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Abstract Single-ratio and multi-ratio fractional programs in applications are often
generalized convex programs. We begin with a survey of applications of
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class of problems, we focus on an analysis of min-max fractional pro-
grams. A parametric approach is employed to develop both theoretical
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1. Introduction.

In various applications of nonlinear programming a ratio of two func-
tions is to be maximized or minimized. In other applications the ob-
jective function involves more than one ratio of functions. Ratio op-
timization problems are commonly called fractional programs. One of
the earliest fractional programs (though not called so) is an equilibrium
model for an expanding economy introduced by von Neumann (cf. [74])
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in 1937. The model determines the growthrate of an economy as the
maximum of the smallest of several output-input ratios. At a time when
linear programming hardly existed, the author already proposed a du-
ality theory for this nonconvex program. However, apart from a few
isolated papers like von Neumann’s, a systematic study of fractional
programming began much later.

In 1962 Charnes and Cooper (cf. [18]) published their classical pa-
per in which they show that a linear fractional program with one ratio
can be reduced to a linear program using a nonlinear variable transfor-
mation. Separately, Martos [49] in 1964 (from his Ph.D. dissertation
in Hungarian in 1960) showed that linear fractional programs can be
solved with an adjacent vertex-following procedure, the same way as lin-
ear programs are solved with the simplex method. He recognized that
generalized convexity properties (pseudolinearity) of linear ratios enables
such a technique which is successfully used in linear programming.

The study of fractional programs with only one ratio has largely dom-
inated the literature in this field until about 1980. Many of the re-
sults known then are presented in the first monograph on fractional pro-
gramming (cf. [65]) which the second author published in 1978. Since
then two other monographs solely devoted to fractional programming
appeared, one in 1988 authored by Craven (cf. [21]) and one in 1997
by Stancu-Minasian (cf. [71]). An overview of solution methods for
single-ratio and multi-ratio fractional location problems appeared in the
monograph by Barros (cf. [5]).

Fractional programs with one or more ratios have often been studied in
the broader context of generalized convex programming (cf. [4]). Ratios
of convex and concave functions as well as composites of such ratios are
not convex in general, even in the case of linear ratios. But often they
are generalized convex in some sense. From the beginning, fractional
programming has benefited from advances in generalized convexity, and
vice versa (cf. [50]).

Fractional programming also overlaps with global optimization. Sev-
eral types of ratio optimization problems have local, nonglobal optima.
An extensive survey of fractional programming with one or more ratios
appeared in the Handbook of Global Optimization [61]. The survey also
contains the largest bibliography on fractional programming with one
or multiple ratios so far. It has almost twelve-hundred entries. For a
separate, rich bibliography [71] may be consulted.

Very recently two surveys have appeared updating some of the devel-
opments reviewed in [61]. The single-ratio and min-max case is treated
in [59] and the sum-of-ratios case in [60].
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2. Classification of Fractional Programs.

To start with single-ratio fractional programs, let be a
nonempty closed set and be extended real-valued
functions which are finite-valued on B. Assuming for every

consider the nonlinear program

The problem is called a single-ratio fractional program. In most
applications the nonempty feasible region B has more structure and is
given by

with and some set of real-valued contin-
uous functions. So far, the functions in the numerator and denominator
were not specified. If and are affine functions (linear
plus a constant) and denotes the nonnegative orthant of
then the optimization problem is called a single-ratio linear frac-
tional program. Moreover, we call a single-ratio quadratic fractional
program if the functions and are quadratic and the func-
tions are affine. The minimization problem is called a
single-ratio convex fractional program if C is a convex set,
and are convex functions and is a positive concave function on B.
In addition it is assumed that is nonnegative on B if is not affine.
In case of a maximization problem the single-ratio fractional program
is called a single-ratio concave fractional program if is concave and
is convex. Under these restrictive convexity\concavity assumptions the
minimization problem is in general a nonconvex problem.

In some applications more than one ratio appears in the objective
function. One form of such an optimization problem is the nonlinear
programming problem

with extended real-valued functions
which are finite-valued on B with for every and

The problem is often called a generalized fractional program.
As for single-ratio fractional programs we can specify the functions and
make a distinction between multi-ratio linear fractional programs and
multi-ratio convex fractional programs. If one is not affine, we need
to assume that all functions are nonnegative. Clearly both problems

and are special cases of the following problem.



338 GENERALIZED CONVEXITY AND MONOTONICITY

Let and be nonempty closed sets and
be a finite-valued function on A × B. In case
is a finite-valued positive function on A × B, consider the min-

max nonlinear programming problem

Problem (P) is called a (primal) min-max fractional program. In order
to unify the theory for single-ratio and multi-ratio fractional programs,
we consider in Section 6 the so-called parametric approach applied to
problem (P) and derive from this approach duality results and algorith-
mic procedures for problem (P). This yields immediately duality results
and algorithmic procedures for problems and

Another multi-ratio fractional program we encounter in applications
is the so-called sum-of-ratios fractional program given by

with for every and It is a more challenging
problem than as recent studies have shown. We also encounter in
applications the so-called multi-objective fractional program

which is related to and
In Sections 3 and 4 we will review applications of fractional programs

and respectively. Section 5 focuses on applications of the
fractional program In addition we review here some of the solution
procedures for this rather challenging problem. Finally in Section 6 we
return to problems and In a joint treatment of both involving
the more general problem (P) a parametric approach is used for the
analysis and development of solution procedures of (P).

3. Applications of Single-Ratio Fractional
Programs

Single-ratio fractional programs arise in management decision
making as well as outside of it. They also occur sometimes indirectly
in modelling where initially no ratio is involved. The purpose of the
following overview is to demonstrate the diversity of problems which
can be cast in the form of a single-ratio fractional program. A more
comprehensive coverage which also includes additional references for the
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models below is contained in [61]. For other surveys of applications of a
single-ratio fractional program see [21, 59, 62, 64, 65, 71].

Economic Applications.
The efficiency of a system is sometimes characterized by a ratio of

technical and/or economical terms. Maximizing the efficiency then leads
to a fractional program. Some applications are given below.

Maximization of Productivity.
Gilmore and Gomory [37] discuss a stock cutting problem in the
paper industry for which under the given circumstances it is more
appropriate to minimize the ratio of wasted and used amount of
raw material rather than just minimizing the amount of wasted
material. This stock cutting problem is formulated as a linear
fractional program. In a case study, Hoskins and Blom [43] use
fractional programming to optimize the allocation of warehouse
personnel. The objective is to minimize the ratio of labor cost to
the volume entering and leaving the warehouse.

Maximization of Return on Investment.
In some resource allocation problems the ratio profit/capital or
profit/revenue is to be maximized. A related objective is return
per cost maximization. Resource allocation problems with this
objective are discussed in more detail by Mjelde in [53]. In these
models the term ‘cost’ may either be related to actual expenditure
or may stand, for example, for the amount of pollution or the prob-
ability of disaster in nuclear energy production. Depending on the
nature of the functions describing return, profit, cost or capital,
different types of fractional programs are encountered. For exam-
ple, if the price per unit depends linearly on the output and cost
and capital are affine functions, then maximization of the return
on investment gives rise to a concave quadratic fractional program
(assuming linear constraints). In location analysis maximizing the
profitability index (rate of return) is in certain situations preferred
to maximizing the net present value, according to [5] and [6] and
the cited references.

Maximization of Return/Risk.
Some portfolio selection problems give rise to a concave nonquad-
ratic fractional program of the form (8.3) below which expresses the
maximization of the ratio of expected return and risk. For related
concave and nonconcave fractional programs arising in financial
planning see [61]. Markov decision processes may also lead to the
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maximization of the ratio of mean and standard deviation. A very
recent application of fractional programming in portfolio theory is
given in [48]. The authors argue that the ratio of two variances
gives sophisticated forecasting models with significant predictive
power.

Minimization of Cost/Time.
In several routing problems a cycle in a network is to be determined
which minimizes the cost-to-time ratio or maximizes the profit-
to-time ratio. Some of these models are combinatorial fractional
programs (cf. [56]). Also the average cost objective used within
the theory of stochastic regenerative processes (cf. [2]) leads to the
minimization of cost per unit time. A particular example occurring
within this framework is the determination of the optimal order-
ing policy of the classical periodic and continuous review single
item inventory control models (cf. [12, 13, 34]). Other examples
of this framework are maintenance and replacement models. Here
the ratio of the expected cost for inspection, maintenance and re-
placement and the expected time between two inspections is to be
minimized (cf. [7, 35]).

