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Induced Systemic Resistance
Mediated by Plant
Growth-Promoting Rhizobacteria
(PGPR) and Fungi (PGPF)

Elizabeth Bent

10.1 Definitions of PGPR and PGPF

10.1.1 PGPR

Plant growth-promoting rhizobacteria, or PGPR, are a heterogenous group of non-
pathogenic bacteria that are associated with plant roots (colonizing either the root
itself, or the rhizosphere), and mediate improvements in plant growth or health.
While it is quite possible for a bacterium to benefit plant growth or health while
colonizing the phyllosphere (e.g., Bashan and de-Bashan, 2002), and the phyllo-
sphere colonizers could in theory influence plant defense responses, this discussion
will be restricted to soil-inhabiting rhizobacteria.

False impressions can easily be generated by considering any PGPR as part of a
uniform group of organisms interacting similarly with plants. The classification of
different bacteria as “PGPR” does not reflect a biological similarity between these
bacteria: PGPR vary from one another quite radically in taxonomy, in physiology,
and in their interactions with plants. When attempting to compare literature reports,
it is invaluable to take into account whether the organisms under study are in
any way biologically similar (e.g., producing a similar compound, or belonging
to the same phylogenetic group). It is very frustrating to read reports in which
the authors assume that, since one bacterium classified as a PGPR produces a
particular plant response, that all bacteria classified as PGPR must effect this same
response.

In reality, PGPR interact with their host plants by a variety of mechanisms,
and most PGPR probably employ more than one of these mechanisms, either
simultaneously, or at different times under different conditions. Also, despite the
name, PGPR do not always promote plant growth. A bacterium that promotes the
growth of one plant may have no effect, or a deleterious effect, upon the growth
of other plants, and a bacterium that promotes the growth of a given plant under
one set of environmental conditions may have no effect, or a deleterious effect, on
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226 10. Induced Systemic Resistance Mediated by Plant Growth-Promoting

the same plant under different conditions (Tuzun and Bent, 1999, and references
therein). The term “PGPR” should therefore be considered an operational rather
than an absolute term, which describes the effect of a bacterium on a given range
of plant hosts under a given range of environmental conditions only, as previously
suggested in Bent and Chanway (1998).

Organisms identified as PGPR have diverse taxonomy (Glick, 1995), and in-
clude Firmicutes or Gram-positive bacteria (e.g., members of the Actinomyc-
etales, including Frankia and Streptomyces, and Bacilli, including Bacillus and
Paenibacillus), as well as Gram-negative organisms in various subdivisions of the
Proteobacteria: Rhizobiaceae (Rhizobium, Bradyrhizobium), Rhodospirillaceae
(Azospirillum), and Acetobacteraceae (Acetobacter) in the α-Proteobacteria;
members of the Burkholderia group (Burkholderia) in the β-Proteobacteria,
and members of the Enterobacteriaceae (Enterobacter, Pantoea, Serratia) and
Pseudomonaceae (Pseudomonas, Flavimonas) in the γ-Proteobacteria.

Some PGPR form symbiotic structures with plants (e.g., rhizobial or actinorhizal
nodules) while others are “associative”, and live freely in the rhizosphere soil,
the root surface, or even the interior of the root itself (Glick, 1995; Sturz et al.,
2000).

10.1.2 PGPF

The defintion of plant growth-promoting fungi, or PGPF, is similar to that of
PGPR except that the organisms in question are fungi (here including true fungi
as well as oomycetes) rather than bacteria. While mycorrhizal fungi are known to
improve the growth of plants and affect the expression of plant defense responses
(Lambais and Mehdy, 1995; Peterson and Farquhar, 1994; Ruiz-Lozano et al.,
1999; Sirrenberg et al., 1995), a comprehensive discussion of the interactions
between mycorrhizal fungi and plants is beyond the scope of this chapter. Our
definition of PGPF, therefore, is limited to nonsymbiotic saprotrophic fungi that
live freely in rhizosphere soil or on the plant root surface.

The same caveats identified above for PGPR hold for PGPF: not every organ-
ism identified as a PGPF will improve plant growth under all conditions, or in
association with all plant hosts (e.g., Ousley et al., 1993). The term “PGPF” is
a convenient but artificial category, not an indication of any real biological sim-
ilarity between organisms classified as PGPF, and when comparing the results
of different studies, the fact that the organisms under question may be radically
different from one another, or differ in their interactions with plants, must always
be kept in mind. As with PGPR, it is helpful to keep in mind any phylogenetic or
taxonomic similarities between PGPF reported in the literature when comparing
reports.

Characterized fungi reported in the literature as PGPF primarily include
ascomycetes (Penicillium, Trichoderma, Fusarium, Phoma, Gliocladium) and
oomycetes (Pythium, Phythophthora). Interestingly, some reported PGPF are non-
pathogenic or hypovirulent strains of phytopathogenic fungi (Table 10.2).
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10.2 How PGPR and PGPF Interact with Plants
to Improve Growth

There are a variety of ways in which PGPR and PGPF, here discussed together,
may improve the growth or health of plants. A detailed discussion of each of these
mechanisms is beyond the scope of this chapter, and the reader is referred to reviews
by Buchenauer (1998), Glick (1995), and Whipps (2001) for more information.

Mechanisms of plant growth promotion include increasing plant nutrient
acquisition, modification of plant growth and development, modification of the
soil environment to promote plant growth, and biocontrol of plant pathogens.
Biocontrol can be via direct mechanisms, where the pathogen itself is attacked, or
via indirect ones, where plant defense responses against the pathogen are induced.

10.2.1 Plant Growth Promotion

Nitrogen-fixing rhizobial and actinorhizal nodules can increase plant uptake of
nitrogen, and PGPR that assist in the formation of rhizobial nodules and the vigor
of activity within them have also been identified (Srinivasan et al., 1996; Tokala
et al., 2002). Free-living nitrogen-fixing bacteria that colonize the rhizosphere or
interior tissues of plants may also improve plant growth by providing nitrogen
(Sevilla et al., 2001), and this may be especially important in nutrient-limiting
environments. Mycorrhizal infection can improve plant uptake of water as well
as nutrients, phosphorus in particular (Peterson and Farquhar, 1994), and PGPR
have been identified which assist mycorrhizal fungi in colonizing plants (Garbaye,
1994). Siderophore-overproducing mutants of a metal-tolerant soil bacterium were
found to help plants overcome growth inhibition by heavy metals in soil, most
likely by providing the plant with iron (Burd et al., 2000). Saprophytic PGPF can
improve the nutrient supply also: for example, phosphate-solubilizing fungi have
been identified which promote plant growth (Whitelaw et al., 1999).

