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Abstract In this paper we examine an evolution problem which describes the dy- 
namic contact of a viscoelastic body and a foundation. The contact is 
modeled by a general normal compliance condition and a friction law 
which are nonmonotone, possibly multivalued and of the subdifferential 
form while the damping operator is assumed to be coercive and pseu- 
domonotone. We derive a formulation of the model in the form of a 
multidimensional hemivariational inequality. Then we establish the a 
priori estimates and the existence of weak solutions by using a surjec- 
tivity result. 
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Introduction 

In this paper we investigate the class of evolution second order hemi- 
variational inequalities. By a hemivariational inequality we mean an 
evolution variational inequality involving a nonmonotone multivalued 
map of the Clarke subdifferential type. The problem under considera- 
tion is as follows 

~ " ( t )  + A(t, ul(t)) + Bu(t) + dJ ( t ,  ~ ( t ) )  3 f (t) a.e. t E (0,T) 
u(0) = Uo, u1(0) = U1, 

(1) 

where A: (0 ,  T)  x V -+ 2'* is a nonlinear multivalued damping oper- 
ator, V being a reflexive Banach space with its dual V*, B :  V -+ V* 
is a bounded linear operator, not necessary coercive, d J  denotes the 
Clarke subdifferential of a locally Lipschitz function J and f ,  uo and ul 
are prescribed data. The motivation for the study of the problem (1) 
comes from mechanics and engineering where hemivariational inequali- 
ties express the principle of virtual work or power, e.g, unilateral contact 
problems in nonlinear elasticity and viscoelasticity, problems describing 
frictional and adhesive effects, problem of delamination of plates, loading 
and unloading problems in engineering structures (cf. Panagiotopoulos 
[26-271 and Naniewicz and Panagiotopoulos [24]). 

The notion of hemivariational inequality was introduced by P.D. Pana- 
giotopoulos in the early eighties as variational expressions for several 
classes of mechanical problems with nonsmooth and nonconvex energy 
superpotentials. In the case of convex superpotentials the hemivaria- 
tional inequalities reduce to variational inequalities considered earlier 
by many authors (see e.g. Duvaut and Lions [7] and the references 
therein). The recent mathematical results on the stationary hemivaria- 
tional inequalities can be found in Naniewicz and Panagiotopoulos [24], 
Motreanu and Panagiotopoulos [23] and Haslinger et al. [12]. We refer 
to Migorski [20-22land the references therein for the results on the first 
order evolution and parabolic hemivariational inequalities. We men- 
tion that the hemivariational inequalities of hyperbolic type were firstly 
considered by Panagiotopoulos [29, 281 who studied models involving 
the one dimensional reaction-velocity laws. The hyperbolic hemivari- 
ational inequalities with a multivalued relation depending on the first 
order derivative of the unknown function were treated by Goeleven et 
al. [lo], Haslinger et al. [12], Gasinski [8], Migorski [19], while the 
hemivariational inequalities with a subdifferential term which depends 
on the unknown function were studied by Panagiotopoulos and Pop [30], 
Haslinger et al. [12], Gasinski and Smolka [9], Ochal [25] and Migorski 
[18]. The contact problems for viscoelastic bodies have been recently 
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investigated in several papers, see e.g. Chau et al. [3], Jarusek [14], 
Kuttler and Shillor [16], Rochdi et al. [31], Han and Sofonea [ll] and 
the literature therein. The problem (1) with A(t, .) being multivalued 
maximal monotone, B coercive and J = 0 was considered by Banks et 
al. [I] in the connection with identification of the damping term in the 
forced wave equation. 

The goal of this paper is to provide the existence and uniqueness re- 
sults for the problem (1). The main existence result can be proved in 
two steps (cf. [5]). First we assume regular initial data and reduce this 
problem to an evolution inclusion of the first order. The latter is solved 
by using a surjectivity result for multivalued operators of pseudomono- 
tone type. In the second step we remove the restriction on the initial 
data and we are able to show the result in its generality. The uniqueness 
of a solution to (1) is obtained in a case when the damping operator is 
strongly monotone and the subdifferential operator satisfies a relaxed 
monotonocity condition. 

The paper is organized as follows. In Section 1 we present a con- 
tact problem of viscoelasticity which serves as a model for the problem 
(1). In Section 2 we recall some necessary notation and present a result 
on properties of the Nemitsky operator corresponding to the damping 
operator. The main results of this paper are delivered in Section 3. 