Maximization of Output/Input.
Charnes and Cooper use a linear fractional program as a model to
evaluate the efficiency of decision making units (Data Envelopment
Analysis (DEA)). Given a collection of decision making units, the
efficiency of each unit is obtained from the maximization of a ratio
of weighted outputs and inputs subject to the condition that sim-
ilar ratios for every decision making unit are less than or equal to
unity. The variable weights are then the efficiency of each member
relative to that of the others. For an extensive recent treatment
of DEA see [17]. In the management literature there has been
an increasing interest in optimizing relative terms such as relative
profit. No longer are these terms merely used to monitor past
economic behavior. Instead the optimization of rates is receiving
more attention in decision making processes for future projects (cf.
[5, 42]). We mention here a case study in which the effectiveness
of medical institutions in the area of trauma and burned manage-
ment was analyzed with help of linear fractional programming (cf.
[24]).

Non-Economic Applications.
In information theory the capacity of a communication channel can be

defined as the maximal transmission rate over all probabilities. This is a
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concave nonquadratic fractional program. Also the eigenvalue problem
in numerical mathematics can be reduced to the maximization of the
Rayleigh quotient, and hence gives rise to a quadratic fractional program
which is generally not concave. An example of a fractional program in
physics is given by Falk (cf. [25]). He maximizes the signal-to-noise ratio
of an optical filter which is a concave quadratic fractional program.

Indirect Applications.
There are a number of management science problems that indirectly

give rise to a concave fractional program. We begin with a recent study
which shows that the sensitivity analysis of general decision systems
leads to linear fractional programs (cf. [52]). The developed software
was used in the appraisal of Hungarian hotels. A concave quadratic frac-
tional program arises in location theory as the dual of a Euclidean mul-
tifacility min-max problem. In large scale mathematical programming,
decomposition methods reduce the given linear program to a sequence of
smaller problems. In some of these methods the subproblems are linear
fractional programs. The ratio originates in the minimum-ratio rule of
the simplex method.

Fractional programs are also met indirectly in stochastic programming,
as first shown by Charnes and Cooper [19] and by Bereanu [14]. This
will be illustrated by two models below (cf. [65, 71]).

Consider the following stochastic mathematical program

where the coefficient vector is a random vector with a multivariate
normal distribution and B is a (deterministic) convex feasible region.
It is assumed that the decision maker replaces the above optimization
problem by the maximum probability model

i.e., he wants to maximize the probability that the random variable
attains at least a value equal to a prescribed level Then the

optimization problem listed in (8.2) reduces to

where is the mean vector of the random vector and V its variance-
covariance matrix. Hence the maximum probability model of the concave
program (8.2) gives rise to a fractional program. If in problem (8.2) the
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linear objective function is replaced by other types of nonlinear functions,
then the maximum probability model leads to various other fractional
programs as demonstrated in [65] and [71].

Consider a second stochastic program

where are concave functions on the convex feasible region B,
and is a random variable with a continuous cumulative distribution
function. Then the maximum probability model for (8.4) gives rise to
the fractional program

For a linear program (8.4) the deterministic equivalent (8.5) becomes
a linear fractional program. If is concave and linear, then (8.5) is
still a concave fractional program. However, if is also a (nonlinear)
concave function, then (8.5) is no longer a concave fractional program.
Obviously a quadratic program (8.4) reduces to a quadratic fractional
program. For more details on (8.4) and (8.5) see [65, 71].

Stochastic programs (8.2) and (8.4) are met in a wide variety of plan-
ning problems. Whenever the maximum probability model is used as a
deterministic equivalent, such decision problems lead to a fractional pro-
gram of one type or another. Hence fractional programs are encountered
indirectly in many different applications of mathematical programming,
although initially the objective function is not a ratio.

4. Applications of Min-Max Fractional
Programs

In mathematical economics the multi-ratio fractional program
arises when the growthrate of an expanding economy is defined as follows
(cf. [74]):

where denotes a feasible production plan of the economy.
In management science simultaneous maximization of rates such as

those discussed in the previous section can also lead to a multi-ratio
fractional program. This is the case if either in a worst-case approach
the model
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is used or with the help of prescribed ratio goals the model

is employed. Examples of the second approach are found in financial
planning with different fractional goals or in the allocation of funds un-
der equity considerations. Financial planning with fractional goals is
discussed in [38]. Furthermore, multi-facility location-queueing prob-
lems giving rise to are introduced in [5].

A third area of application of min-max fractional programs is numer-
ical mathematics (cf. [41]). Given the values of a function in
finitely many points of an interval for which an approximating ratio of
two polynomials and with coefficient vectors is
sought. If the best approximation is defined in the sense of the
then the following problem is to be solved:

with variables
At the end of this section on applications of we point out that in

case of infinitely many ratios is related to a fractional semi-infinite
program (cf. [41]). Several applications in engineering give rise to such
a problem when a lower bound for the smallest eigenvalue of an elliptical
differential operator is to be determined (cf. [40]).

For further applications of we refer to the very recent survey [59].

5. Sum-of-Ratios Fractional Programs

Problem arises naturally in decision making when several rates
are to be optimized simultaneously and a compromise is sought which
optimizes a weighted sum of these rates. In light of the applications of
single-ratio fractional programming numerators and denominators may
be representing output, input, profit, cost, capital, risk or time, for
example. A multitude of applications of the sum-of-ratios problem can
be envisioned in this way. Included is the case where some of the ratios
are not proper quotients. This describes situations where a compromise
is sought between absolute and relative terms like profit and return on
investment (profit/capital) or return and return/risk, for example.

Almogy and Levin (cf. [1]) analyze a multistage stochastic shipping
problem. A deterministic equivalent of this stochastic problem is formu-
lated which turns out to be a sum-of-ratios problem.

Rao (cf. [57]) discusses various models in cluster analysis. The prob-
lem of optimal partitioning of a given set of entities into a number of
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mutually exclusive and exhaustive groups (clusters) gives rise to various
mathematical programming problems depending on which optimality
criterion is used. If the objective is to minimize the sum of the squared
distances within groups, then a minimum of a sum of ratios is to be
determined.

The minimization of the mean response time in queueing-location
problems gives rise to as well, as shown by Drezner et al. (cf.
[23]); see also [75].

Furthermore we mention an inventory model analyzed in [63] which is
designed to determine simultaneously optimal lot sizes and an optimal
storage allocation in a warehouse. The total cost to be minimized is the
sum of fixed cost per unit, storage cost per unit and material handling
cost per unit.

In [46] Konno and Inori formulate a bond portfolio optimization prob-
lem as a sum-of-ratios problem.

More recently other applications of the sum-of-ratios problem have
been identified. Mathis and Mathis [51] formulate a hospital fee opti-
mization problem in this way. The model is used by hospital adminis-
trators in the State of Texas to decide on relative increases of charges
for different medical procedures in various departments.

According to [20] a number of geometric optimization problems give
rise to the sum-of-ratios problem. These often occur in layered manufac-
turing, for instance in material layout and cloth manufacturing. Quite
in contrast to other applications of the sum-of-ratios problem mentioned
before, the number of variables is very small (one, two or three), but the
number of ratios is large; often there are hundreds or even thousands of
ratios involved.

Our current understanding of the structural properties of the sum-of-
ratios problem is rather limited. In [36] Freund and Jarre showed that
this problem is essentially NP-hard, even in the case of one concave ratio
and a concave function. Hence is a global optimization problem in
contrast to and

Given the small theoretical basis, it is not surprising that algorithmic
advances have been rather limited too. However in recent years some
progress has been made. Some of the proposed algorithms have been
computationally tested. Typically execution times grow very rapidly in
the number of ratios. At this time problems up to about ten ratios can
be handled. We refer to the algorithms by Konno and Fukaishi (cf. [45])
(see also [44]) and by Kuno (cf. [47]). The former is superior to several
earlier methods (cf. [45]) while the latter is seemingly faster than the
former. Clearly a more thorough testing of various proposed algorithms
is needed before further conclusions can be drawn. Also some of the
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applications call for methods which can handle a large number of ratios;
e.g., fifty (cf. [1]). Currently such methods are not available.

