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Abstract In the first chapter of this book the basic results within convex and
quasiconvex analysis are presented. In Section 2 we consider in de-
tail the algebraic and topological properties of convex sets within
together with their primal and dual representations. In Section 3 we
apply the results for convex sets to convex and quasiconvex functions
and show how these results can be used to give primal and dual rep-
resentations of the functions considered in this field. As such, most of
the results are well known with the exception of Subsection 3.4 deal-
ing with dual representations of quasiconvex functions. In Section 3
we consider applications of convex analysis to noncooperative game and
minimax theory, Lagrangian duality in optimization and the properties
of positively homogeneous evenly quasiconvex functions. Among these
result an elementary proof of the well-known Sion’s minimax theorem
concerning quasiconvex-quasiconcave bifunctions is presented, thereby
avoiding the less elementary fixed point arguments. Most of the results
are proved in detail and the authors have tried to make these proofs as
transparent as possible. Remember that convex analysis deals with the
study of convex cones and convex sets and these objects are generaliza-
tions of linear subspaces and affine sets, thereby extending the field of
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linear algebra. Although some of the proofs are technical, it is possible
to give a clear geometrical interpretation of the main ideas of convex
analysis. Finally in Section 5 we list a short and probably incomplete
overview on the history of convex and quasiconvex analysis.

Keywords: Convex Analysis, Quasiconvex Analysis, Noncooperative games, Mini-
max, Optimization theory.

1. Introduction

In this chapter the fundamental questions studied within the field of
convex and quasiconvex analysis are discussed. Although some of these
questions can also be answered within infinite dimensional real topolog-
ical vector spaces, our universe will be the finite dimensional real linear
space equipped with the well-known Euclidean norm Since con-
vex and quasiconvex analysis can be seen as the study of certain sets, we
consider in Section 2 the basic sets studied in this field and list with or
without proof the most important algebraic and topological properties
of those sets. In this section a proof based on elementary calculus of
the important separation result for disjoint convex sets in will be
given. In Section 3 we introduce the so-called convex and quasiconvex
functions and show that the study of these functions can be reduced to
the study of the sets considered in Section 2. As such, the formulation
of the separation result for disjoint convex sets is now given by the dual
representation of a convex or quasiconvex function. In Section 4 we will
discuss important applications of convex and quasiconvex analysis to op-
timization theory, game theory and the study of positively homogeneous
evenly quasiconvex functions. Finally in Section 5 we consider some of
the historical developments within the field of convex and quasiconvex
analysis.

2. Sets studied within convex and quasiconvex
analysis

In this section the basic sets studied within convex and quasiconvex
analysis in are discussed and their most important properties listed.
Since in some cases these properties are well-known we often mention
them without any proof. We introduce in Subsection 2.1 the definition
of a linear subspace, an affine set, a cone and a convex set in together
with their so-called primal representation. Also the important concept of
a hull operation applied to an arbitrary set is considered. In Subsection
2.2 the topological properties of the sets considered in Subsection 2.1 are
listed and in Subsection 2.3 we prove the well-known separation result
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for disjoint convex sets. Finally in Subsection 2.4 this separation result
is applied to derive the so-called dual representation of a closed convex
set. In case proofs are included we have tried to make these proofs
as transparent and simple as possible. Also in some cases these proofs
can be easily adapted, if our universe is an infinite dimensional real
topological vector space. Most of the material in this section together
with the proofs can be found in Lancaster and Tismenetsky (cf. [47]) for
the linear algebra part, while for the convex analysis part the reader is
referred to Rockafellar (cf. [63]) and Hiriart-Urruty and Lemaréchal (cf.
[34], [35]).

2.1 Algebraic properties of sets
As already observed our universe will always be the

Euclidean space and any element of is denoted by the vector
or The inner product

is then given by

while the Euclidean norm is defined by

To simplify the notation, we also introduce for the sets and
the Minkowsky sum given by

The first sets to be introduced are the main topic of study within linear
algebra (cf. [47]).

Definition 1.1 A set is called a linear subspace if L is non-
empty and for every Moreover, a set
is called affine if for every

The empty set  and are extreme examples of an affine set. Also
it can be shown that the set M is affine and if and only if M
is a linear subspace and for each nonempty affine set M there exists a
unique linear subspace satisfying

for any given (cf. [63]).
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Since is a linear subspace, we can apply to any nonempty set
the so-called linear hull operation and construct the set

For any collection of linear subspaces containing S it is obvious
that the intersection is again a linear subspace containing S and
this shows that the set is the smallest linear subspace containing
S. The set is called the linear hull generated by the set S and if S
has a finite number of elements the linear hull is called finitely generated.
By a similar argument one can construct, using the so-called affine hull
operation, the smallest affine set containing S. This set, denoted by

is called the affine hull generated by the set S and is given by

If the set S has a finite number of elements, the affine hull is called
finitely generated. Since any linear subspace is an affine set, it is clear
that To give a so-called primal representation of these
sets we introduce the next definition.

Definition 1.2 A vector x is a linear combination of the vectors
if

A vector x is an affine combination of the vectors if

A linear combination of the nonempty set S is given by the set
with while an affine combination of the same set is
given by the set with and

A trivial consequence of Definitions 1.1 and 1.2 is given by the next
result which also holds in infinite dimensional linear spaces.

Lemma 1.1 A nonempty set is a linear subspace if and only if it
contains all linear combinations of the set L. Moreover, a nonempty set

is an affine set if and only if it contains all affine combinations
of the set M.

The result in Lemma 1.1 yields a primal representation of a linear
subspace and an affine set. In particular, we obtain from Lemma 1.1
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that the set with nonempty equals all linear
(affine) combinations of the set S. This means

and

For any nonempty sets and one can now show using
relation (1.4) that

and using relation (1.5) that

Also, for a linear mapping, it is easy to verify that

and for an affine mapping, that

Recall a mapping is called linear if

for every and and it is called affine if

for every and Moreover, in case we apply relation (1.7)
to the affine mapping given by with

and use relation (1.9) the following rule for the affine hull of
the sum of sets is easy to verify.

Lemma 1.2 For any nonempty sets and it follows
that

Another application of relations (1.4) and (1.5) yields the next result.
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Lemma 1.3 For any nonempty set and belonging to
it follows that

An improvement of Lemma 1.1 is given by the observation that any
linear subspace (affine set) of can be written as the linear or affine
hull of a finite subset To show this improvement one needs to
introduce the next definition (cf. [47]).

Definition 1.3 The vectors are called linearly independent if

Moreover, the vectors are called affinely independent if

For an equivalent characterization of affinely independent vec-
tors is given by the observation that the vectors are affinely
independent if and only if the vectors are linear inde-
pendent (cf. [34]). To explain the name linearly and affinely independent
we observe that the vectors are linearly independent if and only
if any vector x belonging to the linear hull can be writ-
ten as a unique linear combination of the vectors Moreover,
the vectors are affinely independent if and only if any vector x
belonging to the affine hull can be written as a unique
affine combination of the vectors The improvement of Lemma
1.1 is given by the following result well-known within linear algebra (cf.
[47]).

Lemma 1.4 For any linear subspace containing nonzero ele-
ments there exists a set of linearly independent vectors
satisfying Also for any nonempty affine set

there exists a set of affinely independent vectors
satisfying

By Lemma 1.4 any linear subspace containing nonzero ele-
ments can be represented as the linear hull of linearly independent
vectors. If this holds, the dimension dim(L) of the linear subspace L is
given by Since any x belonging to L can be written as a unique lin-
ear combination of linearly independent vectors this shows (cf. [47]) that
dim(L) is well defined for L containing nonzero elements. If L = {0} the
dimension dim(L) is by definition equal to 0. To extend this to affine sets
we observe by relation (1.1) that any nonempty affine set M is parallel
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to its unique subspace and the dimension dim(M) of a nonempty
affine set M is now given by By definition the dimension of
the empty set equals –1. Finally, the dimension dim(S) of an arbi-
trary set          is given by dim(aff(S)). In the next definition we will
introduce the sets which are the main objects of study within the field
of convex and quasiconvex analysis.

Definition 1.4 A set is called convex if for
every Moreover, a set is called a cone if
for every

The empty set is an extreme example of a convex set and a cone. An
affine set is clearly a convex set but it is obvious that not every convex
set is an affine set. This shows that convex analysis is an extension of
linear algebra. Moreover, it is easy to show for every cone K that

Finally, for an affine mapping and a nonempty
convex set it follows that the set A(C) is convex, while for
a linear mapping and a nonempty cone the set A (K) is a cone.

To relate convex sets to convex cones we observe for and
any nonempty set that the set

is a cone. This implies by relation (1.10) that the set is a
convex cone for any convex set It is now clear for any nonempty
set that

and so any convex set C can be seen as an intersection of the convex cone
and the affine set  This shows that convex sets

are closely related to convex cones and by relation (1.11) one can study
convex sets by only studying affine sets and convex cones containing 0.
We will not pursue this approach but only remark that the above relation
is sometimes useful. Introducing an important subclass of convex sets,
let a be a nonzero vector belonging to and and

The set is called a halfspace and clearly this halfspace is a
convex set. Moreover, the set is also
called a halfspace and this set is also a convex set. Another important
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subclass of convex sets useful within the study of quasiconvex functions
is given by the following definition (cf. [23]).

Definition 1.5 A set is called evenly convex if or
is the intersection of a collection of halfspaces

Clearly the empty set is evenly convex and since any halfspace
can be obtained by intersecting the halfspaces

it also follows that any halfspace is evenly convex. In Sub-
section 2.3 it will be shown that any closed or open convex set is evenly
convex. However, there exist convex sets which are not evenly convex.

Example 1.1 If
then it follows that C is convex but not evenly convex.

Since is a convex set, we can apply to any nonempty set
the so-called convex hull operation and construct the nonempty set

For any collection of convex sets containing S it is obvious
that the intersection is again a convex set containing S and this
shows that the set co(S) is the smallest convex set containing S. The
set is called the convex hull generated by the set S and if S has
a finite number of elements the convex hull is called finitely generated.
Since is by definition evenly convex one can construct by a similar
argument using the so-called evenly convex hull operation the smallest
evenly convex set containing the nonempty set S. This set, denoted by

is called the evenly convex hull generated by the set S and is given
by

Since any evenly convex set is convex it follows that
By the so-called canonic hull operation one can also construct the

smallest convex cone containing the nonempty set S, and the smallest
convex cone containing The last set is given by

Unfortunately this set is called the convex cone generated by S (cf. [63]).
Clearly the set is in general not equal to the smallest convex cone
containing S unless the zero element belongs to S.  To give an alternative
characterization of the above sets we introduce the next definition.
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Definition 1.6 A vector x is a canonical combination of the vectors
if

The vector x is called a strict canonical combination of the same vectors
if A vector x is a convex combination of the vectors

if

A canonical combination of the nonempty set S is given by the set
with while a strict canonical combina-

tion of the same set is given by with Finally
a convex combination of the set S is given by the set with

A trivial consequence of Definitions 1.4 and 1.6 is given by the next
result which also holds in infinite dimensional linear spaces.

Lemma 1.5 A nonempty set is a convex cone (convex cone
containing 0) if and only if it contains all strict canonical (canonical)
combinations of the set K. Moreover, a nonempty set is a convex
set if and only if it contains all convex combinations of the set C.

The result in Lemma 1.5 yields a primal representation of a convex
cone and a convex set. In particular, we obtain from Lemma 1.5 that the
set with nonempty equals all canonical (convex)
combinations of the set S. This means

and

We observe that the representations of and listed in rela-
tions (1.16) and (1.17), are the “convex equivalences” of the representa-
tion of          and           given by relations (1.4) and (1.5). Moreover,
to relate the above representations, it is easy to see that

Since by relations (1.16) and (1.17) a convex cone containing 0 (convex
set) can be seen as a generalization of a linear subspace (affine set) one
might wonder whether a similar result as in Lemma 1.4 holds. Hence we



12 GENERALIZED CONVEXITY AND MONOTONICITY

wonder whether any convex cone containing 0 (convex set) can be seen
as a canonical (convex) combination of a finite set S.

Example 1.2 Contrary to linear subspaces it is not true that any con-
vex cone containing 0 is a canonical combination of a finite set. An
example is given by the so-called or ice-cream cone

Despite this negative result it is possible in finite dimensional linear
spaces to improve for canonical hulls and convex hulls the representation
given by relations (1.16) and (1.17). In the next result it is shown that
any element belonging to cone(S) with S containing nonzero elements
can be written as a canonical combination of at most linearly inde-
pendent vectors belonging to S. This is called Caratheodory’s theorem
for canonical hulls. Using this result and relation (1.11) a related result
holds for convex hulls and in this case linearly independent is replaced
by affinely independent and at most is replaced by at most
Clearly this result (cf. [63]) is the “convex equivalence” of Lemma 1.4.