Plant growth-altering hormones such as auxin, cytokinins, or giberellins, which
can alter root morphology and stimulate growth, are known to be produced by
rhizobacteria (Costacurta and Vanderleyden, 1995; Patten and Glick, 1996, 2002)
as well as rhizofungi (Furukawa et al., 1996). PGPR may also produce enzymes
that degrade the precursors of plant growth-inhibiting hormones such as ethylene,
indirectly enhancing plant growth (Glick, 1995).

PGPR and PGPF may also improve plant growth indirectly, via alterations to
the structure of rhizosphere soil, which benefit the plant. Exopolysaccharide-
producing PGPR have been found to significantly increase rhizosphere soil ag-
gregation and the volume of soil macropores, resulting in increased water and
fertilizer availability to inoculated sunflowers (Alami et al., 2000). Desertified
soils, in which the soil structure has been degraded, contain a greater number of
hydrostable soil aggregates after inoculation with PGPR and fungi, and this im-
provement in soil structure may assist natural plant communities in recolonizing
these soils (Requena et al., 2001).
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10.2.2 Disease Control

Perhaps the most research on plant-growth promoting microorganisms has been de-
voted to determining how they can be used to protect plants from disease. Pathogen
control by PGPR may involve the production of antimicrobial enzymes, antibiotics,
predation, or it may occur via the systemic induction of plant defense responses
(ISR) (Buchenauer, 1998; Whipps, 2001). Phyllosphere as well as rhizosphere bac-
teria have also been shown to successfully control pathogens via niche exclusion
(Bashan and de-Bashan, 2002; Buchenauer, 1998). Bacteria may employ more
than one mechanism simultaneously to control pathogens.

Pathogen control by PGPF may also occur via niche exclusion, antibiosis, pre-
dation, mycoparasitism, and ISR induction (Shivanna et al., 1996; Mauchline et al.,
2002; Whipps, 2001). Hypovirulent pathogen isolates containing double-stranded
RNA (dsRNA) may also control more virulent isolates via anastomosis, in which
dsRNA conferring hypovirulence is transferred to the virulent isolate (e.g., Batten
et al., 2000).

Fungi may employ more than one control mechanism simultaneously. For exam-
ple, a nonpathogenic strain of Fusaruim oxysporum was found to control Pythium
ultimum via a combination of ISR, antibiosis, and mycoparasitism (Benhamou
et al., 2002), and Trichoderma isolates, known to act directly on pathogens as
biocontrol agents, have been also found capable of inducing systemic resistance
(de Meyer et al., 1998).

10.3 The Difference Between ISR and Direct
Biological Control

It is important to draw a clear distinction between direct mechanisms of biological
control, in which the PGPR/F acts directly upon the pathogen, and indirect mecha-
nisms that require the induction of plant defense responses. This distinction is not
always understood: there have been recent reports in which the authors conclude
that biocontrol agents acted via induction of systemic resistance in plants, when
alternate explanations for the reduction in disease symptoms of inoculated plants,
such as antibiosis or niche exclusion, were not tested. The criteria for distinguish-
ing between biocontrol agents that act via direct or via indirect (ISR) mechanisms
have been thoroughly described elsewhere (van Loon et al., 1998).

It is also important to distinguish between ISR and race-specific, gene-for-
gene types of interactions. ISR can be a nonspecific phenomenon, in which a
variety of nonspecific elicitors can stimulate the plant’s innate, and already existing,
defenses. The plant does not acquire new defense mechanisms during the process of
stimulation; ISR makes use of the plant’s existing set of defense responses. Ton et al.
(1999) provide an excellent illustration of this principle: ecotypes of Arabidopsis
thaliana which exhibited greater innate, or “basal” susceptibility to P. syringae pv.
tomato, also failed to develop ISR after treatment with P. fluorescens WCS417r, a
bacterium known to elicit this response in other ecotypes of A. thaliana. A genetic
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association was observed between basal resistance and ability to develop ISR,
supporting the idea that plants with a more effective set of resistance responses
(or greater basal resistance) will be able to muster a more effective ISR response
than plants with a less effective set of resistance responses. This pattern was also
observed in cucumbers inoculated with Pseudomonas isolates (Arndt et al., 1998),
and in a variety of other plant systems where pathogenesis-related (PR) proteins
are constitutively expressed at higher levels in cultivars expressing greater basal
resistance to a given pathogen (Tuzun and Bent, 1999, Vleeshouwers, 2000).

10.3.1 Plant Nutrition and Improved Resistance to Disease

Since the defensive mechanisms activated in plants by a variety of plant-beneficial
microorganisms are still largely unknown (e.g., van Wees et al., 1999) or remain
unstudied (Tables 10.1, 10.2), the following possibility should be mentioned. In
determining whether a PGPR/F inoculant can induce systemic resistance in a plant,
direct biocontrol interactions between PGPR/F and the pathogens used must be
ruled out, but there is no requirement to directly observe the induction of a plant
defense mechanism. It is sufficient to observe that the inoculated plants have im-
proved resistance to the disease, and that this effect cannot be explained by alternate
biocontrol mechanisms, for the phenomenon to be labeled “ISR”. Plant-beneficial
microorganisms, by improving plant nutrition or the rate or extent of plant growth,
might improve plant resistance to or tolerance of pathogens or herbivores without
the direct induction of any known plant defensive response. Fertilization of plants
is known to improve plant tolerance of disease and herbivory (Goncalves et al.,
2000; Matichenkov et al., 2000), and induced resistance to herbivory in soybean by
an arbuscular mycorrhizal fungus was attributed to improved plant nutrition, rather
than induction of any plant defense mechanisms (Borowicz, 1997). The effect of
improved fertilization on disease resistance may be pathogen specific, however,
and not provide consistent results against different pathogens (Ellis et al., 2000).