For a special class of sum-of-ratios problems with up to about one
thousand ratios, but only very few variables an algorithm is given in
[20]. This method by Chen et al. is superior to the other algorithms on
the particular class of problems in manufacturing These are geometric
optimization problems arising in layered manufacturing. In contrast to
general-purpose algorithms for the method in [20] is rather robust
with regard to the number of ratios.

Focus of the remainder of this review of fractional programming will
be the min-max fractional program (P). It includes as special cases
and For a very recent survey of applications, theoretical results
and solution methods for and since [61] was published we refer
to [59]. A corresponding survey for since [61] appeared is given
in [60]. For a survey of some recent developments for multi-objective
fractional programs we refer to [33].

6. Analysis of Min-Max Fractional Programs.
In this section we will analyze min-max fractional programs by means

of a parametric approach. Although other approaches are also avail-
able, this one makes it possible to derive duality results for the (pri-
mal) min-max fractional program (P) and at the same time to construct
an algorithm which solves problem (P). As already mentioned in Sec-
tion 2, let and be some nonempty closed sets and

a finite-valued function on A × B. Moreover, con-
sider the function which is a finite-valued positive
function on A × B. For the related functions and

given by

we assume, unless stated otherwise, that the following condition holds.

Condition 8.1 For every we have

For every we now consider the single-ratio fractional program

This optimization problem is well-defined and its objective function
value satisfies A more complicated optimization
problem is given by the already introduced (primal) min-max fractional
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program

Clearly It is not assumed beforehand
that the optimization problems (P) and have an optimal solution.
Therefore we cannot replace sup by max or inf by min. The simpler
optimization problem is introduced since it will be part of the so-
called primal Dinkelbach-type approach discussed in subsection 6.2 to
solve the (primal) min-max fractional program (P).

Another optimization problem is to consider for every the
single-ratio fractional program

Also this problem is well-defined and it satisfies
Clearly for every we obtain Similarly as for the
(primal) min-max fractional program we introduce the more complicated
optimization problem

This problem is called a (dual) max-min fractional program. Clearly
its optimal objective function value satisfies Like for the
(primal) min-max fractional program we introduce the functions

and given by

Analyzing the so-called dual Dinkelbach-type approach to solve prob-
lem (D), we need the following counterpart of Condition 8.1.

Condition 8.2 For every we have

The simpler optimization problem is introduced since it will be
part of the dual Dinkelbach-type approach discussed in subsection 6.4 to
solve the (dual) max-min fractional program (D). If we consider a single-
ratio fractional program, A consists of one element and the optimization
problems (P) and (D) are identical. For a classical multi-ratio fractional
program (generalized fractional program) A is a finite set consisting
of more than one element; hence optimization problems (P) and (D)
are different from each other. If programs (P) and (D) are different
and additionally both the primal and dual Dinkelbach-type
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approach can be used to solve optimization problem (P) . As already
observed before, many results (cf. [4, 5, 21]) were derived for generalized
fractional programs. In this section we will consider the more general
(primal) min-max and (dual) max-min fractional program and derive
similar structural properties for this problem as it was done for the
more specialized primal and dual generalized fractional program before.

We selected these more general optimization problems not often con-
sidered in the fractional programming literature since one can use similar
parametric techniques as for generalized fractional programs and at the
same time unify the existing theory for single-ratio and multi-ratio frac-
tional programs. Using the parametric approach one can reduce the
max-min and min-max fractional program to so-called (semi-infinite)
max-min and min-max programs. Unfortunately, solving these semi-
infinite optimization problems efficiently on a computer is very difficult.
For an extensive discussion of some of the used procedures the reader
should consult [55]. However for special cases there is still room for im-
provement, and this seems to be a new area of research (cf. [15]). In the
theoretical analysis of max-min and min-max fractional programs it will
turn out that convexity plays a major role, not only in establishing the
equality (a so-called strong duality result), but also in the rate of
convergence analysis for the primal and dual Dinkelbach-type paramet-
ric approach. Due to symmetry arguments similar type of convergence
results hold for these two algorithms.

In case we analyze the primal Dinkelbach-type approach, not all the
results are valid under Condition 8.1, and we sometimes need the fol-
lowing stronger condition.

Condition 8.3 The set is compact, the function is positive
on A × B and for every the functions and
are finite-valued and continuous on some open set containing
A.

If Condition 8.3 holds, then it follows from Corollary 1.2 of [3] that

for every and so this condition implies Condition 8.1. Moreover,
the single-ratio fractional program has an optimal solution and

is finite for every
In case we also analyze the dual Dinkelbach-type approach, not all

results are valid under Condition 8.2, and so we sometimes need the
following counterpart of Condition 8.3.
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Condition 8.4 The set is compact, the function is positive
on A × B and for every the functions and
are finite-valued and continuous on some open set containing
B.

Again, if Condition 8.4 holds, it follows from Corollary 1.2 of [3] that

for every and so this condition implies Condition 8.2. Moreover,
the single-ratio fractional program has an optimal solution, and

is finite for every
Before analyzing in the next subsection the parametric approach ap-

plied to (P), we will derive an alternative representation of a generalized
fractional program. This alternative representation satisfies automati-
cally Condition 8.3. For a generalized fractional program the set A is
given by and the functions and are replaced by
the functions and This means

In this case the optimization problem can be solved trivially.
To obtain a different representation of a generalized fractional pro-

gram, we introduce the unit simplex

If the vector belongs to the strictly positive orthant of it
is well-known (cf. [4]) that the function given by

is quasiconvex on for every By Condition
8.1 it follows for given by
that for every Then for given by

we have

for every Applying relation (8.10) yields

With this we have found another representation of a generalized frac-
tional program. Using this representation, the corresponding (dual) gen-
eralized fractional program is given by
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In subsection 6.3 we will give sufficient conditions to guarantee that
the primal and dual optimal objective function values coincide. However
before discussing this, we will first consider in the next subsection the
so-called primal parametric approach for solving the (primal) min-max
fractional program (P).

6.1 The Primal Parametric Approach.

To analyze the properties of the (primal) min-max fractional program
(P) and at the same time construct some generic algorithm to solve this
problem we introduce the function given by

and consider for every the optimization problem

For every the function is now given by

Since on and is the supremum of affine functions, it is
obvious that is a decreasing lower semicontinuous convex function.
Its so-called effective domain is defined by (cf. [58])

By the finiteness of on it is obvious that for every
A more difficult optimization

problem than is the parametric min-max optimization problem

For this function it holds that for every For
the function the so-called effective domain is given by

By the definition of the functions and it is easy to verify that

In the next result we identify for and the effective
domains of the functions and
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Lemma 8.1 Assume Condition 8.1 holds. Then if and only if
and is finite if and only

Proof. Assume Suppose by contradiction that there exists
some satisfying This implies for every that

Hence for a given one can find some sequence
satisfying

Since and is finite, we obtain by relation (8.13) that
for every yielding which contradicts our

assumption.
Conversely, if then clearly and so there

exists some satisfying Due to
it is easy to see that and so which completes
the proof of the first part. By identifying B with the second part
follows immediately from the first part.

Using similar algebraic manipulations as in [22] applied to a general-
ized fractional program one can show the following important result for
the optimal value function of a parametric min-max problem
The validity of the so-called parametric approach to solve problem (P)
is based on this result.

Theorem 8.1 Assume Condition 8.1 holds and Then
if and only if Moreover, if then
if and only if

Proof. If and then there exist some
and satisfying

for every Since this yields

for every It follows that

Conversely, if then there exist some and
satisfying This implies for
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every and we obtain for every that

Since it follows from relation (8.14) that
and the proof of the first part is completed. By identifying B with

the second part follows from the first part.

A useful implication of Theorem 8.1 is given by the following result.

Lemma 8.2 Assume Condition 8.1 holds and for some
Then

Proof. By the definition of we obtain for
every This implies From Theorem 8.1 it follows
that and this shows the desired result.