1. Motivation 
In this section we describe shortly the classical contact model of vis- 
coelasticity and we present its variational form. 

We consider a deformable viscoelastic body which occupies a bounded 
open subset R C R d ,  d = 2,3. We suppose that the boundary I? = dR 
is Lipschitz continuous and F is divided into three mutually disjoint 
measurable parts FD, FN and rc such that meas(rD) > 0. The body is 
clamped on Po, so the displacement field vanishes there. Volume forces 
of density f l  act in R and surface tractions of density f i  are applied on 
FN. The body may come in contact with a foundation over the potential 
contact surface r c .  We put Q = R x (0, T) for 0 < T < co. We denote 
by u :  Q + R d  the displacement field, by a :  Q + Sd the stress tensor 
and by ~ ( u )  = (&ij (u)),  cij (u) = (ui,j + uj,i) the strain tensor, where 
. . 

z, J = 1,.  . . , d and Sd denotes the space R,dxd of symmetric matrices of 
order d). 

We suppose the following multivalued counterpart of the Kelvin-Voigt 
viscoelastic constitutive relation 
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where C and B are prescribed multivalued nonlinear and single valued 
linear constitutive maps, respectively. We remark that in the classical 
linear viscoelasticity the above law takes the form Oij  = c ~ ~ ~ ~ E ~ ~ ( u ~ )  
gijklekl(u), where C = {cijkl) and B = {gijkl), i ,  j, k , l  = 1,. . . , d  are the 
viscosity and elasticity tensors, respectively. 

We denote by U N  and UT the normal and the tangential components 
of the displacement u on I?, UN = u n, UT = u - uNn, where n is 
the outward unit vector to F. Similarly, the normal and the tangential 
components of the stress field on I? are given by ON = (an)  - n and 
aT = a n  - UNn, respectively. On the contact surface rc we consider 
the following subdifferential boundary conditions. The normal stress 
a N  and the normal displacement UN satisfy the nonmonotone normal 
compliance response condition of the form 

-ON E d j ~  (x, t, UN) on I'c x (0, T) .  (2) 

The friction law between the friction force UT and the tangential dis- 
placement UT on rc is given by 

Here jN : rC x (0, T) x R -+ R and jT: rc x (0, T) x R~ -+ R are locally 
Lipschitz functions in their last variables and d jN ,  djT represent the 
Clarke subdifferentials of jN(x, t ,  .) and jT(x, t ,  .), respectively. These 
boundary conditions include as special cases the classical boundary con- 
ditions of (see e.g. Panagiotopoulos [27], Chapter 2.3 and Naniewicz and 
Panagiotopoulos [24]). 

Let us denote by uo and ul the initial displacement and the initial 
velocity. The classical formulation of the contact problem is stated as 
follows: find u :  Q + R and a :  Q -+ Sd such that 

In order to give a variational formulation of this problem let H = 
~ ~ ( 0 ;  R d ) ,  7-f = L2(S1;Sd), HI = {u E H : ~ ( u )  E 7-f) = ~ l ( S 1 ;  R d )  and 
V = {v E HI : v = 0 on rD). Using the Green formula, the definition 
of the Clarke subdifferential and assuming the suitable regularity of the 
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data (cf. Denkowski and Mig6rski [5] for details), we obtain the follow- 
ing variational formulation of (4): find u : (0, T) + V and a : (0, T) + 3C 
such that 

( ~ " ( t ) ,  v)v*xv + (a@), E('u))x+ 

(&(x, t ,  U N ;  V N )  + &x, t ,  UT; VT))  d r (x )  > 
> ( f ( t ) , v ) ~ * ~ v  forall v € V a n d a . e . t € ( O , T )  (5) 

I o(t)  E C(&(ul(t))) + G ( E ( u ( ~ ) ) )  for 8.e. t E (0, T) 

u(0) = UO, u1(0) = U1, 

where 

Let V = L2(0, T ;  V), W = {w E V : w' E V*) and let 7 :  ~ ' ( 0 ;  R d )  + 
H1I2(I'; R d )  c L2( r ;  R d )  be the trace operator where S E (1/2,1). We 
define the operators A: (0, T) x V + 2V* and B :  V + V* by 

( B ~ , v ) ~ * ~ v = ( G ( x , t , ~ ( u ) ) , ~ ( v ) ) ~  f o r u , v ~ V a n d t ~  (0,T) 

and the functional J :  (0, T )  x L~(I ' c ;  R d, + R by 

for t E (0, T )  and v E L2( rC;  R d ) .  Consider now the following inclusion 

find u E V with u1 E W such that 

ul'(t) + A(t, u1(t)) + Bu(t) + Y *  (dJ(t ,Yu(t)))  3 f (t) a.e. t (6) 
u(0) = Uo, ~ ' ( 0 )  = U1 

where ;;J* denotes the adjoint operator to 7. It can be shown (cf. Den- 
kowski and Mig6rski [5] for details) that every solution to the inclusion 
(6) is also a solution to the problem (5). Therefore in what follows we 
are interested in the existence result for a problem of type (6). 