10.4 PGPR and PGPF-Mediated ISR

10.4.1 Explanation of Terminology Used in this Chapter

There are many reports of ISR/SAR induced by rhizosphere organisms in which
the defensive mechanism for the resistance is unknown (Tables 10.1, 10.2). Recent
research also indicates that there are more than two biochemical pathways by which
induced resistance can be activated (e.g., Bostock et al., 2001; Dong and Beer, 2000;
Mayda et al., 2000a,b; Zimmerli et al., 2000, Ryu et al., 2003). Moreover, since the
mechanisms by which many PGPR or PGPF mediate ISR have never actually been
studied, I find it would be impossible to discuss this topic without some generic
term that means only resistance in plants which is inducible and systemic.

I will use “ISR” as the generic term. To distinguish between different established
or hypothetical mechanisms that produce ISR, I will use a prefix suggesting a
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compound involved in the biochemical response. I feel this scheme is simple to
understand and allows for the discussion of many different potential mechanisms,
as well as reports of ISR where the biochemical pathway or mechanism involved
in induction is unknown.

10.4.2 Overview of Known Pathways Involved
in Microbially-Stimulated ISR

There are at least three, and potentially more, interconnected biochemical mech-
anisms by which ISR can be activated in plants. I will focus here on those
mechanisms, which are or could be stimulated by rhizosphere microorganisms.
By “mechanism” I refer to the entire biochemical pathway involved in recog-
nition of the stimulus and generation of the response in the plant. It should be
noted that multiple mechanisms can share part of the same biochemical “path-
way” if receptors for different elicitors activate the same signaling cascades at
some point. The pathways involved in the ISR phenomenon and their interconnec-
tions are reviewed by Nawrath et al. and Pieterse et al. (Chapter 7 and 8 of this
volume).

It should also be noted that these mechanisms may not function in every plant
species or variety. ISR in peanut (Arachis hypogaea L.), for example, was induced
by β-aminobutyric acid (BABA) but not by a variety of PGPR inoculants or com-
monly used chemical elicitors, including salicylic acid, methyl jasmonate, and
ethylene (Zhang et al., 2001).

Salicylate-mediated, salicylate-dependent or “classical” ISR (here defined as
SA-ISR; also sometimes defined in recent works as “systemic acquired resis-
tance” or “SAR”) was the first mechanism identified. It is sometimes also re-
ferred to as “pathogen-mediated” ISR, since the phenomenon was first observed
on plants inoculated with plant pathogens, but nonpathogenic organisms may also
stimulate SA-ISR (see Section 10.4.4). SA-ISR typically involves the accumula-
tion of pathogenesis-related (PR) proteins and the induction of a hypersensitive
response.

Jasmonate-mediated or jasmonate-dependent ISR (JA-ISR) is less well char-
acterized; it is not associated with PR protein accumulation or a hypersensitive
response, but appears to involve changes to plant secondary metabolism, resulting
in the accumulation of phytoalexins in at least some plants. Since the first organ-
isms discovered to induce this set of responses were rhizobacteria, JA-ISR has
generally been associated with PGPR, but this association is misleading since it
gives the impression that all PGPR that elicit ISR do so via the JA-ISR mecha-
nism exclusively, which is not the case. This mechanism is discussed further in
Section 10.4.5.

The above example of peanut plants in which ISR cannot be elicited by jasmonate
or salicylate, but instead by BABA (Zhang et al., 2001), illustrate the existence
of a third ISR mechanism. This mechanism is induced by aminobutyric acids
(Jakab et al., 2001; Zimmerli et al., 2000). I am not aware of any evidence that
plant-beneficial microorganisms use this mechanism to activate ISR in plants,
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although this is possible in theory. I will therefore not discuss this mechanism
further.

Neither jasmonate, salycilate, nor aminobutyric acids appear to be involved in a
fourth, potentially distinct, mechanism of ISR, in which the associated responses
differ from those seen in JA-ISR and SA-ISR. This mechanism appears to be
induced by the onset of cellular insensitivity to auxin (Mayda et al., 2000a,b). The
potential for involvement of auxin in microbially mediated ISR is discussed in
Section 10.4.6.

There are additional reports of ISR mechanisms induced by riboflavin (Dong
and Beer, 2000), a modified antiviral protein (Zoubenko et al., 2000) or ceramides
(Bostock et al., 2001), via which microorganisms could in theory induce disease
resistance should they produce a sufficiently similar inducing substance, but it is
beyond the scope of this chapter to discuss these.

10.4.3 Specificity and Induction of More than One ISR
Mechanism by Microorganisms

There may be some specificity in the ability of PGPR to induce an ISR response,
although the basis for such specificity is currently unknown: for example, different
strains of Pseudomonas fluorescens were found to induce ISR in radish or in
Arabidopsis, but not both plants (van Wees et al., 1997), and while a variety of
PGPR (Bacillus pumilis, Serratia marcesens, and Pseudomonas fluorescens) were
found to induce resistance in NahG (salicylate-deficient) plants, some of these
same strains were also found to function via pathways deficient in jasmonic acid, or
ethylene signaling, or in plants deficient in npr1, previously thought to be required
for ISR mediated by nonpathogenic rhizobacteria (Ryu et al., 2003). There is also
no theoretical reason why a single organism (or, as happens more often in nature, a
consortia of organisms) cannot induce resistance via more than one ISR pathway,
either by stimulating different responses in different plant hosts, or by stimulating
different responses in the same plant under varying conditions. An ISR-inducing
PGPR was found to induce changes in Arabidopsis drought stress-related genes, as
well as genes relating to the SA-ISR and JA-ISR pathways (Timmusk and Wagner,
1999), suggesting that biotic and abiotic stress responses may be linked, and that
one organism may possess the ability to induce more than one ISR pathway.

10.4.4 PGPR that Activate SA-ISR

SA-ISR is still commonly thought to be restricted to necrotrophic phytopathogenic
fungi and bacteria, despite the fact that there are several reports of PGPR that in-
duce systemic resistance by SA-ISR (van Loon et al., 1998; Table 10.1). Because
of the strong linkage between this pathway and the presence of necrotic pathogens,
or metabolites of necrotic pathogens, that induce an oxidative burst and a hyper-
sensitive response, it has been hypothesized that the nonpathogenic bacteria that do
induce plant defenses via this pathway may have evolved, or acquired genes from
pathogenic organisms (Tuzun and Bent, 1999). This is not a unique idea, Arndt
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et al. (1998) described an ISR-inducing strain of Pseudomonas that could “imitate
infections of soilborne pathogens” in tomato, and Reitz et al. (2000) suggest that
the induction of PR proteins by PGPR strain P. fluorescens CHA0 is due to “stress”
caused by this organism on the plant.