Lemma 1.6 If is a set containing nonzero elements, then for
any x belonging to there exists a set of linearly independent
vectors belonging to S such that x can be written as a
canonical combination of these vectors. Moreover, for any
there exists a set of affinely independent vectors
belonging to S such that x can be written as a convex combination of
these vectors.

Proof. Clearly for the desired result holds and so
should be nonzero. By relation (1.16) there exists some finite set

and satisfying If the vectors
are linearly independent, then clearly and we are

done. Otherwise, there exists a nonzero sequence satisfying
and without loss of generality we may assume that the

set is nonempty. If
and we obtain that

and so x can be written as a strict canonical combination of at most
vectors. Applying now the same procedure again until we have identified
a subset of consisting of linearly independent vectors the
first part follows. To show the result for convex hulls it follows for any

that (x, 1) belongs to
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By relation (1.18) the set is the convex cone generated
by S × {1} and by the first part the vector (x, 1) can be written as
a canonical combination of at most linearly independent vectors

Hence one can find positive scalars satisfying
and and since the vectors

are linearly independent if and only if the vectors are
affinely independent the desired result follows.

Although in the above lemma for cones and for
convex hulls it is easy to see that can be replaced by
This concludes our discussion on algebraic properties of linear subspaces,
affine sets, convex sets, and convex cones. In the next subsection we
investigate topological properties of these sets.

2.2 Topological properties of sets

In this subsection we focus on the topological properties of the dif-
ferent classes of sets used within linear algebra and convex analysis. To
start with affine sets one can show the following result. This result can
be easily verified using Lemma 1.4 (cf. [46]).

Lemma 1.7 Any affine set is closed.

An important consequence of Lemma 1.7 is given by the following
observation. For a given set let and denote the
interior, respectively the closure of the set S. By Lemma 1.7 we obtain

and this yields by the monotonicity of the hull
operation that

Opposed to affine sets it is not true that convex cones and convex sets
are closed. However, as will be shown later, the algebraic property con-
vexity and the topological property closed are necessary and sufficient to
give a so-called dual representation of a set. Due to this important rep-
resentation one needs beforehand easy sufficient conditions on a convex
set to be closed.  Recall that every affine set can be seen as the affine hull
of a finite set of affinely independent vectors and this property implies
that every affine set is closed. By this observation it seems reasonable
to consider convex sets which are the convex hull of a smaller set and
identify which property on the smaller set S one needs to guarantee that
the convex set is closed. Looking at the following counterexample
it is not sufficient to impose that the set S is closed and this implies that
we need a stronger property on S.
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Example 1.3 If then S is closed and its
convex hull given by is
clearly not closed.

In the above counterexample the closed set S is unbounded and this
prevents to be closed. Imposing now the additional property that
the closed set S is bounded or equivalently compact, one can show that

is compact and hence closed. Using relation (1.18) this also yields
a way to identify for which sets S the set is closed. So finiteness
of the generator S for affine sets should be replaced by compactness of S
for convex hulls. To prove the next result we first introduce the so-called
unit simplex

If the function with denoting the
Cartesian product of the set is given by

then by Lemma 1.6 it follows that

Using relation (1.20) one can now show the following result (cf. [34]).

Lemma 1.8 If the nonempty set is compact, then the set
is compact. Moreover, if S is compact and 0 does not belong to
then the set is closed.

Proof. It is well known, that the set is compact (cf. [64])
and this shows by relation (1.20) and a continuous function that
is compact. To verify the second part we observe by relation (1.18) that

and so we need to show that the set
is closed. Consider now an arbitrary sequence belonging
to satisfying This implies

and since and is compact there exists a subsequence
with and Hence we obtain

and so showing the desired result.

The following example shows that the condition cannot be
omitted in Lemma 1.8.
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Example 1.4 If the condition is omitted in Lemma 1.8, then the
set might not be closed as shown by the following example. Let

Clearly S is compact and
Moreover, by relation (1.18) it follows that

and this set is not closed.

An immediate consequence of Caratheodory’s theorem (Lemma 1.6)
and Lemma 1.8 is given by the next result for convex cones generated
by some nonempty set S.

Lemma 1.9 If the set contains a finite number of elements,
then the set is closed.

Proof. For the finite set S we consider the finite set
and the set I consists of linearly independent vectors}. By Lemma 1.6
it follows that Since each I belonging to V is a
finite set of linearly independent vectors the set I is compact and 0 does
not belong to co(I). This shows by Lemma 1.8 that is closed for
every I belonging to V and since V is a finite set the result follows.

Next we introduce within a finite dimensional linear space the defi-
nition of a relative interior point, generalizing the notion of an interior
point. A similar notion can also be defined within a so-called (infinite
dimensional) locally convex topological vector space (cf. [58]).

Definition 1.7 If a vector is called
a relative interior point of the set if x belongs to and
there exists some such that

The relative interior of any set S is given by
is a relative interior point of S}. The set is called relatively open
if S equals and it is called regular if is nonempty.

As shown by the next example it is quite natural to assume that x
belongs to This assumption implies that

Example 1.5 Consider the set and let x = (1,0).
Clearly the set is given by and for it follows
that If one would delete in the definition of a
relative interior point the condition that x must belong to then
according to this, the vector (1, 0) would be a relative interior point of
the set S. However, the vector (1, 0) is not an element of S and so this
definition is not natural.
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By Definition 1.7 it is clear for full dimensional or equivalently
that relative interior means interior and hence relative

refers to relative with respect to By the same definition, we also
obtain that every affine set is relatively open. Moreover, since by Lemma
1.7 the set is closed it follows that and so it is
useless to introduce closure relative to the affine hull of a given set S.
Contrary to the different hull operations the relative interior operator is
not a monotone operator. This means that does not imply that

Example 1.6 If and then both sets are convex
and and This shows and

To guarantee that the relative interior operator is monotone we need
to impose the additional condition that If this holds
it is easy to check that

By the above observation it is important to know which different sets
cannot be distinguished by the affine hull operator. The next lemma
shows that this holds for the sets S, and This
result can be easily verified using

Lemma 1.10 It follows for every nonempty set that

By relation (1.21) and Lemma 1.10 we obtain
and for arbitrary sets Moreover,

by relation (1.7) it is easy to verify that

Since we also like to show an alternative definition
of a relative interior point is given by the next lemma.

Lemma 1.11 If the set is regular, then the vector x is a relative
interior point of the set S if and only if x belongs to and there
exists some such that

Proof. We only need to verify the if implication. Let x be a relative
interior point of the set S. This means and there exists some

such that Since we obtain that
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is nonempty for every and so we may consider
any point y belonging to Clearly and

and this shows Hence y belongs
to and we have verified that

The next result shows for regular sets that the affine hull
operation cannot distinguish the sets and S and so this lemma can
be seen as an extension of Lemma 1.10.

Lemma 1.12 If the set is regular, then it follows that

Proof. It is clear that and to show the converse
inclusion it is sufficient to verify that Let

Since the set S is regular one can find some and
so by Lemma 1.11 there exists some satisfying

Clearly the set belongs to
and this implies by relation (1.23) that

This means that the halfline starting in y and passing through
is a subset of and contains x. Hence

x belongs to and so

An immediate consequence of Lemmas 1.11 and 1.12 is given by the
observation that for any regular set it follows that x is a relative
interior point of S if and only if x belongs to and there exists
some satisfying This implies for
every regular set that and since by definition

we obtain for any set that

Keeping in mind the close relationship between affine hulls and convex
sets and the observation that nonempty affine sets are regular (in fact

we might wonder whether convex sets are regular. This is
indeed the case as the following result shows (cf. [63]).

Lemma 1.13 Every nonempty convex set is regular.

Although convexity is not a necessary condition for a set to be regular
it follows by the definition of a regular set that at least around any
relative interior point the set must be “locally” convex. A set, which
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clearly violates this condition, is the set of rational numbers and
this set is therefore not regular. Besides convexity of the set C the
proof of Lemma 1.13 uses also that C is a subset of a finite dimensional
linear space. If the last condition does not hold and C is an infinite
dimensional convex subset of a locally convex topological vector space,
then the above result might not hold. We will now list some important
properties of relative interiors. To start with this, we first verify the
following technical result.

Lemma 1.14 If         are nonempty sets, then it follows for
every that

Proof. Consider for the vector with
and It is now necessary to verify that

belongs to By the definition of y and we obtain
that

and so it follows that belongs to Hence the vector belongs
to and this shows the desired result.

Applying now Lemma 1.14, the next important result for convex sets
can be shown. This result will play an prominent role in verifying the
topological properties of convex sets.

Lemma 1.15 If       is a nonempty convex set, then it follows for
every that

Proof. To prove the above result it is sufficient to show that
for any and Clearly this set is

a subset of             and since     belongs to                 there exists some
satisfying

Moreover, since it follows that
and this implies
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Applying now Lemma 1.14 and relation (1.25) we obtain by the convexity
of the set C that

and this shows the result.

By Lemmas 1.13 and 1.15 it follows for any nonempty convex set
C that the set       is nonempty and convex.  Also, since

we obtain that is a convex set. An easy and im-
portant consequence of Lemma 1.15 is given by the observation that
the relative interior operator cannot distinguish the convex sets C and

A similar observation holds for the closure operator applied to the
convex sets and C. The next result also plays an important role
in the proof of the weak separation result to be discussed in Subsection
2.3.

Lemma 1.16 If is a nonempty convex set, then it follows that

Proof. To prove the first formula we only need to check that
To verify this we consider and select some y belong-

ing to ri(C). By Lemma 1.15 the half-open line segment [y, x) belongs
to and this implies that the vector x belongs to Hence

and the first formula is verified. To prove the second
formula, it follows immediately by relation (1.21) that
To verify consider an arbitrary x belonging to

and so one can find some satisfying

Moreover, since is nonempty, construct for some the
line through the points x and y. Since

and it follows that and so by
relation (1.26) there exists some satisfying

This shows

and since and this implies by Lemma 1.15 and
relation (1.27) that Hence it follows that
and this proves the second formula.

In the above lemma one might wonder whether the convexity of the
set C is necessary. In the following example we present a regular set
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S with and convex and S not convex and this set does not
satisfy the result of Lemma 1.16.

Example 1.7 Let This set is clearly not convex
and while Moreover, and

We will now give a primal representation of the relative interior of a
convex set S (cf. [63]).

Lemma 1.17 If is a nonempty convex set, then it follows that

The above result is equivalent to the geometrically obvious fact that
for S a convex set and any and the line segment [y, x]
can be extended beyond x without leaving S. Also, by relation (1.24)
and Lemma 1.16 another primal representation of with S a convex
set is given by

Since affine mappings preserve convexity it is also of interest to know how
the relative interior operator behaves under an affine mapping. Using
Lemma 1.17 one can show the next result (cf. [63]).

Lemma 1.18 If is an affine mapping and is a
nonempty convex set, then it follows that More-
over, if is a nonempty convex set satisfying

is nonempty, then

As shown by the following counterexample the condition
is nonempty cannot be omitted in the previous lemma.

Example 1.8 Let given by for all and
let Then clearly and

An immediate consequence of Lemma 1.18 is given by the observation
that

for any and convex sets. To conclude our dis-
cussion on topological properties for sets we finally mention the following
result (cf. [63]).
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Lemma 1.19 If the sets are convex and is non-
empty, then it follows that Moreover, if the set
I is finite, we obtain

As shown by the next counterexample it is necessary to assume in
Lemma 1.19 that the intersection is nonempty.

Example 1.9 Let and
It is obvious that

and and so we obtain and
For the same example it is also easy to see that

In the following counterexample we show that the second result listed
in Lemma 1.19 does not hold if the set I is not finite.

Example 1.10 Let and For this
example it follows and since

for each we obtain

This last example concludes our discussion of topological properties
of convex sets. In the next subsection we will discuss basic separation
results for those sets.

2.3 Separation of convex sets
For a nonempty convex set consider for any the

so-called minimum norm problem given by

If additionally C is closed, a standard application of the Weierstrass
theorem (cf. [64]) shows that for every y the optimal objective value

in the above optimization problem is attained. To verify that the
minimum norm problem has a unique solution, observe for any
belonging to that

For every belonging to C it follows by relation (1.29) with
replaced by for that

and so for different optimal solutions of the minimum norm
problem (P(y)) we obtain that Since the set C
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is convex and hence belongs to C, this yields a contradiction
and the optimal solution is therefore unique. Denoting now this optimal
solution by one can show the following result (cf. [34]).

Lemma 1.20 For any and a nonempty closed convex
set it follows that

Moreover, for every the triangle inequality

holds.

