
Chapter 6

AN INSTRUMENTAL APPROACH TO

MATHEMATICS LEARNING IN SYMBOLIC

CALCULATOR ENVIRONMENTS

Luc Trouche

LIRDEF, LIRMM & IREM

Université Montpellier II, France

trouche@math.univ-montp2.fr

Abstract: A rapid technological evolution (Chapter 1), linked to profound changes

within the professional field of mathematics (Chapter 3), brings into question

the place of techniques in mathematics teaching (Chapter 5). These changes

have created serious difficulties for teachers; obliged to question their

professional practices, they make different choices regarding integration of

new technologies and techniques (Chapter 4), choices that are linked to their

mathematical conceptions and to their teaching styles.

In this chapter, we place ourselves on the side of the students. We have

already seen (Chapter 1) that they seem to adopt the new computing tools

faster than the institution. In this chapter, we study more precisely their

learning processes related to their use of symbolic calculators.

First of all, we pinpoint the didactic phenomena taking place in the

experiments; subsequently, we suggest a new theoretical approach aimed at

giving a better description, for each student, of the transformation of a

technical tool into an instrument for mathematical work.

Key words: Computational transposition, Instrumentation and instrumentalization

process, Instrumented technique, Operational invariants, Schemes.
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1. DIDACTIC PHENOMENA APPEARING IN FIRST

EXPERIMENTS

Research studies on symbolic calculators as environments have been

conducted in France since 1995. These were preceded by research on

calculator integration (from 1980), and by research on DERIVE software

integration (institutionally supported in France from 1991). These studies

have revealed many didactic phenomena. Artigue (1997) distinguishes two

interrelated classes of phenomena: those linked to knowledge transposition

and those linked to students’ adaptation to new environments.

1.1 Didactic phenomena linked to processes of

knowledge transposition

These processes are linked to computational transposition (Box 6-1),

described by Balacheff (1994) as “work on knowledge which offers a

symbolic representation and the implementation of this representation on a

computer-based device”.

Artigue (1997) brings out two phenomena linked to these processes:

- the phenomenon of pseudo-transparency, linked to the gap between

what a student writes on the keyboard and what appears on the screen (a gap

arising from differences between two representation modes, internal and

interface):

[To enter (a+2)/5], some students, having correctly written a couple of parentheses

around (a+2), are surprised to see a screen display without parentheses. They wonder if

their production is correct, or not. Parentheses appearing and disappearing seems to be a

mysterious game they can’t understand, precisely because they have not mastered

parentheses techniques.

- The phenomenon of double reference, linked to the double interpretation

of tasks, depending on the work environment (paper-and-pencil or

computerized). Artigue (ibid.) evokes in the following terms the rational

factorization of x
n

– 1 in a 11
th

grade class, with DERIVE software (Box 5-

2):

In a paper-and-pencil environment, polynomial factorizations are linked, at this school

level, to the search for real roots (…). In the software environment, these rational

factorizations come first from factorizations in Z/pZ (…): the factorization by (x – 1) for

example is obtained only if n is a prime number and the factorization by (x – 1) (x + 1)

only for n = 4 (…). Students choosing the machine interpretation have much greater

difficulties in producing conjectures.
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Box 6-1.

Computational transposition

(Balacheff 1994)

Balacheff defined computational transposition in the following terms:

“A representation of the world is not the world itself. This now largely shared assertion can

be taken as a commonplace. Nevertheless, … to understand it, we have to go further and

consider that a representation is not an approximation (i.e. a simplification) of its object in

order to re-present it. Each representation has properties which come both from modeling

choices and from chosen semiotic modes. These properties have, a priori, no connection with

the represented world. Moreover, as a material device, a computer imposes a set of

constraints which themselves will impose an appropriate transformation allowing the

implementation of the adapted representation.

I will name as computational transposition this work on knowledge which offers a symbolic

representation and the implementation of this representation on a computer-based device, in

order to show knowledge or to manipulate it. In a learning context, this transposition is

particularly important. It implies indeed a contextualization of knowledge, with possible

important consequences for learning processes”.

Balacheff distinguishes constraints linked to the internal universe of a machine (for example,

the program for representing a circle, Figure 6-1) from interface constraints (for example, the

screen representation of a circle distorted by pixellation).

Internal           Interface      External 

  universe                          universe

int Calcercle2pts(objetptrpt)

{x1=pt->constits[0]->p_val[0].p_vpoint.h-pt...

Program

Figure 6-1. Circle computational transposition

These phenomena point to the importance, for learning, of precisely delimiting the domain of

epistemological validity of an artifact, i.e. to characterize the objects it gives access to and to

identify its semiotic and functional characteristics.

1.2 Didactic phenomena linked to students’ processes of

adaptation to environments

Experiments also reveal processes of adaptation to environments: in

these processes, the constraints and potentialities of computerized

environments play a determining role.
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1.2.1 Perceptual adaptation processes

First of all these processes are linked to the potentialities of calculators as

regards visualizat ion , in terms of graphical as well as algebraic

representatives (Schwarz & Dreyfus 1995). The influence of ‘direct’
1

perception is most widely noted in the graphic frame. We showed (Guin &

Trouche 1999), for example, that answers to the question “Does the function

f, defined by f(x) = ln x + 10 sin x , have an infinite limit as x tends to + ?”

depend strongly on the working environment (even though elementary

theorems make it possible to answer yes to this question).

