + xε + x2ε + · · · )

= s0 + s1x + · · · + sε−1xε

1 − xε
.

Combining the two expressions for G(x), we obtain
the identity

(xε − 1)φ(x) = σ (x) f (x),

where σ (x) = s0xε−1 + s1xε−2 + · · · + sε−1, contains
all the information of a period of the sequence.

The period of the polynomial f (x) is the smallest
positive integer e such that f (x) divides xe − 1. The
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importance of the period e of f (x), is that in order
to find the period of all the sequences in 	( f ), it is
enough to find the period of f (x).

Since f (x) divides xe − 1 it follows that 	( f ) ⊂
	(xe − 1), the set of sequences where st+e = st ,
i.e., of period dividing e. Hence, all sequences gen-
erated by f (x) has period dividing e. Let the se-
quence {st } correspond to the polynomial φ(x). If
gcd( f (x), φ(x)) = 1 then as a consequence of the
identity (xε − 1)φ(x) = σ (x) f (x), it follows that {st }
has smallest period e, since in this case f (x) must
divide xε − 1 and thus ε ≥ e which implies that
ε = e.

In particular, when f (x) is an irreducible poly-
nomial of period e, then all the nonzero sequences
in 	( f ) have period e. For example the polynomial
f (x) = x4 + x3 + x2 + x + 1 in Example 1 is irre-
ducible and divides x5 + 1 and has period 5, and
therefore all nonzero sequences in 	( f ) have pe-
riod 5.

To determine the cycle structure of 	( f ) for an
arbitrary polynomial f (x) that can be factored as
f (x) = ∏

fi(x)ki , fi(x) irreducible, one first needs to
determine the cycle structure of 	( fki

i ) and then
the cycle structure for 	(gh) when gcd(g,h) = 1.

Cycle structure of Ω( f r)

Let f (x) be an irreducible polynomial of period e.
Let k be defined such that 2k < r ≤ 2k+1. Then
	( fr )\	( f ) contains

2n2 j − 2n2 j−1

sequences of period e2 j for j = 1, 2, . . . , k and

2nr − 2n2k

sequences of period e2k+1.

EXAMPLE 2. Let f (x) = x3 + x + 1 be the charac-
teristic polynomial with e = 7, that generates an
m-sequence. The number of sequences of each pe-
riod in 	( f 3) is therefore

Number 1 7 56 448
Period 1 7 14 28

Cycle structure of 	(gh) when gcd(g, h) = 1.

In this case it can be shown that each sequence
{st } in 	(gh) can be written uniquely

{st } = {ut } + {vt }
where {ut } ∈ 	(g) and {vt } ∈ 	(h). Further, the pe-
riod of the sum {ut } + {vt } is equal to the least com-
mon multiple of the period of the two sequences,
i.e.,

per (st ) = lcm(per (ut ), per (vt )).

To find the cycle structure of 	(gh), suppose 	(g)
contains d1 cycles of length λ1 and 	(h) contain d2
cycles of length λ2. Add in all possible ways the
corresponding d1λ1 sequences from 	(g) and the
d2λ2 sequences from 	(h). This gives d1λ1d2λ2 dis-
tinct sequences all of period lcm(λ1, λ2). Formally
we can write this as [d1(λ1)][d2(λ2)] = [d(λ)] where
d = d1d2gcd(λ1, λ2) and λ = lcm(λ1, λ2).

EXAMPLE 3. Let f1(x) = x3 + x + 1 and f2(x) =
x4 + x3 + x2 + x + 1. The cycle structure of 	( f1)
can be written [1(1) + 1(7)], and similarly for 	( f1)
as [1(1) + 3(5)]. Combining the cycle structure as
described above, gives the cycle structure [1(1) +
1(7) + 3(5) + 3(35)].

The discussion above shows that the period of
all sequences in 	( f ) is completely determined
from the periods of the divisors of f (x). This way of
controlling the periods is one of the main reasons
for using linear recursions as building blocks in
stream ciphers.

The sequence {st } can be expressed in terms of
the zeros of its characteristic polynomial f (x) of
degree n. In the case when the zeros of f (x) are
simple, which is the case when the sequence has
odd period, then {st } has a unique expansion in the
form

st =
n∑

i=1

aiα
t
i

for some constants ai and where αi , 1 ≤ i ≤ n are
the zeros of f (x).

The main problem with linear recursions in
cryptography is that it is easy to reconstruct a
sequence {st } generated by a characteristic poly-
nomial f (x) of degree n from the knowledge of 2n
consecutive bits in {st }, since this gives a system
of n equations for determining the unknown coef-
ficients of f (x). The Berlekamp–Massey algorithm
is an efficient method for finding f (x) in this way.
Several methods exist to increase the linear span,
i.e, the smallest degree of the linear recursion that
generates the sequence. We just mention a few
simple ones obtained by multiplying sequences.

Let {ut } and {vt } be two sequences of odd pe-
riod. Then, ut = ∑

aiα
t
i where αi , 1 ≤ i ≤ n, are

the zeros of the characteristic polynomial of {ut }
and vt = ∑

bjβ
t
j where β j, 1 ≤ j ≤ m, are the zeros

of the characteristic polynomial of {vt }. Then the
sequence {wt } = {utvt } can be written as

wt =
∑

aib j(αiβ j)t .

This shows that {wt } is generated by the polyno-
mial with the, at most, nm different zeros αiβ j for
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1 ≤ i ≤ n, 1 ≤ j ≤ n. If gcd(per (ut ), per (vt )) = 1,
then it can be shown that per (wt ) = per (ut )per (vt ).
However, the number of zeros and ones in se-
quence {wt } will in general not be balanced even if
this is the case for {ut } and {vt }. This follows since
wt = 1 if and only if ut = vt = 1, and thus only 1/4
of the elements in {wt } will be 1’s when {ut } and
{vt } are balanced.

Often one considers sequences of the form

wt = st+τ1st+τ2 . . . st+τk ,

where st is an m-sequence. A closer study of the ze-
ros of the characteristic polynomial of {wt } shows
that the linear span is at most

∑k
i=1

(n
i

)
and fre-

quently the equality holds.
Every Boolean function in n variables, f (x1,

x2, . . . , xn), can be written uniquely as the sum

f (x1, x2, . . . , xn) = u0 +
n∑

i=1

ui xi +
n∑

i=1

n∑
j=1

uijxi xj

+ · · · + u12...nx1x2 · · · xn

with binary coefficients (see algebraic normal form
in Boolean functions).

One can determine the linear span ob-
tained by combining n different m-sequences
{at }, {bt }, . . . , {ct } with characteristic polynomials
of pair-wise relative prime degrees e1, e2, . . . , en
using a Boolean combining function. From the
Boolean function f (x1, x2, . . . , xn) we construct
a sequence wt = f (at , bt , . . . , ct ). Then the lin-
ear span of the combined sequence is equal to
f (e1, e2, . . . , en), evaluated over the integers.

It is important in applications of sequences in
communication systems as well as in stream ci-
pher systems to generate sequences with good
auto- and cross-correlation properties.

Let {u(t)} and {v(t)} be two binary sequences of
period e. The cross-correlation of the sequences
{u(t)} and {v(t)} at shift τ is defined as

Cu,v(τ ) =
e−1∑
t=0

(−1)ut+τ −vt

where the sum t + τ is computed modulo e. In the
case when the two sequences are the same, we de-
note this by the auto-correlation at shift τ .

For synchronization purposes one prefers se-
quences with low absolute values of the maximal
out-of-phase auto-correlation, i.e., |Cu,u(τ )| should
be small for all values of τ 
= 0 (mod e).

Let F be a family consisting of M sequences

F = {si(t) : i = 1, 2, · · · , M},
where each sequence {si(t)} has period e.

The cross-correlation between two sequences
{si(t)} and {s j(t)} at shift τ is denoted by Ci, j(τ ).

In Code-Division Multiple-Access (CDMA) appli-
cations it is desirable to have a family of sequences
with certain properties. To facilitate synchroniza-
tion, it is desirable that all the out-of-phase auto-
correlation values (i = j, τ 
= 0) are small. To min-
imize the interference due to the other users in
a multiple access situation, the cross-correlation
values (i 
= j) must also be kept small. For this
reason the family of sequences should be designed
to minimize

Cmax = max{|Ci, j| : 1 ≤ i, j ≤ M,

and either i 
= j or τ 
= 0}.
For practical applications in communication

systems one needs a family F of sequences of pe-
riod e, such that the number of users M = |F | is
large and simultaneously Cmax is small. Also in
stream ciphers it is of importance that the gen-
erated sequences have good auto-correlation and
cross-correlation properties.

Tor Helleseth
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SERPENT

Serpent is a 128-bit block cipher designed by
Anderson et al. and first published in 1998 [1].
Later that year the cipher was slightly modified [2]
and proposed as a candidate for the Advanced En-
cryption Standard (Rijdnael/AES). In 1999 it was
selected as one of the five finalists of the AES com-
petition.

Serpent is a 32-round substitution–permutation
(SP) network operating on 128-bit blocks. Each
round consists of a key mixing operation, a layer
of 32 copies of a 4 × 4-bit S-box, and (except in the
last round) a linear transformation. The replicated
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S-box differs from round to round and is selected
from a set of eight different S-boxes. The last (in-
complete) round is followed by a final key mixing
operation. An additional bit permutation before
the first round and after the last key mixing layer
is applied to all data entering and leaving the SP
network. The 128-bit subkeys mixed with the data
in each round are generated by linearly expanding
a 128-bit, 192-bit, or 256-bit secret key, and pass-
ing the result through a layer of S-boxes.

The initial and final permutations, the S-boxes,
and the linear transformation have all been de-
signed in order to allow an optimized implementa-
tion in software using the “bitslice” technique [3].
The idea is to construct a complete description of
the cipher using only logical bit-operations (as in
hardware) and then execute 32 (or 64) operations
in parallel on a 32-bit (or 64-bit) processor.

Serpent is considered to have a rather high se-
curity margin. The best attacks published so far
break about 1/3 of the rounds. Kelsey, Kohno, and
Schneier [7] presented a first attack breaking 9
rounds with a time complexity slightly faster than
exhaustive key search. This amplified boomerang
attack was improved and extended by one round
by Biham et al. [5]. The best attacks so far are
the linear and the differential-linear attacks pre-
sented in [4] and [6]. Both break 11 rounds out
of 32.

Christophe De Cannière
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SET

SET (Secure Electronic Transactions) is a stan-
dard for a payment protocol for credit card pay-
ments over the Internet and was developed in
1996–97 as a joint initiative of MasterCard, VISA,
IBM, Microsoft, Netscape and others as a more
secure alternative to Secure Socket Layer SSL,
which never really caught on.

SET assumes the existence of appropriate in-
frastructure within the card organisation, and en-
tails the communication between the registered
Payer (cardholder), Payee (merchant) and the Pay-
ment Gateway Provider, i.e. the Acquirer or a Pay-
ment Service Provider. The main purpose of the
protocol is to secure this communication in such a
way that neither the Payee, nor the Payment Gate-
way Provider can access all purchase transaction
details. Thus the Payee has access to the order
information only and not the credit card details,
while the Payment Gateway Provider has access
to the payment information only.

SET is a PKI-solution (see public key infra-
structure). The Certificate Authority (CA) hierar-
chy consists of a Root CA that signs the certificates
of each of the credit card brand CA’s. These CA’s
sign certificates for the Cardholder CA (the Card
Issuer), Merchant CA (the Customer Acquirer)
and the Payment CA. These CA’s then in turn sign
the certificates for the cardholder, merchant, and
payment gateway provider, respectively, using the
X.509 v3 format. Neither cardholder’s name, nor
card number are shown in the certificates. Rather
a number is used that has been computed from
the credit card number and other input by the
Issuer.

In short, the protocol works as follows: the card-
holder indicates that he wants to initiate pay-
ment for his order. The merchant then identifies
himself with his certificate and provides the card-
holder with the public key of the payment gateway
provider. The cardholder encrypts the payment
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information using this key, thus ensuring the mer-
chant cannot access this information and signs
the payment instruction. The merchant forwards
the payment information to the payment gateway
provider in an authorization request, and the pay-
ment gateway provider verifies the content and
authorizes accordingly.

Peter Landrock

SHA FAMILY (SECURE
HASH ALGORITHM)

The SHA (Secure Hash Algorithm) Family des-
ignates a family of six different hash functions:
SHA-0, SHA-1, SHA-224, SHA-256, SHA-384, and
SHA-512 [7, 8]. They take variable length input
messages and hash them to fixed-length outputs.
The first four operate on 512-bit message blocks di-
vided into 32-bit words and the last two on 1024-
bit blocks divided into 64-bit words. SHA-0 (the
first version of SHA since replaced by SHA-1) and
SHA-1 produce a message digest of 160 bits, SHA-
224 of 224 bits, SHA-256 of 256 bits, SHA-384 of
384 bits and SHA-512 of 512 bits respectively. All
six functions start by padding the message accord-
ing to the so-called Merkle-Damgård strength-
ening technique. Next, the message is processed
block by block by the underlying compression func-
tion. This function initializes an appropriate num-
ber of chaining variables to a fixed value to hash
the first message block, and to the current hash
value for the following message blocks. Each step
i of the compression function updates in turn one
of the chaining variables according to one mes-
sage word Wi . As there are more steps in the com-
pression function than words in a message block,
an additional message schedule is applied to ex-
pand the message block. In the last step, the ini-
tial value of the chaining variable is added to each
variable to form the current hash value (or the
final one if no more message blocks are avail-
able). The following provides an overview of SHA-
1, SHA-256, and SHA-512. SHA-0 is almost iden-
tical to SHA-1, SHA-224 to SHA-256 and SHA-384
to SHA-512.

PADDING: The message is appended with a bi-
nary one and right-padded with a variable num-
ber of zeros followed by the length of the original
message coded over two binary words. The total
padded message length must be a multiple of the
message block size.

SHA-1 Compression Function

Five 32-bit chaining variables A, B, C, D, E are
either initialized to

A ← IV1 = 67452301x

B ← IV2 = EFCDAB89x

C ← IV3 = 98BADCFEx

D ← IV4 = 10325476x

E ← IV5 = C3D2E1F0x

for the first 512-bit message block or to the current
hash value for the following message blocks. The
first sixteen words of the message schedule are
initialized to input message words. The following
64 message schedule words Wi are computed as

Wi ← (Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) � 1,

16 ≤ i ≤ 79

where “⊕” represents bit-wise exclusive-or, and
“X � n” is the cyclic rotation of X to the left by
n bits. Then the compression function works as
follows:

for i = 0 to 79 do
T ← Wi + A � 5 + fi (B, C, D) + E + Ki

mod 232

B ← A
C ← B � 30
D ← C
E ← D
A ← T

where the nonlinear functions fi are defined by

fi f (X, Y, Z) =
(X ∧ Y)|(¬X ∧ Z), 0 ≤ i ≤ 19

fxor (X, Y, Z) =
(X ⊕ Y ⊕ Z), 20 ≤ i ≤ 39, 60 ≤ i ≤ 79

fmaj(X, Y, Z) =
((X ∧ Y)|(X ∧ Z)|(Y ∧ Z), 40 ≤ i ≤ 59

and the constants Ki by

Ki ← 5A827999x, 0 ≤ i ≤ 19
Ki ← 6ED9EBA1x, 20 ≤ i ≤ 39
Ki ← 8F1BBCDCx, 40 ≤ i ≤ 59
Ki ← CA62C1D6x, 60 ≤ i ≤ 79.

After 80 steps, the output value of each chain-
ing variable is added to the previous intermedi-
ate hash value according to the Davies–Meyer con-
struction to give the new intermediate hash value.
When all consecutive message blocks have been
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hashed, the last intermediate hash value is the
final overall hash value.

SHA-0

The only difference between SHA-1 and SHA-0
is the fact that there is no left rotation by one bit
in the message schedule of SHA-0. In other words,
the 64 message schedule words Wi for SHA-0 are
computed as

Wi ←Wi−3 ⊕ Wi−8 ⊕Wi−14 ⊕ Wi−16, 16 ≤ i ≤ 79.

SHA-256 and SHA-512 Compression
Functions

Eight chaining variables A, B, C, D, E, F, G, H are
initialized to fixed values H0 to H7 for the first
message block, and to the current intermediate
hash value for the following blocks. The first six-
teen w-bit words (where w = 32 for SHA-256 and
w = 64 for SHA-512) of the message schedule are
initialized to the input message words. The follow-
ing r − 16 (where r = 64 for SHA-256 and r = 80
for SHA-512) message schedule words Wi are com-
puted as

Wi = σ1(Wi−2) + Wi−7 + σ0(Wi−15)
+ Wi−16 mod 2w, 16 ≤ i ≤ r − 1

where σ0 and σ1 represent linear combinations of
three rotated values of the input variable. Then
the compression function works as follows:

for i = 0 to r do
T1 ← H + 1(E) + fi f (E, F, G) + Ki

+ Wi mod 2w

T2 ← 0 (A) + fmaj(A, B, C) mod 2w

H ← G
G ← F
F ← E
E ← D + T1 mod 2w

D ← C
C ← B
B ← A
A ← T1 + T2 mod 2w

where 0 and 1 again represent linear combina-
tions of three rotated values of the input variable
and Ki is a different w-bit constant for each step
i. Finally, the output value of each chaining vari-
able is added to the previous intermediate hash
value according to the Davies–Meyer construction
to give the new intermediate hash value. When
all consecutive message blocks have been hashed,
the last intermediate hash value is the final over-
all hash value.