Proof. To show the only if implication we observe that

and this shows by the Cauchy-Schwarz inequality (cf. [46])

for every If we obtain, substituting x = y in relation
(1.30), that and by the nonnegativity of this yields

Also, using we obtain and so
Moreover, if then and this implies by relation

(1.30) that for every Hence z is an optimal
solution and by the uniqueness of this solution we obtain To
verify the if implication, it follows for that and since
C is convex this shows

for every and Rewriting relation (1.31) we obtain for
every that and letting

the desired inequality follows. To show the triangle inequality, we
observe using for every that

The last term equals and
applying now the first part yields the desired inequality.

Actually the above result is nothing else than the first order necessary
and sufficient condition for a minimum of a convex function on a closed
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convex set. We will now prove one of the most fundamental results in
convex analysis. This result has an obvious geometric interpretation
and serves as a basic tool in deriving dual representations. In infinite
dimensional locally convex topological vector spaces the next result is
also known as the Hahn-Banach theorem (cf. [65]).

Theorem 1.1 If is a nonempty convex set and y does not
belong to the set then there exists some nonzero vector
and with for every x belonging to In
particular, the vector satisfies this inequality.

Proof. By Lemma 1.20 we obtain for every and the nonzero
vector that This shows

and since the desired result follows.

The nonzero vector belonging to is called the normal
vector of the separating hyperplane

and and this hyperplane strongly separates the
closed convex set and y. Since we may take as a normal
vector of the hyperplane the vector and this vector has norm
1 and belongs to

The strong separation result of Theorem 1.1 can be used to prove
the following “weaker” separation result valid under a weaker condition
on the point y. Instead of y does not belong to we assume that
y does not belong to ri(C). By Theorem 1.1 it is clear that we may
assume without loss of generality that y belongs to the relative boundary

of the convex set

Theorem 1.2 If is a nonempty convex set and y does not
belong to then there exists some nonzero vector belonging to
the unique linear subspace satisfying for every
Moreover, for the vector there exists some such that

Proof. Consider for every the set By
Lemma 1.16 it follows that y does not belong to and so there
exists some vector satisfying
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The set is a closed convex set and by relation (1.33) and Theorem
1.1 one can find some vector satisfying

for every The sequence belongs to a compact
set and so there exists a convergent subsequence with

This implies by relations (1.33), (1.34) and (1.35) that

for every and

Suppose now that there does not exist some satisfying
By relation (1.36) this implies that for every

and since y belongs to we obtain by relation (1.4) and
Lemma 1.3 that for every z belonging to Since by
relation (1.37) the vector belongs to this implies
and so we contradict Hence it must follow that there exists
some satisfying and this proves the desired result.

The separation of Theorem 1.2 is called a proper separation between
the set C and the vector y. One can also introduce proper separation
between two convex sets.

Definition 1.8 The convex sets are called properly sepa-
rated if there exist some satisfying

for some and

An immediate consequence of Theorem 1.2 is given by the next result.

Theorem 1.3 If the convex sets satisfy
then the two sets can be properly separated.

Proof. By relation (1.28) we obtain for and that
and this shows if and only if
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Applying now Theorem 1.2 with y = 0 and the convex
set given by the result follows.

The above separation results are the corner stones of convex and quasi-
convex analysis. Observe in infinite dimensional locally convex topolog-
ical vector spaces one can show similar separation results under stronger
assumptions on the convex sets and (cf. [65],[17],[58]). An easy
consequence of the separation results is given by the observation that
closed convex sets and relatively open convex sets are evenly convex.
These convex sets play an important role in duality theory for quasicon-
vex functions.

Lemma 1.21 If the nonempty convex set is closed or relatively
open, then C is evenly convex.

Proof. If the result follows by definition and so we may suppose
that the closed set C is a proper subset of Hence there exists some

and this implies by Theorem 1.1 that there exists some
and satisfying This shows that the set of all
open halfspaces H satisfying is nonempty and by the definition
of it is clear that Again by Theorem 1.1
one can show using contradiction that C equals and
this shows that every closed convex set is evenly convex. To verify the
second result, we observe and since is nonempty by
the first part, it follows that is nonempty and
To show that we assume by contradiction that
there exists some with for every Due to
it follows by Theorem 1.2 that there exists some nonzero
satisfying

for every Since the convex set C is relatively open there exists for
every some satisfying and so by relation (1.38)
we obtain for every that
Hence the open halfspace with
and belongs to and since this contradicts

for every H belonging to

This concludes our discussion of separation results of convex sets. In
the next subsection we will use these separation results to derive dual
representations for convex sets.
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2.4 Dual representations of convex sets

In contrast to the primal representation of a linear subspace, affine
set, convex cone and convex set discussed in Subsection 2.1 we can also
give a so-called dual representation of these sets. From a geometrical
point of view a primal representation is a representation from “within”
the set, while a dual representation turns out to be a representation from
“outside” the set. Such a characterization can be seen as an improvement
of the hull operation given by relations (1.2), (1.3), (1.16) and (1.17).
We start with linear subspaces or affine sets (cf. [47]).

Definition 1.9 If   is some nonempty set, then the nonempty
set given by for every is
called the orthogonal complement of the set S.

It is easy to verify that the orthogonal complement of the set S is
a linear subspace. Moreover, a basic result (cf. [47]) in linear algebra is
given by the following.

Lemma 1.22 For any linear subspace L it follows that

By Lemma 1.22 a so-called dual representation of any linear hull
with S nonempty can be constructed. Using it fol-

lows by Lemma 1.22 that Since is
the smallest linear subspace containing S and is clearly a linear
subspace containing S the previous inclusion implies

The alternative representation of in relation (1.39) is called a dual
representation. To construct a dual representation for an affine hull we
observe by Lemma 1.3 and the dual representation of a linear hull that

for belonging to Since it is easy
to verify that for every we obtain
for affine hulls the dual representation

for every
Next we discuss the dual representation of a closed convex set con-

taining 0 and a closed convex cone. This dual representation will be
verified by means of the strong separation result listed in Theorem 1.1.
Recall first the definition of a support function.
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Definition 1.10 If       is some nonempty set, then the function
given by is called the

support function of the set S.

An equivalent formulation of Theorem 1.1 involving the support func-
tion of the closed convex set C is given by the following result.

Theorem 1.4 If   is a proper nonempty convex set, then it fol-
lows that if and only if   for every

Proof. Clearly implies that for every s
belonging to To show the reverse implication let
for every and suppose by contradiction that By
Theorem 1.1 there exists some nonzero vector and satis-
fying for every x belonging to This implies

contradicting our initial assumption
and so it must follow that belongs to

To generalize the dual representation of linear subspaces in Lemma
1.22 to the larger class of closed convex sets containing 0 we need to
generalize the orthogonality relation given in Definition 1.9.

Definition 1.11 If   is a nonempty set, then the set given
by is called the polar of the
set S. Moreover, the bipolar of the set S is defined by

The polar of a nonempty set is a nonempty closed convex
set and satisfies If the nonempty set is a convex
cone, then it is easy to show that for every

and is a closed convex cone, while for L a linear subspace
it follows that Hence the polar operator applied to a linear
subspace reduces to the orthogonal operator and can therefore be seen
as a generalization of this operator. To prove a generalization of Lemma
1.22 it is convenient to introduce the so-called Minkowski functional (cf.
[65]). Recall in the next definition that

Definition 1.12 The Minkowski functional or gauge of the nonempty
set is given by the function defined by

As shown by the next result the support function of any set S con-
taining the zero vector 0 equals the gauge of the closed convex polar
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Lemma 1.23 If      is a nonempty set containing 0, then it follows
that for every

Proof. Since 0 belongs to it follows that the support function
of the set is nonnegative. Consider now the following two

cases. If we obtain for every and
This shows for every and so
Moreover, if we obtain using that

and this shows the desired result.

Finally we can prove the so-called bipolar theorem for closed convex
sets containing 0, generalizing Lemma 1.22. This representation can be
seen as a so-called dual representation of a closed convex set containing
0.

Theorem 1.5 If      is a nonempty convex set with then
it follows that

Proof. It is obvious that and so we only need to verify the
reverse inclusion. Since for any satisfying it follows
that

for every we obtain for every that
This implies and since this inequality trivially holds for

we obtain by Lemma 1.23 that for every s.
Applying now Theorem 1.4 shows and we have checked that

By a similar approach as used after Lemma 1.22 it is easy to construct
a dual representation of the convex set with S a nonempty
set. First we observe by the definition of the polar operator and using
Theorem 1.5 that Since is a
closed convex set containing and is the smallest
closed convex set containing we obtain by the previous inclusion
the general formula

The formula, listed in relation (1.41), is called the bipolar theorem for
arbitrary sets Replacing Theorem 1.4 by its equivalent version
valid in locally convex topological vector spaces one can verify using
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a similar proof the bipolar theorem (cf. [10], [37]) in locally convex
topological vector spaces.

An important special case of Theorem 1.5 is given by
with K a convex cone. By means of similar proof techniques (cf. [67]) it
is also possible to give a dual representation of the relative interior
of a convex cone K. Without proof we now list the following result. For
related results, valid in infinite dimensional topological vector spaces,
the reader should consult [38].

Theorem 1.6 For any nonempty convex cone it follows that

This concludes our section on sets. In the next section we will consider
functions studied within convex and quasiconvex analysis.

3. Functions studied within convex and
quasiconvex analysis

In this section we first introduce in Subsection 3.1 the different classes
of functions studied within convex and quasiconvex analysis and derive
their algebraic properties. These algebraic properties are an easy con-
sequence of two important relations between functions and sets and the
properties of sets derived in Subsection 2.1. Also from Subsection 2.1
we know how to apply hull operations to sets and using this it is also
possible to construct so-called hull functions. These different hull func-
tions are also introduced in Subsection 3.1 and their properties will be
derived. In Subsection 3.2 topological properties of functions are intro-
duced together with some of the “topological” hull functions. It will
turn out that especially the class of lower semicontinuous functions is
extremely important in this field. Finally in Subsections 3.3 and 3.4 dual
characterizations of the considered functions will be derived. The key
results in these sections are the Fenchel-Moreau theorem within convex
analysis and its generalization to the so-called evenly quasiconvex and
lower semicontinuous quasiconvex functions.

3.1 Algebraic properties of functions
In this subsection we relate functions to sets and use the algebraic

properties of sets given in Subsection 2.1 to derive algebraic properties
of functions. To start with this approach, let be an
extended real valued function and associate with its so-called epigraph
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A related set is the strict epigraph

Within convex analysis it is now useful to represent a function by the
obvious relation (cf. [63])

By definition and this only happens if the vector x does
not belong to the so-called effective domain

of the function By this observation it follows that is nonempty
if and only if is nonempty and if this holds we obtain

with A the projection of onto given by As shown
by the following definition, the representation of the function given by
relation (1.44) is useful in the study of convex functions.

Definition 1.13 The function is called convex if the
set is convex. Moreover, the function is called
positively homogeneous if the set is a cone.

An equivalent definition of a convex function is given by the next
result, which is easy to verify.

Lemma 1.24 A function is convex if and only if the
set is convex.

Using Lemma 1.24 we obtain that a function is
convex if and only if for every

whenever In case we know additionally that
we obtain by relation (1.44) that is convex if and only if for every

and so we recover the more familiar definition of a convex function. An
important special case satisfying relation (1.48) is given by and
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is nonempty. If this holds the function is called proper. Also
the next result is easy to verify.

Lemma 1.25 The function is positively homoge-
neous if and only if for every and

To investigate under which operations on convex functions this prop-
erty is preserved we observe for any collection of functions
that

Since the intersection of convex sets is again convex we obtain by rela-
tion (1.49) that the function is convex if is convex for every

Moreover, by relation (1.48), it follows that any strict canonical
combination of the convex functions is again convex.

In case we use the representation of a function given by relation
(1.44), and the various hull operations on a set defined in Subsection 2.1
it is easy to introduce the various so-called hull functions of The first
hull function is given by the next definition (cf. [63]). In this volume
the various hull functions, given in this subsection and the next, are also
discussed by Crouzeix (cf. [11]).

Definition 1.14 For any function the function
given by is called

the convex hull function of the function

The next result yields an interpretation of the convex hull function of
a function Recall that the convex hull of the empty set is again the
empty set.

Lemma 1.26 For any function the convex hull
function is the greatest convex function majorized by      Moreover, it
follows that and

Proof. Without loss of generality we may assume that or equiva-
lently is nonempty. Since is a convex set we obtain by
Definition 1.14 for every that

for every This shows by relation (1.47)
that the function is convex. Moreover, if and is convex,
then and so is the greatest convex
function majorized by Using again Definition 1.14 it is also easy to
verify that To show the last part of this
lemma, let and so for every
This implies by relation (1.46) that
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with A the projection of onto and we have verified
Also, for we obtain by relation

(1.46) that and so x belongs to showing the
reverse inclusion.