2. Preliminaries 

In this section we recall some definitions needed in the sequel and state 
a result that shows that certain properties of the damping mapping can 
be lifted to its Nemitsky operator. 
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Let V  be a reflexive separable Banach space. We denote by (., .) the 
pairing between V  and its dual V*.  

DEFINITION 1  A multivalued operator T :  V -+ 2'* i s  said t o  be pseu- 
domonotone if the following condit ions hold: 

( j )  the  set  T v  i s  nonempty ,  bounded, closed and convex for all v  E V ;  

(a) T is  usc  from each finite dimensional subspace of V i n t o  V *  en-  
dowed with the weak topology; 

($j) i f  vn E V ,  vn -+ v  weakly i n  V  and v i  E T v ,  i s  such that  
limsup (v:, u ,  - v )  5 0 ,  then  t o  each y  E V ,  there exists v* (y )  E 
T v  such that  (v* ( y ) ,  v  - y )  < liminf (v:, v ,  - y ) .  

LEMMA 2 A s s u m e  that a multivalued operator T :  V  -+ 2'* satisfies 
condit ions ( j )  and (a) of the definit ion of pseudomonotonic i ty  and T is  
bounded (2.e. i t  m a p s  bounded sets in to  bounded sets) .  T h e n  T i s  usc  
with respect t o  the strong topology in V  and the  weak topology in V * .  

For the proof we refer to Lemma 1.4 in Kuttler [15]. 

We now comment on a measurability condition for multivalued map- 
pings. For the following definitions, see Section 1.0 of Hu and Papageor- 
giou [13]. 

DEFINITION 3 A mul t i funct ion F :  (0 ,  T )  -+ 2'* i s  said t o  be mea-  
surable, if for every U c V *  open, we have F - ( U )  = { t  E ( 0 , T )  : 
F ( t )  n U # 0 )  i s  measurable. 

DEFINITION 4  A mul t i funct ion S :  (0,  T )  x V  -+ 2'* i s  said t o  be (strong- 
l y )  measurable, if for every C C V *  closed, we have { ( t ,  v )  € (0 ,  T )  x V  : 
S ( t ,  v )  n C # 0 )  i s  a Bore1 set i n  (0 ,  T )  x V .  

The following result due to Kuttler [15], Lemma 5.3 shows that the 
strong measurability condition implies a kind of measurability condition 
for multivalued operators which is useful in our setting. 

LEMMA 5 Suppose S :  (0 ,  T )  x V -+ 2'' has nonempty ,  closed, convex 
values and i t  satisfies the measurability condit ion of Definit ion 4  for 
every C C V *  closed convex set. T h e n  

(*) for every a :  (0 ,  T )  -+ R measurable and x, y  : (0 ,  T )  -+ V measur- 
able, the mul t i funct ion F  : (0 ,  T )  -+ 2'' defined by 
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is measurable (in the sense of Definition 3). 

In what follows (see condition H ( A ) ( i i )  below) instead of the standard 
definition (Definition 4) of measurability of a multivalued operator, we 
assume it satisfies condition (*) of Lemma 5 ,  which will be sufficient for 
our purposes. 

Given 2 < p < oo we introduce the spaces V = LP(0, T ;  V ) ,  V* = 
Lq(O, T ;  V * ) ,  l / p +  l / q  = 1 and we denote by ( ( 9 ,  -)) the duality between 
V and V*. 

DEFINITION 6 Let A :  (0,  T )  x V -+ 2'* be a multivalued operator. The 
operator A: V -+ 2"' given b y  Av = { z  E V* : z ( t )  E A ( t , v ( t ) )  a.e. 
t E (0,  T ) )  for v E V is called the Nemitsky operator corresponding to A. 

We recall also the notion of L-pseudomonotonicity (see e.g. [6]). Let 
L :  D ( L )  c V -+ V* be a linear maximal monotone operator. 