SHA-224

The SHA-224 hash computations are exactly the
same as those of SHA-256, up to the following two
differences: the constants H0 to H7 used in SHA-
224 are not the same as those used in SHA-256,
and the SHA-224 output is obtained by truncating
the final overall hash value to its 224 leftmost bits.

SHA-384

The SHA-384 hash computations are exactly the
same as those of SHA-512, up to the following two
differences: the constants H0 to H7 used in SHA-
384 are not the same as those used in SHA-512,
and the SHA-384 output is obtained by truncating
the final overall hash value to its 6 leftmost words.

SECURITY CONSIDERATION: All six SHA func-
tions belong to the MD4 type hash functions and
were introduced by the American National Insti-
tute for Standards and Technology (NIST). SHA
was published as a Federal Information Process-
ing Standard (FIPS) in 1993. This early version is
known as SHA-0. In 1994, a minor change to SHA-
0 was made, and published as SHA-1 [7]. SHA-
1 was subsequently standardized by ISO [5]. The
following generation of SHA functions with much
larger message digest sizes, namely 256, 384, and
512 bits, was introduced in 2000 and adopted as a
FIPS standard in 2002 [8] as well as an ISO stan-
dard in 2003 [5]. The latest member of the family,
namely SHA-224, was adopted in a Change No-
tice to FIPS 180-2 in 2004. This latter generation
of hash functions provides theoretical security lev-
els against collision search attacks which are con-
sistent with the security levels expected from the
three standard key sizes of the Advanced Encryp-
tion Standard (see Rijndael/AES) (128, 192, and
256 bits). The first attack known on SHA-0 is by
Chabaud and Joux [2]. They show that in about
261 evaluations of the compression function it is
possible to find two messages hashing to the same
value whereas a brute-force attack exploiting the
birthday paradox requires about 280 evaluations
in theory. In 2004, Biham and Chen introduce the
neutral bit technique and find near-collisions on
the compression function of SHA-0 [1] as well as
collisions on reduced-round versions of SHA-1. In
August 2004, Joux, Carribault, Jalby and Lemuet
[6] first provide a full collision on SHA-0 using two
four-block messages and requiring a complexity of
251 compression function computations. In Febru-
ary 2005, Wang, Yin and Yu [10] announce full col-
lisions on SHA-0 in 239 hash operations and report
that collisions on SHA-1 can be obtained in less
than 269 hash operations. Saarinen [9] addresses
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the existence of slid pairs in SHA-1. The first se-
curity analysis on SHA-256, SHA-384 and SHA-
512 in 2003 is by Gilbert and Handschuh [3]. They
show that collisions can be found with a reduced
work factor for weakened variants of these func-
tions. Subsequently, Hawkes and Rose show that
second pre-image attacks are far easier than ex-
pected on SHA-256 [4]. However these observa-
tions do not lead to actual attacks in 2004.

Helena Handschuh
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SHAMIR’S THRESHOLD
SCHEME

In [1], Shamir proposed an elegant “polyno-
mial” construction of a perfect threshold schemes

(see threshold cryptography). An (n, k)-threshold
scheme is a particular case of secret sharing
scheme when any set of k or more participants
can recover the secret exactly while any set of less
than k particiants gains no additional, i.e. a pos-
teriori, information about the secret. Such thresh-
old schemes are called perfect and they were con-
structed in [2] and [1]. Shamir’s construction is the
following.

Assume that the set S0 of secrets is some
finite field GF(q) of q elements (q should be
prime power) and that the number of partici-
pants of SSS n < q. The dealer chooses n differ-
ent nonzero elements (points) x1, . . . , xn ∈ GF(q),
which are publicly known. To distribute a se-
cret s0 the dealer generates randomly coefficients
g1, . . . , gk−1 ∈ GF(q), forms the polynomial g(x) =
s0 + g1x + · · · + gk−1xk−1 of degree less than k and
sends to the i-th articipant the share si = g(xi).
Clearly any k participants can recover the whole
polynomial g(x) and, in particular, its zero coef-
ficient (or g(0)), since any polynomial of degree
l is uniquely determined by its values in l + 1
points and Lagrange interpolation formula shows
how to determine it. On the other hand, the point
0 can be considered as an “evaluation point” x0,
corresponding to the dealer, since s0 = g(0). Then
the above consideration shows that for any given
shares s1 = g(x1), . . . , sk−1 = g(xi) all possible val-
ues of s0 are equally probable, hence the scheme
is perfect.

For some applications it is convenient to have
the maximal possible number n of participants
equal to q, especially for q = 2m. For Shamir’s
scheme n < q but the following simple modifica-
tion allows to have n = q. Namely, the dealer gen-
erates a random polynomial of the form f (x) =
f0 + f1x + · · · + fk−2xk−2 + s0xk−1 and distribute
shares si = f (xi), where the xi are different but not
necessary nonzero elements of GF(q). The perfect-
ness of this scheme can be proved either directly
(along the line of the above proof by considering
the polynomial h(x) = f (x) − s0xk−1 of degree at
most k − 2), or as an application of established
in [3] the relationship between perfect (n, k)-
threshold schemes and (n + 1, k) Reed–Solomon
codes (see cyclic codes), since the above construc-
tion is equivalent to so-called 2-lengthening of
Reed–Solomon codes.

Robert Blakley
Gregory Kabatiansky
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Fig. 1. The conventional cryptosystem
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SHANNON’S MODEL

Although symmetric cryptosystems have been
around for at least two thousand years (see for
instance Caesar cipher), it was only in 1949 that
Claude Shannon gave a formal mathematical de-
scription of these systems [1].

In his description, a sender A (often called
Alice) wants to send a message m to a receiver B
(who is called Bob). The message is called a plain-
text and is taken from a finite set, called plain-
text space M. Of course, Alice may send more
messages.

Since the transmission channel is insecure (a
person called Eve is also connected to the channel),
Alice applies a mapping Ek to m. The result c is
called the ciphertext and is an element of a set C,

the ciphertext space. The mapping Ek is called the
encryption function. It is c that Alice sends to Bob
and so it will be c that is intercepted by Eve.

Clearly, the encryption function Ek must be a
one-to-one mapping, since Bob must be able to re-
trieve the plaintext/message m from the cipher-
text c by means of the decryption function Dk. In
formula: Dk(c) = m.

Since more people may want to use the same
cryptosystem and since Alice and Bob do not want
to use the same mapping too long for security rea-
sons, their function is taken from a large set E of
one-to-one mappings from M to C. It is for this
reason that the encryption and decryption func-
tions carry a label k. This k is called the key and
is taken from the so-called key-space K. It is the
set E = {Ek | k ∈ K} that describes the cryptosys-
tem. Quite clearly Alice and Bob must use the

same key k. To this end, they use a secure chan-
nel, a communication line without any eavesdrop-
pers. A possibility is that they agreed beforehand
on the key, another possibility is that one has
sent the key by means of a courier to the other.
Nowadays public key cryptography is often used
for this purpose.

Normally, the same cryptosystem E will be used
for a long time and by many people, so it is rea-
sonable to assume that E is also known to the
cryptanalyst. It is the frequent changing of the key
that has to provide the security of the data. This
principle was already clearly stated by the Dutch-
man Auguste Kerckhoff (see maxims) in the 19th
century.

Often M = C in which case one wants the num-
ber of plaintexts that are mapped to a particular
ciphertext (under different keys) to be the same. In
that case the ciphertext does not give any informa-
tion about the plaintext (see information theory).

The cryptanalyst who is connected to the trans-
mission line can be:
Passive (eavesdropping): The cryptanalyst tries

to find m (or even better k) from c.
Active (tampering): The cryptanalyst tries to ac-

tively manipulate the data that are being trans-
mitted. For instance, she alters a transmitted
ciphertext.

Henk van Tilborg
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SHARE

Share is a portion of information distributed by a
secret sharing scheme (SSS) to a given user. In the
standard definition of SSS, shares are distributed
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via secure, private channels in such a way that
each participant only knows his own share [1, 2].
We note that it is also possible to organize SSS in
case of public channels [3].

Robert Blakley
Gregory Kabatiansky

References

[1] Shamir, A. (1979). “How to share a secret.” Commu-
nications of the ACM, 22 (1), 612–613.

[2] Blakley, R. (1979). “Safeguarding cryptographic
keys.” Proceedings of AFIPS 1979 National Com-
puter Conference, 48, 313–317.

[3] Beimel, A. and B. Chor (1998). “Secret sharing with
public reconstruction.” IEEE Transactions on Infor-
matiom Theory, 44 (5), 1887–1896.

SHORTEST VECTOR
PROBLEM

The Shortest Vector Problem (SVP) is the most
famous and widely studied computational prob-
lem on lattices. Given a lattice L (typically repre-
sented by a basis), SVP asks to find the shortest
nonzero vector in L. The problem can be defined
with respect to any norm, but the Euclidean norm
is the most common (see the entry lattice for a
definition). A variant of SVP (commonly studied
in computational complexity theory) only asks to
compute the length (denoted λ(L)) of the shortest
nonzero vector in L, without necessarily finding
the vector.

SVP has been studied by mathematicians (in
the equivalent language of quadratic forms) since
the 19th century because of its connection to many
problems in the number theory. One of the earliest
references to SVP in the computer science litera-
ture is [7], where the problem is conjectured to be
NP-hard.

A cornerstone result about SVP is Minkowski’s
first theorem, which states that the shortest
nonzero vector in any n-dimentional lattice has
length at most γn det(L)1/n, where γn is an abso-
lute constant (approximately equal to

√
n) that de-

pends only of the dimension n, and det(L) is the
determinant of the lattice (see the entry lattice for
a definition).

The upper bound provided by Minkowski’s the-
orem is tight, i.e., there are lattices such that the
shortest nonzero vector has length γn det(L)1/n.
However, general lattices may contain vectors
much shorter than that. Moreover, Minkowski’s

theorem only proves that short vectors exist, i.e.,
it does not give an efficient algorithmic proce-
dure to find such vectors. An algorithm to find
the shortest nonzero vector in two-dimensional
lattices was already known to Gauss in the 19th
century, but no general methods to efficiently find
(approximately) shortest vectors in n-dimentional
lattices were known until the early 1980s. A g-
approximation algorithm for SVP is an algorithm
that on input a lattice L, outputs a nonzero lattice
vector of length at most g times the length of the
shortest vector in the lattice. The LLL lattice re-
duction algorithm ([4], see lattice reduction) can
be used to approximate SVP within a factor g =
O((2/

√
3)n) where n is the dimension of the lattice.

Smaller approximation factors (slightly subexpo-
nential in n—see subexponential time for a def-
inition) can be achieved in polynomial time us-
ing more complex algorithms like Schnorr’s Block
Korkine–Zolotarev reduction [6].

No efficient (polynomial time) algorithm to com-
pute the length of the shortest vector in a lat-
tice is known to date (leave alone actually finding
the shortest vector). The NP-hardness of SVP (in
the Euclidean norm) was conjectured by van Emde
Boas in 1981 [7]. The conjecture remained wide
open until 1997, when Ajtai proved that SVP is
NP-hard to solve exactly under randomized re-
ductions [1]. The strongest NP-hardness result
for SVP known to date is due to Micciancio [5],
who showed that SVP is NP-hard even to approxi-
mate within any factor less than

√
2. Stronger (but

still subpolynomial) inapproximability results are
known for SVP in the �∞ norm [2]. On the other
hand, Goldreich and Goldwasser [3] have shown
that (under standard complexity assumptions)
SVP cannot be NP-hard to approximate within
small polynomial factors g = O(

√
n/ log n).

As is the case with the related Closest Vector
Problem, finding a good approximation algorithm
(i.e., a polynomial-time algorithm with polyno-
mial approximation factors) is one of the most im-
portant open questions in the area. Indeed, the
hardness of approximating SVP within certain
polynomial factors can be used as the basis for
the construction of provably secure cryptographic
functions (see lattice based cryptography).

Daniele Micciancio
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SHRINKING GENERATOR

The shrinking generator is a clock-controlled
generator that has been proposed in 1993 [1]. It
is based on two Linear Feedback Shift Registers
(LFSRs), say R1 and R2. The idea is that R1’s out-
put will decimate R2’s output. At each step, both
are clocked; if R1 output a 1, then R2’s output bit
is included in the keystream, else (if R1 outputs a
0) R2’s output bit is discarded.

R1

keep

discard

R2

EXAMPLE. Let us consider R1 of length three,
with the feedback relation st+1 = st + st−2, and
R2 of lenth four, with the feedback relation
st+1 = st + st−3. Then the following happens (the

first row concerns only the initialization; the
internal states are of the form stst−1st−2 or
stst−1st−2st−3):

R1 R2

State Output State Output Output

010 0101
001 0 1010 1
100 1 1101 0 0
110 0 0110 1
111 0 0011 0
011 1 1001 1 1
101 1 0100 1 1
010 1 0010 0 0
001 0 0001 0
100 1 1000 1 1
110 0 1100 0
111 0 1110 0
011 1 1111 0 0
101 1 0111 1 1

...
...

...
...

...

The inventors discussed some security points in
their paper. More recent results have been given
in [2, 5]. A discussion about the implementation
and the use of a buffer (in order to avoid the
irregular rate of the output) is presented in [3]
and [4].

Caroline Fontaine
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Fig. 1. AES power trace
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SIDE-CHANNEL ANALYSIS

INTRODUCTION: Electronic devices have to com-
ply with consumption constraints especially on au-
tonomous equipments, like mobile phones. Power
analysis has been included into most certification
processes regarding products dealing with infor-
mation security such as smart cards.

The electrical consumption of any electronic de-
vice can be measured with a resistor inserted be-
tween the ground or Vcc pins and the actualground
in order to transform the supplied current into a
voltage easily monitored with an oscilloscope.

Within a micro-controller the peripherals con-
sume differently. For instance writing into non-
volatile memory requires more energy than
reading. Certain chips for smart cards enclose a
crypto-processor, i.e., a particular device dedicated
to specific cryptographic operations, which gen-
erally entails a consumption increase. The con-
sumption trace of a program running inside a
micro-controller or a microprocessor is full of in-
formation. The signal analysis may disclose lots
of things about the used resources or about the
process itself. This illustrates the notion of side
channel as a source of additional information.

Fig. 2. Information leakage

Basically a power consumption trace exhibits
large scale patterns most often related to the
structure of the executed code. The picture below
(Figure 1) shows the power trace of a smart-card
chip ciphering a message with the Advanced En-
cryption Standard (AES). The ten rounds are eas-
ily recognised with nine almost regular patterns
first followed by a shorter one.

Zooming into a power signal exhibits a local be-
haviour in close relationship with the silicon tech-
nology. At the cycle scale, the consumption curve
looks roughly like a capacitive charge and dis-
charge response.

A careful study of several traces of a same code
with various input data shows certain locations
where power trace patterns have different heights.
The concerned cycles indicate some data depen-
dence also called information leakage. They may
be magnified by a variance analysis over a large
number of executions with random data. For in-
stance, by ciphering many random plaintexts with
a secret-key algorithm, it is possible to distinguish
the areas sensitive to input messages from the con-
stant areas that correspond to the key schedule.

INFORMATION LEAKAGE MODEL: The charac-
terisation of data leakage (namely, finding the re-
lationships between the data and the variability of
consumption) has been investigated by several re-
searchers. The most common model consists in cor-
relating these variations to the Hamming weight
of the handled data, i.e., the number of nonzero
bits. Such a model is valid for a large number of



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg May 24, 2005 14:19

572 Side-channel analysis

8

7

6

5

4

3

2

1

0

240
230
220
210
200
190
180
170
160
150

0

0 50 100 150 200 250

Data byte

Power consumption

50 100 150 200 250

Data byte

Hamming distance from data to reference B8h

Fig. 3. Transition model

devices. However it can be considered as a special
case of the transition model which assumes that
the energy is consumed according to the number of
bits switched for going from one state to the next
one. This behaviour is represented by the Ham-
ming distance between the data and some a priori
unknown constant, i.e., the Hamming weight of
the data XOR-ed with this constant.

As shown in the next picture (Figure 3), for an
8-bit micro-controller, the transition model may
seem rough but it suffices to explain many situ-
ations, provided that the reference constant state
is known. In most microprocessors this state is ei-
ther an address or an operating code. Each of them
has a specific binary representation and therefore
a different impact in the power consumption: this
is why each cycle pattern is most often different
from its neighbours.

Some technologies systematically go through a
clear “all-zeros” state that explains the simpler
Hamming-weight model.

Fig. 4. Bit tracing (upper curve: power consumption of a single execution; two lower curves: DPA curves respectively
tracing the first and last data bit of a targetted process)

STATISTICAL ANALYSES: With information leak-
age models in mind, it is possible to designsta-
tistical methods in order to analyse the data
leakage. They require a large amount of power
traces assigned to many executions of the same-
code with varying data, generally at random, and
make use of statistical estimators such as aver-
ages, variances and correlations. The most famous
method is due to Paul Kocher et al. and is called
Differential Power Analysis (DPA).