Figure 6-2. A graphic representation of the function f: x a ln x + 10sin x

In a graphic calculator environment, 25% of students answered no,

appealing to the oscillation of the observed graphic representation (Figure 6-

2); in a paper-and-pencil environment, only 5% of students answered no.

The importance of framing perception in algebraic terms was pointed out

by Artigue (1997); students, in a DERIVE environment, had to explain how

to move from the equation 2x - 5y = 8  to the equation 12x - 30y =  48 , then

6x - 15y = 24 .

On first passage, the teacher gave an indication: multiply by 6. This will favor a solution

based upon formal analogies which are essentially perceptual (…). [Students] suppose

that 6 has been obtained by dividing, but wonder how this division could be done. After

some hesitation, they decide to try using DERIVE, to do something which according to

them, “would probably give nothing, but trying costs nothing”: they enter the two

equations under division and ask DERIVE to simplify. DERIVE answers with: 3 = 3,

which amuses students (“it’s trivial!”) but also intrigues them. They do not try to

understand this answer, but decide to do the same thing with the first equation. This time,

(12x – 30y = 48) / (2x – 5y = 8) gives 6 = 6.

As DERIVE answers 6 = 6, when the teacher’s answer is 6, so, in the second case, when

DERIVE answers 3 = 3, the right answer must be 3.

Thus, perceptual adaptations can come into play within both graphical

and algebraic frames, but this does not guarantee the establishment of

relationships between these two frames: Dagher (1996) shows that frequent

use of software allowing algebraic and graphical representations of functions
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to be manipulated does not necessarily help students to build an efficient

articulation between these two frames.

Perceptual adaptations are also linked to potentialities for animation. We

have pinpointed numerous manifestations of this in calculator environments;

for example (Trouche 1995), students had to find a parabola tangential to

three given lines (Figure 6-3). To perform this task, students tested diverse

parabola equations. In order to check if their parabola was a correct solution,

they zoomed in on the contact point between a line and the parabola. They

supposed this contact to be ‘good’ if, after several zooms, curve and line

appeared confounded on the calculator screen. At the end of this work, the

teacher asked: “How can a tangent to a curve be defined?”

Figure 6-3. Search for a parabola tangential to three given lines

The first answer proposed from the class was: “a line is the more

tangential to a curve the more common points it has with it”. This definition

does not correspond with any taught knowledge acknowledged by the

institution; it is the simple translation of students’ observation of a ‘good’

contact between a curve and a line on a calculator screen composed of pixels

(Figure 6-3). This is a visualization effect, linked to the computational

transposition (particularly, here, the constraints of discrete traces, Box 6-2).

In tackling the same task, the strategy of finding by trial and error a

curve of equation y = ax
2
+bx+c also leads to the construction of knowledge

(related to the roles of the coefficients a, b and c). In this context, students’

activity is essentially based on observing the displacement of curves through

modification of coefficients in their equation. Thus, for c, students claim:

“when c increases the parabola goes up, when c decreases the parabola

goes down”. Even after a clarification from the teacher (“c is the y co-

ordinate of the intersection of the curve with the y axis”), it is often the first

interpretation that is memorized: when the teacher asks about the sign of the

coefficient c in the equation of the specified parabola (Figure 6-4), some

students answer that c is equal to zero in the case of the left parabola (“the

parabola is at the level zero”) and c is negative in the case of the right

parabola (“the parabola is underneath the x-axis”), although c is strictly

positive in both cases.
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Figure 6-4. Two unknown parabola equations

This reaction shows the importance of movement for students’

perception and description of what appears on a screen (what students

remember is more the change between two images, rather than the

properties of each image. The same reasoning in terms of animation (more

precisely, the possibility of moving a point on a curve thanks to the Trace

command) could explain students’ conception of a function graph, in a

calculator environment, as the trajectory of a moving point, rather than as a

set of points whose coordinates are (x; f(x)).

Box 6-2.

Constraints of discrete plots and some consequences

(Guin & Trouche 1999)

Many phenomena arising in relation to the graphical interface of calculators are linked to the

presentation of discrete plots on a screen composed of a finite number of pixels.
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Figure 6-5. A diagram showing the consequence of a discrete plot:

an usual period for sine function

For example, if the represented function is periodic (sine function, Figure 6-5) and if the

distance between two computed points is close to its period, the two computed images will

also be close together. As the calculator joins these two points, the oscillation between these

points will not be shown.

1.2.2 Phenomena linked to the organization of students’ work

The multiplicity of easily available commands has effects on the

economy of students’ work.

Students carry out trials and tests without paying attention to their organization and

control. They hope that, within a reasonable time, they will obtain something interesting.