If Condition 8.1 holds and we obtain from Theorem 8.1 and
Lemma 8.1 that and is finite for every In case
we only assume that is positive on A × B it is easy to verify that

for every and implies However as shown
by the following single-ratio fractional program satisfying Condition 8.1
and it may happen that for every and

(cf. [22]).

Example 8.1 For A = {1}, and
it follows that the optimization problem (P) reduces to

and so Also
for every and Moreover, the
optimal solution set of the optimization problem equals B, and

for every

To derive some other properties of the so-called parametric approach
we need to investigate in detail the functions and We first observe
that the positivity of the function on A × B implies that the functions

and are decreasing. In the next result it is shown that
the decreasing function is upper semicontinuous.

Theorem 8.2 Assume Condition 8.1 holds. Then the function
is upper semicontinuous.

Proof. To prove that the function is upper semicontinuous, let
and consider the upper level set If

then this set is closed. So we assume that
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To show that this set is closed consider some accumulation point
of the set Hence there exists some sequence

satisfying If for some it holds
that then by the monotonicity of the function we obtain

and so Therefore we may assume
without loss of generality that for every Observe now for
every and that

for every This implies using and that

for every and hence

Since we obtain for every that By
relation (8.15), and this yields for every

that Hence and so
Applying Theorem 1.7 of [29] yields that is upper semicontinuous.

By Theorem 8.2 and Lemma 1.30 of [29] we obtain

Since for every we know that this yields

Again by the monotonicity of it follows that exists.
But this limit might not be equal to Therefore the function is
left-continuous with right-hand limits.

An important consequence of Theorem 8.2 is given by the next result.
To show this result we first introduce a so-called set-valued mapping

(cf. [3]) with denoting the set of all subsets of the nonempty
set and X a nonempty closed subset of If is
a set-valued mapping, it is always assumed that is nonempty
for every The graph of a set-valued mapping is given
by

An important subclass of set-valued mappings is introduced in the
next definition (cf. [11]).
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Definition 8.1 The set-valued mapping where X is a
closed set is called closed if its graph is a closed set.

By the definition of a closed set it is immediately clear that the set-
valued mapping is closed if and only if for any sequence

and it follows that

Examples of set-valued mappings occurring in min-max optimization
are the set-valued mappings and given
by

and

The set represents the set of optimal solutions of the opti-
mization problem while the set denotes the set of optimal
solutions in B of the optimization problem Also we consider the
set-valued mapping given by

This set represents the set of optimal solutions of the optimization
problem For the above set-valued mappings one can show the
following result. It is always assumed in the next result that the sets

and are nonempty on their domain.

Lemma 8.3 Assume Condition 8.1 holds and the functions and are
finite-valued and continuous on some open set containing
A × B . Then the set-valued mappings and are closed.

Proof. We first show that the set-valued mapping is closed. To start
with this, consider some sequence
satisfying and
Since A and B are closed sets, this yields and and by
the definition of we obtain

Since the function is continuous on it is easy to verify
using Theorem 1.7 of [29] that the function is lower semicontinuous
on Using this together with Lemma 1.30 of [29] and

we obtain
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Then by relation (8.19) it follows that This shows
that the set is closed. To prove that the set-valued mapping is
closed we consider some sequence satisfying

and By Theorem 8.2 and Lemma
1.30 of [29] we obtain

Since is lower semicontinuous on it follows that

Hence by relation (8.20) we obtain

Using this shows that Hence we have verified
that is closed.

Finally, to show that is closed, consider a sequence
satisfying

and Since it follows that
using the fact that is closed. This shows

Moreover, since we obtain
using the fact that is closed. Hence

Therefore is an optimal solution of the min-max frac-
tional program (P). This completes the proof.

We will now consider for every the decreasing convex function
introduced in relation (8.12). In the next result it is shown

for finite that this function is Lipschitz continuous with Lipschitz
constant

Lemma 8.4 Assume Condition 8.1 holds and is finite for
Then the function is strictly decreasing and

Lipschitz continuous with Lipschitz constant and this function
satisfies and

Proof. If is finite for some then we know by Lemma 8.1 that
is finite for every Selecting some using

and the fact that is finite, it is easy to verify that

for every Hence is a Lipschitz continuous convex function
with Lipschitz constant Also it is easy to verify using

that
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for every This shows that is strictly decreasing on
Again by relation (8.22) we obtain for a given and that

and for a given and that

If is finite, it follows from Lemma 8.4 and Theorem 1.13 of [29]
that the finite-valued convex function has a nonempty subgradient
set for every Hence for every and
the subgradient inequality

holds. Applying relation (8.21) and the fact that is strictly decreas-
ing we obtain

for every Furthermore, applying relation (8.22) yields

for every Hence by relations (8.23) and (8.24) it follows
that

To give a more detailed representation of the subgradient set
it is convenient to assume that the set introduced in relation
(8.16) is nonempty. As already observed, this set represents the set of
optimal solutions of the parametric problem It is easy to see that

for every Since is a closed
convex set, this implies

Although it is possible for a finite to give a complete representation
of the subgradient set for every we only consider the
following important subcase.

Lemma 8.5 Assume Condition 8.3 holds. Then it follows for every
that is finite, is a nonempty compact set for every

and

Also for every and and it holds
that
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Proof. Since the functions and are continuous,
on A × B and A is compact, we obtain that is finite. By

the same argument it also follows that is nonempty for every
Also by the continuity of the function

the set is closed and hence compact. Using now the
proof of Lemma 3.2 in [8] and the fact that is a compact set
yields the desired representation of the subgradient set To show
the last part we observe by the subgradient inequality that

Moreover, applying the same argument it follows
that Adding these two inequalities yields

and since it follows that

Looking at the proof of the last inequality it is only needed that
the subgradient sets and are nonempty. In view of
Lemma 8.1 this is true if is finite and Condition 8.1 holds. By
relation (8.11) the above conditions are clearly satisfied for a generalized
fractional program.

In the next lemma we show the following important improvement of
Lemma 8.1 and Lemma 8.2.

Lemma 8.6 Assume Condition 8.1 holds. Then the set
is nonempty if and only if Moreover, if this

set is nonempty, it only contains the finite value

Proof. If the set is nonempty, then it follows
for any belonging to this set that for every
This shows by the positivity of on A × B that Also
by Lemma 8.2 we obtain for finite that This
proves the first part of the above result. To prove the second part, we
observe that by Lemma 8.4 the function is strictly decreasing. This
completes the proof.

Up to now we did not assume that there exists some satisfying
i.e., that the min-max fractional program (P) has an

optimal solution in B. In the next theorem we show the implications of
this assumption. To do so, consider the (possibly empty) set
given by

It is now possible to prove the following theorem.
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Theorem 8.3 If Condition 8.1 holds, then for some
if and only if Moreover, if for

some then

Proof. By Lemma 8.2 it follows for that
Since this shows that

Using relation (8.28) with replaced by it follows for
that belongs to Hence we still need to show that only

contains Consider therefore an arbitrary belonging to By the
definition of in relation (8.27) one can find some satisfying

and this implies by Lemma 8.6 that
Since it follows by Theorem 8.1 that and this shows
that Hence and we have verified
that only contains

To prove the converse we obtain for that
for some Applying Lemma 8.6 yields is finite

and which proves the “only if” implication. To verify the
second part it follows by relation (8.28) that belongs to for
every satisfying and so

To prove the reverse inclusion, let Since
for some it follows from relation (8.28) with replaced by
that Since this implies
Applying now Lemma 8.6 yields

If we introduce the (possibly empty) set given by

then without Condition 8.1 one can show, using similar techniques as
before, the following result. Note the vector is an optimal solution
of the (primal) min-max problem (P) if and only if and

Theorem 8.4 The (primal) min-max fractional program (P) has an
optimal solution if and only if Moreover, if (P) has an
optimal solution, then the set listed in relation (8.18) is nonempty
and
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For the moment this concludes our discussion of some of the theoreti-
cal properties related to the parametric approach. In the next subsection
we will consider the (primal) Dinkelbach-type algorithm and use the pre-
viously derived properties to show its convergence.