Typical hallmarks of SA-ISR include the systemic accumulation of salicylic
acid and a variety of PR protein isoforms, including chitinases, β-1,3-glucanases,
and thaumatin-like proteins, increased lignification or callose deposition, the pro-
duction of phytoalexins or phenolic antimicrobial secondary compounds, and in-
creased expression of enzymes associated with active oxygen species, lignifica-
tion, or plant secondary metabolism (Kobayashi et al., 1995; Hammerschmidt and
Smith-Becker, 1999).

Accumulation of salicylate or PR proteins in response to PGPR inoculation
has been described in several plant-PGPR systems (Zdor and Anderson, 1992;
Table 10.1) along with the strengthening of physical barriers to infection and
the accumulation of antifungal substances (Table 10.1). The latter responses may
be temporally separated from the onset of PR protein induction and occur prior
to PR protein accumulation (Benhamou et al., 1996, 1998, 2000; M’Piga et al.,
1997).

Harpins produced by bacterial plant pathogens are known to elicit SA-ISR
(Dong et al., 1999; Strobel et al., 1996). Tuzun and Bent (1999) speculated that
nonpathogenic rhizobacteria that induce ISR may express harpin-like proteins
that cause microscopic necrotic lesions and so stimulate the SA-ISR response.
Since then, conserved type III secretion system genes, similar to the hrp cluster in
plant pathogens, have been reported in PGPR, including Rhizobium sp. and Pseu-
domonas fluorescens (Preston et al., 2001). The nature of hypersensitive responses
mediated by PGPR and pathogens seems to differ, which may explain why some
PGPR can induce resistance via SA-ISR yet do not cause symptoms of disease:
HR mediated by P. fluorescens were slower, required at least tenfold more cells,
and were induced differently in different tissues, compared to HR mediated by
the pathogen P. syringae (Preston et al., 2001). Preston et al. (2001) speculated
that type III secretion systems may play broadly conserved roles in plant-microbe
interactions, and may help nonpathogens as well as pathogens to live intimately
with plants.

A variety of stress conditions, including exposure to salicylate, inhibits the
production of the OmpF porin in Escherichia coli (Ramani and Boyake, 2001).
OmpC and OmpF porins function as nonselective pores in the outer membrane of
E. coli through which small hydrophilic molecules can diffuse, with the channel
diameter of OmpC being slightly smaller. A decrease in OmpF expression would
therefore result in generally smaller channels available for nonselective diffusion,
and increased protection against the entry of larger molecules that are more likely to
be toxic to the cell. It has been suggested that the ability of a bacterium to colonize
plant tissues and the rhizosphere is influenced by its sensitivity to phytoalexins
(Hynes et al., 1994), and it is tempting to speculate that regulation of porin size in
response to plant defense signals may help Gram negative ISR-inducing PGPR to
survive plant defense responses.
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10.4.5 PGPR that Activate JA-ISR

JA-ISR is elicited by jasmonic acid and its derivatives, as well as by ethylene, and
is implicated in systemic wound responses (Staswick and Lehman, 1999). Plant
responsiveness to jasmonate and ethylene is required for the JA-ISR response to
be generated in Arabidopsis thaliana (Knoester et al., 1999; Ton et al., 2001,
Pieterse et al., 1998). Ethylene is not produced by at least some of the PGPR that
are known to induce the JA-ISR response, and ethylene levels in the vicinity of
induced plants do not always rise (Knoester et al., 1999). However, Arabidopsis
roots show an increased ability to convert 1-aminocyclopropane-1-carboxylate
(ACC) to ethylene after treatment with Pseudomonas fluorescens (both strains
inducing ISR and not), suggesting that strains of this bacterium may prime plants to
produce greater quantities of ethylene upon pathogen infection (Hase et al., 2003).
The phytopathogenic fungus Botrytis cinerea also produces ethylene, both in vitro
and on tomato fruit (Cristescu et al., 2002), and it is possible that nonpathogenic
organisms may also produce ethylene. Rather than acting as an elicitor, ethylene
may play a regulatory role, and modify plant defense responses (those regulated
by JA, and others) according to particular circumstances. Salicylate, for example,
was shown to enhance the expression of genes regulated by both ethylene and
jasmonic acid in Arabidopsis, while suppressing the expression of genes regulated
by jasmonic acid alone (Norman-Setterblad et al., 2000).

Ethylene production in higher plants requires ACC synthase activity, and ACC
synthase expression is induced by auxin (Yi et al., 1999). As described previ-
ously, rhizobacterial inoculation has been shown to result in enhanced ability of
Arabidopsis to convert ACC to ethylene, although the mechanism by which this
occurs is unclear (Hase et al., 2003). Ethylene also regulates auxin levels: nitrilase
is a key enzyme involved in auxin biosynthesis, and a gene encoding a nitrilase-
like protein was found to strongly bind an ethylene-responsive element-binding
protein (Xu et al., 1998). Interestingly, the expression of two ACC synthase genes
in lupin increased in response to wounding (Bekman et al., 2000) and the expres-
sion of a particular ACC synthase gene in mung bean also increased continuously
in response to 24-epibrassinolide (BR), an active brassinosteroid, until 24 hours
after treatment (Yi et al., 1999). BR is known to promote auxin-induced ethylene
production (Yi et al., 1999). Are brassiniosteroids and auxins part of a JA-ISR
defense mechanism, controlling the level of expression and timing of this particu-
lar response in different plant tissues via their regulation of ethylene production?
Many PGPR have been identified which produce or degrade auxin or auxin precur-
sors, or affect auxin levels within plants (Patten and Glick, 1996). In addition, the
ability of microorganisms to produce auxins in the rhizosphere will vary with en-
vironmental factors (e.g., available tryptophan levels), leaving open the possibility
that microbially-mediated plant defense induction that requires the auxin produc-
tion may not function in all environments or on all plant types. The elicitation of
JA-ISR by strains of Pseudomonas fluorescens has been linked to the production
of lipopolysaccharides and siderophores, but these elicitors do not fully account
for ISR elicitation by these strains (van Wees et al., 1997). It would be interesting
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to determine if rhizobacteria that stimulate JA-ISR can also produce auxin, and
under what circumstances.