An Instrumental Approach To Mathematics Learning 143

Observations show that these fishing behaviors can be productive for students, often

more productive than more reflective behaviors available to them. The low cost of these

trials and their productivity tend to discourage retroactive approaches, involving looking

back and modifying accordingly, generally considered as essential in generating the

cognitive adaptations hoped for (Artigue 1997).

In the same category, Defouad (2000) pinpoints a zapping phenomenon

(which consists of quickly changing graph window, without having time to

analyze each of the representations obtained), an oscillation phenomenon

(students oscillating between several techniques and strategies) and an over-

checking phenomenon (students carrying out multiple checks, using all the

means provided by the calculator).

We have also noted similar phenomena, in a calculator environment

(Trouche 1997):

- a phenomenon of automatic transportation: students enter all the

problem data into the calculator, and then look for the command which

could give the solution directly:

[A student] studies a positive sequence u(n) converging toward 0. He wants to determine

the value of n from which u(n) will be smaller than 10
-10

. He takes his calculator, enters

u(n) in the sequence editor, enters 10
-10

in the window setting, as “nmax”. Then he

wonders what is the right key he has to press in order to have the result?

- a phenomenon of localized determination, linked to the difficulty of

moving from one register to another one (Duval 2000; Guin & Trouche

2002, p.158) and of changing application on a symbolic calculator. It

consists of repeating the same type of technique, within the same calculator

application, making some adjustments, even if this type of technique does

not appear relevant.

To answer the question “Are there some power functions with curves tangential to the

curve of the exponential function?”, some students tried in succession (x
2
, then x

3
, then

x
2.1

, then x
2.2

…). Each curve was tested through successive zooms. During the whole

activity (taking one hour), the same type of approach was repeated.

While looking back is exploited effectively (unlike in fishing behavior),

work remains confined to a single graphical application, with a double

consequence:

- firstly, for problem solving: doing mathematics often requires changing

one’s point of view. Keeping the same point of view, using a single

technique, often does not allow a given problem to be solved;

- secondly, for building knowledge: working in a single register,

representing a mathematical object in a single form, does not make it

possible to form a complete notion of this object.
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These phenomena generally appeared in long-term experiments, where

students had calculators at their disposal (both at school and at home). These

parameters are probably important, facilitating the appropriation of the

calculator by students and the stabilization of techniques to perform given

tasks. This necessity of taking into account the potentialities and constraints

of new tools led us to study appropriation and utilization processes. More

generally our interest in mediation linked to the learning process (Vygotsky

1962) led us to seek new theoretical approaches, which would yield better

understanding of the role of material and symbolic instruments within

mathematical activity.

2. A NEW APPROACH IN ORDER TO

UNDERSTAND AND DESCRIBE NEW

PHENOMENA

Recent work in the field of cognitive ergonomics has provided

theoretical tools allowing a better understanding of processes of

appropriation of complex calculators. Verillon and Rabardel, dealing with

training in general (1995) propose a new approach, which essentially

distinguishes an artifact from an instrument:

- an artifact is a material or abstract object, aiming to sustain human

activity in performing a type of task (a calculator is an artifact, an algorithm

for solving quadratic equations is an artifact); it is given to a subject;

- an instrument is what the subject builds from the artifact.

This building (Figure 6-6), the so called instrumental genesis, is a

complex process, linked to characteristics of the artifact (its potentialities

and constraints) and to the subject’s activity, her/his knowledge and former

work methods.

An artifact

Its constraints
Its possibilities

A subject

Her/his knowledge
Her/his work method

An instrument “to do something”

Part of the artifact + schemes

Instrumentation

Instrumentalization

Figure 6-6. From artifact to instrument
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This schema rests on some fundamental ideas:

- an artifact partially prescribes the user’s activity, through its constraints

and potentialities;

- instrumental genesis is a process (therefore needs time) and has two

components, the first one (instrumentalization) directed toward the artifact,

the second one (instrumentation) directed toward the subject;

- a subject builds an instrument in order to perform a type of task; this

instrument is thus composed of both artifact (actually a part of the artifact

used to perform these tasks) and subject’s schemes (Box 6-4) allowing

her/him to perform tasks and control her/his activity.

We are going now to make these ideas more precise in the context of

symbolic calculators.

2.1 Analyzing constraints and potentialities of symbolic

calculators

Computational transposition and design choices produce constraints in a

symbolic calculator which Balacheff classifies as internal constraints and

interface constraints (Box 6-1).

Regarding general relationships with artifacts, Rabardel (1995)

distinguishes three types of constraint: existence mode constraints, linked to

properties of the artifact as a cognitive or material object, finalization

constraints, linked to objects it can act on and to transformations it can carry

out, and, lastly, action prestructuration constraints, linked to

prestructuration of the user’s action.

Concerning symbolic calculators, we have used (Trouche 1997) both

Balacheff’s and Rabardel’s typologies, distinguishing internal constraints

(identified as existence mode constraints), command constraints (linked to

the existence and the nature of specific commands) and organization

constraints (linked to ergonomic questions, particularly keyboard and menu

organization).