Basically the purpose of DPA is to magnify
the effect of a single bit inside a machine word.
Suppose that a random word in a 	-bit proces-
sor is known and uniformly distributed. Suppose
further that the associated power consumption
obeys the Hamming-weight model. On average the
Hamming weight of this word is 	/2. Given N
words, two populations can be distinguished ac-
cording to an arbitrary selection bit: the first pop-
ulation, S0, is the set of t words whose selection
bit is 0 and the second population, S1, is the set
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of N–t words whose selection bit is 1. On average,
the words of set S0 will have a Hamming weight
of (	 − 1)/2 whereas the words of set S1 will have
a Hamming weight of (	 + 1)/2. The same bias
can be seen through the corresponding power con-
sumption traces since it is supposed to be corre-
lated with the Hamming weight of the data. Let
C0 and C1 respectively denote the averaged power
consumption traces of the blue curvesets S0 and
S1. The DPA trace is defined as the difference
C0 − C1.

The resulting DPA curve has the property of
erecting bias peaks at moments when the selec-
tion bit is handled. It looks like noise everywhere
else: indeed, the constant components of the signal
are cancelled by the subtraction whereas dynamic
ones are faded by averaging, because they are not
coherent with the selection bit.

This approach is very generic and applies to
many situations. It works similarly with the tran-
sition model. Of course the weight of a single selec-
tion bit is relatively more important in processors
with short words like 8-bit chips. If the machine
word is larger, the same DPA bias can be obtained
by increasing the number of trials.

A first application of DPA is called bit tracing. It
is a useful reverse engineering tool for monitoring
a predictable bit during the course of a process. In
principle a DPA peak rises up each time it is pro-
cessed. This brings a lot of information about an
algorithm implementation. To achieve the same
goal Paul Fahn and Peter Pearson proposed an-
other statistical approach called Inferential Power
Analysis (IPA). The bits are inferred from the devi-
ation between a single trace and an average trace
possibly resulting from the same execution: for in-
stance the average trace of a DES round (see Data
Encryption Standard) can be computed over its
sixteen instances taken from a single execution.
IPA does not require the knowledge of the random
data to make a prediction on a bit value. But as
counterpart it is less easy to implement and the
interpretation is less obvious.

After Paul Kocher, Thomas Messerges et al.
have proposed to extend DPA by considering mul-
tiple selection bits in order to increase the signal
to noise ratio (SNR). If the whole machine word is
taken into account, a global approach consists in
considering the transition model as suggested by
Jean-Sébastien Coron et al.

FROM POWER ANALYSIS TO POWER ATTACKS:
Obviously, if the power consumption is sensitive
to the executed code or handled data, critical in-
formation may leak through power analysis. This

k bitsize(d )

y x

for i = k − 2 downto 0 do

y y2 (mod n)

if (bit i of d is 1) then y y . x (mod n)

endfor

return y

Fig. 5. Square-and-multiply exponentiation algorithm

section explains how to turn a side-channel anal-
ysis into an attack.

SPA-Type Attacks

A first type of power attacks is based on Simple
Power Analysis (SPA). For example, when applied
to an unprotected implementation of an RSA pub-
lic key encryption scheme, such an attack may re-
cover the whole private key (i.e., signing or decryp-
tion key) from a single power trace.

Suppose that a private RSA exponentiation,
y = xd mod n (see modular arithmetic), is carried
out with the square-and-multiply algorithm (see
also exponentiation algorithms). This algorithm
processes the exponent bits from left to right. At
each step there is a squaring, and when the pro-
cessed bit is 1 there is an additional multiplication.
A straightforward (i.e., unprotected) implementa-
tion of the square-and-multiply algorithm is given
in Figure 5.

The corresponding power curve exhibits a se-
quence of consumption patterns among which
some have a low level and some have a high level.
These calculation units are assigned to a crypto-
processor handling n-bit arithmetic. Knowing that
a low level corresponds to a squaring and that a
high level corresponds to a multiplication, it is
fairly easy to read the exponent value from the
power trace:
� a low-level pattern followed by another low-

level pattern indicates that the exponent bit is
0, and

� a low-level pattern followed by a high-level pat-
tern indicates that the exponent bit is 1.
This previous picture also illustrates why the

Hamming weight of exponent d can be disclosed
by a timing measurement.

DPA-Type Attacks

Historically, DPA-type attacks—that is, power
attacks based on Differential Power Analysis
(DPA)—were presented as a means to retrieve the
bits of a DES key.
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Fig. 6. SPA trace of the basic square-and-multiply algorithm

At the first round of DES, the output nibble of
the ith S-box (1 ≤ i ≤ 8) can be written as Si(M ⊕
K) where
� M is made of 6 bits constructed from the input

message after IP- and E-permutations: it has to
be chosen at random but is perfectly known and
predictable, and

� K is a 6-bit sub-key derived from the key
scheduling.
Rising up a DPA bias would require the knowl-

edge of the output nibble. As K is unknown to the
adversary this is not possible. But sub-key K can
be easily exhausted as it can take only 26 = 64
possible values. Therefore the procedure consists
in reiterating the following process for 0 ≤ K̂ ≤ 63:
1. form sets S0 = {

M | g(S-boxi(M ⊕ K̂)) = 0
}

and
S1 = {

M | g(S-boxi(M ⊕ K̂)) = 1
}

where selec-
tion function g returns the value of a given bit
in the output nibble; and

2. compute the corresponding DPA curve.
In principle the bias peak should be maximised

when the guess K̂ is equal to the real sub-key
K. Then inverting the key schedule permutation
leads to the value of 6 key bits. In other words the
DPA operator is used to validate sub-key hypothe-
ses. The same procedure applies to the 7 other S-
boxes of the DES. Therefore the whole procedure
yields 8 × 6 = 48 key bits. The 8 remaining key
bits can be recovered either by exhaustion or by
conducting a similar attack on the second round.

The main feature of a DPA-type attack resides
in its genericity. Indeed it can be adapted to
many cryptographic routines as soon as varying
and known data are combined with secret data
through logical or arithmetic operations.

A similar attack can be mounted against the
first round of Rijndael/AES; the difference being
that there are 16 byte-wise bijective substitutions
and therefore 256 guesses for each. Finally, we
note that DPA-type attacks are not limited to
symmetric algorithms, they also apply to certain

(implementations of) asymmetric algorithms, al-
beit in a less direct manner.

Other Attacks

Amongst the other statistical attacks, IPA is more
difficult and less efficient. Its purpose is to retrieve
key bits without knowing the processed data. It
proceeds by comparing the power trace of a DES
round with an average power trace computed for
instance over the 16 rounds. In principle, key bits
could be inferred this way because the differen-
tial curve should magnify the bits deviation where
they are manipulated.

Dictionary (or template) attacks can be con-
sidered as a generalisation of IPA to very com-
fortable but realistic situations. They have been
widely studied in the field of smart cards where
information on secret key or personal identifica-
tion numbers (PIN) could potentially be extracted.
They consist in building a complete dictionary of
all possible secret values together with the cor-
responding side-channel behaviour (e.g., power
trace) when processed by the device (e.g., for au-
thentication purpose). Then a secret value embed-
ded in a twin device taken from the field can be
retrieved by comparing its trace and the entries of
the dictionary.

In practice, things do not happen that easily
for statistical reasons and application restrictions.
Only part of the secret is disclosed and the infor-
mation leakage remains difficult to exploit fully.

Finally, in addition to power consumption, other
side channels can be considered; possible sources
of information leakage include running time or
electro-magnetic radiation.

COUNTERMEASURES: The aforementioned at-
tacks have all been published during the sec-
ond half of the 1990s. In view of this new threat
the manufacturers of cryptographic tokens have
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Round 1 Round 2 Round 3

Fig. 7. DPA trace of the three first rounds of DES (two upper (respectively lower) curves: power consumption curve
of maxima (respectively minima) of a single execution and DPA curve of maxima (respectively minima))

designed a large set of dedicated countermeasures
especially to thwart statistical attacks like DPA.
All the related research activity has now resulted
in tamper resistant devices widely available in the
market. It has given rise to the new concept of “se-
cure implementation” which states that informa-
tion leakage is not only due to the specification of
an application (cryptographic processing or what-
ever), but also to the way it is implemented.

If information leaks through a physical side-
channel there are two defensive strategies. The
first consists in decorrelating the secret data from
the side-channel. The second consists in decorre-
lating the side-channel from the secret data. The
borderline between both is sometimes fuzzy but
roughly speaking, the former is rather software
oriented and intends to mask the data since they
have to leak anyway, whereas the latter is more
hardware oriented and intends to shut the side-
channel physically in order to make the device
tamper-resistant.

Chip manufacturers have introduced into their
hardware designs many security features against
power attacks. They are stricto sensu countermea-
sures since they aim at impeding the power mea-
surement and make the recorded signal unwork-
able.
� Some countermeasures consist in blurring the

signal using smoothing techniques, additive
noise or desynchronisation effects. These coun-
termeasures are poorly efficient against SPA
working on broad scale traces. They are rather
designed against statistical attacks. They may
require some complementary circuits to gen-
erate parasitic components into the consumed
current. Desynchronisation aims at misaligning
a set of power traces by the means of unstable

clocking or the insertion of dummy cycles at ran-
dom, making the statistical combination of sev-
eral curves ineffective.

� Other countermeasures rather intend to de-
crease or cancel the signal at the source. Re-
duction is a natural consequence of the shrink-
ing trend in the silicon industry that diminishes
the power consumption of each elementary
gate. More interesting (and expensive) is the
emerging technology called “precharged dual
rail logic” where each bit is represented by a
double circuitry. At a given time a logical 0 is
represented physically by a 01, and a logical 1
by 10. The transition to the next time unit goes
through a physical 00 or 11 state so that the
same amount of switching occurs whatever the
subsequent state is. Consequently if both rails
are perfectly balanced, the overall consumption
of a microprocessor does not depend on the data
anymore.
Software countermeasures enclose a large vari-

ety of techniques going from the application level
to the most specific algorithmic tricks. One can
classify them into three categories: application
constraints, timing counter-measures and data
masking.
� Application constraints represent an obvious

but often forgotten means to thwart statisti-
cal analyses. For instance DPA requires known
data with a high variability. An application
wherein an input challenge (or an output cryp-
togram) would be strictly formatted, partially
visible and constrained to vary within hard lim-
its (like a counter) would resist DPA fairly well.

� Timing countermeasures mean the usage of em-
pirical programming tricks in order to tune the
time progress of a process. A critical instruction
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may have its execution instant randomised by
software: if it never occurs at the same time,
statistical analysis becomes more difficult. Con-
versely other situations require the code to be
executed in a constant time, in order to protect
it from SPA or timing analysis. For instance a
conditional branch may be compensated with
a piece of fake code with similar duration and
electrical appearance.

� Data masking (also known as whitening or ran-
domization), covers a large set of numerical
techniques designed by cryptographers and de-
clined in various manners according to the al-
gorithm they apply to. Their purpose is to pre-
vent the data from being handled in clear and to
disable any prediction regarding their behavior
when seen through the side channel. For exam-
ple, the modular exponentiation y = xd mod n
(as used in the RSA public key cryptosystem)
can be evaluated as:

y = {(x + r1n)d+r2ϕ(n) mod r3n} mod n

for randoms ri and where φ denotes Euler to-
tient function.
To illustrate how fuzzy the borderline between

hardware and software countermeasures can be,
we have mentioned that for instance desynchroni-
sation can be implemented by hardware or soft-
ware means. The same remark applies to data
masking for which some manufacturers have de-
signed dedicated hardware tokens or mechanisms
such as bus encryption or wired fast implementa-
tions of symmetric algorithms.

The experience shows that combined counter-
measures act in synergy and increase the com-
plexity in a much larger proportion than the sum
of both. For instance the simple combination of
desynchronisation tricks and data masking makes
DPA (or more sophisticated variants thereof) quite
harmless. In the same way, new hardware designs
resist the most state-of-the-art and best equipped
experts.

Marc Joye
Francis Olivier
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and C. Paar. Springer-Verlag, Berlin, 173–186.

[4] Gandolfi, Karine, Christophe Mourtel, and Francis
Olivier (2001). “Electromagnetic analysis: Concrete
results.” Cryptographic Hardware and Embedded
Systems—CHES 2001, Lecture Notes in Computer
Science, vol. 2162, eds. Ç.K. Koç, D. Naccache, and
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SIDE-CHANNEL ATTACKS

Side-Channel Attacks or Environmental Attacks
of cryptographic modules exploit characteristic in-
formation extracted from the implementation of
the cryptographic primitives and protocols. This
characteristic information can be extracted from
timing, power consumption, or electromagnetic
radiation features (see tempest). Other forms of
side-channel information can be a result of hard-
ware or software faults, computational errors,
and changes in frequency or temperature. Side-
channel attacks make use of the characteristics
of the hardware and software elements as well
as the implementation structure of the crypto-
graphic primitive. Therefore, in contrast to ana-
lyzing the mathematical structure and properties
of the cryptographic primitives only, side-channel
analysis also includes the implementation. Some
implementations are more vulnerable to specific
side-channel attacks than others. Examples of
attacks based on side-channel analysis are Dif-
ferential Power Attacks examining power traces
(see Differential Power Analysis), Timing Attacks
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measuring the amount of time used to complete
cryptographic operations (see Timing Attack), and
Fault Induction Attacks exploiting errors in the
computation process of cryptographic primitives
(see Fault Attacks).

Tom Caddy

SIEVING

Sieving refers to a process for selecting candidates
for further processing among a set of elements.
The “sieve” is the test that an element must pass
to be considered further.

In many cases, by employing arithmetic pro-
gressions, it is possible to identify multiple candi-
dates from the set more efficiently than if each el-
ement were tested separately. (Indeed, sometimes
the term “sieving” refers only to this speedup.) For
instance, in the Sieve of Eratosthenes (see prime
number), candidate primes are selected from a
range of integers by crossing off elements divis-
ible by small primes 2, 3, 5, 7, 11, 13, . . . . Crossing
off every second, third, fifth, seventh element and
so on is generally faster than testing each element
separately for divisibility by small primes.

Sieving is the first and major phase of the fastest
general algorithms for integer factoring and for
solving the discrete logarithm problem. Here, the
candidates sought are those that are divisible only
by small primes or their equivalent (see smooth-
ness and factor base). Specific examples of sieving
are described further in the entries Number Field
Sieve, Quadratic Sieve, sieving in function fields,
and index calculus. See also TWIRL for a recent
design for efficient sieving in hardware.

Burt Kaliski

SIEVING IN FUNCTION
FIELDS

Function fields are analogous constructions to
number fields, where the role of the integers is
replaced by polynomials. The coefficients of these
polynomials are elements of finite fields for all
cryptographically relevant applications. But in
contrast to number fields, function fields over fi-
nite fields (so they are called) have interesting
properties, notably concerning smoothness of el-
ements, an important topic for sieving.

Notably, there exists a provable bound for the
necessary size of a factor base, a set of elements
generating a larger, targeted set of elements to be
factored. This is due to the fact that the analog of

the Riemann hypothesis has been proven in the
function field case. The most important applica-
tion to cryptography (although a theoretical re-
sult) is the existence of a provable subexponential-
time algorithm by Adleman et al. in 1992 [1]
for solving the discrete logarithm problem in the
Jacobian of a hyperelliptic curve (in short called
hyperelliptic cryptosystems), a generalization of
the group of points of an elliptic curve, and an ana-
log to the ideal class group of a quadratic number
field in function fields. The result is mostly of a
theoretical nature, since hyperelliptic cryptosys-
tems, as proposed by Koblitz in 1989 [8], are con-
sidered to be not practical enough because of their
complicated arithmetic. Yet there exist some im-
plementations in the group around Frey showing
this performance is not as bad as expected, espe-
cially because the size of the elements is consider-
ably smaller than for elliptic curves which might
make them even more suitable for small comput-
ing devices such as smart cards.

The first implementation actually solving hy-
perelliptic cryptosystems has been done by R.
Flassenberg and the author in 1997 [4]. They ap-
plied a sieving technique to accelerate a variant
of the Hafner–McCurley algorithm [6] (known to
solve discrete logarithms (see discrete logarithm
problem) in ideal class groups of quadratic number
fields). The basic idea of sieving in function fields
is to find a good representation of polynomials by
integers, which allows one to “jump” from one poly-
nomial to another, and to increment the exponent
in the cell of a three dimensional matrix. All the
other optimizations known from the number field
sieve could then be applied. Later, Smart [9] com-
pared the Hafner-McCurley variant with the orig-
inal, theoretically faster, Adleman–De Marrais–
Huang variant which allows one to construct
sparse systems of linear equations, therefore being
better suited for curves of larger genus (the genus
basically being the size of the discriminant of the
function field). It turned out that the size of the
cryptosystems N.P. Smart experienced with was
still too small. Later on, N.P. Smart implemented
the sieving technique for superelliptic cryptosys-
tems (where the degree of the corresponding func-
tion field is at least 3) based on a joint work with
Galbraith and the author [5]. None of these im-
plementations was ever even close to the size real
cryptosystems would use, but no one ever started
a massively parallel project as for the number
field sieve for these types of cryptosystems. As
a consequence, one cannot sincerely decide about
the practical usefulness of hyperelliptic cryptosys-
tems.