DEFINITION 7 We say that the operator A: V -+ 2'* is L-pseudomono- 
tone, if the following conditions hold: 

(k) the set Av is nonempty, weakly compact and convex for all v E V ;  

(kk) A is usc from each finite dimensional subspace of V into V* fur- 
nished with the weak topology; 

(kkk) if {v,) C D ( L ) ,  v, -+ v weakly in V ,  Lv, -+ Lv weakly in V * ,  
V ;  E Avn, v i  -+ v* weakly in V* and limsup ((v; ,v ,  - v ) )  < 0, 
then v* E Av and ( ( v ; , ~ , ) )  + ( ( v * , ~ ) ) .  

The following result generalizes Theorem 2(b) of Berkovits and Mus- 
tonen [2]. 

THEOREM 8 Assume that a multivalued operator satisfies the following 
hypothesis: 

H ( A )  : A :  (0, T )  x V -+ 2'' is a multivalued operator such that 

(i) A( t ,  .) satisfies conditions (j) and ( j j j )  in the definition of pseu- 
domonotone operator; 

(ii) A is measurable in the sense of condition (*); 

(iii) there are a1 E Lq(0, T )  and bl > 0 such that IIv*llv* 5 a l ( t )  + 
bllv~b-' for all v* E A( t , v ) ,  v E V and a.e. t E (0,  T ) ;  

(iv) there are constants pl > 0, a > 0, r E (0 ,p)  and a function 
a E ~ ~ ( 0 ,  T )  such that (v* ,  v )  2 ,& llvllb - P2llvllb - a( t )  for all 
v* E A(t ,  v ) ,  v E V and a.e. t E (0,  T ) .  
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Then  the Nemitsky operator A corresponding to  A has the following pro- 
perties: 

(1) there are constants C1 > 0 and > 0 such that Ilv*llv* < Cl + - 
blllvllrl for all v* E Av and v E V; 

(2) there are constants p2 > 0 and C > 0 such that ((v*, v)) > ,& IIv(l;- - 
P2llvllL - T i  for all v* E Av and v E V; 

(3) A is  L-pseudomonotone, where L :  D(L) C V -+ V* is  given by 
Lv = v' for all v E D(L) = {v E V : v' E V*,v(O) = 0). 

The detailed proof of this theorem can be found in Denkowski and 
Mig6rski [5 ] .  We conclude this section by recalling (cf. Clarke [4]) the 
definitions of the generalized directional derivative and the generalized 
gradient of Clarke for a locally Lipschitz function h :  E -+ R, where E is 
a Banach space. The generalized directional derivative of h at x E E in 
the direction v E E, denoted by hO(x; v ) ,  is defined by 

h0 (x; v) = lim sup h(y + tv) - h(y) 

Y-tX,  t10 t 

The generalized gradient of h at x, denoted by ah(x), is a subset of a 
dual space E* given by dh(x) = {C E E* : hO(x; v) > (C,  v)E*xE for a11 
v E E}. 

3. Existence Theorem 
In this section we deliver the main result of the paper on the existence 
of solutions to dynamic hemivariational inequalities. 

Let V and Z be two reflexive, separable Banach spaces and let H be 
a Hilbert space. Suppose that V c Z c H = H* c Z* c V*, where H*, 
Z* and V* denote dual spaces to H, Z and V, respectively. We assume 
that all embeddings are dense and continuous, and V c Z compactly. 
We denote by ( a ,  .) the duality of V and V* and the pairing between Z 
and Z* as well. We introduce the following spaces: 

Z*  = Lq(O, T ;  Z*), V* = Lq(O, T;  V*) with lip + l /q  = 1 

with some 2 < p < CXI and W = {v E V : v' E V*}, where the time 
derivative involved in the definition of W is understood in the sense of 
vector valued distributions. We have W c V c 2 c 3-1 c 2* C V* 
with dense and continuous embeddings. Since we have assumed V C Z 
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compactly, we also know (cf. Theorem 5.1, p.58, Lions [17]) that W C 2 
compactly. Moreover, W c C(0, T; H) is continuous. The pairing of V 
and V* and also the duality between 2 and Z* are denoted by ((f ,  g)) = 

l 3 f  (t), d t ) )  dt. 