In general it follows that A direct consequence of
Lemma 1.26 and the fact that is convex for a collection
of convex functions, is the often used representation of the function
given by

Next to the epigraph of a function one also con-
siders the so-called lower-level set of the function given
by

A related set is the strict lower-level set of the function of level
represented by

Within quasiconvex analysis it is now useful to represent a function
by the obvious relation (cf. [15])

As shown by the following definition, the representation of the function
given by relation (1.53), is useful in the study of quasiconvex functions.

Definition 1.15 The function is called quasiconvex
if for every the lower-level set is convex. Moreover, the
function is called evenly quasiconvex if for every the lower level
set is evenly convex.

To derive the relation between convex and quasiconvex functions we
observe that for every This
implies that a convex function is also a quasiconvex function. Since each
monotonic (increasing or decreasing) function is quasiconvex,
but not necessarily convex, the converse is not true. For quasiconvex
functions a similar result as in Lemma 1.24 can be easily verified.

Lemma 1.27 A function is quasiconvex if and only
if the set is convex for every

To recover a more familiar representation of a quasiconvex function
it can be shown easily (cf. [2]) that a function is
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quasiconvex if and only if for
every

As for convex functions, one is interested under which operations on
quasiconvex functions this property is preserved. Clearly for any collec-
tion of functions it follows that

and this shows that the function is quasiconvex if is quasi-
convex for every Opposed to convex functions, it is not true that
a strict canonical combination of quasiconvex functions is quasiconvex
and this is shown by the following example.

Example 1.11 Let be given by and

These functions are quasiconvex, but it is easy to verify by means of a
picture that the sum of the two functions is not quasiconvex.

Using relation (1.53), one can apply the different hull operations to
the lower level set. The first hull function constructed in this way is
listed in the next definition (cf. [15], [11]).

Definition 1.16 For any function the function
given by is called the

quasiconvex hull function of the function

The next result (cf. [15]) yields an interpretation of the quasiconvex
hull function of a function

Lemma 1.28 For any function the quasiconvex hull
function is the greatest quasiconvex function majorized by More-
over, it follows that for every

Proof. Again we may assume without loss of generality that is
nonempty. By Definition 1.16 it follows that
Since it is obvious that the reverse inclusion holds, we obtain

By this relation it is clear that the function is qua-
siconvex and applying a similar argument as in Lemma 1.26 to lower
level sets it can be shown that this function is the greatest quasiconvex
function majorized by the function

A direct consequence of Lemma 1.28 and the fact that is
quasiconvex for a collection of quasiconvex functions, is the
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often used representation of given by

To conclude this subsection, we consider a hull function based on
evenly convex sets (cf. [55], [11]). It will turn out that this function
plays an important role in duality theory for quasiconvex functions.

Definition 1.17 For any function the function
given by is called the

evenly quasiconvex hull function of the function

As done for the quasiconvex hull function one can show by a similar
proof the following result (cf. [55]).

Lemma 1.29 For any function the evenly quasi-
convex hull function is the greatest evenly quasiconvex function ma-
jorized by Moreover, it follows that for
every

A direct consequence of Lemma 1.29 and the fact that is
evenly quasiconvex for a collection of evenly quasiconvex func-
tions, is the often used representation of given by

Since an evenly quasiconvex function is clearly a quasiconvex function it
holds that This concludes our discussion of algebraic properties
of convex and quasiconvex functions. In the next subsection we will
consider topological properties of functions.

3.2 Topological properties of functions

In this subsection we first introduce the class of lower semicontinuous
functions. These functions play an important role within the theory of
convex functions.

Definition 1.18 If                  is some function, then this
function is called lower semicontinuous at if

with

Moreover, the function is called upper semicontinuous
at if the function is lower semicontinuous at x and it is
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called continuous at x if it is both lower and upper semicontinuous at x.
The function is called lower semicontinuous (upper
semicontinuous) if is lower semicontinuous (upper semicontinuous) at
every and it is called continuous if it is both upper and lower
semicontinuous.

We mostly abbreviate lower semicontinuous by l.s.c.. To relate the
above definition of liminf to the liminf of a sequence we observe for
every sequence that
Using this definition one can easily show the following result.

Lemma 1.30 The function is l.s.c. at
if and only if for every sequence
satisfying

Using Lemma 1.30 the following important characterization of l.s.c.
functions can be proved (cf. [63], [1]).

Theorem 1.7 If  is an extended real valued function,
then the following conditions are equivalent:

1

2

3

The function is l.s.c..

The set is closed.

The set is closed for every

It is useful to know under which operations on l.s.c. functions this
property is preserved. Since and the inter-
section of closed sets is again a closed set we obtain by Theorem 1.7 that
the function is l.s.c. if each function is l.s.c.. Also it
follows for every finite set I that and this
shows by Theorem 1.7 and the fact that a finite union of closed sets
is closed, that the function is l.s.c. if each         is  l.s.c..
Finally, for arbitrary functions we obtain
that

with denoting the complement of the set and this implies
using Theorem 1.7 that the function is l.s.c. for every
if the functions are l.s.c..

To verify the next theorem we introduce for any function
the (possibly empty) set of continuous real valued minorants

of given by



36 GENERALIZED CONVEXITY AND MONOTONICITY

In the next result it is now shown that any l.s.c. function can be seen
as a pointwise limit of an increasing sequence of real valued continuous
functions.

Theorem 1.8 For any function the following con-
ditions are equivalent:

1

2

3

The function is l.s.c..

There exists an increasing sequence of continuous functions
satisfying for every

with nonempty.

Proof. We only give a proof of 1 2 since the other implications are
obvious. We first show the desired result for a nonnegative uniformly
bounded function Actually, if the function is nonnegative and uni-
formly bounded, then the sequence given by

is increasing, converges point-
wise to and each is continuous (actually Lipschitz continuous
with Lipschitz constant To reduce the general case of a proper l.s.c.
function to this special case, replace the proper l.s.c. function by
the nonnegative uniformly bounded l.s.c. function where

and apply the first part. Hence there exists an
increasing sequence of continuous functions converging pointwise to

Use now that the function is one-to-one, strictly
increasing and continuous with a continuous inverse and select the
sequence

By Theorem 1.8 we obtain that the set of l.s.c. functions is the small-
est set of functions, which are closed under taking the sup operation to
any collection of functions belonging to this set and which contain the
set of continuous real valued functions.

As in the previous subsection, we are going to introduce hull oper-
ations related to functions. In this case topological properties will be
involved. First we consider the so-called l.s.c. hull function of a function

(cf. [63], [11]).

Definition 1.19 For any function the function
given by is called

the l.s.c. hull function of the function

In the next result an interpretation of the l.s.c. hull function of a
function is given.
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Lemma 1.31 For any function the l.s.c. hull func-
tion is the greatest l.s.c. function majorized by Moreover, its epi-
graph equals and If addition-
ally is a convex set, it follows that

Proof. By Definition 1.19 we obtain
This means that equals

and by Theorem 1.7 the function is l.s.c.. Moreover, if
and is l.s.c., then by Theorem 1.7 we obtain

and so it follows that To verify the last part we
may assume without loss of generality that is nonempty. Since

it follows that and by relation (1.46) we obtain
Finally, if

is a nonempty convex set it follows by Lemma 1.16 that
and since we obtain

A direct consequence of Lemma 1.31 and the fact that is
l.s.c. for a collection of l.s.c. functions, is the often used
representation of given by

For nondecreasing functions it is possible to give a
more detailed description of the l.s.c. hull function of To show this
result we first introduce the next definition.

Definition 1.20 For any function the function
is given by

The next result is needed in the proof of a dual representation of a
l.s.c. quasiconvex function.

Lemma 1.32 For any nondecreasing function it fol-
lows that  for every

Proof. Since the function is nondecreasing, it is easy to verify that
is nondecreasing and We now verify that the function is l.s.c.
and so by Theorem 1.7 we need to check that the lower-level set
is closed for every Assume now by contradiction that there exists
some such that the set is not closed. Hence there exists
a sequence with and does
not belong to Since is nondecreasing and it
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follows that for every and by Definition 1.20 one can find
some satisfying This implies that there exists some

satisfying and so contradicting
belongs to Therefore is l.s.c. and using it

follows by relation (1.58) that Suppose now by contradiction
that for some By relation (1.57) and is l.s.c. this
implies that there exists some satisfying for every

and so

This yields a contradiction and the result is proved.

The next result relates to and this result is nothing else than a
“function value translation” of the original definition of the l.s.c. hull
function of

Lemma 1.33 For any function and it
follows that

Proof. Since and
Suppose now by contradiction that

If this holds, then clearly and by
the definition of liminf there exists some finite  and satisfying

for every This implies that the open set
containing the point has an empty intersection

with However, by Lemma 1.31 it follows that belongs
to and so every open set containing must have a
nonempty intersection with Hence we obtain a contradiction and
so the result is proved.

By Lemma 1.33 and Definition 1.18 it follows immediately that

Using Theorem 1.7 and Lemmas 1.31 and 1.33 one can show that the
l.s.c. hull operation applied to functions preserves the convexity and
quasiconvexity property.

Lemma 1.34 If the function is convex (quasicon-
vex), then also the l.s.c. hull function of is convex (quasiconvex).

Proof. If the function is convex, then is a convex set and hence
also is a convex set. Since by Lemma 1.31 the epigraph of
is given by this shows that is a convex function. To verify

is a l.s.c. function we obtain that
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that is quasiconvex for quasiconvex we need to verify by Lemma 1.27
that the set is convex for every If the vectors
belong to it follows by Lemma 1.33 that

for every and This implies for every and
that there exists some vector satisfying

Applying now the quasiconvexity of the function we obtain for every
that

and since the vector belongs to the set
this yields

for every Using again Lemma 1.33 we obtain

and it follows that belongs to

To improve Lemma 1.33 for convex functions we need to give a rep-
resentation of the relative interior of the epigraph of a convex function.
This representation is an immediate consequence of the following obser-
vation. If is a convex function and is finite for
some x, then clearly and so

A similar observation also holds for and this shows that
relation (1.60) is valid for every Also by relation (1.46) and
Lemma 1.18 we obtain

with the projection on and so it follows by relation
(1.61) that
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Since the set is affine and therefore relatively open we obtain
by relation (1.62) that the conditions of Lemma 1.19 hold and hence by
relation (1.60) we obtain

for every Using this equality the next representation is
easy to verify.

Lemma 1.35 If the function is convex and
is nonempty, then the set is nonempty and

Proof. If x belongs to and it follows by relation
(1.63) that To show the reverse inclusion we proceed
as follows. If belongs to then by relation (1.61) we
obtain Applying now relation (1.63) yields

In case is a convex function with nonempty, the result of
Lemma 1.33 can be improved as follows.

Lemma 1.36 If the function is convex and
is nonempty, then for every
Moreover, if then it follows that

Proof. By Lemma 1.33 it is obvious that
If then the result holds by the previous inequality and so we
assume This implies that for
every and since it follows by Lemma 1.35 that

for every Applying now Lemma 1.15 we
obtain for every that and
this shows Hence it
follows that and since we obtain

This proves the first part and to verify
the second part we first observe that the convex set is nonempty
and so by Lemma 1.13 the set is nonempty. By Lemma 1.31
and 1.35 and is convex it now follows that

This implies using Lemma 1.16 and is convex that
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and by contradiction we obtain for every
Since always the proof is completed.

We now introduce the most important hull function used within the
field of convex analysis (cf. [63], [11]).

Definition 1.21 For any function the function
given by is

called the l.s.c. convex hull function of the function

Using now a similar approach as in Lemma 1.31 one can prove the
following result.

Lemma 1.37 For any function the l.s.c. convex hull
function is the greatest l.s.c. convex function majorized by More-
over, it follows that

and

A direct consequence of Lemma 1.37 and the fact that is
a l.s.c. convex function for a collection of l.s.c. convex functions,
is the often used representation of given by

To relate the various hull functions based on relation (1.44) we observe
by Lemmas 1.26 and 1.34 that the function is convex and l.s.c. Since

this shows by Lemma 1.37 that Also by Lemmas
1.26 and 1.37 it holds that the l.s.c. function is bounded from above
by This implies by Lemma 1.31 that and combining both
inequalities yields

for every An immediate consequence of relation (1.66) is now
given by the chain of inequalities

for every We finally consider hull functions based on the lower
level set (cf. [15],[11]).

Definition 1.22 For any function the function
given by is called

the l.s.c. quasiconvex hull function of the function

Using a similar approach as in Lemma 1.28 one can show the following
result.
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Lemma 1.38 For any function the l.s.c. quasicon-
vex hull function is the greatest l.s.c. quasiconvex function majorized
by Moreover, it follows that for every

A direct consequence of Lemma 1.38 and the fact that is
a l.s.c. quasiconvex function for  a collection of l.s.c. quasiconvex
functions, is the often used representation of given by

To relate the various hull functions based on relation (1.53) we first
observe by Lemma 1.21 that every closed convex set is evenly convex
and so it follows that

for every Moreover, using relation (1.68) and
Lemma 1.34 we obtain and since by relation (1.69) and Lemma
1.38 also this finally yields

for every The above representations of the hull functions do
not depend on the fact that the domain is finite dimensional and so we
can also introduce the same hull functions in linear topological vector
spaces (cf. [56]). In the next two subsections we consider the dual
representations of some of the hull functions.