This is very different to the other application
of sieving in function fields: namely, to compute
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the discrete logarithm in a finite field. This can
be done by constructing for a given finite field a
function field with the following property: there
is an embedding of subgroups of the multiplica-
tive group of the finite field into the Jacobian of a
curve corresponding to the field. This mapping has
been used for applying the Adleman-De Marrais-
Huang result to finite fields with small character-
istic and high degree, resulting in a subexponen-
tial algorithm for discrete logarithms in this type
of field [2]. Since solving discrete logarithms in fi-
nite fields is of general interest, especially for fi-
nite fields with characteristic 2, there are a few
implementations of these algorithms.

An important point is how the function field
is constructed. Whereas Adleman and Huang [2]
were looking for the most simple representation
for an optimal performance of the necessary func-
tion field arithmetic, Joux and Lercier in 2001
[7] generalized this approach to get better asym-
potic running times. They proved their theoreti-
cal result by solving a discrete logarithm in the
finite field of size 2521 in approximately one month
on one machine. Moreover, they showed that the
specialized algorithm of Coppersmith [3], which
holds the actual discrete logarithm record (in a
field of size 2607), is a special case of their algo-
rithm in the case of characteristic 2. But since the
record computation, done by Thome in 2001 [10],
was performed using massively parallel computa-
tions for collecting relations in the sieving part
of the algorithm, there is still room for practical
improvements of the computation of discrete log-
arithms by using Joux’ and Lercier’s ideas. Es-
pecially, there are no known practically relevant
results for characteristics different from 2 as of
this writing.

Sachar Paulus
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SIGNCRYPTION

INTRODUCTION: Encryption and digital signa-
ture schemes are fundamental cryptographic tools
for providing privacy and authenticity, respec-
tively, in the public-key setting. Traditionally,
these two important building-blocks of public-
key cryptography have been considered as dis-
tinct entities that may be composed in various
ways to ensure simultaneous message privacy and
authentication. However, in the last few years
a new, separate primitive—called signcryption
[14]—has emerged to model a process simulta-
neously achieving privacy and authenticity. This
emergence was caused by many related reasons.
The obvious one is the fact that given that both pri-
vacy and authenticity are simultaneously needed
in so many applications, it makes a lot of sense
to invest special effort into designing a tailored,
more efficient solution than a mere composition of
signature and encryption. Another reason is that
viewing authenticated encryption as a separate
primitive may conceptually simplify the design of
complex protocols which require both privacy and
authenticity, as signcryption could now be viewed
as an “indivisible” atomic operation. Perhaps most
importantly, it was noticed by [2,3] (following some
previous work in the symmetric-key setting [4,10])
that proper modeling of signcryption is not so obvi-
ous. For example, a straightforward composition of
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signature and encryption might not always work;
at least, unless some special care is applied [2].
The main reason for such difficulties is the fact
that signcryption is a complex multi-user primi-
tive, which opens a possibility for some subtle at-
tacks (discussed below), not present in the settings
of stand-alone signature and encryption.

Defining Signcryption

Syntactically, a signcryption scheme consists
of the three efficient algorithms (Gen, SC, DSC).
The key generation algorithm Gen(1λ) generates
the key-pair (SDKU,VEKU) for user U, where λ

is the security parameter, SDKU is the sign-
ing/decryption key that is kept private, and VEKU
is the verification/encryption key that is made
public. The randomized signcryption algorithm
SC for user U implicitly takes as input the user’s
secret key SDKU, and explicitly takes as input the
message m and the identity of the recipient IDR,
in order to compute and output the signcryptext
on �. For simplicity, we consider this identity IDR,
to be a public key VEKR of the recipient R, al-
though ID’s could generally include more convo-
luted information (as long as users can easily ob-
tain VEK from ID). Thus, we write SCSDKU (M, IDR)
as SCSDKU (m, VEKR), or simply SCU (m, VEKR).
Similarly, user U’s deterministic designcryption
algorithm DSC implicitly takes the user’s private
SDKU and explicitly takes as input the signcryp-
text �̃ and the senders’ identity IDS. Again, we
assume IDS = VEKR and write DSCSDKU (�, VEKS),
or simply DSCU (�, VEKS). The algorithm outputs
some message m̃, or ⊥ if the signcryption does not
verify or decrypt successfully. Correctness of prop-
erty ensures that for any users S, R, and message
m, we have DSCR(SCS (m, VEKR), VEKS) = m.

We also remark that it is often useful to add
another optional parameter to both SC and DSC
algorithms: a label L (also termed associated data
[11]). This label can be viewed as a public identi-
fier which is “inseparably bound” to the message m
inside the signcryptext. Intuitively, designcrypt-
ing the signcryptext � of m with the wrong label
should be impossible, as well as changing � into
a valid signcryptext �̃ of the same m under a dif-
ferent label.

Security of Signcryption

Security of signcryption consists of two distinct
components: one ensuring privacy, and the other—
authenticity. On a high level, privacy is defined
somewhat analogously to the privacy of an or-
dinary encryption, while authenticity—to that of

an ordinary digital signature. For example, one
can talk about indistinguishability of signcryp-
texts under chosen ciphertext attack, or existen-
tial unforgeability of signcryptexts under chosen
message attack, among others. For concreteness,
we concentrate on the above two forms of security
too, since they are the strongest.

However, several new issues come up due to
the fact that signcryption/designcryption take as
an extra argument the identity of the sender/
recipient. Below, we semiformally introduce some
of those issues (see [2] for in-depth technical dis-
cussion, as well as formal definitions of signcryp-
tion).
� Simultaneous Attacks. Since the user U utilizes

its secret key SDKU to both send and receive the
data, it is reasonable to allow the adversary A
oracle access to both the signcryption and the
designcryption oracle for user U, irrespective of
whether A is attacking privacy or authenticity
of U.

� Two- vs. Multi-user Setting. In the simplistic
two-user setting, where there are only two users
S and R in the network, the explicit identities
become redundant. This considerably simpli-
fies the design of secure signcryption schemes
(see below), while providing a very useful inter-
mediate step towards general, multi-user con-
structions (which are often obtained by adding
a simple twist to the basic two-user construc-
tion). Intuitively, the security in the two-user
model already ensures that there are no weak-
nesses in the way the message is encapsulated
inside the signcryptext, but does not ensure that
the message is bound to the identities of the
sender and/or recipient. In particular, it might
still allow the adversary a large class of so called
identity fraud attacks, where the adversary can
“mess up” correct user identities without affect-
ing the hidden message.

� Public NonRepudiation? In a regular digital sig-
nature scheme, anybody can verify the valid-
ity of the signature, and unforgeability of the
signature ensures that a signer S indeed cer-
tified the message. Thus, we say that a sign-
cryption scheme provides nonrepudiation if the
recipient can extract a regular (publicly verifi-
able) digital signature from the corresponding
signcryptext. In general, however, it is a-priori
only clear that the recipient R is sure that S
sent the message. Indeed, without R’s secret
key SDKR others might not be able to verify
the authenticity of the message, and it might
not be possible for R to extract a regular sig-
nature of m. Thus, signcryption does not neces-
sarily provide nonrepudiation. In fact, for some
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applications we might explicitly want not to
have nonrepudiation. For example, S might be
willing to send some confidential information to
R only under the condition that R cannot con-
vince others of this fact. To summarize, non-
repudiation is an optional feature which some
schemes support, others do not, and others ex-
plicitly avoid!

� Insider vs. Outsider Security. In fact, even with
R’s secret key SDKR it might be unclear to an
observer whether S indeed sent the message
m to R, as opposed to R “making it up” with
the help of SDKR. This forms the main basis for
distinction between insider- and outsider-secure
signcryption. Intuitively, in an outsider-secure
scheme the adversary must compromise com-
munication between two honest users (whose
keys he does not know). Insider-secure signcryp-
tion protects a given user U even if his partner
might be malicious. For example, without U’s
key, one cannot forge signcryptext from U to any
other user R, even with R’s secret key. Similarly,
if honest S sent � = SCS(m, VEKU) to U and
later exposed his key SDKS to the adversary, the
latter still cannot decrypt �. Clearly, insider-
security is stronger than outsider-security, but
might not be needed in a given application. In
fact, for applications supporting message repu-
diation, one typically does not want to have
insider-security.

Supporting Long Inputs

Sometimes, it is easier to design natural sign-
cryption schemes supporting short inputs. Below
we give a general method how to create sign-
cryption SC′ supporting arbitrarily long inputs
from SC which only supports fixed-length (and
much shorter) inputs. The method was suggested
by [8] and uses a new primitive called conceal-
ment. A concealment is a publicly known ran-
domized transformation, which, on input m, out-
puts a hider h and a binder b. Together, h and
b allow one to recover m, but separately, (1) the
hider h reveals “no information” about m, while
(2) the binder b can be “meaningfully opened” by
at most one hider h. Further, we require |b| � |m|
(otherwise, one could trivially set b = m, h = ∅).
Now, we let SC′(m) = 〈SC(b), h〉 (and DSC′ is sim-
ilar). It was shown in [8] that the above method
yields a secure signcryption SC′. Further, a sim-
ple construction of concealment was given: set h =
Eτ (m), b = 〈τ, H(h)〉, where E is a symmetric-key
one-time secure encryption (with short key τ ) and
H is a collision-resistant hash function (with short
output).

CURRENT SIGNCRYPTION SCHEMES: We now
survey several signcryption schemes achieving
various levels of provable security.

Generic Composition Schemes

The two natural composition paradigms are
“encrypt-then-sign” (EtS) and “sign-then-encrypt”
(StE). More specifically, assume Enc is a seman-
tically secure encryption against chosen cipher-
text attack, and Sig is an existentially unforgeable
signature (with message recovery) against chosen
message attack. Each user U has a key for for Sig
and Enc. Then the “basic” EtS from S to R outputs
SigS (EncR(m)), while StE—EncR(SigS(m)). Addi-
tionally, [2] introduced a novel generic composi-
tion paradigm for parallel signcryption. Namely,
assume we have a secure commitment scheme,
which on input m, outputs a commitment c and
a decommitment d (where c is both hiding and
binding). Then “commit-then-encrypt-and-sign”
(CtE&S) outputs a pair 〈EncR(d), SigS(c)〉. Intu-
itively, the scheme is private as public c reveals
no information about m (while d is encrypted), and
authentic since c binds one to m. The advantage of
the above scheme over the sequential EtS and StE
variants is the fact that expensive signature and
encryption operations are performed in parallel.
In fact, by using trapdoor commitments in place
or regular commitments, most computation in
CtE&S—including the expensive computation of
both public-key signature and encryption—can be
done off-line, even before the message m is known!

It was shown by [2] that all three basic com-
position paradigms yield an insider-secure sign-
cryption in the two-user model. Moreover, EtS is
outsider-secure even if Enc is secure only against
the chosen plaintext attack, and StE is outsider-
secure even if Sig is only secure against no mes-
sage attack. Clearly, all three paradigms are in-
secure in the multiuser model, since no effort is
made to bind the message m to the identities of
the sender/recipient. For example, intercepting a
signcryptext of the form SigS(e) from S to R, an
adversary A can produce SigA(e), which is a valid
signcryptext from A to R of the same message
m, even though m is unknown to A. [2] sug-
gest a simple solution: when encrypting, always
append the identity of the sender to the mes-
sage, and when signing, of the recipient. For
example, a multi-user secure variant of EtS is
SigS(EncR(m, VEKS), VEKR). Notice, if Enc and/or
Sig support labels, these identities can be part of
the label rather than the message.

Finally, we remark that StE and CtE&S always
support nonrepudiation, while StE might or might
not.
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Fig. 1. Generalized paddings as used by signcryption

Schemes from Trapdoor Permutations

The generic schemes above validate the fact that
signcryption can be built from ordinary signature
and encryption, but will be inefficient unless the
latter are efficiently implemented. In practice, ef-
ficient signature and encryption schemes, such as
OAEP [5], OAEPP+ [13], PSS-R [6], are built from
trapdoor permutations, such as RSA, and are ana-
lyzed in the random oracle model. Even with these
efficient implementations, however, the generic
schemes will have several drawbacks. For exam-
ple, users have to store two independent keys, the
message bandwidth is suboptimal and the “ex-
act security” of the scheme is not as good as one
might expect. Thus, given that practical schemes
are anyway built from trapdoor permutations, it is
natural to have highly optimized direct signcryp-
tion constructions from trapdoor permutations (in
the random oracle model).

This is the approach of [9]. In their model, each
user U independently picks a trapdoor permuta-
tion fU (together with its trapdoor, denoted f −1

U )
and publishes fU as its public key (see also trap-
door one-way function and substitutions and per-
mutations). (Notice, only a single key is chosen,
unlike what is needed for the generic schemes.)
Then, [9] considers the following three paradigms
termed P-Pad, S-Pad and P-Pad. Each paradigm
proceeds by constructing a padding scheme pro-
duces π (m) = w|s, and then composing it with the
corresponding permutations of the sender and the

recipient as shown in Figure 1. Table 1 also shows
how the corresponding approaches could be used
for plain signature and encryption as well.

The convenience of each padding scheme de-
pends on the application for which it is used. As
was shown in [9], P-Pad signcryption provides par-
allel application of “signing” f −1

S and “encrypting”
fR, which can result in efficiency improvements on
parallel machines. However, the minimum cipher-
text length is twice as large as compared to S-Pad,
yet the exact security offered by S-Pad is not as
tight as that of P-Pad. Finally, X-Pad regains the
optimal exact security of P-Pad, while maintain-
ing ciphertext length nearly equal to the length
of the trapdoor permutation (by achieving quite
short s).

It remains to describe secure padding schemes
π for P-Pad, S-Pad and X-Pad. All construc-
tions offered by [9] are quite similar. One starts
with any extractable commitment (c, d), where c
is the commitment and d is the decommitment.
Such schemes are very easy to construct in the
random oracle model. For example, if |m| = n, for
any 0 ≤ a ≤ n, the following scheme is an ex-
tractable commitment: split m = m1|m2, where
|m1| = a, |m2| = n − a, and set

c = G(r ) ⊕ m1|H(m2|r )
d = m2|r

where G and H are random oracles (with appro-
priate input/output lengths) and r is a random
salt.

Table 1. Signcryption Schemes Based on Trapdoor Permutations.

Padding Type Encryption Signature Signcryption

P-Pad (Parallel Padding) fR(w)|s w| f −1
S (s) fR(w)| f −1

S (s)
S-Pad (Sequential Padding) fR(w|s) f −1

S (w|s) fR( f −1
S (w|s))

X-Pad (eXtended sequential Padding) fR(w)|s f −1
S (w)|s fR( f −1

S (w))|s



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg May 24, 2005 14:19

582 Signcryption

To get a secure padding scheme for the P-Pad
paradigm, one should then apply the Feistel
Transform to the resulting pair (d, c), with yet
another random oracle F as the round function.
Namely, set w = c, s = F(c) ⊕ d. For example, us-
ing the extractable commitment above with a =
n, we get nothing else but the OAEP padding,
while a = 0 would give the PSSR padding! For
arbitrary a, [9] call the resulting hybrid be-
tween PSSR and OAEP Probabilistic Signature-
Encryption Padding (PSEP).

To get the padding π sufficient for either S-Pad
or P-Pad, one only needs to perform one more Feis-
tel round to the construction above: w′ = s, s ′ =
F′(s) ⊕ w, and set π (m) = w′|s ′. Coincidentally, the
resulting π also gives a very general construction
of the so called universal padding schemes [7].

As described, the paddings π1 and π3 above
would only give insider security in the two-user
setting. To get multi-user security, all one needs
to do is to prepend the pair (VEKS, VEKR) to all the
inputs to the random oracles F and F′: namely,
create effectively independent F and F′ for ev-
ery sender-recipient pairing! More generally, the
paddings above also provide label support, if one
sticks the label L as part of the inputs to F and F′.

Finally, we remark that P-Pad, X-Pad and X-Pad
always support non-repudiation.

Schemes Based on Gap Diffie–Hellman

Finally, we present two very specific, but effi-
cient schemes based on the so called Gap Diffie–
Hellman assumption. Given a cyclic group G of
prime order q, and a generator g of G, the assump-
tion states that the computational Diffie–Hellman
problem (CDH) is computationally hard, even if
one is given oracle access to the decisional Diffie–
Hellman (DDH) oracle. Specifically, it is hard to
compute gab from ga and gb, even if one can test
whether a tuple 〈gx, gy, gz〉 satisfies z = xy mod q.

In both schemes, the user U chooses a ran-
dom xU ∈ Zq as its secret key VEKU, and sets its
public key SDKU = yU = gxU . The scheme of [1] is
based on the following noninteractive key agree-
ment between users S and R. Namely, both S and R
can compute the quantity QSR = gxRxS = yxR

S = yxS
R .

They then set the key KSR = H(QSR), where H is
a random oracle, and then always use KSR to per-
form symmetric-key authenticated encryption of
the message m. For the latter, they can use any
secure symmetric-key scheme, like “encrypt-then-
mac” [4] or OCB [12]. The resulting signcryption
scheme can be shown to be outsider-secure for both
privacy and authenticity, in the multi-user setting.
Clearly, it is not insider-secure, since both S and

R know the key KSR. In fact, the scheme is per-
fectly repudiable, since all the signcryptexts from
S could have been easily faked by R.