Defouad (2000) notes some shortcomings in this typology:

- internal constraints do not cover all existence mode constraints (for

example, the nature of the calculator screen is not an internal constraint, but

an existence mode constraint);

- all the constraints actually prestructure the user’s activity (and not only

organization constraints);

- this typology does not take into account various information levels:

information introduced by the user at the interface, information accessible at

the interface, but not open to transformation by the user, and information not

accessible at the interface;
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- it does not take account of syntax constraints, even though these can be

decisive when introducing information at the interface.

Box 6-3.

Internal constraints of one graphic calculator

(Bernard & al 1998)

The authors studied internal constraints of the TI-82 calculator. Figures 6-7 and 6-8 show one

illustration, linked to implemented algorithms for approximate computation: while the limit at

0 of the given function is 1/6, the table of values and graph of the function give first a value

close to 1/6, then, as x approaches 0, produce some oscillations, and finally seem to give, as

the function limit, the value 0.

Figure 6-7. Numerical observation of the function f: x a

x- sin x

x3
 near 0

Figure 6-8. Graphical observation of the function f: x a

x- sin x

x
3

 near 0

Taking account of these remarks, we make precise three types of

constraint, all serving to prestructure the user’s action and related to a type

of task:

- internal constraints (in the sense of physical and electronic constraints)

intrinsically linked to material. They are linked to information which the
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user cannot modify, whether accessible or not. They strictly shape action.

They include for example processor characteristics, memory capacity (Box

6-3) and screen structure, composed of a finite number of pixels (Box 6-2);

- command constraints linked to the various commands in existence and

their form (including syntax). They are linked to information accessible at

the interface which the user can sometimes modify:

Example 1: the Range application of the calculator allows the viewing window to be

fitted to a graphic representation of the function. The choices open to the user are

relatively free: s/he can choose Xmin and Xmax (but not Xmax smaller than Xmin). The

graphic representation of the function which is obtained through setting these values

provides feedback allowing a better fitting window to be found.

Example 2: some calculators (Texas Instruments symbolic calculators) require the use of

parentheses when computing function values (sin(2), log(3), etc.). This is not the case for

other calculators (Casio symbolic calculators) which accept entries such as sin2, or log3:

these different design choices can have consequences for students’ conceptions about

functions.

- last, organization constraints linked to keyboard and screen

organization, i.e. to available information and command structure.

Example 1: designer choices related to functions (the naming of commands, means of

accessing them and their placing within a menu) give a particular point of view on

available objects (Appendix 6-1). These choices are linked to an ergonomic study of

users’ needs, and, at the same time, they favor a particular form of tool use.

Example 2: the placing of the symbol “ ” is not neutral. On Texas Instruments

calculators, this symbol is directly given by a keystroke (and it can be manipulated as a

number or a letter). On Casio symbolic calculators, it is available only in the CAS

application. These different approaches can instill different relationships with this symbol

, and, beyond, with the notion itself (Appendix 6-1).

It is possible to discuss the placing of a given constraint into one of the

three defined types. But this interest in typology is not strictly in partitioning

constraints; it is rather in making easier, for teacher as well as for researcher,

an a priori analysis of different ways proposed for performing tasks with an

artifact. Distinguishing these three levels allows this analysis to be organized

in a given mathematical context (Box 8-5, for such an analysis of limit

computation). Particularly, distinguishing an elementary level of command

constraints and a more complex level of organization constraints permits a

distinction, within students’ activity, between a level of gesture and a level

of technique.

Analyzing calculator constraints shows clearly that it presents

mathematical knowledge in a particular way: “These tools wrap up some of

the mathematical ontology of the environment and form part of the web of

ideas and actions embedded in it” (Noss & Hoyles 1996). A user is thus not
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‘free’ to use, as s/he wants, a given tool: “This use is, relatively,

prestructured by the tool” (Luengo & Balacheff 1998). These constraints do

not necessarily lead to impoverishment of activity: by taking in charge part

of the work, by favoring exploration in various registers (Yerushalmy 1997),

tools open new ways for conceptualization. It is indeed difficult to separate

potentialities on the one hand and constraints on the other: both are

intimately linked, each facility offered presses the user to realize one type of

gesture rather than another.

2.2 Understanding two components of instrumental

genesis: one directed toward the artifact, the other

directed toward the subject

Instrumental genesis (Figure 6-6) is a process of building an instrument

from an artifact. It has two closely interconnected components:

- the instrumentalization process, directed toward the artifact;

- the instrumentation process, directed toward the subject.

The instrumentalization process, directed by the subject, involves several

stages: a stage of discovery and selection of the relevant keys, a stage of

personal i za t ion (one fits the tool to one’s hand) and a stage of

transformation of the tool, sometimes in directions unplanned by the

designer: modification of the tool bar, creation of keyboard shortcuts,

storage of game programs, automatic execution of some tasks (the web sites

of calculator manufacturers or the personal web sites of particularly active

users often offer programs for functions, methods and ways of solving

particular classes of equations etc.). Instrumentalization is a process of

differentiation as regards the artifacts themselves:

- differentiation regarding the calculator’s contents: in making

comparisons between students’ calculators it is possible to identify

differences (from both quantitative and qualitative points of view) between

the various programs stored;

- differentiation regarding that part of the artifact mobilized by the subject

(for some students, a very small part of calculator, for others a large one).