3.3 Dual representations of convex functions

In this subsection we will consider in detail properties of convex func-
tions, which can be derived using the strong and weak separation results
for nonempty convex sets. In particular, we will discuss a dual repre-
sentation of a l.s.c. convex function satisfying As always in
mathematics one likes to approximate complicated functions by simpler
functions. For convex functions these simpler functions are given by the
so-called affine minorants.

Definition 1.23 For any function the affine function
given by with     and             is called an

affine minorant of the function if for every x belonging to
Moreover, the possibly empty set of affine minorants of the function

is denoted by
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Since any affine minorant of a function is continuous and convex
it is easy to verify the following result.

Lemma 1.39 For any function it follows that

Proof. We only give a proof of the above result for nonempty. Since
by relations (1.67) and (1.66) we know that it follows
immediately that Moreover, if the function
belongs to then clearly and is continuous and convex. This
implies by relation (1.65) that and hence the affine function
belongs to

Since an affine function is always finite valued the set is empty if
there exists some satisfying and so it is necessary
to consider functions In Theorem 1.9 necessary and
sufficient conditions are given for to be nonempty. To prove this
result we first need to verify the next important lemma.

Lemma 1.40 If                 is an arbitrary function and
is finite for some then the set is nonempty.

Proof. It follows that the vector does not belong to the set
By Lemma 1.37 the nonempty set is convex and closed

and applying Theorem 1.1, there exists some nonzero vector sat-
isfying

for every Since belongs to this implies
and so for every the inequality

holds. By relation (1.71) it follows by contradiction that
for every and this yields using that

for every Substituting this into relation
(1.71) we obtain

for every Since the previous inequality trivially holds for
the function is an

affine minorant of and the desired result is proved.

Using Lemma 1.40 one can show the following theorem.
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Theorem 1.9 For any function the following con-
ditions are equivalent:

1 The set is nonempty.

Proof. If the set is nonempty then for any we obtain by
relation (1.65) that for every and this shows the
implication 1 3. Due to the implication 3 2 is obvious.
To show the implication 2 1 consider some satisfying
In case is empty it follows that and so trivially is
nonempty. Therefore assume that is nonempty. By Lemma
1.26 this is a nonempty convex set and so by Lemma 1.13 one can find
some Since is a convex function it follows
by Lemma 1.36 that and so we
have found some satisfying is finite. Applying now Lemma
1.40 yields is nonempty and the result is proved.

As shown by the following example it is not true that is nonempty
for

Example 1.12 For the concave function given by
it is easy to verify that Hence we

obtain that is empty and this yields by Lemma 1.39 that is
empty.

To prove an important representation for a subclass of convex func-
tions we introduce the following definition.

Definition 1.24 The function belongs to the set
if is convex and l.s.c. and

It is now possible to prove the following representation for the set
This result is known as Minkowski’s theorem.

Theorem 1.10 For any function it follows that

and the set is nonempty.

Proof. If the function has the representation
and the set is nonempty, then clearly the function

is l.s.c., convex and and so belongs to To prove

2

3
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the reverse implication, we observe for that
and this shows by Theorem 1.9 that the set is nonempty and hence

Suppose now by contradiction that
for some Hence one can find

some satisfying

and so If is empty, then the affine function
is an affine minorant of and this contradicts relation (1.72).

Therefore we assume that is nonempty and since this set is closed
and convex there exists by Theorem 1.1 a nonzero vector and

satisfying

for every Since for and the vector
belongs to it follows by relation (1.73) that

Consider now the two cases and              If we
obtain by relation (1.73) replacing by that

and this implies using relation (1.72) that Hence by
relation (1.73) it holds that

for every x belonging to and we have found some satis-
fying contradicting relation (1.72). If and
in relation (1.73), then by the same proof we obtain a contradiction and
so we consider the last case                  and Introduce now the
affine function given by

By relation (1.73) for every and Since
is nonempty, select some and by relation (1.72) it follows

that Introducing now the affine function
given by

we obtain and since for every and
we also obtain Hence is an affine minorant of

satisfying and this contradicts relation (1.72) showing the
desired result.

An immediate consequence of Minkowski’s theorem and Lemma 1.39
is listed in the next result.
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Theorem 1.11 If                         is a function satisfying
then it follows that and the set
is nonempty.

Proof. By relation (1.66) and Theorem 1.10 we obtain that
with the set is nonempty. Applying

now Lemma 1.39 the desired result follows.

In Theorem 1.11 we only guarantee that any function can
be approximated from below by affine functions. However, it is some-
times useful to derive an approximation formula in terms of the original
function This formula was first constructed in its general form by
Fenchel (cf. [21]) and it has an easy geometrical interpretation (cf. [27]).

Definition 1.25 For any function the function
given by is called the

conjugate function of the function The function
given by is called the biconjugate
function of

By the above definition it is immediately clear that the conjugate
function is convex and l.s.c.. Moreover, if the function

is proper and the set of affine minorants is nonempty, then it
is easy to verify that the function is also proper. As shown by the next
result the biconjugate function has a clear geometrical interpretation.

Lemma 1.41 If is an arbitrary function satisfying
is nonempty, then it follows that if and only if

with Additionally, it holds that
for every

Proof. To verify the equivalence relation we observe for
for every that or

Moreover, if we obtain and
this implies for every that To prove
the relation for the biconjugate function it follows by the definition of

that Since by the first
part if and only if is an affine minorant
of this shows that for every and
hence the equality for the biconjugate function is verified.

To prove one of the most important theorems in convex analysis we
introduce the definition of the closure of the function
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Definition 1.26 If                                   is an arbitrary function, then
the closure of the function is given by

Clearly the function is l.s.c. and satisfies Also it is
easy to verify by Lemma 1.41, Theorem 1.9 and using that

for any convex function The next result is known as the Fenchel-
Moreau theorem and is one of the most important results in convex
analysis.

Theorem 1.12 For any function it follows that
for every

Proof. If for some then To show this,
suppose by contradiction that for some This implies the
existence of some satisfying for every
and so the function is an affine minorant of Hence
by relation (1.65) we obtain that and this contradicts
our initial assumption. Since we obtain and by
Definition 1.26 we obtain In case the result
follows by Theorem 1.11 and Lemma 1.41.

An important consequence of the Fenchel-Moreau theorem is given
by the following result. Recall a function is sublinear, if it is positively
homogeneous and convex.

Lemma 1.42 Any l.s.c. sublinear function has the
representation

with a nonempty closed convex set.

Proof. By the Fenchel Moreau theorem it follows that

Since is positively homogeneous we obtain by Lemma 1.25 that

for every and and this shows that
If for every then for every x and this
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shows by the Fenchel Moreau theorem that for every x,
contradicting Therefore is not identically and this yields
that the set C is not empty. Again by the Fenchel Moreau theorem we
obtain

and since the function is l.s.c. and convex the nonempty set C is
closed and convex.

Finally we introduce the so-called subgradient set of a function at a
point.

Definition 1.27 For any function and the
subset of consisting of those vectors satisfying

for every is called the subgradient set of the function
at the point This set is denoted by and its elements are

called subgradients.

If then clearly and so it is sufficient to con-
sider those satisfying Moreover, if
and is empty, then again and hence we only need
to consider and is not empty. If or

then this implies, using is nonempty, that
and so the only interesting case which remains is given by fi-

nite. It is now relatively easy to prove for       finite that
is equivalent to another condition related to the conjugate function.

Lemma 1.43 If is an arbitrary function satisfying
is finite for some then it follows that if and only

if

Proof. If then by definition
for every x and this implies using is finite that

for every x. Hence we obtain that
and this shows the equality. To verify the reverse implication is trivial
and so we omit its proof.

Up to now we did not show any existence result for the subgradient
set of at in case is finite. Such a result will be given by the
next theorem.

Theorem 1.13 If the function is convex and
is finite for some then the set is nonempty.



Convex and Quasiconvex Analysis 49

Proof. If and is finite we obtain by Lemma 1.35
that This implies by the convexity of the set

and Theorem 1.2 that there exists some nonzero vector
satisfying

for Moreover, using belongs to
for every we obtain and to show that assume by
contradiction that Hence it follows by relation (1.75) that

for every Since and so

we know that belongs to This implies, using be-
longs to that there exists some satisfying

and applying now relation (1.76) with x replaced by
yields Hence it follows that and we obtain a
contradiction. Therefore it must hold that and dividing now the
inequality in relation (1.75) by and using that is finite for
every yields

for every This shows that the vector is a
subgradient of the function at the point and so is a nonempty
set.

In case does not belong to for some convex function
it might happen that does not have a subgradient at the point

This is shown by the following example.

Example 1.13 Consider the convex function given
by for and              otherwise. Clearly 0 belongs
to the relative boundary of but is empty.

In case the function is a sublinear function one can show
the following improvement of Theorem 1.13 replacing the condition

by the condition

Theorem 1.14 If the function is sublinear and
then the set is nonempty and
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Proof. Since is convex it follows that and this implies by
Theorem 1.9 that is nonempty and so is a proper function. Since
by Definition 1.13 and Lemma 1.31 the function is also sublinear one
may apply Lemma 1.42 and this shows with

a nonempty closed convex set. By relation
(1.74) and it follows that and so

We will now verify that By the definition of
we obtain for that for every  Since          is
finite and positively homogeneous it follows that and so it
follows that This shows and to verify the reverse
inclusion we observe for every that for every
x. This implies and so a belongs to C. Hence is
nonempty and the proof is completed.

In Theorem 1.14 we actually show for sublinear
and that

A nice implication of Theorem 1.13 is the observation that convex func-
tions have remarkable continuity properties. Before showing this result
we need the following technical lemmas.

Lemma 1.44 If the vectors form an or-
thonormal system and the set P is the convex hull generated by the set

then it follows that

Proof. Since the vectors form an orthonormal system we
obtain for any vector that

Applying now the Cauchy-Schwartz inequality to the inner product of
the vectors and it follows that

and this implies by relation (1.78) that
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Consider now an arbitrary vector y belonging to
Since the vectors are independent, there exists a unique
vector such that

with Applying now the inequality in relation
(1.79) it follows that

and this shows that the vector y belongs to P.

Another result which is needed in the proof of Theorem 1.15 is given
by the following lemma.

Lemma 1.45 If the function is convex and for
some and there exists some finite constants satisfying

for every x belonging to then one
can find some L > 0 satisfying

for every  belonging to

Proof. Let and be two different vectors belonging to
This yields that the vector belongs to

and since is a relative interior point of the convex set one can
find some satisfying

Hence the vector belongs to and by relation
(1.80) we obtain

Using now relation (1.48) and the fact that the function is bounded
from above and below on it follows for

that



52 GENERALIZED CONVEXITY AND MONOTONICITY

Reversing the roles of and yields a similar bound for
and the desired inequality is verified.

The above property of the function is called Lipschitz continuity on
the set Using Lemmas 1.45, 1.44 and Theorem
1.13 one can now show the next result, which is an improvement of
Lemma 1.36.

Theorem 1.15 If is a convex function, then it
follows that is continuous on and Lipschitz continuous on
every compact subset of

Proof. If one can find some satisfying

To give a more detailed characterization of we observe by
Lemma 1.4, that there exists a set of linearly independent vectors

satisfying and so

Without loss of generality (Use the well-known Gram-Schmidt orthog-
onalization process (cf. [47])) we may assume that the set
is an orthonormal system. By relations (1.82) and (1.81) and a
convex set it follows that the set with P the convex hull generated
by the set belongs to Also by
the convexity of the function and relation (1.48) we obtain that

for every Since by Lemma 1.44 there exists some
satisfying

this shows that the function is bounded from above on
Using Theorem 1.13 we also obtain that the function is

bounded from below on and applying now Lemma
1.45 with replaced by yields the desired result.

This concludes our discussion on dual representations and conjugation
for convex functions. In the next subsection we consider the same topic
for quasiconvex functions.
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3.4 Dual representations of quasiconvex
functions

In this section we study dual representations of evenly quasiconvex
and l.s.c. quasiconvex functions. Most of the results of this section can
be found in [56]. Unfortunately in [56] no geometrical interpretation of
the results are given and for such an interpretation the reader should
consult [27]. In [56] it is shown, that one can use the same approach
as in convex analysis and this results in proving that certain subsets
of quasiconvex functions can be approximated from below by so-called

functions with belonging to a given class
of extended real valued univariate functions. Recall that a function is
called univariate if its domain is given by As in convex analysis the
used approximations and the generalized biconjugate functions have a
clear geometrical interpretation (cf. [27]). To start with this approach
we introduce in the next definition the class of functions. More
general classes of so-called coupling functions are discussed in this
volume by (cf. [49]).