The only plant defense responses known to be activated by JA-ISR are increases
in phytoalexin production (van Peer et al., 1991) and alterations of the composition
of lignin that seem to retard pathogen ingress (Steijl et al., 1999). No pathogenesis-
related proteins appear to be induced, and there is apparently no hypersensitive
response nor, to our knowledge, induction of enzymes related to lignification or
plant secondary metabolism, although this possibility may not have been ade-
quately explored (Pieterse et al., 1996; Reitz et al., 2001; van Wees et al., 1999).
The transient accumulation of a single jasmonate-inducible transcript (Atvsp) has
been noted in Arabidopsis treated with a PGPR known to activate JA-ISR (van
Wees et al., 1999), but it is not clear that this is a defense response. AtVsp is
a vegetative storage protein (VSP) in Arabidopsis; such proteins accumulate in
the vacuoles of young leaves and developing reproductive structures, and serve a
nutritional function by acting as a storage form for amino acids. VSPs are induced
in older plant parts upon wounding (Berger et al., 1995), but do not appear to
have any direct role in plant defenses. It should be possible for rhizobacteria that
stimulate even transient accumulations of ethylene in plant tissues to also elicit
the expression of at least some PR proteins, however, since ethylene can increase
the expression of a variety of defense-related genes, including osmotin, chitinases,
β-1,3-glucanases, thaumatin-like proteins, and protein kinases (del Campillo and
Lewis, 1992; Xu et al., 1998).

JA-ISR induces responses within plants that appear to activate only a subset
of available plant defenses (i.e., phytoalexin accumulation and lignification). This
appears to explain why JA-ISR has been found to be a less effective mechanism
for protection against disease in Arabidopsis than SA-ISR, which elicits a broad
array of defenses (Ton et al., 2002). The presence of multiple disease resistance
mechanisms in plants may reflect plant defenses geared toward different pathogen
strategies, as well as some measure of functional redundancy.

10.4.6 Can PGPR Stimulate ISR by Modifying Auxin Levels?

Mayda et al. (2000a,b) have described an interesting model for another, apparently
independently regulated, defense response induction pathway, which may help ex-
plain how induced resistance in plants against viruses occurs in some plant–virus
interactions. The tomato CEV-1 gene is an anionic peroxidase induced during com-
patible viral infections, but not during incompatible infections. CEV-1 expression
is also not induced by salicylate, methyl jasmonate, or ethylene, or wounding, and is
therefore unlikely to be involved in the typical SA-ISR or JA-ISR responses. CEV-1
is rapidly induced when connections between plant cells are broken in normal
plants, and is also induced in auxin-insensitive tomato mutants. It is hypothesized
that CEV-1 is up-regulated via the induction of plant cell insensitivity to auxin, im-
posed upon plants during compatible viral infections, and that auxin itself does not
induce this gene (Mayda et al., 2000a). A CEV-1 recessive mutant (dth9) was found
to be more susceptible to fungal and bacterial infections, although salicylic acid
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metabolism and expression of PR genes remained normal, and was insensitive to
exogenously applied auxin (Mayda et al., 2000b). CEV-1, and similarly-regulated
genes, could participate in a defense response that is controlled by changes in the
ability of plant cells to perceive auxin, a phenomenon which is linked to auxin
homeostatic mechanisms (Leyser, 2002).

One mechanism for auxin signal transduction involves the targeted degradation
of transcriptional regulators that participate in complex and competing systems,
modulating the expression of a wide variety of genes (Leyser, 2002), including,
probably, defense-related genes. Links between auxin metabolism and plant de-
fense responses have already been identified earlier in this review, the most obvious
of these being the link between ethylene and auxin. Auxin and ethylene each regu-
late levels of the other in plant tissues (Xu et al., 1998; Yi et al., 1999), and ethylene,
as outlined previously, is known to be involved in JA-ISR. Auxin-activated gene
transcripts were also found to accumulate in tobacco upon inoculation with com-
patible and incompatible bacterial pathogens (Froissard et al., 1994), and auxins
negatively regulated the expression of defense-related genes in tobacco and carrot
(Jouanneau et al., 1991; Ozeki et al., 1990). In pepper, an auxin-repressed protein
was among a variety of genes induced by pathogen infection (Jung and Hwang,
2000).

Could there be more than one ISR mechanism in plants that is controlled by
auxins, one where the role of auxin is to control ethylene levels, which, in turn,
control the expression of defense-related genes, and other(s) where auxins them-
selves control these responses, perhaps serving as negative regulators? If there are
multiple, auxin-regulated ISR mechanisms (which may or may not interact, al-
though it seems probable that they would), is it possible for bacterial strains which
produce or degrade auxins or their precursors—either from a location exterior to
the plant, such as in the rhizosphere, or from a location within the plant, as in
the case of naturally occurring, nonpathogenic endophytic microorganisms—to
manipulate these mechanisms? It has often been noted that treatment of plants
with biological or chemical elicitors of ISR can produce, in addition to resistance,
significant increases in plant growth and yield (Tuzun and Bent, 1999). Given that
plants must make an energy investment in their plant defenses, this result is coun-
terintuitive. However, if known plant growth stimulants such as auxins are involved
in plant defense responses, increases in plant growth under most conditions would
be expected.

10.4.7 PGPF-Mediated ISR

Most of the PGPF studied seem to stimulate the SA-ISR pathway in plants, judg-
ing solely from the reports of the activation of defense responses (e.g., PR protein
induction) normally linked to this pathway (Table 10.2). As this pathway is most
closely related to ISR induced by pathogens, and many of the PGPF found to
induce systemic resistance are themselves nonvirulent forms of plant pathogens
(Table 10.2), this is perhaps to be expected. It is a mistake to link SA-ISR re-
sponses with fungi or with pathogens only, however, SA-ISR can also be induced
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by nonpathogenic, mycorrhizal fungi (Cordier et al., 1998; Lambais and Mehdy,
1995), bacterial pathogens (Preston et al., 2001), and PGPR (Table 10.1). It is
also important to realize that not all necrotrophic pathogens are able to induce
ISR, even when they induce defense reactions (Govrin and Levine, 2002). If the
defense reactions induced by these pathogens are, for whatever reason, wrongly
timed or of insufficient extent to contain a particular pathogen, there will of course
be disease.