Instrumentalization is the expression of a subject’s specific activity: what

a user thinks the tool was designed for and how it should be used: the

elaboration of an instrument takes place in its use.

Instrumentalization can thus lead to enrichment of an artifact, or to its

impoverishment.

Instrumentation is a process through which the constraints and

potentialities of an artifact shape the subject. As Noss & Hoyles (1996) note:

“Far from investing the world with his vision, the computer user is mastered

by his tools”. This process goes on through the emergence and evolution of
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schemes (Box 6-4) while performing tasks of a given type. We will study an

example of such processes in the following section. As instrumentalization

processes, instrumentation can go through different stages. Defouad (2000)

analyzes these processes of evolution for students who, after using graphic

calculators, then move on to use symbolic calculators (TI-92). He

distinguishes two main phases, first an explosion phase and second, a

purification phase:

At the beginning of instrumental genesis, the student’s work seems to be at a crossroads,

as if s/he was looking for an equilibrium between her/his former techniques and strategies

(linked to graphic calculators) and various new possibilities opened up by TI-92

calculators and the evolution of classroom knowledge. We call this phase an explosion

phase, as new strategies and techniques appear to burst out; it seems to be characterized

by oscillation, zapping or over verification phenomena (§ 1).

Progressively, students enter into a second phase we call a purification phase, where

machine use tends to an equilibrium, in the sense of the stabilization of instrumented

strategies and techniques. This phase often goes with a fixation on a few commands (and

such choices could be different, according to each student).

Box 6-4.

Schemes and conceptualization

(Vergnaud 1996)

Vergnaud distinguishes:

- Conceptions: “one can express them by sequences of statements whose elements are

objects, monadic or polyadic predicates, transformations, conditions, circumstances,

forms”…

- Competencies: “one can express them by actions judged adequate for the treatment of

situations”.

He introduces the scheme concept, allowing relationships to be established between

conceptions and competencies. A scheme is an invariant organization of activity for a given

class of situations. It has an intention and a goal and constitutes a functional dynamic entity.

In order to understand its function and dynamic, one has to take into account its components

as a whole: goal and subgoals, anticipations, rules of action, of gathering information and

exercising control, operational invariants and possibilities of inference within the situation.

Vergnaud names as operational invariants the implicit knowledge contained within schemes:

concepts-in-action are concepts implicitly believed to be relevant, and theorems-in-action are

propositions believed to be true. He distinguishes theorems-in-action and concepts-in-action

(“truth is not the same thing as relevance”), but insists on their deep links (“theorems-in-

action cannot exist without concepts-in-action, as theorems cannot exist without concepts,

and vice-versa”). These operational invariants occupy a central place in this frame as: “two

schemes are different as soon as they contain different operational invariants”.

To better understand the complexity of these two processes, let us make

two elements precise:
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i) Instrumental genesis is a process of building an instrument, from an

artifact, by a subject. This instrument is built from a part of the initial

artifact (modified through the instrumentalization process) and through

schemes built in order to perform a type of task (Box 5-1). A complex

artifact such as a symbolic calculator will thus give birth, for a given

student, to a set of instruments (for example an instrument for solving

equations, an instrument for studying function variation, etc.). The

articulation of this set is a complex task (Chapter 8, § 2).

ii) Instrumental geneses have both individual and social aspects. The

balance between these two aspects depends on:

- material factors (it is quite obvious that the ‘intimacy’ of calculator

screens favors individual work whereas computer screens allow common

work by small student groups);

- the availability of artifacts (sometimes, they are available only at school,

sometimes they are lent for the whole school year, sometimes they are

students’ property);

- the way in which the teacher takes these artifacts into account (Chapter

8, § 2).

Moreover artifacts are mediators of human activity and activity mediated

by instruments is always situated (Chapter 8, § 2).

Chacon & Soto-Johnson (1998) analyze some effects of these variables

on students’ behaviors and on their relationships with artifacts: when

calculators or computers are available only from time to time, students often

develop a critical attitude toward technology; indeed they are sometimes

quite confused (because learning in the two environments -- computerized

and ‘classical’ -- is not the same) and frustrated (computers are not available

outside laboratory scheduled work).

2.3 Understanding different levels and different

functions of instrumented action schemes

Rabardel (1995) introduced the notion of the utilization scheme of an

artifact to describe a scheme operative within activity mediated by an

artifact and distinguishes two such sorts of schemes:

- usage schemes, “oriented toward the secondary tasks corresponding to

actions and specific activities directly linked to the artifact”;

- instrumented action schemes, whose “significance is given by the global

act aiming to carry out transformations on the object of activity”.