6.2 The Primal Dinkelbach-Type Algorithm.
In this section we will introduce the so-called primal Dinkelbach-type

algorithm to solve the (primal) min-max fractional program (P). A
similar approach for a slightly different min-max fractional program sat-
isfying some compactness assumptions on the feasible sets A and B was
considered by (cf. [72, 73]). Contrary to [72] the feasible set
A in this section does not depend on Due to this our assumptions
are less restrictive. Using Lemma 8.1 and the fact that the (primal)
Dinkelbach-type algorithm is based on solving a sequence of parametric
optimization problems for it is natural to assume that the
(primal) min-max fractional program (P) satisfies the next condition.

Condition 8.1 holds and is finite for every

If is finite, then for every the set is nonempty
while for the set is nonempty for every

Contrary to the analysis in [22] for generalized fractional programs we
do not assume that the min-max fractional program (P) has an optimal
solution. Also for generalized fractional programs the first part of Con-
dition 8.5 is automatically satisfied. If Condition 8.5 holds, then one
can execute the following so-called primal Dinkelbach-type algorithm.
The geometrical interpretation of this algorithm is as follows. By Theo-
rem 8.3 we need to find the zero point of the optimal value function

Starting at a given point it follows by Theorem 8.1 that
Since the function is nonconvex and it is too ambitious to

compute in one step its zero point we replace this function by the
easier convex function with belonging to We know by
the definition of and that and
For the function it is easy to compute its zero point. By Lemma
8.2 this is given by We now replace the original point in the
parametric problem by the smaller value and repeat the
procedure.

Condition 8.5
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Primal Dinkelbach-type algorithm.

1

2

Select and and compute

Determine If stop and return and
Otherwise compute

let and go to step 1.

To determine in step 1 and 2 one has to solve a single-ratio
fractional program. If A is a finite set, then this is easy. Also in order
to select one has to solve for A finite a finite min-max
problem. Algorithms for such a problem can be found in part 2 of
[55]. In case A is not finite, one needs to solve a much more difficult
problem, a semi-infinite min-max problem (cf. [27, 55]). Therefore to
apply the above generic primal Dinkelbach-type algorithm in practice
one needs to have an efficient algorithm to determine an element of the
set and this is in most cases the bottleneck. In general one
cannot expect that an efficient and fast algorithm exists. But for special
cases this might be the case. Including the construction of approximate
solutions of the problem by using smooth approximations of the
max operator, thus speeding up the computations and at the same time
bounding the errors (cf. [16]) seems to be an important topic for future
research.

By Lemma 8.6 it is sufficient to find in step 2 of the primal Dinkelbach-
type algorithm the solution of the equation As already
observed, we can give an easy geometrical interpretation of the above
algorithm (cf. [5, 16]). The next result shows that the sequence
generated by the primal Dinkelbach-type algorithm is strictly decreasing.

Lemma 8.7 If Condition 8.5 holds, then the sequence generated by
the primal Dinkelbach-type algorithm is strictly decreasing and satisfies

for every

Proof. If the algorithm stops at then by the stopping rule we
know that This implies by Theorem 8.1 for that

which shows that If the algorithm does not
stop at the first step, then Since is nonempty, the
algorithm finds some Hence
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Thus for every we obtain and so

for every This shows To verify that
we assume by contradiction that Since this
yields by relation (8.29) and Lemma 8.6 that

and we obtain a contradiction. Therefore and by the definition
of it is obvious that Applying now the same argument
iteratively shows the desired result.

By Lemma 8.7 it follows that the sequence generated by the primal
Dinkelbach-type algorithm converges to some limit In case the
generated sequence is finite, it is easy to show the following result.

Lemma 8.8 If Condition 8.5 holds and the primal Dinkelbach-type al-
gorithm stops at then and

Proof. Since Condition 8.5 holds, we obtain Also by the stop-
ping rule of the Dinkelbach-type algorithm it follows that
This implies by Theorem 8.1 that Since always we ob-
tain To show that with and
we observe by Lemma 8.6 and by using that

Hence it follows that Applying again Lemma
8.6 we obtain which completes the proof.

In the remainder of this subsection we only consider the case that the
primal Dinkelbach-type algorithm generates an infinite sequence

By Lemma 8.7 it follows that exists. Imposing
some additional condition it will be shown in Lemma 8.9 that this limit
equals To simplify the notation in the following lemmas we introduce
for the sequence generated by the
primal Dinkelbach-type algorithm the sequence with

and for finite the sequence with
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By the observation after Lemma 8.4 these subgradient sets are non-
empty. It is now possible to derive the next result.

Lemma 8.9 If Condition 8.5 holds and there exists a subsequence
satisfying then Moreover, for

finite it follows that

Proof. By Lemma 8.7 the sequence is strictly decreasing,
and so exists. If we obtain using

for every that and so for
the result is proved. Therefore assume that is finite. Since

and the function and the sequence are
decreasing, it follows that the sequence is increasing
and exists. If we assume that

then one can find some satisfying for every
By Lemma 8.2 we also know that Applying the

subgradient inequality to the convex function we obtain for every
that

with Since by relation (8.25) it follows that
the above inequality shows This yields by

our assumption and finite that

and so This contradicts that is finite, and we have shown
that Applying now Theorem 8.2 and Lemma 1.30
of [29] yields Then by Theorem 8.1
it follows that Since by Lemma 8.7 it is obvious that

we obtain completing the proof.

By relation (8.25) it follows that

for every and so one can apply Lemma 8.9 in case
To achieve a rate of convergence result for the

sequence generated by the primal Dinkelbach-type algorithm, we need
to assume in the proof that To apply our procedure we al-
ways impose that is nonempty for finite. Then it follows by
Theorem 8.3 that if and only if the min-max fractional pro-
gram (P) has an optimal solution in B or equivalently there exists some
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satisfying However, if the condition of Lemma 8.9
holds, we conjecture for finite that the min-max fractional program
(P) might not have an optimal solution in B, and so is not equal to
zero. Using a stronger condition than in Lemma 8.9, we show in the next
lemma for finite that the sequence generated by the
primal Dinkelbach-type algorithm satisfies
This sufficient condition implies the existence of an optimal solution of
the (primal) min-max fractional program (P) in B.

Lemma 8.10 If Condition 8.5 holds, is finite and there exists a sub-
sequence satisfying then
and

Proof. By the convexity of the function and the subgradient in-
equality we obtain for every that

with Since it follows by our assumption and
the monotonicity of the subgradient sets as shown in Lemma 8.5 that
one can find some finite M satisfying for every

and every sequence and This
shows

for every and so Hence by Lemma 8.9 we
obtain Using relations (8.34) and (8.33) yields

Since by Theorem 8.1 we know that
the proof is completed.

By relation (8.25) it follows in case that the
condition of Lemma 8.10 is satisfied. A similar condition is also given in
[22] for a generalized fractional program. In the next lemma we consider
the generated sequence and show for B compact
and some additional topological properties on the functions and that
this sequence contains a converging subsequence.

Lemma 8.11 If Condition 8.5 holds, the functions and are finite-
valued and continuous on some open set containing A × B,
the set B is compact and there exists a subsequence
satisfying then the sequence
has a converging subsequence and every limit point of the sequence

satisfies with finite. Additionally, if
there exist a unique satisfying then
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Moreover, for A × B compact, the generated sequence
has a converging subsequence and every limit point

of the sequence is an optimal solution of problem (P).
If the optimization problem (P) has a unique optimal solution
then and

Proof. To verify that is finite we obtain by Condition 8.5 and
continuous that the finite-valued function is lower semicon-
tinuous. By the compactness of B this implies, using Corollary 1.2 of
[3], that there exists some satisfying and so is
finite. Again by the compactness of B it is also obvious that the se-
quence contains a convergent subsequence. To show that
every limit point of the sequence satisfies
we observe by Lemma 8.9 that This implies by Lemma
8.3 that Using now Theorem 8.3 we obtain
If there exists a unique satisfying then again by
Theorem 8.3 we obtain Since every converging subse-
quence of the sequence converges to an element of
it follows that every convergent subsequence converges to the element

By contradiction and B compact we obtain and the
proof of the first part is completed. If A × B is compact, then by the
continuity of the function we obtain

Again by the observation after Lemma 8.10 we obtain By
Lemma 8.3 the set-valued mapping is closed and using a similar proof
as for the first part one can show the last part.