Definition 1.28 For a given univariate function the
function is called a function, if there exist
some and such that for every If

denotes a subset of the set of extended real valued univariate functions
the function is called a function, if for some the function

is a function. The function is called a minorant of
the function if for every and

is a function. The set denotes now the (possibly empty)
set of minorants of

To specify the set we first consider the set of extended real valued
nondecreasing univariate functions and the proper
subset of extended real valued nondecreasing l.s.c. univariate
functions. Since for any and also the function

given by belongs to we
observe for these classes of extended real valued univariate functions that
the class of functions, reduces to the set of functions

given by for some and
Clearly and since the function with

for every belongs to the set we obtain that
is nonempty for every This is a major difference
with the set of affine minorants of a function since this set might be
empty. Observe in Theorem 1.9 we showed that this set is nonempty if
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and only if One can now show the following result for
functions with either equal to or

Lemma 1.46  is then the function is
evenly quasiconvex. Moreover, if is then the function is
l.s.c. and quasiconvex.

Proof. If is a function, then there exists some and
such that for every

with the lower level set of the function Since is nondecreasing,
this lower level set is either empty or an interval given by or

with Hence the set is either
empty or an open or closed halfspace and this shows that is evenly
convex. Similarly for we obtain, using Theorem 1.7, that
is empty or and hence is empty or a closed halfspace.
This shows that the function is quasiconvex and by Theorem 1.7 it is
also l.s.c..

By Lemma 1.28, 1.29, 1.38 and 1.46 and (see
relations (1.69) and 1.70).) one can show, applying a similar proof as in
Lemma 1.39, that the following result holds.

Lemma 1.47 For any function it follows that
and

Contrary to functions studied in convex analysis, we do not have to
determine for which extended real valued functions the sets
are nonempty and so we can start generalizing Minkowsky’s theorem (see
Theorem 1.10) to evenly quasiconvex and l.s.c. quasiconvex functions.
In the proof of this generalization and in the remainder of this subsection
an important role is played by the following functions.

Definition 1.29 For any function and let
denote the function

It is now possible to show the following result.

Theorem 1.16 If                            is an evenly quasiconvex function,
then for every Moreover, if is
an l.s.c. quasiconvex function, then for
every

Proof. Since the set is nonempty, we obtain by the definition of
that for every Suppose now

If
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by contradiction that for some and
so there exists some satisfying

If the set is empty, it follows that for every
and choosing for every and with
arbitrary, we obtain that contradicting relation (1.83).
Therefore the set is nonempty and since the function is evenly
quasiconvex one can find a collection of vectors satisfying

By relation (1.83) the vector does not belong to and this
shows by relation (1.84) that there exists some with a nonzero
satisfying This implies again by relation (1.84) that

Since the vector is nonzero, the function given in Definition 1.29,
is nondecreasing and so the function is and
by relation (1.85) it satisfies Also for every we obtain
that and so we have constructed a minorant
of the function satisfying This contradicts relation (1.83)
and hence we have shown that for every

To verify the representation for quasiconvex and l.s.c. we
again assume by contradiction that there exists some satisfying

for some If the convex set is empty then as in the first part
we obtain a contradiction. Therefore the closed convex set is
nonempty and since by relation (1.86) it holds that does not belong
to there exist by Theorem 1.1 some nonzero vector and

satisfying for every This implies for
every y satisfying that and so Introducing
now the function with listed in Definition 1.20
this implies

By Lemma 1.32 the function is l.s.c. and
for every x. Hence we have constructed a minorant of

the function satisfying and this contradicts relation (1.86).
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Therefore for every and the proof
is completed.

By Theorem 1.16 it is clear that the set of functions
functions) play the same role for l.s.c. quasiconvex functions (evenly qua-
siconvex functions) as the affine functions do for l.s.c. convex functions.
However, besides this observation, it is also interesting to investigate
the question whether these sets of minorants are the smallest
possible class satisfying the above property. In this section we will also
pay attention to this question. An immediate consequence of Theorem
1.16 and Lemma 1.47 is given by the next result.

Theorem 1.17 For any function it follows that
and

for every

Proof. By Theorem 1.16 we obtain
and since by Lemma 1.47 it holds that the first formula
follows. The second formula can be verified similarly.

Studying the proof of Theorem 1.16 for evenly quasiconvex functions
one can actually show the following improvement of Theorem 1.17.

Theorem 1.18 If                     is an arbitrary function, then it
follows for every that

with the function given in Definition 1.29.

Proof. It follows for every a and that Since
this implies by Lemma 1.46 that the function

is evenly quasiconvex and so by Lemma 1.29 we obtain for every
that Suppose now by contradiction that

for some and so there exists some
satisfying

If the set             is empty we obtain
and this implies for every contradicting relation
(1.87). Therefore the set is nonempty and since by Lemma 1.29
the function is evenly quasiconvex one can find a collection of vectors

satisfying

for every
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By relation (1.87) we know does not belong to and so by
relation (1.88) there exists some and a nonzero vector satisfying

This implies using for every and
relation (1.88) that

and so it follows that This yields
contradicting relation (1.87). This shows the desired

representation and our proof is completed.

Also for l.s.c. quasiconvex functions one can show the following im-
provement of Theorem 1.16. Observe this formula is more complicated
than the corresponding formula for evenly quasiconvex functions.

Theorem 1.19 If                    is an arbitrary function, then it
follows for every that

with denoting the l.s.c. hull of the function and listed in Defi-
nition 1.20.

Proof. By Lemma 1.32 and relation 1.70 it is sufficient to show for every
that To verify this we first observe for

every a and that and so we obtain
for every x. By Lemma 1.32 the function is l.s.c.

and nondecreasing and this implies by Lemma 1.46 that
is quasiconcex and l.s.c.. Therefore we obtain for every x that

Suppose now by contradiction that for some
and so there exists some satisfying

If the set is empty we obtain and we obtain
as in Theorem 1.18 a contradiction with relation (1.89). Therefore, the
closed convex set is nonempty and since by relation (1.89) it
holds that does not belong to there exist by Theorem 1.1
some nonzero vector and satisfying for
every Hence it follows for every y satisfying that

and this yields Using this observation we
obtain
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and this contradicts relation (1.89) completing the proof.

It is also possible to show for every that the function is
actually the inverse of another function.

Lemma 1.48 It is a function with nonempty
and the function is given by

then it follows for every that

Proof. Since is nonempty, there exists some satisfying
is nonempty. If for some it follows that then

for every there exists some satisfying and
This implies and hence

Since we obtain
and to show equality we assume by contradiction that there exists

some satisfying

If this holds one can find some satisfying and
Hence there exists some satisfying and
Since we obtain for every y satisfying that

This implies and it follows
This is clearly a contradiction and the proof is completed.

In case is empty and so and we use the well-known
convention that and then it is easy to verify
that the above relation still holds. The next result first verified in [15]
is an immediate consequence of Lemma 1.48 and Theorem 1.19.

Theorem 1.20 If                    is an arbitrary function, then it
follows that

for every

Actually the result in Theorem 1.18 and 1.19 can be seen as a gen-
eralization of the Fenchel-Moreau theorem for l.s.c. convex hulls. To
show this we need to generalize the notion of conjugate and biconjugate
functions used within convex analysis. Since we are dealing with ex-
tended real valued functions we use the convention that

and
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Definition 1.30 Let be a nonempty collection of extended real valued
univariate functions. For any function and the
function is called the
function of the function The function

is called the function of

By a similar proof as in Lemma 1.41 it is easy to give a geometrical
interpretation of the biconjugate function.

Lemma 1.49 For a nonempty collection of extended real valued uni-
variate functions and an arbitrary function it follows
that if and only if with and

Additionally, it holds that for
every

Combining now Lemma 1.49 and Theorem 1.17 we immediately obtain
for the sets 1 the following generalization of the Fenchel-Moreau
theorem.

Theorem 1.21 For any function it follows that
and for every

Proof. By Lemma 1.49 we obtain
and this shows by Theorem 1.17 the desired result.

By Theorem 1.18, 1.19 and 1.21 we obtain the formulas

and

for every Considering these formulas we now wonder whether
it is possible to achieve the same result using a smaller set of extended
real valued univariate functions.

Definition 1.31 For any the function is given
by for and for every The set
consists now of all functions while the set consists of all
functions with the l.s.c. hull of the function

If is an arbitrary function, then for and
we obtain
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with defined in Definition 1.29. Moreover, for a = 0 and it
follows that

and this shows

Also for it is easy to verify that and so we have
computed for every the function of the function
To evaluate the function of we observe by Lemma 1.32
that for every and for every Again
considering it follows that

Moreover, for a = 0 and we obtain that

while for it is easy to verify that Using the above
computations we will first evaluate in the proof of Lemma 1.50 the bi-

function of a function while in the
proof of Lemma 1.51 the same computation will be carried out for a

function of the same function

Lemma 1.50 For every and it follows for
every that

Proof. By relation (1.92) and for every we obtain
using the convention that

Also by relation (1.91) and it follows
for every x that

This shows, using is nondecreasing for every that
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and so using relations (1.95) and (1.96).
This shows the first equality and the second one is already listed in
Theorem 1.18.

The next result yields a similar result as Lemma 1.50 for a quasiconvex
and l.s.c. function.

Lemma 1.51 For every and it follows for
every that

Proof. By relation (1.93) and for every we obtain
using that

Also by relation (1.92) and it follows
with that

Since for every and we obtain
by relation (1.98) that

Applying now relations (1.90), (1.97) and (1.99) it holds for every
that

Since it follows that and this shows by relation
(1.100) the desired result.

In the last two lemmas we have shown that it is sufficient for any
function satisfying to consider the class of minorants
and the class of minorants for approximating respectively

This concludes the section on quasiconvex duality. In the next section
we will discuss some important applications.

4. On applications of convex and quasiconvex
analysis

In this section we will discuss different applications of the theory of
convex and quasiconvex analysis. In Subsection 4.1 we consider ap-
plications to noncooperative game theory, while in Subsection 4.2 we
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discuss its applications to optimization problems and in particular to
Lagrangian duality. Finally in Subsection 4.3 we will use the duality
representation of evenly quasiconvex functions to show that every posi-
tively homogeneous evenly quasiconvex function satisfying and

is actually the minimum of two positively homogeneous l.s.c.
convex functions. This result was first verified by Crouzeix (cf. [15]) for
a slightly smaller class of quasiconvex functions and serves as a very nice
application of quasiconvex duality.

4.1 Minimax theorems and noncooperative
game theory

To introduce the field of infinite antagonistic game theory (cf.[72])
we assume that the set of pure strategies of player 1 is given by some
nonempty set while the set of pure strategies of player 2 is given
by If player 1 chooses the pure strategy and player 2
chooses the pure strategy then player 2 has to pay to player 1 an
amount with a given function. This function
is called the payoff function and for simplicity this function is taken to
be nonnegative. Since player 1 likes to gain as much profit as possible,
but at the moment he does not know how to achieve this, he first decides
to compute a lower bound on his profit. To compute this lower bound
player 1 argues as follows : if he decides to choose action then it
follows that he wins at least irrespective of the action of
player 2. Therefore a lower bound on the profit for player 1 is given by

Similarly player 2 likes to minimize his losses but since he does not know
how to achieve this he also decides to compute first an upper bound on
his losses. To compute this upper bound player 2 argues as follows. If he
decides to choose action b it follows that he loses at most
and this is independent of the action of player 1. Therefore an upper
bound on his losses is given by

Since the profit of player 1 is at least and the losses of player 2 is at
most and the losses of player 2 are the profits of player 1 it follows
directly that In general but under some properties on
the action set and payoff function one can show that By the
above inequality it follows immediately that for and so
we assume in the remainder of this section that The equality

is called a minimax result and if additionally inf and sup are
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attained an optimal strategy for both players can be easily derived. For
player 1 it is possible to achieve at least a profit independent of the
action of player 2, while for player 2 it is possible to achieve at most a
loss independent of the action of player 1. Since and both
players have opposite interests, they will choose an action which achieves
the value and so player 1 will choose that action satisfying

Moreover, player 2 will choose that strategy satisfying

Since for and the additional assumption that the infimum and
supremum are attained, it is clear how the optimal strategies should be
chosen we will investigate in this subsection for which payoff functions
and strategies the minimax result holds. Before discussing this,
we give the following example for which this equality does not hold.

Example 1.14 Consider the continuous payoff function
given by For this function it holds for ev-

ery that and so
Moreover, it follows that for every

and for every This shows
and so does not equal For this

example it is not obvious which strategies should be selected by the two
players.

By extending the sets of the so-called pure strategies of each player
it is possible to show under certain conditions that the extended game
satisfies a minimax result. In the next definition we introduce the set of
mixed strategies.