All are partially social schemes, as their emergence comes, in part, from

a collective process involving artifact users and designers. Schemes of usage

and instrumented action are deeply linked. A scheme of instrumented action

aims to perform a given task. It includes operational invariants (Box 6-4).
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One can consider instrumented action schemes as a set of usage schemes.

Understanding the function of a usage scheme requires it to be considered

not in isolation, but as a component of an instrumented action scheme

involved in performing a given task.

2.3.1 Usage schemes and gestures

We define a gesture as the observable part of a usage scheme. For

example, we illustrate (Trouche 2000) the importance of a particular gesture,

approximate detour; it consists of a combination of keystrokes which

results, when working on a symbolic calculator in exact mode, in an

approximate value of a symbolic expression. It is not a simple gesture, only

oriented toward calculator management: beyond (or psychologically

underneath) this gesture, there is a usage scheme, with associated

knowledge. Looking for this knowledge involves considering the gesture not

as an isolated act but as integrated within an instrumented action scheme

employed by the student in order to resolve given tasks.

We identified (Trouche 1996) the three main schemes of instrumented

action in which approximate detour appears as those of solving equations,

computing integrals, and computing limits.

The observation of students’ work shows rules of action, of gathering

information, of exercising control (Box 6-4):

- for some students, the approximate detour has always a determination

function (the approximate value obtained is considered as the value);

- for other students it has always an anticipation or checking function

(obtaining an approximate value may be a step in the process of seeking an

exact value).

In other words, approximate detour contributes to building different

kinds of knowledge about, say, the real numbers.

2.3.2 Instrumented action schemes and instrumented techniques

One can describe human activity (and students’ activity in particular) in

terms of techniques (Box 5-1), i.e. sets of gestures realized by a subject in

order to perform a given task. When a technique integrates one or several

artifacts, we will speak of an instrumented technique. Instrumented

technique is thus the observable part of an instrumented action scheme. For

example, an instrumented technique which can be described in this way

(Trouche 2001) is one for limit computation, in a symbolic calculator

environment, as presented by a teacher (Figure 6-9).

Its presentation is made as a tree. In general, such a tree can be:
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- more or less ‘vast’ (in the sense of the number of calculator applications

used, of the number of frames evoked, etc.). We can observe in this case that

the numerical frame is not used (for numerical observations, for example);

- more or less dense (in the sense of the granularity of prescribed

gestures). In this case, use of the calculator in order to split the problem is

not indicated.

If ‘obvious’

If not obvious

Figure 6-9. An instrumented technique for limit computation, as seen by a teacher

An instrumented technique can be taught, but what is taught is not

necessarily what students learn: the gap between instrumented techniques as

taught and as practiced may be important (Appendix 6-2, which shows two

students’ very different work within the same class and for the same taught

instrumented technique).

Describing activity in terms of instrumented action schemes calls for

consideration of operational invariants (Box 6-4). A scheme is an observer’s

construction from the different activity traces of a subject (gestures,

anticipations, inferences, etc.). Let us illustrate this, for the same student, in

two different environments. He is a student from an experimental class

(Trouche 2000), working first for three months with graphic calculators,

then for six months with symbolic calculators. The task consists in studying

Computation
by hand

Formal treatment
with calculator

Formal
checking with

calculator

Maybe

If calculator answer

Writing

down

If no calculator answer

Calculator

Splitting into sub-problems fl--‡ Graph observations

Paper-pencil

Algebraic manipulationsfl--‡Theoretical researches
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the following question: “has the given function an infinite limit as x tends to

+ ?”.

Graphic calculator environment

If one only described the gestures of the instrumented technique, one

would say that the student takes his calculator, ‘enters’ the function to be

studied in the function editor, uses numerical applications to observe the

function behavior for large values of the variable, and infers the answers by

observing the values taken by f(x) as x takes large values.

If one wants to look at the instrumented action scheme (Figure 6-10), one

will search for the operational invariants guiding this technique. Searching

for them depends on observing the student performing other tasks of the

same type and asking him to justify his answers. This student explains he

does not use the graphical application, because defining a ‘right’ window for

graphing the function on a large scale is too difficult. Therefore he uses the

calculator table of values, and, as far as he can, infers the function behavior.

He thus concludes, in the following cases: “if f(x) is much greater than x, or

if the function increases with great speed it is okay. On the other hand, if the

function starts to decrease or oscillate then it is no good”. Consequently one

can hypothesize that the student’s scheme integrates theorems-in-action of

the following type “if f(x) takes much larger values than x, then the limit of f

is infinite”, “if the function increases very strongly, then the limit of f is

infinite”, “if the limit of f is infinite, then f is necessarily increasing”. From

all these properties emerges a concept-in-action of the type: “f has an

infinite limit means that, when x is large, f(x) is very large, increasingly

large”
2
.

Symbolic calculator environment

If one describes only instrumented technique, one will say that the

student takes his calculator and applies the limit command to the given

function.