Given that many fungi produce auxins, or auxin precursors, it is possible that
PGPF could stimulate plant defenses via an auxin-regulated ISR pathway. Inter-
estingly, the PGPF Penicillium janczewskii and its sterile culture filtrate were both
able to induce ISR and to alter cotton root development (Madi and Katan, 1998).
Whether auxin or auxin precursors were involved in these phenomena was not de-
termined, but the alterations in root development were consistent with the observed
effects of microbially-supplied auxin (Patten and Glick, 2002).

10.5 Microbial Elicitors of PGPR- and PGPF-Mediated ISR

10.5.1 Elicitor Production by Microorganisms May Vary
with their Physiological Status

Whether a bacterium can function to induce systemic resistance in plants will
probably relate to its physiological status. Different phase culture filtrates from
Bacillus subtilis strain FZB-G differed in their ability to activate ISR against Fusar-
ium oxysporum f.sp. radicis-lycopersici in tomato: stationary phase filtrates were
fungitoxic, and did not induce resistance, while the opposite was observed for tran-
sition phase filtrates (Gupta et al., 2000). The effect of B. subtilis FZB-G on tomato
resistance will therefore depend upon the physiological state of the bacterial cells,
a variable often overlooked by researchers studying PGPR-plant interactions. The
composition of the growth medium used to produce or deliver a bacterial or fungal
biocontrol inoculant, and therefore the physiological state of the inoculant, can af-
fect its ability to control pathogens (Fuchs et al., 2000; Hoitink and Boehm, 1999;
Ousley et al., 1993), and it is not inconceivable that PGPR/F that induce ISR are
similarly influenced.

10.5.2 Avr Elicitors

A variety of established or putative elicitors of ISR are produced by bacteria and
fungi. Specific defense response elicitors are those involved in gene-for-gene in-
teractions, where an inducing organism (i.e., an incompatible pathogen) expresses
an avirulence (avr) gene, the product of which is detected by a plant possessing a
resistance (R) gene, triggering a defense response. The same defensive responses
are presumably triggered by specific as by nonspecific elicitors, but it is not clear
how ISR and Avr-R interactions are related. Avr products do not seem to act in
the same fashion as known ISR elicitors, since the elicitor Avr9 did not induce
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systemic resistance, and sometimes enhanced pathogen growth, when applied to
tomato or transgenic canola expressing the Cf-9 resistance gene (Hennin et al.,
2001).

10.5.3 Oligosaccharides and Peptides

Nonspecific elicitors are perhaps more interesting, in that they are broadly con-
served and less likely to be overcome by pathogen mutation, and that all the elicitors
implicated in PGPR- and PGPF-mediated ISR seem to be of this type. Oligosac-
charide and peptide elicitors derived from fungal cell walls can elicit plant defense
responses, as reviewed by Hahn (1996). These elicitors need not be derived from
virulent phytopathogenic fungi: sterile culture filtrates of the PGPF Penicillium
janczewskii induced ISR in melon, cotton, and tobacco (Madi and Katan, 1998),
and filtrates in which various PGPF were grown contained a high molecular weight
(>12,000 Da) elicitor able to induce defense responses in cucumber and tobacco
(Koike et al., 2001). Chitin, which is present not only in fungal cell walls but in
arthropod exoskeletons and nematode egg membranes, has long been known to
stimulate ISR (El Ghaouth et al., 1994) and has been used by itself or in combina-
tion with agricultural inoculants for this purpose.

10.5.4 Lipopolysaccharides

Lipopolysaccharide (LPS) is present on the outer membrane of Gram-negative
bacteria, and it consists of a lipid moiety linked to a polysaccharide that contains
a conserved core region and a variable antigenic (o-antigen) region (Freer, 1985).
Gram-positive organisms do not produce LPS. Bacterial LPS is known to affect
plant defense responses, including the expression of PR protein genes, synthesis
of antimicrobial compounds, and the hypersensitive response (Dow et al., 2000).
Crude cell wall extracts as well as purified LPS from P. fluorescens strains WCS374
and WCS417 were able to induce resistance in radish while similar preparations
from P. putida WCS358, or from mutants of WCS374 and WCS417 lacking an
o-antigenic side chain, did not (Leeman et al., 1995). In contrast, outer membrane
fragments derived from P. fluorescens WCS417r have been shown to induce resis-
tance in radish and carnation, but this resistance was also observed when fragments
were prepared from a mutant of WCS417r lacking an o-antigenic side chain (van
Wees et al., 1997). LPS from Rhizobium elti strain G12 was also found to induce
resistance in potato to potato cyst nematode (Reitz et al., 2000).

10.5.5 Siderophores

Siderophores are low molecular weight, iron-sequestering compounds produced by
bacteria under iron-limiting conditions. It was thought for some time that control of
pathogens by several PGPR depended upon competition for iron, and that PGPR-
produced siderophores reduced the amount of iron available to pathogens (de
Weger et al., 1988). It has since been demonstrated that ISR mediated by at least
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some PGPR depends upon siderophore production, or the level of iron availability
in the rhizosphere (de Meyer and Hofte, 1998; Leeman et al., 1996). ISR has been
induced in radish by purified pseudobactins (fluorescent siderophores), as well as
by concentrations of SA as low as 1 ng (de Meyer et al., 1999), which may also be
produced under low-iron conditions and used as a siderophore by Pseudomonas
(de Meyer and Hofte, 1997; Leeman et al., 1996). For P. aeruginosa 7NSK2, SA
production is essential for ISR induction (de Meyer and Hofte, 1998), but for
Serratia marcesens strain 90-166, SA or pseudobactin production is not required
for ISR induction (Press et al., 1997). However, siderophores may help protect S.
marcesens 90-166 against activated oxygen species and facilitate its colonization
of the root interior (Press et al., 2001).