To get insider-security for authenticity under
the same assumption, one can instead consider
the following scheme, originally due to [14], but
formally analyzed by [3]. Below G and H are ran-
dom oracles with appropriate domains, and E is
a one-time secure symmetric-key encryption (e.g.,
one-time pad will do). To signcrypt a message
from S to R, S chooses a random x ∈ Zq , com-
putes Q = yx

R, makes a symmetric key K = H(Q),
sets c ← EK(m), computes the “validation tag” r =
G(m, yA, yB, Q) and finally t = x(r + xS)−1 mod q.
Then S outputs 〈c, r, t〉 as the signcryption of
m. To designcrypt 〈c, r, t〉, R first recovers gx via
w = (ySgr )t , then recovers the Diffie–Hellman key
Q = wxR, the encryption key K = H(Q) and the
message m = DK(c). Before outputting m, how-
ever, it double checks if r = G(m, yA, yB, Q). While
this scheme is insider-secure for authenticity, it is
still not insider-secure.

We also mention that the scheme supports pub-
lic nonrepudiation. All that Rhas to do is to reveal
Q, m and a proof that Q = wxR (which can be done
noninteractively using the Fiat-Shamir heuristics,
applied to the three-move proof that 〈g, yR, w, Q〉
form a DDH-tuple).

Yevgeniy Dodis
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SIGNED DIGIT
EXPONENTIATION

Signed digit exponentiation is an approach for
computing powers in any group in which the in-
verse A−1 of any group element A can be computed
quickly (such as the groups of points on an elliptic
curve employed in elliptic curve cryptography). It
is related to sliding window exponentiation: while
in sliding window exponentiation each window
corresponds to a positive digit value, signed digit
exponentiation additionally makes use of the cor-
responding negative digit values, and the ease of
inversion makes these extra digits available al-
most for free. This often makes signed digit expo-
nentation faster when using the same amount of
memory for storing group elements, and allows it
to reach approximately the same speed with less
memory.

Let Bk = {±1, ±3, . . . , ±(2k − 1)} where k is a
positive integer; and let a base-two representation
of an exponent e be given using the digit set {0} ∪
Bk, i.e.

e =
l−1∑
i=0

ei2i, ei ∈ {0} ∪ Bk.

Assuming that l is chosen such that el−1 
=
0, the left-to-right signed digit exponentiation
method computes ge as follows where g is any
group element; cf. the left-to-right sliding window
exponentiation method.

G1 ← g
A ← g ◦ g
for d = 3 to 2k − 1 step 2 do

Gd ← Gd−2 ◦ A

if el−1 > 0 then
A ← Gel−1

else
A ← G−1

−el−1

for i = l − 2 down to 0 do
A ← A ◦ A
if ei 
= 0 then

if ei > 0 then
A ← A ◦ Gei

else
A ← A ◦ G−1

−ei

return A

The right-to-left signed digit exponentiation
method computes ge as follows; cf. the right-to-left
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sliding window exponentiation method. Note that
the algorithm as written can be optimized simi-
larly to the right-to-left 2k-ary exponentiation or
sliding window exponentiation methods to avoid
(at least) 2k−1 applications of the group operation.

for d = 1 to 2k − 1 step 2 do
Bd ← identity element

A ← g

for i = 0 to l − 1 do
if ei 
= 0 then

if ei > 0 then
Bei ← Bei ◦ A

else
B−ei ← B−ei ◦ A−1

if i < l − 1 then
A ← A◦ A

{Now ge = �d∈{1,3,...,2k−1}B
d
d .}

for d = 2k − 1 to 3 step − 2 do
Bd−2 ← Bd−2 ◦ Bd

B1 ← B1 ◦ (Bd ◦ Bd )
return B1

For both the left-to-right and the right-to-left
variant, it remains to be considered how signed
digit representations of exponents e using the digit
set {0} ∪ Bk with Bk = {±1, ±3, . . . , ±(2k − 1)} can
be obtained. An algorithm for the simplest case
k = 1 is due to Reitwiesner [1]; the representation
obtained by it (using digits {−1, 0, 1}) is known
as the nonadjacent form (NAF) of e. The general-
ization for an arbitrary parameter k was simul-
taneously suggested by multiple researchers; the
following algorithm is from [2]:

c ← e
i ← 0
while c > 0 do

if c is odd then
d ← c mod 2k+1

if d > 2k then
d ← d − 2k+1

c ← c − d
else

d ← 0
ei ← d; i ← i + 1
c ← c/2

return ei−1, . . . , e0

This algorithm is a variant of right-to-left scan-
ning as used in sliding window exponentiation
with an effective window size of k + 1. For ef-
ficiency considerations, if the cost of inverting
groups elements and the additional cost for ob-
taining the appropriate representation of e can
be neglected, signed digit exponentiation dif-
fers from sliding window exponentiation with the
same parameter k in that the expected number
of nonzero digits in the representation is approxi-
mately l/(k + 2) instead of approximately l/(k + 1)
(but the maximum possible length of the signed
digit representation is longer: while l cannot ex-
ceed the length of the binary representation of e
for sliding window exponentiation, it can be said
length plus 1 for signed digit exponentiation).

Bodo Möller
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SIMULTANEOUS
EXPONENTIATION

Various schemes for public-key cryptography in-
volve computing power products in some com-
mutative group (or commutative semigroup). A
straightforward way to compute a power product

n∏
j=1

gej

j

is to compute the individual powers gej

j using
binary exponentiation or some other exponenti-
ation method, and perform n − 1 applications of
the group operation to multiply these partial re-
sults. However, specialized algorithms for comput-
ing power products are often faster. The task of
computing a power product is sometimes called
multi-exponentiation, and performing a multiex-
ponentiation by a procedure that does not in-
volve computing the partial results gej

j is known
as simultaneous exponentiation. Two methds for
multiexponentiation that both generalize left-to-
right sliding window exponentiation are simulta-
neous sliding window exponentiation, which is
due to Yen, Laih. and Lenstra [3] (based on
the simultaneous 2k-ary exponentiation method
from Straus [2]), and interleaved sliding window
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exponentiation [1]. Like the sliding window
method for single exponentiations, these meth-
ods use the binary representation of exponents,
on which nonoverlapping windows are placed such
that every nonzero bit is covered by one of the win-
dows. Simultaneous sliding window exponentia-
tion and interleaved sliding window exponentia-
tion use different approaches for placing windows;
sometimes the former is faster, sometimes the
latter.

Simultaneous sliding window exponentiation
uses windows up to some maximum width k that
span across all n exponents; e.g., for exponents
e1, e2, e3 with binary representations 1011010,
0011001, and 1001011 and k = 2:

e1
e2
e3

1
0
1

0
0
0

1 1
1 1
0 1

0
0
0

1 0
0 1
1 1

Such windows can be found by left-to-right scan-
ning: look at the binary representations of the ex-
ponents simultaneously, going from left to right,
starting a new window whenever a nonzero bit is
encountered, choosing the maximum width up to
k for this particular window such that one of the
rightmost bits is also nonzero. The result of col-
lapsing the window values into the right-most row
of each window can be considered a base-two rep-
resentation

(e1, . . . , en) =
l−1∑
i=0

(e1,i, . . . , en,i)2i

of the vector of exponents, e.g.

e1 1 0 0 3 0 0 2
e2 0 0 0 3 0 0 1
e3 1 0 0 1 0 0 3

for the above example. Assume we have such a
representation with l chosen minimal, i.e. (e1,l , . . . ,

en,l) 
= (0, . . . , 0). To perform a simultaneous slid-
ing window exponentiation, first products

G(d1,...,dn) =
n∏

j=1

gdj

j

of small powers are computed and stored for
all possible window values, namely for the tu-
ples (d1, . . . , dn) with dj ∈ {0, 1, . . . , 2k − 1} for j =
1, . . . , n such that at least one of the dj is odd.
There are 2nk − 2n(k−1) such tuples, and comput-
ing the table of those products can be done with

2nk − 2n(k−1)

applications of the group operation, n of which are
squarings (g1, . . . , gn appear in the table and are

available without any computation; once gj ◦ gj for
j = 1, . . . , n have been computed as temporary val-
ues, each of the 2nk − 2n(k−1) − n remaining table
values can be obtained by using the group oper-
ation once). The multi-exponentiation result then
is computed using the table of small powers:

A ← G(e1,l−1,...,en,l−1)

for i = l − 2 down to 0 do
A ← A◦ A
if (e1,l , . . . , en,l) 
= (0, . . . , 0) then

A ← A◦ G(e1,i ,...,en,i )

return A

For random b-bit exponents, this requires at most
another b − 1 squaring operations and on average
approximately another

b · 1

k + 1
2n−1

general group operations. Note that in practice it
is not necessary to completely derive the represen-
tation

(e1,l−1, . . . , en,l−1), . . . , (e1,0, . . . , en,0)

before starting the exponentiation; instead, left-
to-right scanning can be used to determine it win-
dow by window when it is needed.

In interleaved sliding window exponentiation,
each single exponent has independent windows
up to some maximum width k; e.g., for exponents
e1, e2, e3 with binary representations 1011010,
0011001, and 1001011 and k = 3:

e1 1 0 1 1 0 1 0

e2 0 0 1 1 0 0 1

e3 1 0 0 1 0 1 1

For each exponent, such windows can be found by
left-to-right scanning: look at the binary represen-
tation of the respective exponent, going from left to
right, starting a new window whenever a nonzero
bit is encountered, choosing the maximum width
up to k for this particular window such that the
rightmost bit is also nonzero. To perform an in-
terleaved sliding window exponentiation, first for
each gj, the powers for odd exponents 1 up to 2k − 1
are computed and stored:

for j = 1 to n do
G j,1 ← g
A ← g ◦ g
for d = 3 to 2k − 1 step 2 do

G j,d ← G j,d−2 ◦ A
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Rule A Rule B

wk
1

+1 = Gk(wk
1) ⊕ wk

4 ⊕ counterk

wk
3

+1 = wk
1 ⊕ wk

2 ⊕ counterk

wk
1

+1 = wk
4

wk
2

+1 = Gk(wk
1)

wk
4

+1 = wk
3

wk
2

+1 = Gk(wk
1)

wk
3

+1 = wk
2

wk
4

+1 = wk
3

Fig. 1. Rule A and Rule B

Then the multi-exponentiation result is computed
using that table of powers. The following algo-
rithm shows how this computation can be imple-
mented including left-to-right scanning of expo-
nents up to b bits. The algorithm accesses the bits
e j[i] of the binary representations

e j =
b−1∑
i=0

e j[i]2i, e j[i] ∈ {0, 1}

of the exponents; the notation e j[i . . . h] is short-
hand for i

ν=he j[ν]2ν−h.

A ← identity element
for j = 1 to n do

window position j ← −1
for i = b − 1 down to 0 do

A ← A◦ A
for j = 1 to n do

if window position j = −1
and e j[i] = 1 then

h ← i − k + 1
if h < 0 then

h ← 0
while e j[h] = 0 do

h ← h + 1
window position j ← h
Ej ← e j[i . . . h]

if window position j = i then
A ← A◦ G j,Ej

window positioni ← −1
return A

The algorithm as written can be improved by a
simple optimization: while A still has its initial
value, omit the statement A ← A◦ A, and use a
direct assignment A ← G j,Ej instead of the first as-
signment A ← A◦ Gj,Ej. With this optimization, an
interleaved sliding window exponentiation takes
up to n + b − 1 squarings and on average about

n ·
(

2k−1 − 1 + b − 1
k + 1

)
general group operations.

Interleaved sliding window exponentiation es-
sentially interleaves the operations of n single
exponentiations using left-to-right sliding window
exponentiation, saving many of the squarings. In
groups where computing inverses of elements is
possible very quickly, it is possible to similarly in-
terleave the operations of n single exponentiations
using left-to-right signed digit exponentiation for
faster multi-exponentiation.

Bodo Möller
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SKIPJACK

Skipjack [6] is the secret key encryption algorithm
(see symmetric cryptosystem) developed by the
NSA for the Clipper chip initiative (including the
Capstone chip and the Fortezza PC card). It was
implemented in tamper-resistant hardware and
its structure was kept secret since its introduction
in 1993.

On June 24, 1998, Skipjack was declassified,
and its description was made public on the web
site of NIST [6]. It is an iterative block cipher with
64-bit block, 80-bit key and 32 rounds. It has two
types of rounds, called Rule A and Rule B. Each
round is described in the form of a linear feedback
shift register with an additional nonlinear keyed
G permutation. Rule B is basically the inverse of
Rule A with minor positioning differences. Skip-
jack applies eight rounds of Rule A, followed by
eight rounds of Rule B, followed by another eight
rounds of Rule A, followed by another eight rounds
of Rule B. The original definitions of Rule A and
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Rule B are given in Figure 1, where counter is the
round number (in the range 1 to 32), G is a four-
round Feistel permutation whose F function is de-
fined as an 8 × 8-bit S box, called F Table, and each
round of G is keyed by eight bits of the key.

The key schedule of Skipjack takes a 10-byte
key, and uses four of them at a time to key each G
permutation. The first four bytes are used to key
the first G permutation, and each additional G per-
mutation is keyed by the next four bytes cyclically,
with a cycle of five rounds.

Skipjack has been subject to intensive analy-
sis [2–5]. For example, Skipjack reduced to (the
first) 16 rounds can be attacked with 217 cho-
sen plaintexts and 234 time of analysis [5], which
may be reduced to 214 texts and 216 steps using
the yoyo-game approach [1]. Attacking the mid-
dle 16 rounds of Skipjack requires only 3 cho-
sen plaintexts and 230 time of analysis. The cur-
rently most successfull attack against the cipher is
the imposible differential attack which breaks 31
rounds out of 32, marginally faster than exhaus-
tive search.

In addition, it is worth noting that Skipjack can
be attacked by a generic time-memory tradeoff ap-
proach requiring 280 steps of precomputation and
254 80-bit words (i.e., 260 bits) of memory, but then
each search for a key requires only 254 steps of
computation.

Alex Biryukov
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SLIDE ATTACK

Slide attack is generic attack designed by
Biryukov and Wagner [1, 2]. It can be applied in
both known plaintext or chosen plaintext scenar-
ios. It can be viewed as a variant of a related key
attack, in which a relation of the key with itself
is exploited. The main feature of this attack is
that it realizes a dream of cryptanalysts: if the
cipher is vulnerable to such an attack, the com-
plexity of the attack is independent of the num-
ber of rounds of the ciphel. A typical slide of
one encryption against another by one round (un-
der the same key) is shown in Figure 1. If the
equation F1(P0, K1) = P1 holds, the pair is called
a slid pair. The attacker would then obtain two
equations:

F1(P0, K1) = P1, Fr (C0, Kr ) = C1,

where the second equation would hold for free
due to sliding. These equations involve only a
single round function, and thus could be solved
by the attacker for the secret subkeys K1, Kr of
these rounds. The attacker may create properly
slid pairs (P0, P1) by birthday paradox or by care-
ful construction. For an arbitrary cipher the attack
has complexity of 2n/2 known-plaintexts, where n
is the blocksize. For a Feistel cipher complexity is
reduced to 2n/4 chosen plaintexts.

Several ciphers or slight modifications of exist-
ing ciphers have been shown vulnerable to such
attacks: for example the Brown-Seberry variant
of the Data Encryption Standard (DES) [3] (rota-
tions in key-schedule are by seven positions, in-
stead of varying 1, 2 rotations as in the original
DES), DES-X, the Even-Mansour scheme [4], ar-
bitrary Feistel ciphers with 4-round periodic key-
schedule as well as round-reduced versions of
GOST. The basic attack has been extended into
a slide-with a twist, a technique where encryption
is slid against decryption and complementary slide

P0 F1 F2 F3 . . . Fr C1

P1 F1 F2 F3 . . . Fr C2.

Fig. 1. A typical slide attack
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technique [2], where the inputs to the rounds do
not have to be identical but may have the differ-
ence which is canceled out by a difference in the
keys. In the same paper another generalization
of the technique for the case of a composition of
strong round functions is given.

It is clear that slide-attack would apply to
any iterative construction which has enough self-
similarity in its rounds. It could be applied
to block-ciphers as described above, to stream-
ciphers (see for example resynchronization attack
on WAKE-ROFB [1]) or to MAC and hash-
functions (see for example a recent slid pair dis-
covery for SHA-1 by Saarinen [5].

In practice the attack seems easy to avoid by
breaking the similarity of the round transforms
by applying round counters (as is done for ex-
ample in Skipjack) or different random constants
in each round (as in Rijndael/AES, SHA-256 and
many other constructions). Whether such simple
changes are indeed sufficient is a matter of further
research.

Alex Biryukov
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SLIDING WINDOW
EXPONENTIATION

Sliding window exponentiation is an approach for
computing powers in any group (or semigroup).