If we consider a generalized fractional program, then clearly A is
compact, and if additionally the conditions of Lemma 8.11 hold, then
the second part of this lemma applies. Unfortunately it is not clear
to the authors whether in the first part of this lemma the condition

can be omitted.
We now want to investigate how fast the sequence converges to

Before discussing this in detail, we list for finite the following inequal-
ity for the sequence generated by the primal Dinkelbach-
type algorithm. A similar inequality can also be derived for the dual
Dinkelbach-type algorithm to be discussed in subsection 6.4.

Theorem 8.5 If Condition 8.5 holds and there exists some
satisfying then it follows for every and



364 GENERALIZED CONVEXITY AND MONOTONICITY

that

Proof. Since for some we obtain by Lemma 8.6 that
Applying now the subgradient inequality

to the function at the point it follows for that

Hence

Moreover, for every and we obtain
again by Lemma 8.6 that Applying now the sub-
gradient inequality to the function at the point yields for

that

Hence by relations (8.35) and (8.36) we obtain
Since this implies

Using relation (8.37) it follows that

and this completes the proof.

In case of a single-ratio fractional program the function
reduces to and so for every it follows that

Hence we obtain that the inequality in Theorem
8.5 reduces to

for any optimal solution of the optimization problem

(cf. [67]).
Before introducing convergence results for the primal Dinkelbach-type

algorithm, we need the following definition (cf. [54]).
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Definition 8.2 A sequence with limit converges
Q-linearly if there exists some such that

The sequence converges Q-super linearly if

If a slightly stronger condition as used in Lemma 8.10 holds, then
one can show that the sequence generated by the primal
Dinkelbach-type algorithm converges Q-linearly. The same result was
shown for a generalized fractional program in [22].

Theorem 8.6 If Condition 8.5 holds, is finite and the sequence
satisfies then and

converges Q-linearly.

Proof. By Lemma 8.10 we obtain Since Condition 8.5 holds,
one can find some satisfying and this
shows by Lemma 8.6 that Hence the set

is nonempty, and for every belonging to this set it follows by
Theorem 8.5 that

with and Since is strictly
decreasing and it follows by Lemma 8.5 that the sequence

is decreasing and satisfies with
This shows that exists. To identify

we observe in view of that

for every Since the function is continuous, this yields using
and that

for every and so Therefore and we have
identified this limit. Also by our assumption we obtain that there exists
some and this shows
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Applying now relation (8.39) yields the desired result.

If the conditions of Theorem 8.5 hold and additionally we assume that
then it can be shown in view of the proof of Theorem

8.6 that the sequence converges Q-linearly to This condition is
slightly weaker than the one used in Theorem 8.6. Observe the condi-
tion was used in the proof of Lemma 8.10 to show that

and this implies as shown in the first part of the proof of
Theorem 8.6 that for some Therefore, if there exists
some satisfying and then assuming
Condition 8.5 holds the sequence converges Q-linearly to A disad-
vantage of the first part of the previous assumption is that in general we
do not know looking at a min-max problem whether there exists some

satisfying Hence we imposed some stronger algorith-
mic condition on the sequence implying this result. In case the
(primal) min-max fractional program (P) has a unique optimal solution
and some additional topological properties are satisfied, then one can
show that the sequence converges superlinearly.

Theorem 8.7 If Condition 8.5 holds, the functions and are contin-
uous on some open set containing the compact set A × B
and the min-max fractional program (P) has a unique optimal solution

then and and
the sequence converges Q-superlinearly.

Proof. Using Lemmas 8.9 and 8.11 the first part follows, and so we only
have to show that converges superlinearly. Considering the proof of
Theorem 8.6 it follows that

with and Since
is uniformly bounded by the compactness of A × B and the function

is continuous, there exists a converging subsequence satisfying
To identify we observe for every

that

with Since B is compact and continuous, it follows
by Proposition 1.7 of [3] that is upper semicontinuous, and
this implies by relation (8.40) that
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Since we obtain and this shows
by relation (8.41) that By the uniqueness of the optimal
solution and Lemma 8.5 we obtain This shows the desired result.

In case we consider a single-ratio fractional program with B compact
and the functions continuous it follows by Lemma 8.11 that

with an optimal solution of this fractional programming problem. Re-
placing now in relation (8.38) by we obtain for a single-ratio frac-
tional program with B compact and continuous that the sequence

always converges Q-superlinearly. Clearly in practice the
(primal) Dinkelbach-type algorithm stops in a finite number of steps,
and so we need to derive a practical stopping rule. Such a rule is con-
structed in the next lemma. For other practical stopping rules yielding
so-called solutions the reader may consult [16].

Lemma 8.12 If Condition 8.5 holds and there exists some subsequence
satisfying and some satisfy-

ing then the sequence is
decreasing and its limit equals 0. Moreover, it follows for every
that

Proof. By Lemma 8.7 the sequence is strictly decreasing, and this
implies by Lemma 8.5 that the negative sequence is decreasing. Also,
since is decreasing, we obtain that the negative sequence is in-
creasing and so the positive sequence is decreasing. Applying
now Lemma 8.9 it follows that while the listed in-
equality is an immediate consequence of Lemma 8.9 and relation (8.35).

Using Lemma 8.12 a stopping rule for the (primal) Dinkelbach-type
algorithm is given by for some predetermined Fi-
nally we observe that the (primal) Dinkelbach-type algorithm applied to
a generalized fractional program can be regarded as a cutting plane algo-
rithm (cf. [10]). This generalizes a similar observation by Sniedovich (cf.
[70]) who showed the result for the (primal) Dinkelbach-type algorithm
applied to a single-ratio fractional program.

In the next section we investigate the dual max-min fractional pro-
gram (D) and its relation to the primal min-max fractional program

(P).
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6.3 Duality Results for Primal Min-Max
Fractional Programs.

In this subsection we first investigate under which conditions the opti-
mal objective function values of the primal min-max fractional program
(P) and the dual max-min fractional program (D) coincide. To start
with this analysis, we introduce the following class of bifunctions.

Definition 8.3 The function is called a con-
cave/convex bifunction on the convex set with and

if for every the function is concave on
and for every the function is convex on More-
over, a function is called a convex/concave
bifunction on if is a concave/convex bifunction on the same
set. It is called an affine/affine bifunction if it is both a concave/convex
and a convex/concave bifunction.

To guarantee that equals we introduce the following sufficient
condition.

Condition 8.6 The set is a closed convex set and is a
compact convex set. Moreover, there exists some open convex set
containing A × B such that is a positive finite-valued convex/concave
bifunction and a positive finite-valued concave/convex bifunction on

If the function is a positive affine/affine bifunction, then
is a finite-valued concave/convex bifunction.

If the set B is given by relation (8.1), one can also introduce another
dual max-min fractional program. To guarantee that for this problem
strong duality holds, we need the following slightly stronger condition.

Condition 8.7 The set is a closed convex set and is a
compact convex set. Moreover, there exists some open convex set
containing A×C such that is a positive finite-valued convex/concave
bifunction and a positive finite-valued concave/convex bifunction on

If the function is a positive affine/affine bifunction, then
is a finite-valued concave/convex bifunction

If Condition 8.6 holds, then by Theorem 1.15 of [29] we obtain that
the function is continuous on for every and

is continuous on for every The same property
also holds for the function By the compactness of A this implies
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for every and so Condition 8.6 implies Condition 8.1. Also, since
for every the function is continuous on
A and the set A is compact, we obtain that is finite for every

implying For we derive in Theorem 8.8 that
the optimal objective function value of the (primal) min-max fractional
program (P) equals the optimal objective function value of the (dual)
max-min fractional program (D). Contrary to the proof of the same
result in [5] for generalized fractional programs based on Sion’s minimax
result (cf. [31, 69]) the present proof is an easy consequence of the easier-
to-prove minimax result by Ky Fan (cf. [26, 27, 32]) and Theorem 8.1.
Note that we do not assume that there exists some satisfying

Theorem 8.8 If Condition 8.6 holds, then there exists some
satisfying

Proof. Since we know that it follows for that
for every This shows the desired result for

If is finite, then we need to verify that Since is
finite, we obtain by Condition 8.6 that the function is
a concave/convex bifunction on A × B and for every the function

is continuous on Applying now Theorem 3.2 of [32]
(see also [27]) we obtain

This shows by Theorem 8.1 and the remark after Condition 8.6 that

for some Since for every we obtain

for every Hence

Using now relation (8.43) the desired result follows.