10.5.6 Flagellins, Harpins, and Other Bacterial Proteins

Bacterial flagellin is also a potent elicitor of plant defense responses in Arabidopsis
thaliana (Gómez- Gómez et al, 1999) and tomato (Felix et al., 1999). Plants may be
able to distinguish between flagellin from different sources: peptides corresponding
to conserved eubacterial flagellin domains produced a response (oxidative burst,
callose deposition, and production of PR proteins) in A. thaliana, while peptides
corresponding to these regions from Agrobacterium tumefaciens and Rhizobium
meliloti were inactive (Gómez- Gómez et al., 1999). Heat-killed cells and culture
filtrates of Bacillus sphaericus were found to induce resistance in potato to potato
cyst nematode (Hasky-Günther et al., 1998), and it is possible that peptidoglycan or
flagellin, sheared from cell surfaces during centrifugation, are responsible for this.

Other bacterial proteins, including those encoded by hrp clusters in both
pathogenic and nonpathogenic strains of bacteria (Dong et al., 1999; Preston et al.,
2001; Strobel et al., 1996) have been found to elicit ISR. A bacterial proton pump
from Halobacterium halobium that was constitutively expressed in potatoes also
elicited ISR, but this was probably due to effects on cell membrane polarization,
which mimicked early events in plant defense responses (Abad et al., 1997).

10.5.7 Elicitins and Mycotoxins

Elicitins are low molecular weight peptides produced by oomycete fungi, including
all analyzed species of the plant pathogen Phytophthora (Keller et al., 1996) and
the mycoparasite Pythium oligandrum (Benhamou et al., 2001). Elicitins are not
virulence factors, but rather avirulence factors, since the most virulent organisms
are those which produce little or no elicitin (Keller et al., 1996). Elicitins can
induce ISR, and different elicitins may vary in their ability to stimulate plant
defense reactions. For example, resistance induced by a basic elicitin, cryptogein,
induced both necrosis in tobacco leaves and the transcription of a variety of defense-
related genes, while resistance induced by an acidic elicitin, capsicein, was not
accompanied by visible necrosis but still induced the transcription (albeit to a
lesser extent) of the same genes (Keller et al., 1996). Cryptogein was also found
to increase the extent of apoplastic RNase activity, which, in turn, was found to be
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sufficient to reduce infection of tobacco by Phytophthora parasitica (Galiana et al.,
1997). Proteinaceous ISR elicitors may also be produced by non-oomycete fungi,
for example, a Fusarium oxysporum 24 kDa protein was found to induce ethylene
production and varying defense responses in different weed species (Jennings et al.,
2000).

Mycotoxins are produced by virulent fungi, and include the AAL-toxins and
fumonisins, groups of structurally related sphingosine analogs that are produced
by Alternaria alternata f. sp. lycopersici and Fusarium moniliforme, respectively.
Both kinds of toxins have been found to induce cell death in plants, apparently
by disrupting ceramide synthesis (Bostock et al., 2001). Treatment of plant roots
with ceramide has been found to induce ceramide accumulation in leaves, as well
as systemic resistance (Bostock et al., 2001).

10.5.8 Detection of Nonspecific Elicitors by Plants

Plant receptor-like kinases that bind peptidoglycan, a polymer found in the cell
walls of bacteria, or chitin have been identified (Shiu and Bleecker, 2001), as well
as plant plasma membrane proteins that have a high binding affinity for chitin
fragments (Okada et al., 2002), plant proteins that are rapidly phosphorylated in
response to flagellin or chitin (Peck et al., 2001), and calmodulin isoforms that
are activated by nonspecific fungal elicitors (Heo et al., 1999). These discoveries
may help explain how the detection of nonspecific elicitors can stimulate a plant
defense response.

10.6 Spectrum of PGPR- and PGPF-Mediated ISR Activity

PGPR-induced systemic resistance has been observed on a wide variety of plants,
including monocots, dicots, and gymnosperms, in response to several types of
pathogens or herbivores (Table 10.1). I am not aware of any studies performed
with plants that belong outside these categories (e.g., mosses and ferns), although
it would be interesting from an evolutionary perspective to know if the more ancient
plant forms can express induced systemic resistance.

The majority of reports I was able to find focus on plant pathogenic fungi or
bacteria, but PGPR-induced resistance to viruses, nematodes, and herbivorous
insects has also been reported (Table 10.1). For example, Bacillus sphaericus,
Agrobacterium radiobacter, and Rhizobium elti can induce ISR against the potato
cyst nematode, Globodera pallida (Hasky-Günther et al., 1998; Reitz et al., 2001).
Inoculation with Bacillus pumilis strain INR-7 can decrease levels of the feeding
stimulant cucurbitacin in cucumber leaves, resulting in reduced feeding on these
plants by cucumber beetles (Zhender et al., 1997a).

PGPF-induced resistance has likewise been observed on a variety of an-
giosperms in response to various plant pathogens (Table 10.2). Mycorrhizal fungi,
although not included in the definition of PGPF, have also been observed to in-
duce defense responses in angiosperms (Cordier et al., 1998; Lambais and Mehdy,



244 10. Induced Systemic Resistance Mediated by Plant Growth-Promoting

1995) and gymnosperms (Sylvia and Sinclair, 1983; Strobel and Sinclair, 1991;
Salzer et al., 1996).

10.7 Effects of the Environment and Other Microorganisms
on PGPR- and PGPF-Mediated ISR

In a natural environment, PGPR and PGPF exist in the midst of a wide variety of
other micro- and macroorganisms, some of which may themselves exert effects on
plant defense responses, and all of which can be influenced by the host plant, soil-
and climate-related factors, and other nearby vegetation. These factors can only
be briefly outlined here.

Microbial rhizosphere communities have been observed to vary between soil
and plant types (Catellan et al., 1998; Weland et al., 2001; Latour et al., 1996;
Kuske et al., 2002; Timonen et al., 1998), in response to crop rotations (Vargas-
Ayala et al., 2000) and the addition of organic soil amendments (Zhang et al., 1996;
Bent and Topp, unpublished observations). The microbial rhizosphere community
can vary with depth (Kuske et al., 2002), location along the root surface, and the
nutritional status of the plant, which will affect the composition of root exudates
upon which microorganisms feed (Yang and Crowley, 2000). Precipitation will
affect the distribution of microorganisms in the rhizosphere, as percolating water
in the soil can flush bacteria off roots and down into the soil (Mawdsley and
Burns, 1994). Earthworms have been shown to facilitate the movement of bacteria
within soils, and by providing an environment in which plasmid transfer between
bacteria can readily occur, may increase the rate of gene transfer between bacteria
in natural soils (Daane et al., 1997). The physicochemical properties of a soil
will also have a profound influence on microbial metabolism, and the ability of
a microorganism to produce compounds by which it interacts with plants or with
other microorganisms. For example, the production of siderophores and antibiotics
by Pseudomonas fluorescens CHA0 was found to be modulated by such factors
as phosphate availability, the ratio of carbon sources to nutrients, the presence
of soluble cobalt, molybdenum or zinc, and the composition of available carbon
sources (Duffy and Defago, 1999).