Like 2k-ary exponentiation, it generalizes binary
exponentiation and is parameterized by a positive
integer k, where the case k = 1 is the same as bi-
nary exponentiation. Sliding window exponenti-
ation can be considered an improved variant of
2k-ary exponentiation: with identical k ≥ 2, slid-
ing window exponentiation needs storage for fewer
group elements and usually performs less applica-
tions of the group operation than 2k-ary exponenti-
ation. However, the algorithms for sliding window
exponentiation are slightly more complicated. 2k-
ary exponentiation uses the 2k-ary representation
of exponents, which can be considered as looking at
the binary representation through fixed windows
of width k:

0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0

The sliding window method is based on the obser-
vation that fewer windows of width up to k can
suffice to cover all nonzero exponent bits if one
allows the windows to take arbitrary positions.
Also, one can arrange for all windows to be odd-
valued (i.e., have a 1 as the rightmost bit). Then
the bits covered by each single window correspond
to a value in the set Bk = {1, 3, . . . , 2k − 1}, and
the number of possible window values is less than
with the 2k-ary exponentiation method. Covering
the binary representation of the exponent by such
windows yields a base-two representation of the
exponent that uses the digit set {0} ∪ Bk. One pos-
sible way to determine windows for a given ex-
ponent is to look at the binary representation of
the exponent from left to right, starting a new
window whenever a nonzero bit is encountered,
choosing the maximum width up to k for this par-
ticular window such that the rightmost bit is also
nonzero:

0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0
⇒ 7 0 1 0 0 0 0 3 0 0 0 0 5 0

Another possibility is to look at the binary repre-
sentation of the exponent from right to left, start-
ing a new width-k window whenever a nonzero bit
is encountered:

0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0
⇒ 3 0 0 5 0 0 0 0 3 0 0 0 0 5 0

Such left-to-right scanning or right-to-left scan-
ning yields a representation

e =
l−1∑
i=0

ei2i, ei ∈ {0} ∪ Bk.

In the following we assume that we have such a
representation of some positive integer e with l
chosen minimal; thus, el−1 
= 0.
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The left-to-right sliding window exponentiation
method computes ge, where g is an element of the
group (or semigroup), as follows. First the powers
for odd exponents 1 up to 2k − 1 are computed and
stored:

G1 ← g
A ← g ◦ g
for d = 3 to 2k − 1 step 2 do

Gd ← Gd−2 ◦ A

Then ge is computed using the tables of powers
G1 = g, G3 = g3, . . . , G2K−1 = g2K−1 :

A ← Gel−1

for i = l − 2 down to 0 do
A ← A◦ A
if ei 
= 0 then

A ← A◦ Gei

return A

Note that in practice it is not necessary to com-
pletely derive the representation el−1, . . . , e0 be-
fore starting the exponentiation; instead, left-to-
right scanning can be used to determine it digit
by digit when it is needed without storing it com-
pletely. Left-to-right sliding window exponentia-
tion is a slight modification of the method de-
scribed in [2, proof of Theorem 3]; the idea to use
variable windows is from [2, p. 912])

Like binary exponentiation and 2k-ary expo-
nentiation, sliding window exponentiation has a
variant that performs a right-to-left exponentia-
tion:

for d = 1 to 2k − 1 step 2 do
Bd ← identity element

A ← g

for i = 0 to l − 1 do
if ei 
= 0 then

Bei ← Bei ◦ A
if i < l − 1 then

A ← A◦ A

{Now ge = �d∈{1,3,...,2k−1}B
d
d ; this can be

computed as follow :}

for d = 2k − 1 to 3 step − 2 do
Bd−2 ← Bd−2 ◦ Bd

B1 ← B1 ◦ (Bd ◦ Bd )
return B1

Again, in practice it is not necessary to completely
derive the representation el−1, . . . , e0 before

starting the exponentiation; here, right-to-left
scanning can be used to determine it digit by digit
when it is needed. The algorithm as written can
be optimized similarly to the right-to-left 2k-ary
exponentiation method to avoid (at least) 2k−1 ap-
plications of the group operation. The idea used to
perform sliding window exponentiation in right-
to-left fashion is due to Yao [3]; the sub-algorithm
shown above for computing

∏
d∈{1,3,...,2k−1} Bd

d is
due to Knuth [1, answer to exercise 4.6.3–9].

The number of group operations performed dur-
ing a sliding window exponentiation with max-
imum window width k depends on the length l
of the sliding window representation and on the
number of digits in the representation el−1, . . . , e0
that are non-zero. For any b-bit exponent (2b−1 ≤
e ≤ 2b), the length l is bounded by b − k < l ≤ b.
Assume that left-to-right or right-to-left scanning
is performed on a sequence of independently and
uniformly random bits; then a new window will
be started on average every k + 1 bits. For b-
bit exponents, one bit is necessarily nonzero, and
both scanning techniques will usually have an
unused part in the final window when the end
of the exponent is reached. The expected num-
ber of nonzero values among el−1, . . . , e0 for ran-
dom b-bit exponents lies between b/(k + 1) and
1 + (b − 1)/(k + 1).

Using the upper bounds to derive estimates for
average performance that are on the safe side (i.e.
slightly pessimistic) gives b squaring operations
(one time g ◦ g and b − 1 times A◦ A) and

2k−1 − 1 + b − 1
k + 1

general group operations for left-to-right sliding
window exponentiation, or

2k−1 − 2 + b

squaring operations (b − 1 times A◦ A and 2k−1 −
1 times Bd ◦ Bd ) and

1+ b−1
k +1︸ ︷︷ ︸

loop over i

+ 2 · (2k−1 − 1)︸ ︷︷ ︸
loop over d

− 2k−1︸︷︷︸
optimization

= 2k−1 − 1 + b−1
k +1

general group operations for right-to-left sliding
window exponentiation with the optimization ex-
plained above.

In some groups, such as those employed in
elliptic curve cryptography, computing inverses of
elements is a very fast operation. For such groups,
better performance than with ordinary sliding
window exponentiation can often be obtained by
using signed digit exponentiation instead.

Bodo Möller



P1: FAW/SPH P2: FAW/SPH QC: FAW/SPH T1: FAW
KI194-Tilborg May 24, 2005 14:19

590 Smartcard tamper resistance

References

[1] Knuth, D.E. (1998). The Art of Computer
Programming—vol. 2: Seminumerical Algorithms
(3rd ed.). Addison-Wesley, Reading, MA.

[2] Thurber, E.G. (1973). “On addition chains l(mn) ≤
l(n) − b and lower bounds for c(r ).” Duke Mathemat-
ical Journal, 40, 907–913.

[3] Yao, A.C.-C. (1976). “On the evaluation of powers.”
SIAM Journal on Computing, 5, 100–103.

SMARTCARD TAMPER
RESISTANCE

Tamper-resistant cryptographic modules are de-
vices intended for applications that need to pro-
tect stored cryptographic keys and intermediate
results of algorithms against unauthorized access.
The most popular portable form is the smart-
card, which has the form of a banking plas-
tic card with embedded microcontroller. The typ-
ical interfaces are either five visible electrical
contacts (for ground, power supply, reset, clock,
and a bi-directional serial port) or an induc-
tion loop. Typical smartcard processors are 8-bit
microcontrollers with a few hundred bytes of
RAM and 4–64 kilobytes of ROM or non-volatile
writable memory (NVRAM). Battery-like small
steel cans (“crypto buttons”), CardBus/PCMCIA
modules, and various PCI plug-in cards for non-
portable applications are other popular form fac-
tors for tamper-resistant modules.

Smartcards are used in applications with both
tamper-resistance and tamper-evidence require-
ments. Tamper resistance means that stored in-
formation must remain protected, even when the
attacker can work on several samples of the mod-
ule undisturbed for weeks in a well-equipped labo-
ratory. Tamper evidence is a weaker requirement
in which the regular holder of the module must
merely be protected against unnoticed access to
information stored in the module.

One common application for tamper-resistant
smartcards are pay-TV conditional-access sys-
tems, where operators hand out millions of cards
to customers, each of which contains the key neces-
sary to descramble some subscription TV service.
Pirates who manage to extract the key from one
single issued card can use it to produce and sell
illicit clone cards. Most proposed forms of digital
rights management (DRM) mechanisms are based
on some form of tamper-resistant element in the
user system.

Examples for smartcard applications where op-
erators can rely more on just a tamper-evidence
requirement are digital signature identity cards,
banking cards, and GSM subscriber identity mod-
ules. Here, stored secrets are specific to a single
card or cardholder and can be revoked, should the
module get stolen.

There are four broad categories of attacks
against tamper-resistant modules:
� Software attacks use the normal communication

interface of the processor and exploit security
vulnerabilities found in protocols, crypto-
graphic algorithms, or the software implemen-
tation. Countermeasures involve very careful
design and in-depth implementation reviews,
possibly augmented by formal techniques.

� Microprobing techniques access the chip sur-
face directly, such that the attacker is able
to observe, manipulate, and interfere with the
integrated circuit. This has been the domi-
nant form of attack against pay-TV conditional-
access cards since about 1993. Chemical de-
packaging (e.g., with fuming nitric acid) is used
to dissolve conventional packaging materials
without damaging the silicon chip. Microscopes
with micromanipulators are then used to place
fine tungsten hairs onto micrometer-wide on-
chip bus lines, in order to establish an electrical
contact between the chip circuits and record-
ing equipment such as digital oscilloscopes. The
glass passivation layer that covers the metal in-
terconnects can be broken mechanically or re-
moved with UV laser pulses. The content of the
main memory can then be reconstructed from
observed on-chip bus traffic, a process that can
be simplified by damaging the instruction de-
coder to prevent the execution of jump com-
mands. Attackers have also succeeded in ac-
cessing the memory with the help of circuitry
placed on the chip by the manufacturer for post-
production testing. Modern chips with smaller
feature sizes require the use of focused ion-beam
workstations. With these, the surface of a de-
packaged chip can be modified inside a vac-
uum chamber. A beam of accelerated gallium
ions and various added processing gases re-
move chip material or deposit either conduct-
ing and insulating substances with a resolution
of tens of nanometers. This not only allows
attackers to modify the metal connections be-
tween the transistors, effectively to edit the pro-
cessor design, but also helps in establishing
larger probing pads for the connection of record-
ing equipment. Countermeasures involve more
difficult-to-remove packaging materials (e.g.,
silicon, silicon carbide), obfuscated circuits,
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additional top-layer metal sensor meshes, the
careful destruction of test circuitry before the
chip is delivered to customers, and the design
of instruction decoders that frustrate modifica-
tions aimed at simplifying access to all memory
locations [1].

� Fault generation techniques or fault attacks use
abnormal environmental conditions to generate
malfunctions in the processor aimed at provid-
ing additional access. A simple example would
be a deliberately caused and carefully timed
glitch that disrupts the correct execution of
a single security-critical machine instruction,
such as the conditional branch at the end of a
password comparison. Carefully placed, a single
glitch can help to bypass many layers of cryp-
tographic protection. Such glitches have been
generated by increasing the provided clock fre-
quency for a single cycle, by brief supply volt-
age fluctuations, by applying light flashes to
the entire chip or single gates, and with the
help of electromagnetic pulses. Another class
of fault generation attacks attempts to reduce
the entropy generated by hardware random-bit
generators. For example, where multiple noisy
oscillators are used to generate randomness,
externally applied electromagnetic fields with
carefully selected frequencies can result in a
phase lock and more predictable output. Coun-
termeasures against fault generation include
adding filters into supply lines, regular statis-
tical checks of random-bit generators, redun-
dant consistency checks in the software, and
new logic design techniques that lead to inher-
ently glitch-resistant circuits.

� Eavesdropping or side-channel analysis tech-
niques monitor with high time resolution the
characteristics of all supply and interface con-
nections and any other electromagnetic radia-
tion produced by a processor. A simple exam-
ple is the determination of the length of the
correct prefix of an entered password from the
runtime of the string-compare routine that re-
jects it. This can significantly reduce the aver-
age number of guesses needed to find the correct
string. The nature of the executed instruction,
as well as parts of the processed data, are ev-
ident in the power-supply current of a CPU. A
conditional branch that takes effect can easily
be distinguished from one that passes through
by examining with an oscilloscope the voltage
drop over a 10 	 resistor inserted into the pro-
cessor’s ground connection line. The current
consumed by the write operation into memory
cells is often proportional to the number of bits
that change their value. Even status register

flags and Hamming weights of data processed in
arithmetic units can show up in power consump-
tion curves. The technique of differential power
analysis determines secret-key bits by correlat-
ing measured current curves with externally
simulated intermediate results of a symmetric
cipher. It has been demonstrated as a practi-
cal attack technique, even in situations where
there has not been a microprobing attack first
to disassemble the software in the targeted
smartcard. Countermeasures include the addi-
tion of filters and shields against compromising
emanations, circuitry and routines for adding
random noise and delays, new balanced or dual-
rail logic design techniques that lead to inher-
ently less information in the power signal, and
algorithmic techniques for reducing the num-
ber of intermediate results useful for eavesdrop-
pers.

Microprobing requires time and careful prepara-
tion in a laboratory environment and is therefore
primarily a challenge of tamper resistance. The
other three attack classes are noninvasive and
can, with suitable preparation, be performed in
just a few seconds with attack equipment that
could be disguised as a regular smartcard reader.
The holder of the card might not notice such an
attack, and then even the tamper evidence would
be lost.

Markus Kuhn
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S/MIME

S/MIME (see also Security Standards Activities)
is the IETF Internet Security Syntax for MIME
(Multipurpose Internet Mail Extensions), cur-
rently available in version 3, under constant de-
velopment and communicated in a range of RFCs
(abbreviation for “Request for Comments”). It
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basically specifies the syntax for the integration
of various cryptographic mechanisms and algo-
rithms within the MIME format scope.

The Cryptographic Message Syntax (CMS) (see
RFC 3369) is cryptographic algorithm indepen-
dent, but, typically, applying an actual algorithm
is not entirely defined uniquely and requires
some attendance and care for seamless interoper-
ability.

As part of the specification update, a new suite
of “mandatory to implement” algorithms are con-
stantly being selected, reflected in updates to Cer-
tificate Handling (RFC 2632), and S/MIME v3
Message Specification (RFC 2633).

Building on the CMS Compressed Data content
type specified in RFC 3274, the update to RFC
specifies conventions for message compression as
well as to message signature and encryption. Few
are used in reality.

To aid implementers, documentation containing
example output for CMS is made available, some of
which for example, include structures and signed
attributes defined in the Enhanced Security Ser-
vices (ESS) (RFC 2634) document.

CMS, and thus S/MIME version 3 and later, per-
mit the use of previously distributed symmetric
key-encryption keys, and the underlying Public
Key Infrastructure (PKI) is based on the PKIX
standard, e.g. for certificates and CRLs (see cer-
tificate revocation), whilst the underlying syntax
for cryptographic mechanisms rely on the PKCS
standards.

Peter Landrock
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SMOOTHNESS

A natural number n is called B-smooth if its factor-
ization does not contain any prime factors larger
than B, i.e.

n =
∏
p≤B

pnp.

Analogously, we can also consider elements of the
polynomial ring Fp[x]. For a polynomial f of degree
deg( f ) define the norm of f to be pdeg( f ). An element
of Fp[x] is called B-smooth if its factorisation does
not contain any irreducible polynomials of norm
greater than B.

For t, c ∈ R such that 0 ≤ t ≤ 1 the complexity-
theoretic L-notation is defined by

Lx[t, γ ] = e(γ+o(1))(log x)t (log log x)1−t
,

where x → ∞. Note that for t = 0 this equals
(log x)γ , while for t = 1 we obtain xγ (neglecting
the o(1) term). Hence we see that for values of t be-
tween 0 and 1 the function L interpolates between
polynomial time and exponential time behaviour.
For these values we say that L is subexponential
in x (see subexponential time).

The main observation about the distribution of
smooth numbers in an interval [0, a] is that if the
smoothness bound B is chosen subexponentially
in x, then the probability that a random integer
in this interval is B–smooth (or more precisely the
inverse of that probability) is also subexponential.

More precisely, set a = Lx[r, α] and B = Lx[s, β],
where r, s, α, β ∈ R>0 and s < r ≤ 1, then the prob-
ability that a random number in [0, a] is B–smooth
is given (see smoothness probability) by

Lx[r − s, −α(r − s)/β] (1)

where x → ∞.
A similar result holds for the polynomial case:

Assume r, s, α, β ∈ R>0 such that r ≤ 1 and essen-
tially s < r . Then the probability that a random
element of Fp[x] of norm bounded by Lx[r, α] is
Lx[s, β]–smooth is given exactly by expression 1
(see [3] for details).

Smooth numbers or polynomials are used in
the most effective methods to factor natural num-
bers (see integer factoring) and compute discrete
logarithms in finite fields (see discrete logarithm
problem). The overall subexponential complexity
of these methods is a direct consequence of the fact
that the number of smooth elements in a given in-
terval grows subexponentially if the smoothness
bound is chosen subexponential as well.

For further background, please see [1, 2, 4].

Kim Nguyen
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SMOOTHNESS
PROBABILITY

Let α, β, r, s ∈ R>0 with s < r ≤ 1. With Lx as in
L-notation, it follows from [1, 2] that a random
positive integer ≤ Lx[r, α] is Lx[s, β]-smooth (see
smoothness) with probability

Lx[r − s, −α(r − s)/β], for x → ∞.