Concerning the instrumented action scheme (Figure 6-10), there is,

compared to the graphic calculator environment, an apparent simplification:

less effort while manipulating the artifact (the only effort is a syntactic effort

of writing a correct command) and less effort of explanation (since the

software ensures the correctness of results, any justification of a result, even

when required by the teacher, appears less necessary). The instrumentation

process leads here to a simplification of the scheme, accompanied by an

impoverishment of the operational invariants. To the question: “what is the

meaning of the function having an infinite limit?” the student, in a graphic

calculator environment, gave an answer related to the concept-in-action

which we evoked above; four months later, in a symbolic calculator

environment, he could not give any definition any more: the function limit



154 Chapter 6

did not have any other existence than as a product of the software symbolic

application, as a response to a computation command. There was a

vanishing of the concept. Vanishing does not mean disappearing: the limit

conception moves from a process result, in a graphic calculator

environment, to an operation result, in a symbolic calculator environment.

Graphic calculator 

environment

Symbolic calculator 

environment

Gestures GesturesTools Tools

Investigating Writing

command

Reading

result

Writing and 

justifying

result

Graphic

calculator
Symbolic

calculator

Inferring

result

Writing and 

justifying

result

Operational

invariants

Operational

invariants

Figure 6-10. Evolution of limit computation action schemes, from a graphic calculator

environment to a symbolic one

As we can see for these two instrumented action schemes, there is a

dialectic relationship between operational invariants and realized gestures:

- operational invariants guide gestures: in the first case, they guide

gestures through the investigation process, the inference process and the

justifying process. In the second case, they guide gestures of writing a

command, reading a result, and (although weak) a process of justifying. In

the graphic calculator environment, the mobilization of operational

invariants requires an important cognitive effort (one has to evaluate if the x

values are large ‘enough’ and if f(x) is large ‘enough’). In the symbolic

environment, the cognitive effort is not of the same nature: it is not related to

a search process, but only to a control of syntax (here we speak of a

particular student; amongst other students, we observed other schemes,

Appendix 6-2);

- at the same time, activity, through gestures, institutes operational

invariants: “From successive approximations, the hand finds the right

gesture. The mind registers the results and infers an efficient gesture

scheme. Gesture is a synthesis.” (Billeter 2002). Operational invariants

appear as an abstraction of what is judged an apt gesture. Then, because
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operational invariants enable a task to be performed, their field of

operationality and validity will naturally spread.

A schema expresses this dialectic between action and conceptualization

(Figure 6-11).

One instrumented action scheme

One instrumented technique:

successive gestures 

Operational invariants

Figure 6-11. Relationships between scheme and technique, gesture and operational invariants

This study of schemes of instrumented action leads to two conclusions:

- the first one relates to the two instruments successively built by the same

student: it clearly appears that extension (or complexification) of an artifact

can go with a reduction (or an impoverishment) of the corresponding

instrument built by a subject
3
;

- the second one relates to the method of studying instrumented action.

The study of instrumented action schemes requires studying, beyond the

techniques themselves, their epistemic, heuristic and pragmatic functions

(Box 5-1). It requires analysis of the student’s activity in more depth: over

time, in order to pinpoint regularities, and with regard to the student’s

discourse, in order to pinpoint the justification offered for gestures. These

regularities of activity and justifications of gestures allow hypotheses about

operational invariants to be formulated.

Having a good knowledge of calculator constraints and more precise

ideas on students’ operational invariants may give teachers some means to

orient their mathematics lessons:

- choosing situations which help students to master concepts (something

which cannot be realized for an isolated concept, but only in the frame of a

conceptual field, Box 6-5). This question will be studied in Chapter 9;

- taking into account the artifacts available in the learning environment in

order to favor social aspects of schemes. We will see this point in Chapter 8.
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Box 6-5.

Operational invariants, concepts and conceptual fields

(Vergnaud 1996)

A concept acquires its sense through several situations and phenomena and, thus, has its roots

in several categories of operational invariants. Besides, it becomes fully a concept only

through articulation of its properties and of its nature, in a mathematical wording where it has

the status either of predicate or object.

This idea leads to the definition of a concept as a triplet of three sets:

- a set of situations which give sense to the concept;

- a set of operational invariants through which such situations are treated;

- a set of language and symbolic representations which allow the concept to be represented.

A concept cannot be built in isolation. It has to be studied as an element of a larger set which

Vergnaud names a conceptual field (for example, the limit concept has to be built within the

conceptual field of calculus). One can define a conceptual field in a twofold manner:

- as a set of situations needing to be progressively mastered and a closely interconnected

range of concepts, procedures and symbolic representations;

- as the set of concepts which ensure a mastering of these situations.
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APPENDICES

Appendix 6-1

Some organization constraints for two symbolic calculators

What are, for two different symbolic calculators, the organization constraints

related to study of functions?

Computation

TI-92 (Texas Instruments)

The same application (available on the

keyboard: H O M E ) allows numerical and

formal, approximate and exact computation.

Within this application, the user can choose

the computation mode s/he wants. This mode

is indicated at the foot of the screen.

Algebra FX 2.0 (Casio)

Two different computation applications:

first ( N U M ) for approximate

computation, second, CAS , for formal

and exact computation. The computation

mode does not remain indicated on the

screen when calculating something.