Definition 1.32 For a nonempty set D of pure strategies and
let denote the one-point probability measure concentrated on the set
{d} and denote by the set of all probability measures on D with a
finite support.

Introducing the unit simplex
it follows by Definition 1.32 that belongs to the set if and only

if there exist some and set consisting of different
elements such that
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Clearly the set can seen as the convex hull of the set and
so it is convex. A game theoretic interpretation of a strategy
is now given by the following. If a player with pure strategy set D
selects the mixed strategy then with probability

this player will use the pure strategy By this
interpretation it is clear that the set D of pure strategies can be identified
with the set of one-point Borel probability measures We
now assume that player 1 uses the set of mixed strategies and the
same holds for player 2 using the set This means that the payoff
function should be extended to a function and this
extension is given by

with and This extension
represents the expected profit for player 1 or expected loss of player 2
if player 1 selects the mixed strategy and player 2 selects the
mixed strategy Without any conditions on the pure strategy
sets A and B and the function one can show the next result.

Lemma 1.52 For any set A and B of pure strategies it follows that

and

Proof. Since it follows that

To verify the reverse inequality we observe for every mixed strategy
and relation (1.103) that

This implies

and so the first formula is verified. The second formula can be shown
by exactly the same argument.

It is now possible to show that the extended game given by and the
mixed strategy sets and satisfies a minimax result under some
topological conditions on the function and the sets A and B of pure
strategies. The next result was first given by Ville (cf. [70], [18], [72])
using a much more complicated proof. In the next alternative proof we
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only use the separation result for convex sets listed in Theorem 1.3 and
the well-known result that a continuous function on a compact set is
uniformly continuous (cf. [43]).

Theorem 1.22 If the pure strategy sets and are
compact and the function is continuous, then it follows
that

Proof. It is easy to see that the inequality holds and so we only need to
verify the reverse inequality. By Lemma 1.52 it is now sufficient to show
that By scaling we
may assume that

and so need to show that

Assume now by contradiction that there exists some satisfying

for every Since the function is continuous on the compact set
A × B, it is well-known (cf. [64], [43]) that the function is uniformly
continuous on A × B. Hence there exists some such that for every

satisfying it follows that
This implies for every satisfying

that

Since A is compact one can find a finite set satisfying
and this shows by relations (1.106) and (1.105) that

for every Introducing the convex set V given by

it follows by the definition of V that belongs to V if
and only if there exists some mixed strategy satisfying

This implies by relation (1.107) that
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and so the convex sets and V are
disjoint. Applying now Theorem 1.3 one can find some mixed strategy

satisfying and this contradicts relation
(1.104).

Actually the result in Theorem 1.22 holds under weaker topological
conditions on the function However the proof of that result uses the
Riesz representation theorem for the set of continuous functions on a
compact Hausdorff space, the Banach-Alaoglu theorem and infinite di-
mensional separation (cf. [29]) and is beyond the scope of this chapter.
The result listed in Theorem 1.22 is the most important result in infinite
antagonistic game theory and fits within a chain of equivalent minimax
theorems (cf. [28]). For one of these equivalent minimax results an-
other alternative proof using also finite dimensional separation is given
in [26]. Although not listed in [28], one result which also fits within this
chain is the famous Sion’s minimax theorem (cf. [66]) for quasiconcave-
quasiconvex bifunctions.

Theorem 1.23 If           is compact and convex,          is convex
and the function satisfies is quasiconcave and
upper semicontinuous for every and is quasiconvex
and lower semicontinuous for every then it follows that

This result was proved using the Knaster-Kuratowski-Mazurkiewicz
(KKM) lemma (cf. [74]). This lemma is the basis of fixed point theory
and nonlinear functional analysis. It is also possible to give a more
elementary proof of Sion’s minimax theorem based on finite dimensional
separation between convex sets. However, the most elementary proof
of Sion’s minimax theorem is given by an adaptation of the so-called
level set method due to Joó (cf. [40], [41], [42]). This method first
translates the minimax equality into an equivalent geometrical condition
of a nonempty intersection of a collection of upper-level sets. Under the
assumptions of Sion’s minimax theorem it is now possible to verify this
geometrical condition using compactness arguments and the well-known
elementary topological result that every convex set is connected (cf. [36]).
To start with our analysis we first introduce for every and
the functions and defined by
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Also we introduce for every and the upper-level set
given by

It is now easy to show the following result (cf. [41]).

Lemma 1.53 It follows that if and only if
for every

Proof. If then for every there exist by the
definition of some satisfying This shows
that belongs to the intersection and so is
nonempty. To verify the reverse implication it is sufficient to verify that

or equivalently for every Consider now
for some By our assumption it follows that the intersection

is nonempty and so there exists some satisfying
This implies that

and so the proof is completed.

By Lemma 1.53 we need to show that for every
Before proving this result we consider an arbitrary finite set

and introduce the affine mapping
given by

and the set valued mapping given by

To verify the main result we need the following elementary lemma.

Lemma 1.54 If the functions are quasiconvex on the convex
set B for every then it follows for every and

that

for every

Proof. If the vector a belongs to then by definition
and This implies, using

is affine, that
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and by the quasiconvexity of the functions we obtain by relation
(1.112) that Hence it follows that a
belongs to and the result is proved.

In order to prove the next important lemma we denote by the
set of all finite subsets of B.

Lemma 1.55 If the functions are quasiconcave and upper
semicontinuous for every and the functions are
quasiconvex and lower semicontinuous for every then it follows
for every J belonging to and that

Proof. If J is a subset of B consisting of one element the result clearly
holds by the definition of listed in relation (1.102). Suppose now for
all sets J belonging to and consisting of at most elements that

for every To prove the result for all sets J belonging to
consisting of at most elements, we assume by contradiction that
there exists some set and some satisfying

Consider now for the points and the set valued mapping
given by relation (1.111). By our induction hypothesis listed

in relation (1.113) and the assumption that the functions are
quasiconcave and upper semicontinuous we obtain that the sets
are nonempty, closed and convex for every By relation (1.114)
it follows that

and so the nonempty sets

are disjoint and To show that consider
for a given the closed sets

By Lemma 1.54 we obtain that and so

Also by relation (1.115) the sets and are disjoint and since
is convex and hence connected (cf. [36]) we obtain by relation (1.117)
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that either or is empty. This implies using again Lemma 1.54
that or and so Hence we have
shown that the sets and satisfy

We will now verify that the sets and are open in [0, 1] and to do
so consider some (a similar proof applies to Since is
nonempty for every it follows by the definition of that

with This means that there exists
some satisfying

and by lower semicontinuity of the function and relation (1.119) there
exist some such that

for every Hence we obtain that
for every and since this implies by relations (1.118) and
(1.15) that for every Hence is an open set
and since similarly is open we obtain by relation (1.118) and [0, 1]
connected that either or is empty. This yields a contradiction with

nonempty and so relation (1.114) cannot hold.

It is now possible to give a proof of Sion’s minimax result.

Proof. (Sion’s minimax theorem). Since A is compact and is upper
semicontinuous we obtain that the set is compact. By the finite
intersection property for compact sets we obtain by Lemma 1.55 that

for every and this shows by Lemma 1.53 that
Since A compact and upper semicontinuous and lower

semicontinuous it follows by a standard argument that we may replace

Actually we can also apply Sion’s minimax theorem to prove Theorem
1.22. Looking at the proof of Theorem 1.22 we observe in relation (1.107)
that

with I belonging to This shows by Lemma 1.52 that

sup by max.
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To the expression in relation (1.120) we may now apply Sion’s minimax
theorem and so we obtain

and in a similar way we obtain a contradiction with relation (1.104). In
the next subsection we will consider applications of convex analysis to
optimization theory.

4.2 Optimization theory and duality

In this subsection we will show how the tools of convex analysis can
be used within optimization theory. In particular we introduce the dual
of an optimization problem and derive some important properties of
this dual problem. To start with a general introduction to optimization
theory let be an arbitrary function and consider the
so-called primal optimization problem given by

In this optimization problem the infimum need not be attained. Since
represents an extended real valued function the above optimization

problem also covers optimization problems with restrictions. Associate
now with the function a function satisfy-
ing for every x and consider the so-called perturbation
function given by

It is easy to verify (remember the strict epigraph and the effective domain
of a function are listed in relation (1.43) and (1.45)!) that

with the projection of onto given by A(x, y) =
y. Also by the definition of the function F we obtain that
In the next definition we introduce the dual of the optimization problem
(P) (cf. [63]).

Definition 1.33 The so-called dual problem of optimization problem
(P) is given by

with the conjugate function of listed in Definition 1.25.

By Definitions 1.33 and 1.25 it follows that and since
the inequality always holds. We are now
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interested under which conditions on the perturbation function it fol-
lows that If then the inequality
implies and every is an optimal solution of
the dual problem (D). Therefore we only need to consider
Consider now the cases is finite and Observe the last
case only happens if is empty. For finite, one can now show
the following result. This result is a direct consequence of Theorem 1.12
giving a dual characterization of a convex function (Fenchel-Moreau the-
orem) and Theorem 1.13.

Theorem 1.24 If the function is convex and
is finite, then it follows that

Moreover, if 0 belongs to then the dual problem has an op-
timal solution and

Proof. Since the function is convex, l.s.c. at 0 and finite it
follows by relations (1.59) and (1.66) that
is finite and this implies by Lemma 1.40 that is nonempty. Therefore

for every x and by the Fenchel-Moreau theorem (Theorem
1.12) we obtain To prove the
reverse implication we observe by Theorem 1.12 and is
finite that is finite. Hence it must follow by
Definition 1.26 that and by relation (1.59) the function
is l.s.c. at 0. To show the second part it follows by Theorem 1.13 that

is nonempty and by Lemma 1.43 it is now easy to verify that any
is an optimal solution of the dual problem. Moreover, by

Lemma 1.36 we obtain that and we can apply the first part.

Finally we consider the case In general it does not hold
even for convex and l.s.c. in 0 that To show this we
will discuss in Example 1.16 a linear programming problem satisfying

and
If is some real valued function and a vector

valued function represented by
then an important special case of optimization problem (P) is given by

with a nonempty convex cone and some nonempty
set. The above optimization problem includes some important classes of
optimization problems listed in the following example.
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Example 1.15

If and g(x) = Ax – b with A some matrix,
and then optimization problem

reduces to the so-called linear programming problem (cf. [4], [54],

[19])

1

If and g(x) = Ax – b with A some matrix,
and is some closed convex cone, then

optimization problem reduces to a so-called conic convex pro-
gramming problem (cf. [53]), given by

2

If and g(x) = –x, then optimization problem reduces
to a so-called generalized geometric programming problem (cf. [57]),
given by

3

If the nonempty convex cone is given by
with and the set then optimization
problem reduces to the classical nonlinear programming prob-
lem (cf. [3], [54], [19])

4

For optimization problem the so-called Lagrangian perturbation
scheme is used and this means that the function
is given by

For this specific choice of F we obtain by relation (1.121) that

Using the representation of listed in relation (1.123), one can give a
more detailed expression of the dual problem. Observe this dual problem
is called the Lagrangian dual problem.

Lemma 1.56 If the function is given by
then the Lagrangian dual of optimization

problem equals
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Proof. By the definition of the function it follows for every
that

This shows

and to simplify the above expression we first consider a vector a belong-
ing to Since by definition for every and
this implies

Moreover, if the vector a does not belong to one can find some
satisfying Since for every and the

set D is not empty this yields and the desired result is
verified.

By Lemmas 1.24 and 1.56 the following result about the Lagrangian
dual problem is easy to derive.

Theorem 1.25 If the primal problem is represented by and the
vector valued function is given by
and satisfies is convex and then
it follows that and the Lagrangian dual problem
(LD) has an optimal solution.

Proof. Since by assumption 0 belongs to we
obtain that the feasible region of the optimization problem is not
empty and this shows For the result follows
immediately and so we only consider is finite. To apply Theorem
1.24 we first need to verify whether the function is convex. It is easy
to check that

and this implies by relation (1.122) that By
assumption this set is convex and hence by Lemma 1.24 the perturbation
function is convex. Also by relation (1.122) we obtain
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and applying Lemma 1.56 and Theorem 1.24 the desired
result follows.

The condition is known in the literature as the
generalized Slater condition. Observe, if is a convex function and g is
a so-called K-convex vector valued function (cf. [73], [6]), then it follows
that is a convex set and hence also is convex.
Also it is possible to prove related results under slightly weaker condi-
tions (cf. [25],[24]). As shown by the next lemma the Lagrangian dual
(LD) of a conic convex programming problem is again a conic convex
programming problem. Due to the recent developments in interior point
methods this class of optimization problems became very important (cf.
[53]).

Lemma 1.57 If the primal problem is a conic convex programming
problem given by

with some closed convex cone and there exists some
satisfying then it follows that

and the last dual conic convex optimization problem has an optimal so-
lution.