Arjen K. Lenstra
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SOLITAIRE

Solitaire is a stream cipher designed to be imple-
mented using a deck of cards. It was invented by
Bruce Schneier for use in the novel Cryptonomi-
con, by Neal Stephenson [1], where it was called
Pontifex. Solitaire gets its security from the inher-
ent randomness in a shuffled deck of cards. By ma-
nipulating this deck, a communicant can create a
string of “random” letters which he then combines
with his message. Solitaire can be simulated on a
computer, but it is designed to be used by hand.

Manual ciphers are intended to be used by spies
in the field who do not want to be caught carry-
ing evidence that they send and receive encrypted
messages. In David Kahn’s book Kahn on Codes
[2], he describes a real pencil-and-paper cipher
used by a Soviet spy. Both the Soviet algorithm
and Solitaire take about the same amount of time
to encrypt a message: most of an evening.

Solitaire, as described in the appendix to Crypto-
nomicon, has a cryptographic weakness. While
this weakness does not affect the security of short
messages, Solitaire is not recommended for actual
use.1

Bruce Schneier

1 See http://www.schneier.com/solitaire.html
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SPKI/SDSI

SPKI (Simple Public Key Infrastructure) [2, 1]
was developed starting in 1995 to remedy short-
comings [3] in the existing ID certificate defini-
tions: X.509 and PGP (see Pretty Good Privacy).
It provided the first authorization certificate def-
inition [4, 5]. Originally, SPKI used no names
for keyholders but, after the merger with SDSI
(Simple Distributed Security Infrastructure), now
includes both named keyholders and named
groups or roles—specifying authorization grants
to names and definitions of names (membership
in named groups).

In public-key security protocols, the remote
party (the prover) in a transaction is authenticated
via public key cryptography. Upon completion of
that authentication, the verifier has established
that the prover has control over a particular pri-
vate key—the key that corresponds to the public
key the verifier used. This public key is itself a
good identifier for the prover. It is a byte string
that is globally unique. It also has the advantages
of not requiring a central ID creator or distribu-
tor and of being directly usable for authentication.
However, since anyone can create a key pair at any
time, a raw public key has no security value. It is
the purpose of a certificate to give value or mean-
ing to this public key.

ID certificate systems bind names to public keys.
This is an attempt to directly answer the question
“who is that other party?”. The shortcomings of ID
certificates that SPKI addresses are:
1. Because there is no single, global name source,

names are not globally unique. Therefore map-
ping from public key to name can introduce
nonuniqueness. In SPKI, the real identifier is
a public key or its cryptographic hash—each of
which is globally unambiguous.

2. Names have no special value to a computer, but
are strongly preferred by people over raw keys
or hash values. However, people have a limited
ability to distinguish from among large num-
bers of names, so the use of names can intro-
duce scaling problems. The original SPKI did
not use names, but SDSI names are defined by
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Table 1. Certificate name sources

Type Source of names

X.509 Certificate Authority (CA)
PGP End Entity (EE)
SDSI Relying Party (RP)

the Relying Party (RP) and presumably limited
to the set that the RP can distinguish.

3. Name assignments are made by some
Certificate Authority (CA) and the intro-
duction of that additional component reduces
overall system security. In SPKI/SDSI there is
no CA, in the X.509 sense.

4. The real job is to make a security decision and a
name by itself does not give enough information
to make that decision. SPKI carries authoriza-
tion information.
There are certain characteristics of SPKI/SDSI

that set it apart from other certificate systems:
SDSI names, authorization algebra, threshold
subjects, canonical S-expressions and certificate
revocation (see authorization architecture, autho-
rization management, and authorization policy).

SDSI NAMES: Keys, and by implication their
keyholders, need to be identified. SPKI uses the
public key itself or its cryptographic hash as the
ID of the key and the keyholder. This ID is glob-
ally unique and requires no issuer, therefore no
expense or added insecurity of an ID issuer. For
computers and the protocols between them, this
ID is nearly perfect: globally unique and directly
authenticable. The hash of the key has the added
advantage of being fixed length.

For humans, such IDs fail miserably. They have
no mnemonic value. SPKI uses SDSI names for
human interfaces. Each human in a system using
SPKI/SDSI maintains his or her own dictionary
mapping between that human’s preferred name
for a keyholder and the public key or hash. The
human operator can see friendly and meaningful
names displayed via a UI, while the underlying
system uses the key or its hash as an ID.

Source of Names

There is sometimes confusion among X.509, PGP,
and SDSI—all of which build name certificates.
The best way to distinguish them is via the source
of the names used (see Table 1).

X.509 started out planning to use globally
unique assigned names from the one global X.500
directory. That single directory has never been cre-
ated and is unlikely ever to be. This leaves X.509

names to be chosen by the CA that issues a certifi-
cate. PGP leaves choice of name up to the person
generating the key. SDSI gives choice of name to
the person who will need to use that name.

Advantage of SDSI Names. When a name is used
by a human, the correctness of that use depends on
whether the human calls the correct person, thing,
or group, to mind on seeing the name. When SDSI
names are used, the one who chose that name is
the same person who must correctly understand
the linkage between the name and the person,
thing, or group.

For example, the RP might choose the SDSI
name “John Smith”, if the RP knows only one John
Smith—but a global naming authority would form
“John Smith 3751” or jsmith39@localisp.net and
require the RP to somehow deduce from that name
which John Smith was intended. If the RP has an
offline channel to John Smith and can ask him
what his global ID is, then the RP can keep a local
mapping from his preferred “John Smith” to the
global name—but that is exactly what happens
with SDSI (the global name being the hash of a
key). If the RP does not have off-line contact with
this John Smith, then the RP is forced to guess
which John Smith is behind the name—and that
guess is a source of security error [6].

Group Names

Both X.509 and PGP assume that the name is of
an individual. SDSI names are of groups or roles.
A named individual is a group of one.

Globally Unique SDSI Names

There are times when a SDSI name needs to
be included in a certificate: when rights are as-
signed to the name or the name is added to some
other named group. Since SDSI names are inher-
ently local, a global form must be constructed. For
example:

(name (hash sha1
#14dc6cb49900bdd6d67f03f91741cfefa2d26fa2#)
Leanna)

stands for the name Leanna in the local dictionary
of the keyholder of the key that hashes via SHA1
to 14dc6cb49900bdd6d67f03f91741cfefa2d26fa2.

This is an advantage of SPKI/SDSI over other
ID certificate forms. SDSI knew that names were
local and had to do something to make them glob-
ally unique while X.509 and PGP assumed names
were global, even when they were not.
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AUTHORIZATION ALGEBRA: SPKI carries autho-
rization information in its certificates and (Access
Control List) ACL entries. This authorization is
constrained to be in a language defined by SPKI
so that the SPKI library can perform set intersec-
tions over authorizations. Each authorization is a
set of specific permissions. That set is expressed as
an enumeration (a literal set) or in a closed form
(e.g., ranges of strings or numbers). The language
is defined by intersection rules [2] that were de-
signed to permit the intersection of two authoriza-
tion sets to be expressed in the same closed form
(see also authorization architecture, authoriza-
tion management, and authorization policy).

By contrast, X.509v3 certificate extensions can
be used to carry permission information, but
because the extension is completely free-form,
custom code must be written to process each dif-
ferent extension type.

FORMAT: An SPKI certificate has five fields:
1. Issuer: the key of the certificate issuer.
2. Subject: a key, hash, SDSI name or threshold

subject construct.
3. Delegation: a Boolean, indicating whether the

Subject is allowed to delegate some or all of the
rights granted here.

4. Tag: a canonical S-expression listing a set of
rights granted by the issuer to the subject.

5. Validity: limits on validity: not-before or not-
after dates, requirements to check online status
or to get a revocation list, etc.
An SPKI ACL entry has fields 2.5 of the above

since the authority (issuer) of an ACL entry is the
machine that holds it.

A name membership certificate has four fields:
1. Issuer
2. Name being defined
3. Subject (key, hash or name)
4. Validity
There is one certificate for each member of a name.

A threshold subject is a list of N subjects (possi-
bly including a subordinate threshold subject) and
a parameter K. Only when K of the N subjects
agree to delegate some rights or sign some docu-
ment is that certificate or ACL entry considered
valid. (The keys used by these subjects need not
be in the same algorithm so, among other things,
a threshold subject might tolerate the catastrophic
break of one algorithm.)

Canonical S-expressions (CSEXP)

SPKI/SDSI certificates are expressed and
communicated as canonical S-expressions. An

S-expression is of power equivalent to XML
(Extensible Markup Language). Canonical S-
expressions are binary forms with only one
possible encoding. S-expressions in SPKI/SDSI
are constrained to have each list start with an
atom (the equivalent of an XML element name).
Atoms are binary strings, with an explicit length
stated, so CSEXP creation is trivial. CSEXP
parsing requires under 10KB of code, in the
open-source implementation. If element names
are kept small, CSEXP binary forms are smaller
than equivalent ASN.1 forms.

CERTIFICATE REVOCATION: At the time SPKI
was designed, X.509 used Certificate Revocation
Lists (CRL) that were optional and were not
dated. A new CRL could be issued at any time
and would override any prior CRL. In SPKI, re-
vocation is deterministic. Each certificate that
could be subject to revocation includes the revo-
cation/validation agent’s key and URL and all va-
lidity instruments (CRLs, etc.) have contiguous,
non-overlapping date ranges.

IMPLEMENTATIONS: SPKI certificates are used
in HP’s eSpeak and several prototype sys-
tems. It is available in open source code in
two sourceforge.net projects: CDSA and JSDSI.
SPKI’s spiritual descendent XrML V.2 [5] is in
use in Microsoft’s Rights Management Services
(RMS).

Carl Ellison
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SSH

Secure Shell, a product from SSH Communica-
tions Security, allows the user to log into another
machine over a network, to execute commands in
a remote machine, and to move files from one ma-
chine to another. For sometime, it was developed
as a standard under IEFT.

SSH basically provides strong authentication
and secure communications over insecure chan-
nels. It was originally intended as a replacement
for various UNIX commands such as telnet, rlogin,
rsh, and rcp. For SSH2, there was in addition a re-
placement for FTP, namely sftp.

When the standardisation was terminated,
there were two versions of Secure Shell avail-
able: SSH1 and SSH2, which unfortunately are
quite different and incompatible. As for the
use of cryptographic algorithms, SSH1 supported
DES (the Data Encryption Standard) Triple-DES,
IDEA, and Blowfish, for encryption, while SSH
supports 3DES, Blowfish, Twofish, and a few oth-
ers. For authentication, SSH1 supported RSA dig-
ital signature scheme, while SSH2 supported the
Digital Signature Standard.

Peter Landrock

STATION-TO-STATION
PROTOCOL

In a two-party authenticated key exchange the le-
gitimate parties can compute a secret key, while at
the same time being certain about the authentic-
ity of the parties with whom they exchange a key.
The scheme must, in particular, be secure against
a man-in-the-middle attack.

A popular authenticated version of the Diffie–
Hellman key exchange protocol is the Station-to-
Station protocol. It was proposed by Diffie-van
Oorschot-Wiener [1].

Let 〈g〉 be a suitable finite cyclic group of large
enough order in which the computational Diffie–
Hellman problem is (assumed to be) hard. We as-
sume that q (not necessarily prime) is a multiple
of the order of g and publicly known. Let signA(m)
indicate the digital signature of the bitstring m
by party A. So, signA(m) can be verified using the
public key of A. Let Ek(m) be a conventional en-
cryption of the bitstring m using the conventional
key k. If k is too long, one assumes it is hashed
(see hash function). The corresponding decryption
is written as Dk(·).

The protocol, in which Alice (A) and Bob (B) want
to exchange a key, works as following:
Step 1. A sends B α := grA computed in 〈g〉, where

rA is chosen uniformly random in Zq .
Step 2. B chooses rB uniformly random in Zq and

computes β := grB in 〈g〉, kB := αrB in 〈g〉 and
γB := EkB(signB(α, β)), where α and β are con-
catenated. B sends A: β, γB.

Step 3. A computes kA := βrA and verifies whether
the string DkA(γB) is the digital signature of
(α, β), signed by B. If so, she sends B: γA :=
EkA(signA(α, β)) and views kA as the authenti-
cated key exchanged with B.

Step 4. B verifies whether the string DkB(γA) is
the digital signature of (α, β) signed by A. If so, B
regards kB as the authenticated key exchanged
with A.

As in the Diffie-Hellman key agreement scheme,
if there are no dishonest parties, Alice and Bob
will exchange the same key, i.e. kA = kB.

Yvo Desmedt
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STREAM CIPHER

A stream cipher is a symmetric cryptosystem (see
key) which operates with a time-varying trans-
formation on individual plaintext digits. By con-
trast, block ciphers operate with a fixed transfor-
mation on large blocks of plaintext digits. More
precisely, in a stream cipher a sequence of plain-
text digits, m0m1 . . ., is encrypted into a sequence
of ciphertext digits c0c1 . . . as follows: a pseudo-
random sequence s0s1 . . ., called the running-key
or the keystream, is produced by a finite state au-
tomaton whose initial state is determined by a se-
cret key. The ith keystream digit only depends on
the secret key and on the (i − 1) previous plaintext
digits. Then, the ith ciphertext digit is obtained
by combining the ith plaintext digit with the ith
keystream digit.

Stream ciphers are classified into two types:
synchronous stream ciphers and asynchronous
stream ciphers. The most famous stream cipher is
the Vernam cipher, also called one-time pad, that
leads to perfect secrecy (the ciphertext gives no
information about the plaintext).
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Stream ciphers have several advantages which
make them suitable for some applications. Most
notably, they are usually faster and have a lower
hardware complexity than block ciphers. They
are also appropriate when buffering is limited,
since the digits are individually encrypted and
decrypted. Moreover, synchronous stream ciphers
are not affected by errorpropagation (see also non-
linear feedback shift register).

Anne Canteaut
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STRONG PRIME

A strong prime [1] is an integer p such that
� p is a large prime.
� p− 1 has a large prime number factor, denoted

r .
� p+ 1 has a large prime factor.
� r − 1 has a large prime factor.

The precise qualification of “large” depends on
specific attacks the strong prime is intended to
protect against. For a long time, strong primes
were believed to be necessary in the cryptosys-
tems based on the RSA problem in order to guard
against two types of attacks: factoring of the RSA
modulus by the p+ 1 and Pollard p− 1 factor-
ing methods, and “cycling” attacks. Rivest and
Silverman [2] published a paper in 1999 argu-
ing that strong primes are unnecessary in the
RSA public key encryption system. There are two
points in their argument. First, that the use of
strong primes provides no additional protection
against factoring attacks, because the Elliptic
Curve Method for factoring is about as effective
as the p+ 1 and the p− 1 methods (though none
is particularly likely to succeed for random, large
primes) and is not prevented by the strong prime
conditions. Furthermore, the Number Field Sieve
can factor RSA modulus with near certainty in less
time than these methods. (See integer factoring
for a discussion on factoring methods.) Secondly,
they argue that cycling attacks are extremely un-
likely to be effective, as long as the primes used
are large. This has recently been formally proven
in [3]. Thus, in the current state of knowledge,

there is no rationale for requiring strong primes
in RSA. A new factoring method might once again
make strong primes desirable for RSA, or on the
contrary exploit the properties of strong primes
in order to factor more efficiently and thus make
strong primes appear to be dangerous.

Anton Stiglic
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STRONG RSA ASSUMPTION

Let 1 < τ ∈ Z be a security parameter. Let N = pq
be a product of two random τ -bit primes and let s
be an element of the group Z

∗
N (see also modular

arithmetic). The strong-RSA problem is defined as
follows:

given (N, s) as input, output a pair a, b ∈ Z

such that ab = s mod N and b 
= ±1.

Loosely speaking, the Strong-RSA assumption
states that for a sufficiently large τ the strong RSA
problem is intractable.

The Strong-RSA assumption was introduced
by Baric and Pfitzman [2]. The assumption is
used to construct efficient signature schemes
that are existentially unforgeable under a chosen
message attack without the random oracle model.
One such system is described in [4] and an-
other in [3]. The Strong-RSA assumption is also
the basis of several efficient group signature
schemes [1].

Dan Boneh
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STRUCTURAL
CRYPTANALYSIS

Structural Cryptanalysis is a branch of Crypt-
analysis which studies the security of cryptosys-
tems described by generic block diagrams. It
analyses the syntactic interaction between the
various blocks, but ignores their semantic def-
inition as particular functions. Typical exam-
ples include meet-in-the-middle attacks on mul-
tiple encryptions, the study of various chaining
structures used in modes of operation, and the
properties of Feistel structures or substitution–
permutation networks with a small number of
rounds.

Structural attacks are often weaker than actual
attacks on given cryptosystems, since they cannot
exploit particular weaknesses (such as bad differ-
ential cryptanalysis properties or weak avalanche
effect) of concrete functions. The positive side of
this is that they are applicable to large classes of
cryptosystems, including those in which some of
the internal functions are unknown or key depen-
dent. Structural attacks often lead to deeper the-
oretical understanding of fundamental construc-
tions, and thus they are very useful in establishing
general design rules for strong cryptosystems.