It is not always easy to identify which microorganisms in the environment are
affecting plant growth or metabolism. “Non-culturable” soil microorganisms that
cannot be cultured using traditional techniques appear to make up a majority of
the organisms present in soils, based upon analyses of rDNA extracted from soils
(Amann et al., 1995). Such non-culturable organisms may be so because they are
only able to grow in mixed cultures, as has recently been demonstrated for non-
culturable marine bacteria (Kaeberlein et al., 2002), and an obligately biotrophic
mycorrhizal fungus that requires a bacterium to grow in vitro (Hildebrandt et al,
2002). The presence of other bacterial rhizosphere colonists has been shown to
improve the ability of some bacterial strains to colonize specific root microsites
(Bent et al., 2002), and microorganisms in soil or on plant roots will naturally
exist in biofilms, which change in chemical and microbial composition over time.
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Direct metabolic interactions between members of a biofilm community have
been reported (Moller et al., 1998). The production of quorum sensing signal
molecules that regulate and coordinate the activity of individuals within a given
bacterial species has been known for some time (Pierson et al., 1998). Bacteria
can respond to quorum sensing-like molecules produced by other rhizobacteria
(Steidle et al., 2001), by plants (Teplitski et al., 2000), and even destroy the quorum-
sensing molecules produced by other bacterial species (Dong et al., 2002). Bacterial
activity in the rhizosphere can therefore be altered directly by plants or other
microorganisms via quorum-sensing molecules.

Mycorrhizal fungi are known to induce plant defense responses directly, as
outlined in the previous section. The presence of nonhost plants, or their root exu-
dates, can sometimes prevent mycorrhizal fungi from colonizing plants they would
otherwise be able to infect (Fontenla et al., 1999), and root exudates containing
allelopathic, phytotoxic compounds can prevent other plant species from estab-
lishing in the vicinity of the producer (e.g., Yamane et al., 1992). The infection
of roots with mycorrhizal fungi will alter the composition of root exudates, and
therefore the community of rhizosphere microorganisms (Belimov et al., 1999),
and can even increase the number of rhizosphere protozoa (Jentscke et al., 1995).
Protozoa feed upon rhizosphere bacteria and can alter their spatial distribution upon
surfaces (Lawrence and Snyder, 1998), their taxonomic and functional diversity
(Bonkowski, 2002) and appear to induce physiological responses in the bacteria,
which remain uneaten (Kandeler et al., 1999). Protozoa can also influence plant
growth directly via a mechanism that is unrelated to the release of nutrients from
bacteria during grazing (Jentscke et al., 1995).

Grazing of roots or foliage by herbivores can also alter the composition of
the microbial rhizosphere community, by altering the quantity or quality of root
exudates or plant litter (Bardgett et al., 1998; Denton et al., 1999).

PGPR field trials can be quite variable in their results, and it is consistently
hypothesized that other soil microorganisms may be interfering with the ability of
the PGPR inoculants to adequately colonize plant roots or interact with plants (Bent
and Chanway, 1998; Bent et al., 2000, and references therein). This interference
may be due to an inability to adequately colonize the plant root, or alternatively, due
to the alteration of growth-promoting or signaling molecules produced by PGPR
and PGPF by other rhizosphere microorganisms. The effects of PGPR or PGPF
on plant defense responses under natural conditions are therefore very likely to be
affected by the presence of other organisms in the plant’s environment, which may
include other plants, protists, earthworms, insects, herbivorous animals, fungi, and
bacteria. This is in addition to climactic and soil factors that can alter the physiology
of plants, and potentially affect interactions between PGPR or PGPF and their host
plants.

Still, it may be possible to manipulate soil microbial communities so that plant
defenses are stimulated and plant growth and health improved. Disease-suppressive
soils may contain microorganisms that disrupt the disease cycle in a variety of ways,
including direct attacks on the pathogen or utilization of substrates the pathogen
requires to locate host roots (Yin et al., in press). While ISR has not been clearly
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identified with a disease-suppressive soil to our knowledge, ISR can be induced
by compost amendments (Hoitink and Boehm, 1999; Zhang et al., 1996, 1998),
as well as aqueous extracts of compost, or autoclaved compost amended with
a biocontrol agent (Hoitink and Boehm, 1999; Zhang et al., 1998). In each of
these cases, the induction of systemic resistance was attributed to the presence of
compost-related microorganisms.

10.8 Conclusion

PGPR and PGPF interact with plants in complex and numerous ways, especially
under natural conditions where each organism is part of a dynamic consortium
that fluctuates in response to environmental biotic and abiotic stimuli. Systemic
resistance in plants is induced via several different mechanisms by PGPR, and
possibly by several in PGPF, although less research has been conducted on PGPF-
mediated ISR. These mechanisms are likely to interact at some point with the host
plant’s hormonal balances, especially since both bacteria and fungi are capable
of synthesis of various plant hormones such as auxin. More details of these inter-
esting plant–microbe interactions will be elucidated as research progresses, and I
hope to see more work in the near future conducted on the mechanisms governing
microbially-mediated ISR as well as the role(s) of typically growth-related phy-
tohormones (auxins, cytokinins) in the ISR phenomenon. Emerging technology,
such as oligonucleotide fingerprinting of rRNA genes (OFRG; Valinsky et al.,
2002a,b) will enable the detailed study of rhizosphere and endophytic consor-
tia in natural soils and in the interior of the plant. Using OFRG, it will become
possible to determine the conditions under which natural or artificially produced
microbial consortia tend to flourish and induce ISR in particular plants. It may one
day be possible to engineer ISR-stimulating soils containing stable populations of
ISR-inducing microbial consortia for particular crops, via the strategic addition of
substrates, inocula, or other soil treatments.
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