Since there are rather general necessary and sufficient conditions on
the bifunctions such that for those functions min-max equals max-min
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(cf. [28, 30]), the above result holds for a much larger class than the
class of concave/convex bifunctions. However, since the class of con-
cave/convex bifunctions is most known, we have restricted ourselves to
this well-known class. An easy consequence of Theorem 8.8 is given by
the next result.

Lemma 8.13 If Condition 8.6 holds and there exists some sat-
isfying and some satisfying then the
vector is an optimal solution of the (primal) min-max fractional
program (P) and an optimal solution of the (dual) max-min fractional
program (D).

Proof. By the definition of and it is clear that for every
vector that

This implies by Theorem 8.8 for the given vector
that

Hence is an optimal solution of the (primal) min-max frac-
tional program (P) and an optimal solution of the (dual) max-min frac-
tional program (D).

If the (dual) max-min fractional program (D) has a unique optimal
solution and the optimal solution set of the (primal) min-max fractional
program (P) is nonempty, then by Lemma 8.13 the unique optimal so-
lution of (D) is an optimal solution of (P). If Condition 8.6 holds and
we use the so-called dual Dinkelbach-type algorithm to be discussed in
subsection 6.4 for identifying this observation will be useful. To an-
alyze the properties of the optimization problem (D) and at the same
time construct some generic algorithm to solve problem (D), we intro-
duce similar parametric optimization problems as done for problem (P)
at the beginning of subsection 6.1. For every consider the
parametric optimization problem

For every the function is now given by
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Since on A × B and is the infimum of affine functions, it is
obvious that is a decreasing upper semicontinuous concave function.
The so-called effective domain is defined by

By the finiteness of on it is obvious for every
that actually A more difficult
optimization problem than problem is now given by the parametric
optimization problem

As for the concave function we also introduce the effective domain
of the function given by

It should be clear to the reader that we actually apply the Dinkelbach-
type approach to the (dual) max-min fractional program (D) while at
the beginning of subsection 6.1 we applied the same approach to the
(primal) min-max fractional program (P). It is easy to show that

and so we obtain for every If the optimization
problem (P) is a single-ratio fractional program, then the set A consists
of one element, and as already observed there is no difference in the
representation of the (primal) min-max fractional program (P) and the
(dual) max-min fractional program (D). Hence for A consisting of one
element it is not surprising that also the functional representation of the
functions and are the same. If the set A consists of more than one
element, then we want to know, despite the different functional represen-
tations of the functions and under which conditions
for some It should come as no surprise that this equality holds under
the same conditions as used in Theorem 8.8. Note that in the next result
we do not assume that the set is nonempty.

Theorem 8.9 Assume Condition 8.6 holds where is a convex/concave
bifunction on A × B. Then it follows for every that there exists
some satisfying

Moreover, if is an affine/affine bifunction, the same result holds for
every
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Proof. Since we obtain by Lemma 8.1 that for every
Also, for a convex/concave bifunction it follows by Condition

8.6 and that the function is a concave/convex
bifunction on A × B and is continuous on for every

A similar observation holds for if is an
affine/affine bifunction. Since A is compact, we can now apply Theorem
3.2 of [32]. This shows

Hence by relation (8.45) there exists for and a convex/concave
bifunction or and an affine/affine bifunction some
satisfying This completes the proof.

Applying similar proofs as in Lemma 8.1 and Theorem 8.1 one can
verify the following results.

Lemma 8.14 Assume Condition 8.2 holds. Then if and
only if and if and only if

Clearly Lemma 8.14 can be compared with Lemma 8.1 while the next
result is the counterpart of Theorem 8.1.

Theorem 8.10 Assume Condition 8.2 holds and Then
if and only if Moreover, if then if

and only if

A direct consequence of the above results is given by the following.

Theorem 8.11 Assume Condition 8.6 holds where is a positive con-
vex/concave bifunction on A × B. Then it follows that

for every and these functions are finite-valued on
Moreover, if is a positive affine/affine bifunction on A × B

and is finite, then for every and these
functions are finite-valued on

Proof. If is a positive convex/concave bifunction on A × B, then by
Condition 8.6 the function must be a positive concave/convex bifunc-
tion on A × B . Then automatically Also, by Theorem 8.8
and 8.9 we obtain and for every Since
Condition 8.6 implies Condition 8.1, it follows by the remark after The-
orem 8.1 that is finite for every This yields
is finite-valued on Using the monotonicity of we see
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for every Hence the first part follows. The second part can be
proved similarly, and its proof is therefore omitted.

If Condition 8.6 holds and hence also Condition 8.1 and is fi-
nite, then it might happen (as shown in Example 8.1) that the value

is not equal to zero. If additionally there exists some
satisfying then by Theorems 8.3 and 8.11 we know that

and we need this assumption in combina-
tion with Condition 8.6 to identify by the so-called dual Dinkelbach-
type algorithm to be discussed in the next subsection. The next result is
the counterpart of Theorem 8.2. It can be proved by similar techniques.

Theorem 8.12 Assume Condition 8.2 holds. Then the decreasing func-
tion is lower semicontinuous.

Similarly as in Section 6.1 it follows by Theorem 8.12 that
and the function is right-continuous with left-hand limits.

As in Section 6.1 we now introduce the following set-valued mappings
and given by

and

The set represents the set of optimal solutions of optimiza-
tion problem while the set denotes the set of optimal solu-
tions in A of optimization problem Also we consider the set-valued
mapping given by

This set represents the set of optimal solutions in A × B of opti-
mization problem In the next result it is assumed that the sets

and are nonempty on their domain. Applying
Theorem 8.12 and using a similar proof as in Lemma 8.3 we obtain the
following counterpart of Lemma 8.3.

Lemma 8.15 Assume Condition 8.2 holds and the functions and
are finite-valued and continuous on some open set containing
A×B. Then the set-valued mappings  and are closed.

Considering now the function given by
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one can show as in Lemma 8.4 the following result.

Lemma 8.16 Assume Condition 8.2 holds and is finite for
Then the function is strictly decreasing and

Lipschitz continuous with Lipschitz constant and the function
satisfies and

As in Section 6.1 with respect to the function it follows in case
Condition 8.2 holds that the subgradient set of the convex strictly in-
creasing function is nonempty for every and this set satisfies

Moreover, the subgradient inequality is given by

for every Also one can show the following counterpart
of Lemma 8.5.

Lemma 8.17 Assume Condition 8.4 holds. Then it follows for every
that is finite, is a nonempty compact set for every

and

Also for every and and it
holds that

The next result can be compared with Lemma 8.6.

Lemma 8.18 Assume Condition 8.2 holds. Then the set
is nonempty if and only if Moreover, if this

set is nonempty, then it only contains the finite value

Up to now we did not assume that there exists some satisfying
or equivalently the dual max-min fractional program

(D) has an optimal solution in B. In the next lemma the implications of
this assumption are discussed. To do so, consider the (possibly empty)
set given by

The counterpart of Theorem 8.3 is given by the following result.
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Theorem 8.13 Assume Condition 8.2 holds. Then
for some if and only if Moreover, if

for some then the set is nonempty and

If we introduce the (possibly) empty set given by

then without Condition 8.2 one can show the following counterpart of
Theorem 8.4. Remember a vector is an optimal solution of (D) if
and only if and

Theorem 8.14 The (dual) max-min fractional program (D) has an op-
timal solution if and only if Moreover, if (D) has an optimal
solution, then the set is nonempty and

Finally we will consider in this section another dual max-min frac-
tional program if the nonempty set B is given by (see also relation (8.1))

In case the set B is specified as in relation (8.51) we always assume
for the corresponding primal min-max fractional program (P) that the
function is positive on A×C. Introducing now the vector-valued func-
tion given by we consider for
every the single-ratio fractional program

A more complicated optimization problem is now introduced by the
so-called partial dual of the (primal) min-max fractional program given
by

Again this is a max-min fractional program, and using only on
A×C it is easy to show the following result.