Two different design choices:

- for Casio, approximate mode appears privileged through the first application proposed,

NUM, only allowing approximate computation;

- for TI, the two modes are placed on the same plane. A keystroke combination (approximate

detour, § 2.3.1) allows the shift from an exact to an approximate result (from example from

1/3 to 0.33333). Both exact and approximate values can coexist on the same screen.

Between the two cases, a different relationship to numerical approximation is favored.

Combination of commands

TI-92 (Texas Instruments)

One can combine approximate and symbolic

computation, writing for example the

following command:

Approximate value(limit f(x), x, a).

Algebra FX 2.0 (Casio)

It is impossible to combine approximate

and symbolic computation commands.

These different design choices could have consequences, for example on the conceptualization

of the limit notion.

Graphical and numerical analysis of functions

TI-92 (Texas Instruments)

GRAPH application (allowing graphically

representing function) and TABLE application

(allowing obtaining table of values) are

accessible on the same level on the keyboard.

Algebra FX 2.0 (Casio)

Opening G R A P H application gives

access to several menus. One of these

menus contains the TABLE application.

This application thus appears to be

included within the GRAPH application.

Two different design choices:

- for Casio, graphical representation (compared to table of values) appears privileged;

- for TI, these two types of representation are on the same level;

In these two cases, it is not the same graphical/numerical articulation which is favored.
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Appendix 6-2

Two instrumented techniques for computation of limits, in a symbolic

calculator environment, for two 12
th

 grade students

(Trouche 2001, p.16)

One can see below the gap between the instrumented technique which is taught (Figure 6-9)

and the two students’ techniques.

Students had to determine the limit as x tends to + of the function f defined on ]0; + [ by

f(x) = 
x + cos x

x + sin x
.

NB. The TI-92 symbolic calculator does not “know” this limit (Box 8-4, § 2.1, p.222), but

students could use some basic theorems to derive this limit as equal to 0.

Student 1

He first defines the f function for the calculator (Figure 6-12, next page) “then I could avoid

having to write this complex thing several times”. Calculator answer: undef.

“Oh, these functions sine and cosine often cause trouble when looking for limits, I need to

get rid of them”.

On his paper, he bounds sine and cosine as lying between – 1 and +1, and then bounds the f

function, for x > 0:

x -1

x +1
£ f (x) £

x +1

x-1

He uses his calculator to find the limits of the left and right function: 0.

“According to the theorem about limits and inequalities, I can say that my function f has

also 0 as a limit”.

“Let us have a look at the graphs of the three functions. He graphs the three functions:

“the function f is well bounded by the two others in the neighborhood of + ”.

Then: “I can also change the variable”. On paper:

X = x, f (X) =
X +1

X2 +1

“I can use the theorem about the polynomial functions, or do some factorizations and

use the theorems about limits and operations”:

On paper again: X +1

X2 +1
=

1+
1

X

X +
1

X

End of the work (one hour): paper-and-pencil and calculator approaches articulated, a work in

multiple-registers (algebraic and graphical studies), expression and construction of

knowledge about limits, a rich limit scheme.

The tool complexity is mastered and contributes to enrich the instrumentation process and to

build an efficient instrument for study of function limits.

Student 2

He uses the limit command of the CAS application, applied to the given function.

Calculator answer: undef.

“Oh, I made a mistake in writing the command!”
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He writes again, same calculator answer.

“Oh, I am useless, I’ll have to try again” (writing the function x +cosx

x + sin x
 takes a lot of

time). Same calculator answer…

“Oh, I have understood, the calculator doesn’t know the f function, I have to define it!”.

He defines the function f (Figure 6-12).

Again the command limit, again the answer undef.

New perplexity, and new idea: “when a limit isn’t defined, it is sometimes possible to look at

the left, or at the right of the point. So I am going to look at the right of + , so I will go as far

as possible” (Figure 6-12). Still answer undef.

Figure 6-12. Calculator screen copy of student 2

At last, he breaks down the problem into sub-problems, looking for the limits of x  ( “It

works, I obtain + as a limit!”) and of sinx and cosx (“that is the problem: these two

functions have no limit, that is the reason why my function f has not limit”).

End of the work (1hour 30minutes): no paper used, work in a single register (no numerical

nor graphical studies), no idea of the function behavior, a quite weak scheme for studying

limits.

The complexity of the tool does not contribute to assist the student’s activity or build an

efficient mathematical instrument.



160 Chapter 6

NOTES

1. “We don’t see only forms, but also meanings” (Wittgenstein, in Bouveresse (1995)).

2. This concept-in-action appears close to a kinematic point of view on function limit (Box

8-4).

3. This situation is not necessarily linked to a given environment. In the same class, we

showed (Trouche 1996) the existence of very different processes for other students:

different forms of instrumentalization developed (storage into calculator of the main

theorems related to function limits, of specific programs for computation of limits, etc.)

and instrumentation becoming richer with the shift from graphic to symbolic calculator

environment, through use of a great diversity of applications (Appendix 6-2).
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