Alex Biryukov

SUBEXPONENTIAL TIME

A subexponential-time algorithm is one whose run-
ning time as a function of the size k of its input
grows more slowly than bx for every base b > 1.
That is, for every constant base b > 1, the running

time T(x) satisfies

T(x) < bx

for all sufficiently large x. In O-notation, this
would be written T(x) = 2o(x) or eo(x).

(In computational complexity, subexponential
security sometimes refers to the related notion
that for all ε > 0, T(x) < 2xε

, for all sufficiently
large x.)

Subexponential-time algorithms occur in cryp-
tography in connection with the discrete loga-
rithm problem and integer factoring. The fastest
algorithms known for those problems (i.e., the ones
that grow most slowly as a function of input size)
typically have running times of the form

e(γ+o(1))(log x)t (log log x)1−t
, for x → ∞,

for some constants γ > 0 and 0 < t < 1, where x is
the order of the finite field in which discrete loga-
rithms are being computed, or the modulus to be
factored. The size of the input to these algorithms
is proportional to the length in bits of x, so the run-
ning time, being subexponential in log x, is subex-
ponential in the input size as well (see L-notation).

For further discussion, see exponential time and
polynomial time.

Burt Kaliski

SUBGROUP

A subset of elements of a group that is itself a
group, i.e., that follows the group axioms (clo-
sure, associativity, identity, inverse). For example,
if G = (S, ×) is a group, then for any g ∈ S, the set
of elements

g, g2, g3, . . .

(together with the multiplication operation) is a
subgroup of G. The order of any subgroup of a
group G divides the order of the group G itself;
this is known as Lagrange’s theorem.

Burt Kaliski

SUBGROUP
CRYPTOSYSTEMS

In cryptographic applications it is often advan-
tageous to replace a generator of the multiplica-
tive group F∗

pt of a finite field Fpt of character-
istic p by a generator g of a subgroup of F∗

pt , as
originally suggested by Schnorr [2]. The subgroup
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〈g〉 generated by g must be chosen in such a way
that solving the discrete logarithm problem in 〈g〉
is not easier than computing discrete logarithms
in F∗

pt .
Because of the Pohlig–Hellman algorithm (see

discrete logarithm problem), the order of g must
be chosen in such a way that it contains a suffi-
ciently large prime factor. Usually, g is chosen in
such a way that its order q is prime. Because q
divides the order pt − 1 of F∗

pt and because pt −
1 = ∏

s dividing t �s(p), where �s(X) is the tth cyclo-
tomic polynomial (as defined in the generalization
of Pollard’s p− 1 method—see integer factoring),
the prime order q of g divides �s(p) for one of
the s dividing t. However, if q divides �s(p) for
some s < t , then 〈g〉 can effectively be embedded
in the proper subfield Fps of Fpt . This has the un-
desirable consequence that the discrete logarithm
problem in 〈g〉 can be solved in the multiplicative
group F∗

ps of the substantially smaller field Fps ,
which is easier than solving it in F∗

pt . Thus, in or-
der not to affect the hardness of the discrete loga-
rithm problem in 〈g〉, the order q of g must be cho-
sen as a sufficiently large prime divisor of �t (p).
Given q, a proper g can be found as g = h(pt −1)/q

for any h ∈ F∗
pt such that g 
= 1.

If t = 1, this implies that p must be chosen so
that �1(p) = p− 1 has a large enough prime factor
q. If t = 2, however, q must be a large prime factor
of �2(p) = p+ 1 and if t = 6 of �6(p) = p2 − p+ 1.
The case t = 1 corresponds to the traditional and
conceptually easiest choice of using the prime
field Fpt = Fp: for 1024-bit security, representa-
tion of elements of the subgroup 〈g〉 requires about
1024 bits. The latter two cases, t = 2 and t = 6
(or, more generally, t divisible by 2 or 6, respec-
tively) are of interest because they allow a more
efficient representation of the subgroup elements
when LUC or XTR are used (where LUC [3] refers
to ‘Lucas’ because of LUC’s use of Lucas sequences,
and XTR [1] is an abbreviation of ECSTR which
stands for efficient compact subgroup trace repre-
sentation). For 1024-bit security 1024/2 = 512 bits
suffice for even t when using LUC and 1024/3 ≈
342 bits suffice for t divisible by 6 when using XTR.
Let f be the factor indicating the improvement in
representation size: f = 2 for LUC and f = 3 for
XTR.

For any finite field Fu, extension field Fuv , and
w ∈ Fuv the trace Tr (w) of w over Fu is defined
as the sum of the v conjugates of w over Fu:
Tr (w) = ∑

0≤i<v wui ∈ Fu (the inclusion in Fu be-
cause Tr (w)u = Tr (w)). LUC and XTR work by
representing elements of 〈g〉 by their trace over
the subfield Fpt/ f. The resulting representation ad-
vantage of a factor f compared to the traditional

representation applies in principle to any element
of Fpt . When applied to the order-�t (p) subgroup
G of F∗

pt with t as above, however, the trace repre-
sentation has other important advantages: given
Tr (w) ∈ Fpt/ f for any w ∈ G, it determines w and
its conjugates uniquely and the trace of any power
of w can be computed very efficiently. Since g was
chosen in such a way that 〈g〉 ⊂ G, this fast ‘ex-
ponentiation’ applies to the subgroup 〈g〉 as well.
LUC with t = 2 and XTR with t = 6 allow very
efficient methods to find proper p and q of cryp-
tographically relevant sizes. For large choices of
t parameter selection becomes more cumbersome.
For details of the exponentiation and parameter
selection methods, see [3] for LUC and [1] and [4]
for XTR.

The fact that the distinction between subgroup
elements and their pt/ f-th powers (i.e., their con-
jugates over Fpt/ f) is lost, has been shown (see [1])
to have no negative impact on the security of LUC
and XTR. A potential disadvantage of the trace-
based systems is that they complicate ordinary
multiplication of subgroup elements (represented
by their traces).

Arjen K. Lenstra
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SUBSTITUTIONS AND
PERMUTATIONS

A substitution cipher is usually described by a
sequence or list of single substitutions, each of
which is commonly denoted by an arrow, like
p �−→ π.
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Example: The Russian-English ISO translitera-
tion (using diacritical marks) is a substitution.

A B V G D E · Z I $I K L M N O P R S T U F H C Q X W _ Y ^ ⁄ Yu ”
↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓−
A B V G D E Ž Z I Ĭ K L M N O P R S T U F H C Č Š Šč ’ Y ” Ė Ju Ja

A substitution may have homophones (see
encryption).

A permutation is a one-to-one mapping from an
alphabet to itself.

A substitution may be described by two lines:
the first one being the standard alphabet, the sec-
ond one being a mixed alphabet (see alphabet). An
example is a given below:

a b c d e f g h i j k l m n o p q r s t u v w x y z
↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓− ↓−
B E K P I R C H S Y T M O N F U A G J D X Q W Z L V

Note that we have used small letters for the plain-
text and capital letters for the ciphertext.

In mathematics, there is a commonly used, sim-
plified notation with two lines bracketed together:

↓
(

a b c d e f g h i j k l m n o p q r s t u v w x y z
B E K P I R C H S Y T M O N F U A G J D X Q W Z L V

)
This is convenient for encryption. For decryption,
it is worth while to rearrange the list:

↑
(

q a g t b o r h e s c y l n m d v f i k p z w u j x
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

)
or

↓
(

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
q a g t b o r h e s c y l n m d v f i k p z w u j x

)
There is also the cycle notation which is shorter

(a b e i s j y l m o f r g c k t d p u x z v q) (h) (n) (w)

but this notation is inconvenient both for encryp-
tion and decryption. The cycle is generated by it-
erating the substitution on a arbitrarily chosen
starting letter; whenever a cycle is closed, a new
starting letter is chosen until all letters are ex-
hausted.

Self-reciprocal permutations are permutations
that, when applied twice, restore the original. Put
equivalently, they are their own inverse. Their cy-
cle notation shows a decomposition in 2-cycles and
1-cycle, for example:

(a n) (b x) (d s) (e i) (f v) (g h) (k u) (l c) (m q) (o w)
(p y) (j) (r) (t) (z)

If a self-reciprocal permutation has no 1-cycle
(so n is even) there is also the following notation

�
(

a b c d e f g h i j k l m
n o p q r s t u v w x y z

)
The Enigma machine of the German Wehrmacht

used a (properly) selfreciprocal permutation. This
was thought to be particularly practical since the
same machine could be used for encryption and
decryption, disregarding the fact that this opened
ways for a cryptanalytic attack (see noncoinci-
dence exhaustion in Cryptanalysis).

A substitution cipher in general replaces certain
groups of characters by certain other groups of
characters. This may be described by a list, e.g.
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for ZZ3
2 → ZZ3

2:

(000) �−→ (001), (001) �−→ (010), (010) �−→ (011), (011) �−→ (100),
(100) �−→ (101), (101) �−→ (110), (110) �−→ (111), (111) �−→ (000).

We shall give some more terms that one may see in
this context. A monographic substitution is a sub-
stitution of single characters, while a unipartite
substitution is a substitution by single characters.

A simple substitution is a substitution of single
characters by single characters, so it is a mono-
graphic, unipartite substitution.

A digraphic substitution is a substitution of bi-
grams (ordered pairs of characters). A bipartite
substitution is a substitution by bigrams. Finally,
a bigram substitution is a substitution of bigrams
by bigrams, so a digraphic, bipartite substitution.

In general, an n-graphic substitution is a sub-
stitution of n-tuples of characters (n-grams) and
an n-partite substitution is a substitution by n-
tuples of characters. Similarly, a polygraphic sub-
stitution is an n-graphic substitution, n ≥ 2, and
a multipartite substitution is an n-partite substi-
tution, n ≥ 2.

A linear substitution is a block encryption ZZn
N →

ZZm
N that is the composition of a translation t and

an homogenous part ϕ which is additive with re-
spect to addition modulo N (for all x, y ∈ ZZn

N :
ϕ(x + y) = ϕ(x) + ϕ(y)).

A null is meaningless ciphertext character, the
encryption image of the empty plaintext word. It
is used, e.g., for swamping the plaintext statistics
or masking the occurrence of idle times.

A straddling encryption or straddling cipher is
a substitution with encryption steps V(l) → W(m),

where Z(k) denotes the set of all sequences of at
most k characters from Z, in formula {ε} ∪ Z ∪
Z2 ∪ Z3 . . . ∪ Zk, where Zn is the set of all words
of length n over the alphabet Z, and ε denotes the
empty word.

Example: Z(3)
20 → ZZ(2) with the homophonic sub-

stitution

↓
(

che con non et a b c d e f g h i
44 64 00 08 1 86 02 20 62 22 06 60 3

)
82

↓
(

l m n o p q r s t v z ε

24 26 84 9 66 68 28 42 80 04 88 5

)
40 7

Both 5 and 7 are in this example (Matteo Argenti,
1590) nulls. Other elements of Z(3)

20 have no image,
except by composition of their individual letters.

Let a block be a text of predetermined length.
Then a block cipher or block encryption is a sub-
stitution with encryption steps Vn → Wm, i.e.

without straddling. The block length is usually
rather high (for instance, the Data Encryption
Standard has a block length of m = n = 64,
and the Advanced Encryption Standard (see
Rijndael/AES) has a block length of m = n = 128,
192, or 256 bits). The same block encryption step
with its key is repeated on and on, thus, each bit
of ciphertext in a given block normally depends on
the complete corresponding plaintext block, with
as consequence the possibility of error propagation
over the full block.

A stream cipher (also called stream encryption)
is a substitution (Vn)∗ → (Wm)∗ between infinite
series of blocks, controlled by a key generating al-
gorithm. The generated key may have a finite pe-
riod. Autokey or other cipher feedback is excluded.

A transposition cipher or tranposition does not
substitute the characters of a message, but per-
mutes their position: it may be considered as a
special case of a polygraphic substitution Vn → Vn

of the kind

(x1, x2, . . . , xn) �−→ (xπ (1), xπ (2), . . . , xπ (n)),

where π is a permutation of the subscripts {1,

2, . . . , n}. It can be performed by multiplication of
(x1, x2, . . . , xn) with a permutation matrix, i.e., an
n × n {0, 1}-matrix such that in every row and in
every column, one occurs just once. This extreme
property makes cryptanalysis of transposition ci-
phers very different from cryptanalysis of normal
substitution ciphers and explains why alternating
composition of substitutions and transpositions
(see “pastry dough mixing” below) is so effective.

A grille is a tool, usually in the form of punch
cards, that can be rotated to perform a transposi-
tion of the letters.

Pastry dough mixing stands for a composition
of alternating substitutions and transpositions. It
was already recommended by Shannon in 1949
and used, e.g., in the DES cryptosystem. The ex-
pression ‘pastry dough mixing’ was introduced by
Eberhard Hopf in the mathematical theory of com-
pact spaces.

Friedrich L. Bauer
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SUBSTITUTION–
PERMUTATION (SP)
NETWORK

Shannon [1] suggested to use several mixing
layers interleaving substitutions and permuta-
tions to build strong block ciphers. Such design
is called a substitution–permutation sandwich or
a substitution-permutation network (SPN). Al-
though weak on its own, a line of substitutions
followed by a permutation has good “mixing” prop-
erties: substitutions add to local confusion and per-
mutation “glues” them together and spreads (dif-
fuses) the local confusion to the more distant sub-
blocks (see also substitutions and permutations).
If one considers flipping a single bit at the input
of such a network, it effects the m output bits of
particular S-box which in turn are sent to different
S-boxes by a permutation. Thus inputs/outputs of
up to m S-boxes would be effected by the avalanche
of change. These are again permuted into different
S-boxes, covering almost all the S-boxes of the net-
work. On the output of such network about half of
the bits are effected by change and are flipped and
about half of the bits are not flipped. This makes
an outcome of a single bit change at the input hard
to predict, especially if secret key bits are mixed
into the block between the layers of encryption.
Without a secret key the SPN performs a complex
but fully deterministic function of its inputs. Mod-
ern ciphers tend to use linear or affine mappings
instead of permutations, which allows them to
achieve better diffusion in fewer iterations. Such
networks are called substitution-linear (SLN) or
substitution-affine networks (SAN). The current
block encryption standard Rijndael/AES is a SLN
cipher.

Alex Biryukov
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SUMMATION GENERATOR

The summation generator is based on a combina-
tion of n Linear Feedback Shift Registers (LFSRs)
and was first proposed in [5, 6]. The combining
function is an addition over the set of integers.
From a binary point of view, it is a nonlinear func-
tion, with maximum correlation immunity. The

output bit is the least significant bit of the inte-
ger sum.

LFSR 1

LFSR 2

LFSR n

Carry

output
sequence

Powerful attacks exist in the case n = 2 [1, 4].
Hence, it is better to use several LFSRs, with mod-
erate lengths, than just a few large ones. But it has
also been shown that this scheme is vulnerable
if all the LFSRs are short [3]. A Fast Correlation
Attack has recently been presented in [2]. (See also
combination generator.)

Caroline Fontaine
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SYMMETRIC
CRYPTOSYSTEM

The type of cryptography in which the same key
is employed for each of the operations in the
cryptosystem (e.g., encryption and decryption),
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and thus that same key, typically a secret, must
be shared by the parties performing the various
operations. See also block cipher, stream cipher,
MAC algorithms, and (for the contrasting notion)
asymmetric cryptosystem.

Equivalent names are conventional cryptosys-
tem, secret key cryptosystem, classical cryptosys-
tem, and private key cryptosystem.

Burt Kaliski

SYNCHRONOUS STREAM
CIPHER

A synchronous stream cipher consists of a cipher,
in which the keystream is generated indepen-
dently of the plaintext and of the ciphertext. It
can be depicted as follows:

ciphertext
key

keystream

plaintext
ENCRYPTION

key
keystream

plaintext
DECRYPTION

The keystream is usually produced by a pseudo-
random generator, parameterized by a key, which
is the secret key of the whole scheme.

This means that it is impossible to dynamically
check the synchronization between the keystream
and the message. The keystreams generated by
the sender (encryption), and by the receiver
(decryption) must be perfectly synchronized. If
synchronization is lost, then decryption fails
immediately. If we want to be able to resyn-
chronize both signals, we need some additional

techniques (through reinitialization, or by putting
some marks in the message, . . .).

Nevertheless, there is an advantage, in terms of
errors of transmission. If the ciphertext is altered
by some errors, then this will only affect the de-
cryption of the wrong bits, but this will have no
effect on the others.

These two properties (perfect synchronization
needed, no propagation of errors) lead to some ac-
tive attacks: the first one could be to modify the
ciphertext in order to desynchronize the message
and the keystream during decryption (this can
easily be achieved by deleting or inserting some
bits, for example); the second one consists in mod-
ifying the values of some bits, in order to modify
the plaintext obtained after decryption (this can
be powerful if the attacker knows sufficient in-
formation about the message in order to choose
the meaning of the modified plaintext). This im-
plies that it is important to use, at the same time
as encryption, some integrity/authentication tech-
niques in order to avoid such attacks.

Most of the stream ciphers used nowadays (see
for example E0 and SEAL) are binary additive
stream ciphers; they are synchronous stream ci-
phers, in which all the data (plaintext, keystream,
and ciphertext) are binary, and that simply add
(through the XOR function) the message (plain-
text/ciphertext) to the keystream.

A good reference on the topic is [1].

Caroline Fontaine
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