Lemma 8.19 If is positive on A × C, then it follows that
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Proof. Since and for every and we
obtain by the positivity of on A×C that

for every and This shows

and so the first inequality is verified. We already showed that
Hence the proof is complete.

To verify that it is clear from Lemma 8.19 that

for every If is finite and we want to ensure that
then the following so-called Slater-type condition on the non-

empty set B should be considered. Before introducing this condition,
we assume throughout the remainder of this section that the (possibly
empty) set denotes the set of indices for which
is affine. Note that denotes the relative interior of the set C (cf.
[29, 58]).

Condition 8.8 There exists some where C is a closed convex
set satisfying for every and for every
Moreover, for every the functions are convex.

To show under which conditions the equality and the finite-
ness of holds, we first need to prove the following Lagrangean duality
result.

Lemma 8.20 Assume Condition 8.8 holds and for a given the
function is convex on C and is concave on C.
Then it follows for every that there exists some satisfying

with B defined in relation (8.51). Moreover, the same result holds for
every if is convex and is affine.

Proof. Using the definition of the set B and it is easy to see that
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Moreover, for either and concave or and
affine we see that the function is convex

on C. Applying now Theorem 28.2 of [58] or Theorem 1.25 of [29] we
obtain that there exists some dual solution such that the above
inequality is actually an equality.

Using Lemma 8.20 it is now possible to show that the optimal objec-
tive function value of the partial dual equals

Theorem 8.15 Assume Conditions 8.7 and 8.8 hold. Then there exists
some satisfying

Proof. For we know by the remark after Lemma 8.19 that the
result holds. Hence we only need to verify the result for finite. To
start we observe by relation (8.42) that

for some Applying now Lemma 8.20 one can find some
satisfying

This shows

By relation (8.52) and for every we obtain
which completes the proof.

In case we use the partial dual it follows that the partial dual of
the single-ratio fractional program

with B given by relation (8.51) is given by

Thus for this (Lagrangean) dual (cf. [66, 68]) the single-ratio frac-
tional program and its dual have a different representation. If Theorem
8.15 holds, one can always apply a Dinkelbach-type algorithm to the par-
tial dual to find This is discussed in detail in [6] and [9]. In the
next subsection we will introduce a similar Dinkelbach-type algorithm
applied to the (dual) max-min problem (D).
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6.4 The Dual Dinkelbach-Type Algorithm.
In this section we apply the Dinkelbach-type approach to the (dual)

max-min fractional program (D). Parallel to subsection 6.2 we assume
that the next condition holds. Note that this condition is the counterpart
of Condition 8.5 used in the primal Dinkelbach-type algorithm which was
applied to the (primal) min-max fractional program (P).

Condition 8.9

Condition 8.2 holds and is finite for every

If is finite, then for every the set is nonempty
while for the set is nonempty for every

If condition 8.9 holds, then one can execute the following so-called
dual Dinkelbach-type algorithm. As for the (primal) Dinkelbach-type
algorithm introduced in Section 6.2 one can give a similar geometrical
interpretation of the next algorithm.

Dual Dinkelbach-type algorithm.

1 Select and and compute

2 Determine If stop and return and
Otherwise compute

let and go to 1.

Observe in Step 1 and 2 one has to solve a single-ratio fractional pro-
gram. If B is a finite set, then solving such a problem is easy. Moreover,
by Lemma 8.18 it is sufficient to find in step 2 of the primal Dinkelbach-
type algorithm the solution of the equation As already
observed, this yields an easy geometrical interpretation of the above
algorithm (see also [5]). The next result shows that the sequence
generated by the dual Dinkelbach-type algorithm is strictly increasing.
The proof of this result is similar to the proof of the corresponding re-
sult for the primal Dinkelbach-type algorithm in Lemma 8.7. This also
shows that the primal Dinkelbach-type algorithm approaches the opti-
mal objective function value from above while the dual Dinkelbach-type
algorithm approaches it from below.
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Lemma 8.21 If Condition 8.9 holds, then the sequence generated
by the dual Dinkelbach-type algorithm is strictly increasing and satisfies

for every

By Lemma 8.21 we obtain that the sequence generated by the
dual Dinkelbach-type algorithm converges to some limit Using a
similar proof as in Lemma 8.8 one can show the following result in case
the generated sequence is finite. If strong duality holds and so
one can also use this algorithm to approximate

Lemma 8.22 If Condition 8.9 holds and the dual Dinkelbach-type algo-
rithm stops at then and

In the remainder of this subsection we only consider the case where the
dual Dinkelbach-type algorithm generates an infinite sequence
By Lemma 8.21 it follows that exists. Imposing some
additional condition it will be shown in Lemma 8.23 that this limit equals

To simplify the notation in the following lemmas, we introduce for
the sequence generated by the primal
Dinkelbach-type algorithm the sequence given by

and for  finite the sequence

By the observation after Lemma 8.16 these subgradient sets are non-
empty. Using a similar proof as in Lemma 8.9 it is possible to verify the
next result.

for every

given by

Lemma 8.23 If Condition 8.9 holds and there exists a subsequence
satisfying then More-

over for finite it follows that

By relation (8.49) it follows that

Hence one can apply Lemma 8.23 in
To show that we can follow the

proof of Lemma 8.10 and obtain the following result.

Lemma 8.24 If Condition 8.9 holds, is finite and there exists a sub-
sequence satisfying then
and
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By relation (8.55) it follows in case that the con-
dition of Lemma 8.24 is satisfied. The next result should be contrasted
with Lemma 8.11.

Lemma 8.25 If Condition 8.9 holds, the functions and are finite-
valued and continuous on some open set containing A ×
B, the set A is compact and there exists a subsequence
satisfying then the sequence
has a converging subsequence and every limit point of the sequence

satisfies with finite. Additionally, if
there exist a unique satisfying then
Moreover, for A×B compact the generated sequence

has a converging subsequence and every limit point of the
sequence is an optimal solution of problem (D). If the
optimization problem (D) has a unique optimal solution then

and

We now want to investigate how fast the sequence converges to
Before discussing this in detail, we list for finite the following inequal-
ity for the sequence generated by the dual Dinkelbach-type
algorithm. The proof is similar to the proof of the corresponding result
listed in Theorem 8.5 for the primal Dinkelbach-type algorithm.

Theorem 8.16 If Condition 8.9 holds and there exists some
satisfying then it follows for every and

that

If a slightly stronger condition as used in Lemma 8.24 holds, then
one can show that the sequence generated by the primal
Dinkelbach-type algorithm converges Q-linearly. The same result was
shown for the dual generalized fractional program in [5] and [8]. The
proof of the next result is similar as the proof of the corresponding result
for the primal Dinkelbach-type algorithm given in Theorem 8.6

Theorem 8.17 If Condition 8.9 holds, is finite and the sequence
satisfies then and the

sequence converges Q-linearly.

Finally we show in case the dual (max-min) fractional program (D)
has a unique optimal solution and some other topological conditions
hold that the sequence converges Q-superlinearly. In case
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also strong duality holds, then we know by the remark after Lemma 8.13
that this unique optimal solution of (D) is also an optimal solution of the
primal min-max fractional program P assuming this set is nonempty. By
the compactness of A × B in the next result the set of optimal solutions
of (P) is nonempty.

Theorem 8.18 If Condition 8.9 holds, the functions and are con-
tinuous on some open set W containing the compact set A × B and the
max-min fractional program (D) has a unique optimal solution
then and and the se-
quence converges Q-superlinearly.

If strong duality holds, then it is clear that one can also use the
dual Dinkelbach-type algorithm to determine the value This is the
main use of this algorithm in the literature (cf. [8, 9]). Also one could
combine the dual and primal approach in case strong duality holds and
use simultaneously both. An example of such an approach applied to a
generalized fractional program with an easy geometrical interpretation
is discussed by Gugat (cf. [39, 41]). In [39] it is shown under slightly
stronger conditions that always a Q-superlinear convergence rate holds.
This concludes our discussion of the parametric approach used in min-
max fractional programming which was a major emphasis in this chapter
on fractional programming.
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