Consider the following initial value problem for evolution hemivaria- 
tonal inequality of second order: 

The problem (7) is called hemivariational inequality since it is equivalent 
to the following one: 

find y E V with y1 E W such that there is q E V* satisfying 

( ~ " ( t )  + ~ ( t )  + B Y  (t) - f ( t ) ,v)  + JO (4 Y ( t) ;  v) L 0 
for all v E V and a.e, t E (0,T) 

q(t)  E A(t, yl(t)) a.e. t E (0, T )  

~ ( 0 )  = Yo, ~ ' ( 0 )  = Y1, 

where JO( t ,  v; w) is the generalized directional derivative of J ( t ,  .) at a 
point v E Z in the direction w E 2. 

DEFINITION 9 An element y E V solves (7) if and only if y1 E W and 
there exist r )  E V* and (' E Z* such that 

We admit the following hypotheses: 

H(B) : B :  V -+ V*  is a bounded, linear, positive and symmetric 
operator; 

H(J) : J :  (0, T )  x Z -+ lR is a function such that 

(i) for each z E Z, the map J ( . ,  z) is measurable and 
J ( . ,  0) E L1 (0, T) ;  

(ii) for each t E (0, T), the function J ( t ,  .) is locally Lipschitz; 

(iii) there exists c > 0 such that for all C E d J ( t ,  z ) ,  z E Z and 

t E (O,T), we have I ~ [ / / Z *  5 E (1 + I I Z I I ~ ' ~ ) ;  
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(Ho): f E V * ,  yo E V ,  yl E H ;  

( H I )  : I f p  = 2, then ,B1 > c,B2T, where ,8 > 0 is an embedding constant - 
of V into Z .  

We start the study of ( 7 )  with the a priori estimates for the solutions. 

LEMMA 10 Assume that H ( A ) ,  H ( B ) ,  H ( J )  and ( H o )  hold and y is a 
solution to (7) .  I f p  > 2, then there is a constant C > 0 such that 

Moreover, the estimate ( 8 )  still holds forp = 2 provided ( H I )  is satisfied. 

If Z = H, then the estimate ( 8 )  holds for p > 2 without the hypothesis 
( H I ) .  Namely, we have 

LEMMA 11 If H ( A ) ,  H ( B ) ,  H ( J )  and ( H o )  hold, p > 2 and Z = H ,  
then for every y solution to (7 ) ,  the estimate ( 8 )  holds. 

The main result of this paper is the following 

THEOREM 12 If hypotheses H ( A ) ,  H ( B ) ,  H ( J ) ,  ( H o )  and ( H I )  hold, 
then the problem (7 )  has at least one solution. 

The idea of the proof is as follows. First, we consider the operator 
K :  V -+ C ( 0 ,  T ;  V )  given by K v ( t )  = J: v ( s )  ds + yo. Using K we 
rewrite ( 7 )  in the form: find z E W such that 

x l ( t )  + A ( t ,  z ( t ) )  + B ( K z ( t ) )  + d J ( t ,  K x ( t ) )  3 f ( t )  a.e. t 

4 0 )  = Y l .  
( 9 )  

We observe that z E W is a solution to ( 9 )  iffy = K x  solves ( 7 ) .  We deal 
now with the problem (9 )  under the additional hypothesis yl E V .  We 
define the following operators dl : V + 2'*, Bl : V -+ V *  and Nl : V -+ 
2'' by 

A l v  = {v* E V* : v*( t )  E A ( t ,  v ( t )  + y l )  a.e. t) ,  

( B l ~ ) ( t )  = B ( K ( v ( t )  + ~ 1 ) )  

and 
N l v  = { z  E Z* : z ( t )  E d J ( t ,  K ( v ( t )  + y l ) )  a.e. t )  

for all v E V ,  respectively. Using these operators, from (9) we have 
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We note that z E W solves (9) iff z - yl E W solves (10). Next, defining 
L :  D(L) C V -+ V* and 7 :  V + 2'* by Lz = z' with D(L) = {z E W : 
z(0) = 0) and 7 z  = (dl + B1 + Nl)z,  respectively, the problem (10) 
takes the form: find z E D(L) such that (L + 7 ) z  3 f . In order to show 
the existence of solutions, we can prove that 7 is bounded, coercive and 
L-pseudomonotone, and apply a surjectivity result (cf. Theorem 1.3.73 
in [6]). Finally, we suppose yl E H and we establish the existence of 
solutions in this case. 

The existence of solution to (6) can be obtained analogously as for the 
model problem (7). This follows from the fact that the map R : (0, T) x 
Z -+ 2'* given by R(t,  z) = T* (aJ ( t ,yz( t ) ) )  has the same properties as 
d J ( t ,  x) (convex and weak compactness of the values, the strong-weak 
closedness of the graph and a growth condition). 
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