Proof. By part 2 of Example 1.15 we know that a conic convex pro-
gramming problem is a special case of optimization problem with

the vector valued function h, listed in Theorem 1.25,
given by and a closed convex cone. Clearly
for this choice the set is convex. Moreover, by
Lemma 1.18 the generalized Slater condition reduces to

and by our assumption this condition is satisfied. Therefore the above
result is an immediate consequence of Theorem 1.25 once we have eval-
uated for Observe now that

and since
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the desired result follows by Theorem 1.25.

Using Lemma 1.57 with it follows that the Lagrangian dual
of the linear programming problem is given
by and so this dual problem reduces to the ordi-
nary dual listed in many text books (cf. [4]). Since the set
is a polyhedral convex cone (cf. [63]), the generalized Slater condition
in Lemma 1.57 can be replaced by the condition that the feasible re-
gion of the linear programming problem is nonempty. Actually it can
be shown for every polyhedral convex cone D that the associated conic
convex programming problem reduces to a linear programming problem
and so it is only useful to consider conic convex programming problems
with a nonpolyhedral convex cone D. It is also possible to extend the
above duality results for conic convex programming problems to a larger
class of problems than the one having a generalized Slater point and for
more details on this the reader is referred to [67]. To conclude this sec-
tion we consider the following example of a linear programming problem
satisfying and

Example 1.16 Consider the linear programming problem

Clearly this optimization problem has an empty feasible region and so
Penalizing the restrictions and

using the nonpositive Lagrangian multipliers and we obtain that
the Lagrangian function is given by

Observe now for every that

and

and by this observation it follows that for every or
equivalently

One can also use the same Lagrangian perturbation scheme and the
dual representation of an evenly quasiconvex function and the corre-
sponding function to introduce the so-called surrogate dual.
Due to limited space we will not discuss the properties of such a dual but
refer the reader to the literature cited in [27]. This concludes our discus-
sion on duality and optimization problems. In the next subsection we
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will consider the structure of positively homogeneous evenly quasiconvex
functions.

4.3 Positively homogeneous evenly quasiconvex
functions and dual representations

In this subsection the dual representation of an evenly quasiconvex
function is used to show a remarkable property of a positively homo-
geneous evenly quasiconvex function. In [11] a similar property is also
derived for a positively homogeneous quasiconvex function. As such
the results in [11] apply to a larger class of functions, but are slightly
weaker. Also the proof technique used in [11] is more direct and based
on the geometrical aspects of convexity, whereas the approach used in
this chapter is a natural consequence of the dual representation of an
evenly quasiconvex function discussed in Subsection 3.4. To start with
the dual approach we consider a positively homogeneous evenly quasi-
convex function satisfying Since
is positively homogeneous and for every x we obtain by
Lemma 1.25 that if and only if Considering for
every the function given by

(see also Definition 1.29) it is easy to verify the next result.

Lemma 1.58  If                         is positively homogeneous, then for
every it follows that the function is positively
homogeneous and nondecreasing.

Proof. For any nonzero vector a it is obvious by relation (1.125) that the
function is nondecreasing. Also by Lemma 1.25 we obtain for every

and that

and so the result is verified for every nonzero a. Moreover, for a = 0, we
obtain for every and that

while for and it follows using the convention
that Trivially the function is

nondecreasing and the proof is completed.

To analyze the behaviour of a positively homogeneous evenly quasi-
convex function satisfying for every x and we
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first decompose this function. Using a slightly different decomposition
as done by Crouzeix (cf. [15],[11]) we introduce the nonnegative function

given by

with the strict lower level set of the function of level 0 listed
in relation (1.52). Using now for every x and
we immediately obtain that Moreover, the function

is given by

To analyze the function it is only interesting to consider positively ho-
mogeneous evenly quasiconvex functions satisfying is nonempty.
If this holds, we obtain by Lemma 1.25 that is a nonempty con-
vex cone and since it follows that Also
for every we obtain that

and this yields for that By relation (1.127) we
therefore obtain for is not empty that

Since trivially for every x it is easy to verify considering
the cases and that

for every For the functions and one can now show the
following result.

Lemma 1.59 If                       is a positively homogeneous evenly
quasiconvex function, then the functions and are positively homo-
geneous and evenly quasiconvex.

Proof. Since is positively homogeneous and evenly quasiconvex (and
hence quasiconvex) we obtain by Lemma 1.25 and 1.27 that is a
(possibly empty) convex cone. This implies again by Lemma 1.25 that

is positively homogeneous. To show that is evenly quasiconvex we
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observe that for every Also by the definition of
we obtain

This shows, using the fact that is a nonnegative function and
is evenly quasiconvex, that also is evenly quasiconvex. To verify the
same result for we observe, since is also a (possibly empty)
convex cone, that is positively homogeneous. Moreover, for every

we know by relation (1.128) that
and applying Lemma 1.21 and is evenly quasiconvex it follows that
is evenly quasiconvex.

We will now apply the dual representation of an evenly quasiconvex
function and show the following result for a nonnegative positively ho-
mogeneous evenly quasiconvex function with A related
result is also discussed in [11]. Recall that a function is called sublinear,
if it is positively homogeneous and convex.

Lemma 1.60 If                        is a nonnegative positively homo-
geneous evenly quasiconvex function with then is a non-
negative l.s.c. sublinear function.

Proof. By the dual representation of an evenly quasiconvex function (see
Theorem 1.18) we obtain that

Since it follows by the definition of that is a nonnegative
function for every Moreover, using and

we obtain Also for and satisfying
it follows by the monotonicity of that and
this implies for every Moreover, for we
obtain by Lemma 1.58 that with and
combining both observations yields

for every Applying now relation (1.131) yields

and since is a l.s.c. sublinear function the desired
result follows by relation (1.132).

Since by relation (1.126) we obtain that and
for positively homogeneous and evenly quasiconvex the function
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is also positively homogeneous and evenly quasiconvex (Lemma 1.59)
we may apply Lemma 1.60 and so we obtain the result that is a
nonnegative l.s.c. sublinear function in case the function is positively
homogeneous, evenly quasiconvex, and for every
x. Finally we will show the following result for a positively homogeneous
evenly quasiconvex function satisfying nonempty,

and for every x..

Lemma 1.61 If                          is a positively homogeneous evenly
quasiconvex function with then is a nonpos-
itive l.s.c. sublinear function.

Proof. By the dual representation of an evenly quasiconvex function we
obtain (see Theorem 1.18) that

If the vector a does not belong to the polar cone then there
exists some satisfying and By Lemma 1.58
this yields for every that

and so Since the function is nonde-
creasing, this shows that for every and using the fact
that for every x and relation (1.133) we obtain

If the vector a belongs to and for some
then clearly x does not belong to Since
this implies that and so we have shown for every a belonging
to that

To analyze for and we first assume that there
exists some satisfying and By Lemma 1.58 it
holds that for every and since
we obtain that Hence it follows that
for every and we have shown for every for which
there exists some satisfying that
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Using again the fact that for every x and relations (1.134),
(1.135) and (1.136) yields

for every with

We will now analyze the behaviour of for an arbitrary a
belonging to D. If it follows by relation (1.135) that

Also, if then for every y satisfying we
obtain, using that and since this implies

Finally, for and it follows by Lemma 1.58
that with and since is nonempty
we obtain by relation (1.137) that Hence we have shown
for every that

Again by relation (1.137) and for every x we obtain that the
set is nonempty and by relations (1.138)
and (1.137) this shows

Since for it follows that for
and otherwise, this is clearly a l.s.c. sublinear function and by relation
(1.139) the desired result follows.

Since by Lemma 1.59 and relation (1,127) the function satisfies
the conditions of Lemma 1.61 for a positively homogeneous evenly
quasiconvex function with and for every x it
follows that is a nonpositive l.s.c. sublinear function. Using rela-
tion (1.130) and Lemma 1.59 up to 1.61 the following remarkable result
follows immediately.

Theorem 1.26 If                   is a positively homogeneous
evenly quasiconvex function and then can be written as
the minimum of a nonpositive l.s.c. sublinear function and a nonnegative
l.s.c. sublinear function.

Proof. If is empty then is a nonnegative function and the
result follows by Lemma 1.60. Moreover, if is nonempty, then
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by relation (1.130) it follows that and applying the
observations after Lemma 1.60 and 1.61 yields the desired result.

By Theorem 1.26 every positively homogeneous evenly quasiconvex
function satisfying for every x and must be
the minimum of two l.s.c. sublinear functions and so it is also l.s.c.. By
relation (1.77) these l.s.c. sublinear functions can be written as support
functions. This is a rather remarkable result, which does not hold in
general for evenly quasiconvex functions. As an example we mention
the evenly quasiconvex function given by

which is neither upper or lower semicontinuous at 0. To conclude this
subsection we observe that Theorem 1.26 is an extension of the main
result in Crouzeix (cf. [15]). For related results see also [14], [13], [12] and
[11]. Introducing now the Dini upper directional derivative
given by

(cf. [30], [11]) it is possible to use the above so-called Crouzeix repre-
sentation theorem for positively homogeneous quasiconvex functions to
analyze the global behaviour of the function for qua-
siconvex (cf. [15], [44], [45], [33], [11]). This concludes our discussion
of positively homogeneous evenly quasiconvex functions and dual repre-
sentations. In the next section we mention some milestone papers and
books within the long history of convex and quasiconvex analysis.

5. Some remarks on the history of convex and
quasiconvex analysis

In this section1 we will discuss the origin of the important notions
used in convex and quasiconvex analysis. It seems that the field of con-
vex geometry and convex bodies in two and three dimensional space was
first studied systematically by H.Brunn (cf. [7], [8]) and Minkowski (cf.
[51]). Brunn (cf. [9]) and Minkowski (cf. [52]) also proved the existence
of support hyperplanes. Also at the end of 19th and the beginning of
the 20th century Farkas showed in a series of papers (cf. [45], [61]) the
alternative theorem for linear inequality systems and this result became
known as Farkas lemma within linear programming. Although this re-
sult was listed with an incorrect proof in some of his earlier papers a

1The authors like to thank Prof. J. Kolumbán (Cluj) and Prof. S. Komlósi (Pecs) for pointing
out some of the early developments.
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correct proof of this result appeared in [20]. More fundamental ideas
about the related field of necessary optimality conditions for nonlinear
optimization subject to inequality constraints can be found in papers by
Fourier, Cournot, Gauss, Ostrogradsky, and Hamel (cf. [61]). On the
other hand, more early references related to the study of convex sets are
listed in the reprinted version of the 1934 book of Bonnesen and Fenchel
(cf. [5]), Fenchel (cf. [22]), Valentine (cf. [68]) and Varberg (cf. [62]). Also
at the beginning of the 20th century convex functions were introduced
by Jenssen (cf. [39]) and more than forty years later a thorough study of
conjugate functions in was initiated by Fenchel (cf. [21]). Although
Mandelbrojt (cf. [48]) already introduced the conjugate function in
for (cf. [69]), it was Fenchel, who first realized the importance of
the conjugacy concept in convex analysis. Four years before the mile-
stone paper of Fenchel, also the first book on convex functions written
in French by Popoviciu (cf. [60]) was published. In the English scientific
community the unpublished lecture notes by Fenchel (cf. [22]) were a
long time the main source of references. This book served as the main
inspiration for the classical book of Rockafellar (cf. [63]) as noted in its
preface. Also in this preface it is mentioned that Prof. Tucker suggested
the name convex analysis and this became the standard word for this
field. The introduction of quasiconvex functions started later. Although
in most of the literature de Finetti ([16]) is mentioned as being the first
author introducing quasiconvex functions, these functions were already
considered by von Neumann (cf. [71] and independently Popoviciu (cf.
[59]). Actually von Neumann (cf. [71]) already proved in 1928 a mini-
max theorem on simplices for bifunctions which are quasiconcave in one
variable and quasiconvex in the other variable. A generalization of this
result was rediscovered by Sion (cf. [66]) 30 years later. For more de-
tails on the development of quasiconvex functions the reader is referred
to [2]. To develop results for the surrogate dual concept developed by
Glover (cf. [31]) an adhoc approach involving the function
was initiated by Greenberg and Pierskalla (cf. [32]). Their results were
generalized and put into the proper framework of dual representations
by Crouzeix in a series of milestone papers (cf. [12], [13], [15], [14]). In
these papers Crouzeix focussed his attention on the dual representation
of the l.s.c. hull of a quasiconvex function. Although Fenchel (cf. [23])
already introduced the concept of an evenly convex set the usefulness
of this concept leading to a more symmetrical dual representation of an
evenly quasiconvex function was discovered independently by Passy and
Prisman (cf. [55]) and (cf. [50]). This concludes our
short excursion, which is by no means complete, to the history of convex
and quasiconvex analysis.
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